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Abstract

In task-oriented dialogue scenarios, cross-
domain zero-shot slot filling plays a vital role in
leveraging source domain knowledge to learn
a model with high generalization ability in un-
known target domain where annotated data
is unavailable. However, the existing state-
of-the-art zero-shot slot filling methods have
limited generalization ability in target domain,
they only show effective knowledge transfer
on seen slots and perform poorly on unseen
slots. To alleviate this issue, we present a novel
Hierarchical Contrastive Learning Framework
(HiCL) for zero-shot slot filling. Specifi-
cally, we propose a coarse- to fine-grained con-
trastive learning based on Gaussian-distributed
embedding to learn the generalized deep se-
mantic relations between utterance-tokens, by
optimizing inter- and intra-token distribution
distance. This encourages HiCL to generalize
to slot types unseen at training phase. Further-
more, we present a new iterative label set se-
mantics inference method to unbiasedly and
separately evaluate the performance of unseen
slot types which entangled with their counter-
parts (i.e., seen slot types) in the previous zero-
shot slot filling evaluation methods. The ex-
tensive empirical experiments' on four datasets
demonstrate that the proposed method achieves
comparable or even better performance than
the current state-of-the-art zero-shot slot filling
approaches.

1 Introduction

Slot filling models are devoted to extracting the con-
tiguous spans of tokens belonging to pre-defined
slot types for given spoken utterances and gathering
information required by user intent detection, and
thereby are an imperative module of task-oriented
dialogue (TOD) systems. For instance, as shown in

*Corresponding author
'The offcial implementation of HiCL is available at
https://github.com/ai-agi/HiCL.
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Figure 1: Cross-domain slot filling models’ perfor-
mance on unseen and seen slots in GetWeather target
domain on SNIPS dataset.

Figure 2, given a user utterance "send a reminder
for a tire check next week" belonging to reminder
domain, the slot filling task is to identify slot enti-
ties: "a tire check" and "next week" that correspond
to slot types (an alias of slot type is slot), todo and
date_time, respectively.

Supervised slot filling methods (Kurata et al.,
2016; Wang et al., 2018; Li et al., 2018; Goo
et al., 2018; Qin et al., 2019) have achieved promis-
ing performance. Nevertheless, these methods are
strongly dependent on substantial and high-quality
annotation data for each slot type, which prevents
them from transferring to new domains with little
or no labeled training samples.

To solve this problem, more approaches have
emerged to deal with this data scarcity issue by
leveraging zero-shot slot filling (ZSSF). Typically,
these approaches can be divided into two cate-
gories: one-stage and two-stage. In one-stage
paradigm, Bapna et al. (2017); Shah et al. (2019);
Lee and Jha (2019) firstly generate utterance repre-
sentation in token level to interact with the repre-
sentation of each slot description in semantic space,
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Figure 2: Hierarchical contrastive learning (CL), where coarse-grained and fine-grained slot labels are used as
supervised signal for CL, respectively, i.e., step one is entity-label level CL and step two is token-label level CL.
Entity-label is a pseudo-label in our Hierarchical CL. Different colors of rectangular bounding box denote different

slot types.

and then predict each slot type for utterance to-
ken individually. The primary weakness for this
paradigm is multiple prediction issue where a token
will probably be predicted as multiple slot types
(Liu et al., 2020; He et al., 2020). To overcome
this issue, Liu et al. (2020); He et al. (2020); Wang
et al. (2021) separate slot filling task into two-stage
paradigm. They first identify whether the tokens
in utterance belong to BIO (Ramshaw and Mar-
cus, 1995) entity span or not by a binary classifier,
subsequently predict their specific slot types by pro-
jecting the representations of both slot entity and
slot description into the semantic space and inter-
act on each other. Based on the previous works,
Siddique et al. (2021) propose a two-stage vari-
ant, which introduces linguistic knowledge and pre-
trained context embedding, along with the entity
span identify stage (Liu et al., 2020), to promote
the effect on semantic similarity modeling between
slot entity and slot description. Recently, Heo et al.
(2022) develop another two-stage variant that ap-
plies momentum contrastive learning technique to
train BERT (Devlin et al., 2019a) and to improve
the robustness of ZSSF. However, as shown in Fig-
ure 1, we found that these methods perform poorly
on unseen slots in the target domain.

Although two-stage approaches have flour-
ished, one-pass prediction mechanism of these ap-
proaches (Liu et al., 2020; He et al., 2020; Wang
et al., 2021) inherently limit their ability to infer un-
seen slots and seen slots separately. Thus they have
to adopt the biased test set split method of unseen
slots (see more details in Appendix F), being inca-
pable of faithfully evaluating the real unseen slots

performance. Subsequently, their variants (Sid-
dique et al., 2021; Heo et al., 2022; Luo and Liu,
2023) still struggle in the actual unseen slots per-
formance evaluation due to following this biased
test set split of unseen slots (Siddique et al., 2021;
Heo et al., 2022), or the intrinsic architecture limit
of one-pass inference (Luo and Liu, 2023). In an-
other line (Du et al., 2021; Yu et al., 2021), ZSSF is
formulated as a one-stage question answering task,
but it is heavily reliant upon handcrafted question
templates and ontologies customized by human
experts, which is prohibitively expensive for this
method to generalize to unseen domains. Besides,
the problem with multiple slot types prediction that
happened to them (Siddique et al., 2021; Heo et al.,
2022; Du et al., 2021; Yu et al., 2021) seriously
degrades their performance. In this paper, we intro-
duce a new iterative label set semantics inference
method to address these two problems.

Moreover, a downside for these two orthogo-
nal methods is that they are not good at learning
domain-invariant features (e.g., generalized token-
class properties) by making full use of source-
domain data while keeping target-domain of in-
terest unseen. This may lead them to overfit to the
limited slot types in source training domains. Ac-
tually the current models’ performance on unseen
slots in target domain is still far from upper bound.

To tackle the above limitation, intuitively,
through contrastive learning (CL), we can re-
distribute the distance of token embeddings in se-
mantic space to learn generalized token-class fea-
tures across tokens, and better differentiate between
token classes, and even between new classes (slot-
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Figure 3: The main architecture of HiCL. For simplicity, we only draw detailed illustration for fine-grained token-
level CL. Different colors of rectangular box in utterances and token-level CL (right side) denote different slot types.

agnostic features) , which is beneficial for new to-
ken class generalization across domains (Das et al.,
2022). However, it’s hard to train token-level class
since its supervised labels are closely distributed,
which easily leads to misclassifications (Ji et al.,
2022). While training entity-level class is relatively
easy since its training labels are dispersedly dis-
tributed and it does not require label dependency
that exists in token-level sequence labeling training
(Ji et al., 2022).

We argue that entity-level class knowledge con-
tributes to token-level class learning, and their com-
bination is beneficial for ZSSF task. Entity-level
class learning supplements token-class learning
with entity type knowledge and boundary informa-
tion between entity and non-entity, which lowers
the difficulty of token class training.

Hence, we propose a new hierarchical CL frame-
work called HiCL, a coarse-to-fine CL approach.
As depicted in Figure 2, it first coarsely learns
entity-class knowledge of entity type and boundary
knowledge via entity-level CL. Then, it combines
features of entity type and boundary, and finely
learns token-class knowledge via token-level CL.

In recent years, some researchers have employed

Gaussian embedding to learn the representations
of tokens (Vilnis and McCallum, 2015; Mukherjee
and Hospedales, 2016; Jiang et al., 2019a; Yiiksel
et al., 2021) due to their superiority in capturing
the uncertainty in representations. This motivates
us to employ Gaussian embedding in our HiCL to
represent utterance-tokens more robustly, where
each token becomes a density rather than a sin-
gle point in latent feature space. Different from
existing slot filling contrastive learners (He et al.,
2020; Wu et al., 2020; Wang et al., 2021; Heo
et al., 2022) that optimize training objective of pair-
wise similarities between point embeddings, HiCL
aims to optimize distributional divergence by lever-
aging effectively modeling Gaussian embeddings.
While point embeddings only optimize pairwise
distance, Gaussian embeddings also comprise ad-
ditional constraint which preserves the class dis-
tribution through their variance estimates. This
distinctive quality helps to explicitly model entity-
or token- class distributions, which not only en-
courages HiCL to learn generalized feature repre-
sentations to categorize and differentiate between
different entity (token) classes, but also fosters zero-
sample target domain adaptation.
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Concretely, as shown in Figure 3, our token-level
CL pulls inter- and intra-token distributional dis-
tance with similar labels closer in semantic space,
while pushing apart dissimilar ones. Gaussian dis-
tributed embedding enables token-level CL to bet-
ter capture semantics uncertainty and semantics
coverage variation of token-class than point em-
bedding. This facilitates HiCL to better model
generalized slot-agnostic features in cross-domain
ZSSF scenario.

Our major contributions are three-fold:

* We introduce a novel hierarchical CL
(coarse-to-fine CL) approach based on
Gaussian embedding to learn and extract slot-
agnostic features across utterance-tokens, ef-
fectively enhancing the model’s generaliza-
tion ability to identify new slot-entities.

* We find unseen slots and seen slots overlap-
ping problem in the previous methods for un-
seen slots performance evaluation, and rec-
tify this bias by splitting test set from slot
type granularity instead of sample granularity,
thus propose a new iterative label set seman-
tics inference method to train and test unseen
slots separately and unbiasedly. Moreover,
this method is also designed to relieve the
multiple slot types prediction issue.

* Experiments on two evaluation paradigms,
four datasets and three backbones show that,
compared with the current state-of-the-art
(SOTA) models, our proposed HiCL frame-
work achieves competitive unseen slots per-
formance, and overall performance for cross-
domain ZSSF task.

2 Problem Definition

Zero-shot Setting For ZSSF, a model is trained
in source domains with a slot type set {Afi)} and
tested in new target domain with a slot type set
{At} = {A’Ej)} U {A%} where i, j and k are in-
dex of different slot type sets, .Af;) are the slot
types that both exist in source domains and target
domain (seen slots), and At}é are the slot types that
only exist in target domain (unseen slots). Since
{Afi)} N {A’E}i)} = (), it is a big challenge for the
model to generalize to unseen slots in target do-
main.

Task Formulation Given an utterance U =
{xl, ...,xn}, the task of ZSSF aims to output a

label sequence O = { 01, ...\ on}, where n is the
length of U.

3 Methodology

The architecture of HiCL is illustrated in Figure
3. HiCL adopts an iterative label set semantics
inference enhanced hierarchical CL approach and
conditional random field (CRF) scheme. Firstly,
HiCL successively employs entity-level CL and
token-level CL, to optimize distributional diver-
gence between different entity- (token-) class em-
beddings. Then, HiCL leverages generalized entity
(token) representations refined in the previous CL
steps, along with the slot-specific features learned
in the CRF training with BIO label, to better model
the alignment between utterance-tokens and slot-
entities.

3.1 Hierarchical Contrastive Learning

Encoder Given an utterance of n tokens U =
{x,-}?zl, a target slot type with k£ tokens & =

{s }]f, and all slot types except the target slot type
with ¢ tokens A = {ai}‘i, we adopt a pre-trained
BERT (Devlin et al., 2019a) as the encoder and
feed “|{CLS|S[SEP|A[SEPJU[SEP]” as input
to the encoder to obtain a d;-dimensional hidden
representation h; € R% of each input instance:

H = BERT(|CLS|S[SEP]A[SEP]U[SEP])
ey

where H = {h;}," . H € R™%, SN A=,
We adopt two encoders for our HiCL, i.e., BilL-
STM (Hochreiter and Schmidhuber, 1997) and
BERT(Devlin et al., 2019a), to align with base-
lines.
Gaussian Transformation Network We hy-
pothesize that the semantic representations of en-
coded utterance-tokens follow Gaussian distribu-
tions. Similar to (Jiang et al., 2019a; Das et al.,
2022), we adopt exponential linear unit (ELU) and
non-linear activation functions f,, and fy to gen-
erate Gaussian mean and variance embedding, re-
spectively:

mi = fu(hi) )
3 = ELU(fz(hi)) + 1
where 1 € R? is an array with all value set to
1, ELU and 1 are designed to ensure that every
element of variance embedding is non-negative.
Wi € R?, ¥, € R™d denotes mean and diagonal
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covariance matrix of Gaussian embeddings, respec-
tively. f, and fx, are both implemented with ReLU
and followed by one layer of linear transformation.
Positive and Negative Samples Construction
In the training batch, given the anchor token x,,, if
token x,, shares the same slot label with token x,,,
1.e., Yy = Yy, then x, is the positive example of z,,.
Otherwise, if 4, # ., T, is the negative example
of x,,.

Contrastive Loss  Given a pair of positive sam-
ples =, and x,, their Gaussian embedding dis-
tributions follow x, ~ N (py,X,) and z, ~
N (py, 2y), both with m dimensional. Following
the formulas (Iwamoto and Yukawa, 2020; Qian
et al., 2021), the Kullback-Leibler divergence from
N (o, o) to N (g, 2,) is calculated as below:

Dicw Wl IVG) = Dice [ (b Z0) IV (k0. )

/N“ua

D) [(Hu

(Nv’ 3,)dx

o) E (e — pro)

—i—log|2 ol —-m
p
+Tr(2v12u>] 3)

where T} is the trace operator. Since the asymmetry
features of the Kullback-Leibler divergence, we
follow the calculation method (Das et al., 2022),
and calculate both directions and average them:
1

s(u,v) = 5 (PRGN + Prr[No|V]) @)
Suppose the training set in source domains is 7, at
each training step, a randomly shuffled batch 7 €
7T, has batch size of N;, each sample (z;, yj) €
T . For each anchor sample x,,, match all positive

instances 7, € 7T for x, and repeat it for all anchor
samples:

%:{(xvyyv)ET|yv:ymu7év} %)

Formulating the Gaussian embedding loss in each
batch, similar to Chen et al. (2020), we calculate
the NT-Xent loss:

_ilog N exp(—

J=1 Z ]l[;#u}exp(—s
k=1

s(u, J)/7)
(u, k)/7)

/g

(6)

where 1., € {0, 1} is an indicator function eval-
uating to 1 iff k& # w, 7 is a scalar temperature
parameter and n,, is the total number of positive
instances in 7.

Coarse-grained Entity-level Contrast In
coarse-grained CL, entity-level slot labels are used
as CL supervised signals in training set 7,. Coarse-
grained CL optimizes distributional divergence be-
tween tokens Gaussian embeddings and models
the entity class distribution. According to Eq.(3)-
Eq.(6), we can obtain coarse-grained entity-level
contrastive loss £! and the in-batch coarse-

coarse?

grained CL loss is formulated:

Z ‘Ccoarse (7

Fine-grained Token-level Contrast In fine-
grained CL, token-level slot labels are used as
CL supervised signals in training set 7,. As illus-
trated in Figure 3, fine-grained CL optimizes KL-
divergence between tokens Gaussian embeddings
and models the token class distribution. Similarly,
the in-batch fine-grained CL loss is formulated:

1
— i 8
Mgcm (8)

3.2 Training Objective

coarse -

Efine =

The training objective L is the weighted sum of
regularized loss functions.
Slot Filling Loss

n

Sy (v) ©

j=1i=1

where g); is the gold slot label of j-th token and n;
is the number of all slot labels.
Overall Loss

L= Oéﬁs + 5£coarse + '7£fine + )‘H QH (10)

where «, § and ~ are tunable hyper-parameters for
each loss component, A denotes the coefficient of
Ly-regularization, © represents all trainable param-
eters of the model.

4 Experiments

4.1 Dataset

We evaluate our approach on four datasets, namely
SNIPS (Coucke et al., 2018), ATIS (Hemphill et al.,
1990), MIT_corpus (Nie et al., 2021) and SGD
(Rastogi et al., 2020).
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Training Setting Zero-shot

Method |} Domain = AP BR GW PM RB SCW FSE |AVGFI

CT? 38.82 27.54 46.45 32.86 14.54 39.79 13.83| 30.55

RzT' 42.77 30.68 50.28 33.12 16.43 44.45 12.25| 32.85

RNN based | Coach! 50.90 34.01 50.47 3201 22.06 46.65 25.63| 37.39
CZSL-Adv" 53.89 34.06 52.24 34.59 31.53 50.61 30.05| 40.99

pCLC’ 59.24 41.36 54.21 34.95 29.31 53.51 27.17| 42.82
HiCL+BiLSTM (ours) [ 53.16 39.97 55.78 35.13 27.16 54.07 26.51| 41.68

LMo based| EONAT 5023 46.58 62.91 4049 22.67 45.86 28.15| 4241
HiCL+ELMo (ours) 52.86 48.67 64.35 42.40 27.38 49.96 30.33| 45.14

TOD-BERT 4726 4491 6430 29.36 25.02 62.85 44.11| 45.40

mcBERT® 54.28 5528 75.60 35.16 31.88 70.73 43.77| 52.39

BERT based | RCSF 68.70 63.49 65.36 53.51 36.51 69.22 33.54| 55.76
HiCL+BERT (ours) 54.35 61.06 77.91 43.65 36.97 73.22 44.47| 55.95

w/o coarse CL (ours) |[52.44 57.43 75.02 44.21 36.82 72.06 44.84| 54.69

w/o fine CL (ours) 55.10 53.68 77.44 4494 34.14 70.63 40.54| 53.78

Table 1: Slot F1 scores on SNIPS dataset for different
target domains that are unseen in training. T denotes
the results reported in (Wang et al., 2021). ¥ denotes
that we run the publicly released code (Siddique et al.,
2021) to obtain the experimental results and  denotes
that we reimplemented the model. AP, BR, GW, PM,
RB, SCW and FSE denote AddToPlaylist, BookRestau-
rant, GetWeather, PlayMusic, RateBook, SearchCre-
ativeWork and FindScreeningEvent, respectively. AVG
denotes average.

Training Setting Zero-shot

Method | Domain = AR AF AL FT GS OS [AVGFI
ELMo based L]_EONAE 51.36 96.56 93.11 84.95 50.93 84.70 | 76.93
HiCL+ELMo (ours) | 50.64 98.34 93.24 86.19 52.47 84.63| 77.58

TOD-BERT 44.67 96.54 89.02 85.50 60.97 75.80( 75.42

mcBERT? 63.55 98.56 92.82 88.10 74.42 81.35| 83.13

BERT based | HICL+BERT (ours) |69.54 98.09 92.20 85.96 78.17 82.41| 84.40
wi/o coarse CL (ours) [ 65.23 98.75 94.20 87.90 69.96 71.08| 81.19
wi/o fine CL (ours) |62.83 98.40 93.51 87.91 81.04 84.00| 84.62

Table 2: Slot F1 scores on ATIS dataset for different
target domains that are unseen in training. AR, AF, AL,
FT, GS and OS denote Abbreviation, Airfare, Airline,
Flight, Ground Service, Others, respectively.

4.2 Unseen and Seen Slots Overlapping
Problem in Test Set

The problem description, and the proposed rectified
method for unseen and seen slots test set split are
presented in Appendix F.

4.3 Evaluation Paradigm

Training on Multiple Source Domains and Test-
ing on Single Target Domain A model is trained
on all domains except a single target domain. For
instance, the model is trained on all domains of
SNIPS dataset except a target domain GetWeather
which is used for zero-shot slot filling capability
test. This multiple training domains towards sin-
gle target domain paradigm is evaluated on datasets
SNIPS (Coucke et al., 2018), ATIS (Hemphill et al.,
1990) and SGD (Rastogi et al., 2020).

Training on Single Source Domain and Testing
on Single Target Domain A model is trained
on single source domain and test on a single target
domain. This single training domain towards single
target domain paradigm is evaluated on dataset of

Training Setting Zero-shot
Method | Domain = Movie Restaurant AVG F1
TOD-BERT 71.72 48.23 59.90
mcBERT? 76.51 57.37 66.94
BERT based | HICL+BERT (ours) | 77.75 58.35 68.05
w/o coarse CL (ours) | 74.99 51.23 63.11
w/o fine CL (ours) 75.15 57.63 66.39

Table 3: Slot F1 scores on MIT_corpus dataset for dif-
ferent target domains that are unseen in training.

Training Setting Zero-shot
Method || Domain = Buses Events Homes Rental Cars AVG F1
TOD-BERT 35.04 5643 79.92 53.40 56.20
mcBERT? 27.12 5138 80.14 59.43 54.52
BERT based | HICL+BERT (ours) 27.63 5020 81.73 59.24 54.70
HiCL+TOD-BERT (ours) | 28.07 58.29 84.51 55.53 56.60
w/o coarse CL (ours) 2494 53.62 8345 53.17 53.80
wi/o fine CL (ours) 2936 4599 77.81 56.39 5239

Table 4: Slot F1 scores on SGD dataset for different
target domains that are unseen in training. BS, ET,
HE, RC denote Buses, Events, Homes, Rental Cars,
respectively.

MIT_corpus (Nie et al., 2021).

4.4 Baselines

We compare the performance of our HiCL with
the previous best models, the details of baseline
models are provided in Appendix E.

4.5 Training Approach

Training Sample Construction The output of
HiCL is a BIO prediction for each slot type. The
training samples are of the pattern (S;, Ay, U;, J/; )
where S; represents a target slot type, A; repre-
sents all slot types except S, U; represents an utter-
ance, yg represents BIO label for &, all slot types
A = S; U A, for simple depiction, hierarchical CL
labels are omitted here. For a sample from given
dataset with the pattern (14;, );) that contains enti-
ties for k slot types, k positive training samples for
U; can be generated by setting each of k slot types
as S; in turn and generating the corresponding A,
and yg . Then m negative training samples for {/;
can be generated by choosing slot types that be-
longs to A and does not appear in I4;. For example,
in Figure 3, the utterance "what the weather in st
paul this weekend" has the original label "O O O
O B-location I-location B-date_time I-data_time".
The positive samples are formatted as ["location",
e 5. ,"000O0OBIOQ"] and ["date_time",
ve 5, "O OO OOOBTI"]. While the negative
samples are formatted as ["todo", ..., ... ,"O O O
00 0O0Q"] and ["attendee", ... ,...,"OO0 00O
000"

Tterative Label Set Semantics Inference Itera-
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tively feeding the training samples constructed in
§ 4.5 into HiCL, the model would output BIO label
for each target slot type. We named this training
or predict paradigm iterative label set semantics
inference (ILSSI). Algorithm 1 and 2 in Appendix
elaborate on more details of ILSSI.

5 Experimental Results

5.1 Main Results

We examine the effectiveness of HiCL by compar-
ing it with the competing baselines. The results of
the average performance across different target do-
mains on dataset of SNIPS, ATIS, MIT_corpus and
SGD are reported in Table 1, 2, 3, 4, respectively,
which show that the proposed method consistently
outperforms the previous BERT-based and ELMo-
based SOTA methods, and performs comparably to
the previous RNN-based SOTA methods. The de-
tailed results of seen-slots and unseen-slots perfor-
mance across different target domains on dataset of
SNIPS, ATIS, MIT_corpus and SGD are reported
in Table 6, 7, 8, 9, respectively. On seen-slots
side, the proposed method performs comparably to
prior SOTA methods, and on unseen-slots side, the
proposed method consistently outperforms other
SOTA methods.

5.2 Quantitative Analysis

Ablation Study To study the contribution of dif-
ferent component of hierarchical CL, we conduct
ablation experiments and display the results in Ta-
ble 1 to Table 9.

The results indicate that, on the whole, both
coarse-grained entity-level CL and fine-grained
token-level CL contribute substantially to the per-
formance of the proposed HiCL on different dataset.
Specifically, taking the performance of HiCL on
SNIPS dataset for example, as shown in Table 1,
the removal of token-level CL ("w/o fine CL")
sharply degrades average performance of HiCL
by 2.17%, while the removal of entity-level CL
("w/o coarse CL") significantly drops average per-
formance of HiCL by 1.26%. Besides, as shown in
Table 6, removing entity-level CL ("w/0 Leoarse”),
the unseen slots effect is drastically reduced by
4.61%, and removing token-level CL ("W/0 L fine"),
the unseen slots effect of the proposed model is con-
siderably decreased by 4.01%.

Coarse-grained CL vs. Fine-grained CL. On
the basis of ablation study results (§ 5.2), our anal-
yses are that, coarse-grained CL complements fine-

grained CL with entity-level boundary information
and entity type knowledge, while fine-grained CL
complements coarse-grained CL with token-level
boundary information (BIO) and token class type
knowledge. Their combination is superior to either
of them and helps HiCL to obtain better perfor-
mance.

Unseen Slots vs. Seen Slots  As shown in Table
6,7, 8,9, the proposed HiCL significantly improves
the performance on unseen slots against the SOTA
models, while maintaining comparable seen slots
performance, which verifies the effectiveness of our
HiCL framework in cross-domain ZSSF task. From
the remarkable improvements on unseen slot, we
clearly know that, rather than only fitting seen slots
in source domains, our model have learned gen-
eralized slot-agnostic features of entity-classes in-
cluding unseen classes by leveraging the proposed
hierarchical contrast method. This enables HiCL
to effectively transfer domain-invariant knowledge
of slot types in source domains to unknown target
domain.

model I seen I unseen
HiCL (BERT Backbone)
+ Gaussian Embedding + KL-div. | 68.94 | 29.71
+ Point Embedding + Euclidean 64.52 28.54
+ Point Embedding + Cosine 68.30 | 26.86

Table 5: The ablation study of HiCL adopting different
types of embedding on SNIPS dataset.

@ HICL + Gaussian Embedding + KL-div. °
HICL + Point Embedding + Euclidean
[] ® HICL + Point Embedding + Cosine .

AP BR oW PM RB FSE

[ ] @ HICL + Gaussian Embedding + KL-div.
85 HICL + Point Embedding + Euclidean
° @ HiCL + Point Embedding + Cosine

Seen Slot F1 Score
°

AP BR ow PM RB scw FSE
Target Domain

Figure 4: HiCL’s performance on unseen-slots and seen
slots of each domain in SNIPS dataset when equipped
with Gaussian embedding and point embedding. The
lines denote average F1 scores over all domains.

Gaussian embedding vs. Point embedding We
provide ablation study for different forms of em-
bedding that are migrated to our HiCL, i.e., Gaus-
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sian embedding and point embedding, and inves-
tigate their performance impact on unseen slots
and seen slots. As shown in Table 5 and Figure
4, HiCL achieves better performance on both seen
slots and unseen slots by employing Gussian em-
bedding over its counterpart, i.e., point embedding.
This suggests that Gaussian embedding may be
more suitable than point embedding for identify-
ing slot entities of novel slot types in cross-domain
generalization task.

Multi-domains Training vs. Single-domain
Training From the results in Table 6, 7, 8, 9,
we clearly see that, for unseen slots cross-domain
transfer, single-domain training is much more diffi-
cult than multi-domain training. The averaged F1
score of unseen slots performance of HiCL across
all target domains on three multi-domain training
datasets (SNIPS, ATIS and SGD) is 38.97, whereas
the averaged F1 score of unseen slots performance
of HiCL on a single-domain training dataset of
MIT_corpus is only 10.12. This tremendous gap
may reveal that the diversity of source domains in
training is a very critical factor that determines the
model’s capability of cross-domain migration of un-
seen slots. To have a closer analysis, plural source
domains in training stage mean that there are abun-
dant slot types that help the model learn generalized
domain-invariant features of slot types, to avoid
overfitting to the limited slot type classes in source
domains. The results in Table 8 verify this analysis,
we observe that, without the constraint of profes-
sionally designed generalization technique, learn-
ing with the limited slot types, TOD-BERT barely
recognizes any unseen slot, and mcBERT performs
poorly on unseen slots. Although HiCL achieves
the best results against baselines due to specially
designed generalization method of hierarchical CL,
the proposed model also suffers from limited diver-
sity of slot types in single-domain training mode,
and its performance is significantly lower than that
of multi-domain training.

Performance Variation Analysis of TOD-BERT
Surprisingly, as shown in Table 1, 2, 3, TOD-
BERT (current pre-trained TOD SOTA model) per-
forms inferiorly on datasets of SNIPS, ATIS and
MIT _corpus and fails to meet our expectations.
We present analysis of causes as below: (1) TOD-
BERT is unable to directly take advantage of the
prior knowledge of pre-training on the datasets of
SNIPS, ATIS and MIT_corpus. These datasets are
not included in the pre-training corpora of TOD-

BERT and their knowledge remains unseen for
TOD-BERT. (2) There is a discrepancy of data
distribution between the corpora that TOD-BERT
pre-trained on and the datasets of SNIPS, ATIS and
MIT _corpus. The datasets that TOD-BERT pre-
trained on are multi-turn task-oriented dialogues
of modeling between user utterances and agent re-
sponses, whereas the datasets of SNIPS, ATIS and
MIT_corpus are single-turn utterances of users in
task-oriented dialogues. Perhaps this intrinsic data
difference affects the performance of TOD-BERT
on these single-turn dialogue datasets. (3) TOD-
BERT may also suffer from catastrophic forget-
ting (Kirkpatrick et al., 2016) during pre-training.
TOD-BERT is further pre-trained by initializing
from BERT, catastrophic forgetting may prevent
TOD-BERT from fully leveraging the general pur-
pose knowledge of pre-trained BERT in zero-shot
learning scenarios. From the experimental results,
we observe that the performance of TOD-BERT is
even much lower than BERT-based models (e.g.,
mcBERT), which may be a possible empirical evi-
dence for the above analysis.

In contrast, TOD-BERT performs extremely
well on SGD dataset and it beats all BERT-based
models. This is because that TOD-BERT is pre-
trained on SGD dataset (Wu et al., 2020) and it can
thoroughly leverage the prior pre-trained knowl-
edge on SGD to tackle various downstream tasks
including zero-shot ones on this dataset. How-
ever, when our HiCL migrates to TOD-BERT
(HiCL+TOD-BERT), as shown in Table 4 and 9,
the performance of the model again achieves an up-
lift. Concretely, the overall performance increases
by 0.4% and unseen slots performance increases
by 9.18%, which is a prodigious boost, only at the
expense of a drop of 2.43% on seen slots perfor-
mance. This demonstrates that, in terms of unseen
slots performance, even on the seen pre-training
datasets, our method of HiCL can still compensate
the shortcoming of pre-trained TOD models (e.g.,
TOD-BERT).

5.3 Qualitative Analysis

Visualization Analysis Figure 5 in Appendix
provides t-SNE scatter plots to visualize the perfor-
mance of the baseline models and HiCL on test set
of GetWeather target domain of SNIPS dataset.

In Figure 5(a) and Figure 5(c), we observe that
TOD-BERT and mcBERT have poor clustering
styles, their representations of predicted slot en-
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tities for unseen slots (digital number 1, 2, 3, and
4 in the figure) sparsely spread out in embedding
space and intermingle with other slot entities’ rep-
resentations of unseen slots and outside (0) in
large areas, and TOD-BERT is even more worse
and its slot entities’ representations of seen slots
(digital number 5, 6, 7, 8 and 9 in the figure) are a
little sparsely scattered. This phenomenon possibly
suggests two problems. On the one hand, without
effective constraints of generalization technique,
restricted to prior knowledge of fitting the limited
slot types in source training domains, TOD-BERT
and mcBERT learn little domain-invariant and slot-
agnostic features that could help them to recognize
new slot-entities, they mistakenly classify many
slot entities of unseen slots into outside (0). On
the other hand, although TOD-BERT and mcBERT
generate clear-cut clusters of slot-entity classes of
seen slots, they possess sub-optimal discriminative
capability between new slot-entity classes of un-
seen slots, they falsely predict multiple new slot
types for the same entity tokens.

In Figure 5(b) and 5(d), we can see clearly that,
HiCL produces a better clustering division between
new slot-entity classes of unseen slots, and between
new slot-entity class and outside (0), due to gen-
eralized differentiation ability between entity-class
(token-class) by extracting class agnostic features
through hierarchical CL. Moreover, equipped with
Gaussian embedding and KL-divergence, HiCL ex-
hibits even more robust performance on unseen
slots than equipped with point embedding and Eu-
clidean distance, the clusters of new slot-entity
classes of unseen slots and outside (0) distribute
more compactly and separately.

Case Study Table 11 in Appendix demonstrates
the prediction examples of ILSSI on SNIPS dataset
with HiCL and mcBERT for both unseen slots and
seen slots, in target domain of BookRestaurant and
GetWeather, respectively. The main observations
are summarized as follows:

(1) mcBERT is prone to repeatedly predict the
same entity tokens for different unseen slot types,
which leads to its misclassifications and perfor-
mance degradation. For instance, in target domain
of BookRestaurant, given the utterance "i d like
a table for ten in 2 minutes at french horn son-
ning eye", mcBERT repeatedly predicts the same
entity tokens "french horn sonning eye" for three
different types of unseen slots. This phenomenon
can be interpreted as a nearly random guess of slot

type for certain entity, due to learning little prior
knowledge of generalized token- or entity-classes,
resulting in inferior capacity to differentiate be-
tween token- or entity-categories, which discloses
the frangibility of mcBERT on unseen slots perfor-
mance. Whereas, HiCL performs more robustly
for entity tokens prediction versus different unseen
slots, and significantly outperforms mcBERT on
unseen slots in different target domains. Thanks to
hierarchical CL and ILSSI, our HiCL learns gen-
eralized knowledge to differentiate between token-
or entity-classes, even between their new classes,
which is a generalized slot-agnostic ability. (2)
HiCL is more capable of recognizing new enti-
ties over mcBERT by leveraging learned general-
ized knowledge of token- and entity-class. For
instance, in target domain of GetWeather, both
HiCL and mcBERT can recoginze token-level en-
tity "warmer" and "hotter" that belong to unseen
class of condition_temperature, but mcBERT fails
to recognize "freezing" and "temperate" that also
belong to the same class, owing to the limited gen-
eralization knowledge of token-level class. With
the help of hierarchical CL that aims at extracting
the most domain-invariant features of token- and
entity-classes, our HiCL can succeed in recogniz-
ing these novel entities. (3) HiCL performs slightly
better than mcBERT on the seen slots. The two
models demonstrate equivalent knowledge trans-
fer capability of seen slots from different training
domains to target domains.

6 Conclusion

In this paper, we improve cross-domain ZSSF
model from a new perspective: to strengthen
the model’s generalized differentiation ability be-
tween entity-class (token-class) by extracting the
most domain-invariant and class-agnostic features.
Specifically, we introduce a novel pretraining-free
HiCL framework, that primarily comprises hier-
archical CL and iterative label set semantics in-
ference, which effectively improves the model’s
ability of discovering novel entities and discriminat-
ing between new slot-entity classes, which offers
benefits to cross-domain transferability of unseen
slots. Experimental results demonstrate that our
HiCL is a backbone-independent framework, and
compared with several SOTA methods, it performs
comparably or better on unseen slots and overall
performance in new target domains of ZSSF.
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Limitations and Future Work

Large language models (LLMs) exhibit powerful
ability in zero-shot and few shot scenarios. How-
ever, LLMs such as ChatGPT seem not to be good
at sequence labeling tasks (Li et al., 2023; Wang
et al., 2023), for example, slot filling, named-entity
recognition, etc. Our work endeavors to remedy
this shortage with light-weighted language models.
However, if the annotated datasets are large enough,
our method will degenerate and even possibly hurt
the generalization performance of the models (e.g.,
transformer based language models). Since the
models would generalize pretty well through thor-
oughly learning the rich data features, distribution
and dimensions, without the constraint of certain
techniques that would become a downside under
these circumstances, which reveals the principle
that the upper bound of the model performance de-
pends on the data itself. We directly adopt slot
label itself in contrastive training of our HiCL,
which does not model the interactions between la-
bel knowledge and semantics. In our future work,
we will develop more advanced modules via label-
semantics interactions, that leverages slot descrip-
tions and pre-trained transformer-based large lan-
guage models to further boost unseen slot filling
performance for TOD.
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Appendix

Algorithm 1: Iterative Label Set Semantics

Inference
// training in source domain
Input: Batch Samples D = > ""t7* D;,
where D; = (Si, Ar,Us, Vi, V5, V)
// 8§ 4.5
// Yi and y{ denote coarse- and

fine-grained CL label.

Output: Batch Loss £
// Eqg.10
Data: Training Data D;,

1 for training batch D € Dy, do

2 for D; € D do

3 Oz =
CRF(W; ® (PLM((St, A¢,U;)) + b;))

4 i = fu(PLM((S, Ae,Us))) // Eq.2

5 3, = ELU(fs(PLM((Ss, A, Us)))) + 1
// Eq.2

6 calculate Leoarse, L fines Ls

7 calculate £

8 back-propagate and update parameters to

optimize £

A Related Work

A.1 Gaussian Embedding

Vilnis and McCallum (2015) initially explore to
learn word embedding in Gaussian distribution
space, they find that density-based Gaussian em-
bedding helps capturing uncertainty of word repre-
sentation and presenting more natural expression
for asymmetries than point embedding. Wang et al.
(2017) incorporate Gaussian distribution embed-
ding into deep CNN architectures through an end-
to-end pattern to discriminate first- and second-
order image characteristics, which leverages the
rich geometry and smooth representations of Gaus-
sian embedding. Jiang et al. (2019b) employ Gaus-
sian embedding in convolutional operations to cap-
ture the uncertainty of users preferences in recom-
mendation system. Qian et al. (2021) advocate
a contextualized Gaussian embedding that inte-
grates inner-word knowledge and outer-word con-
texts into word representations and capture their
more accurate semantics. Das et al. (2022) lever-
age Gaussian embedding in contrastive learning for
few-shot named entity recognition task, which is a
work closer to ours.

However, our work is fundamentally different
from the research (Das et al., 2022) in many as-
pects. First of all, Das et al. (2022) present the
method of entity level CL (entity-tokens level CL)

Algorithm 2: Iterative Label Set Semantics

Inference

// prediction in target domain
Input: All Test Samples D = > 7"** D,

=1
. where D; = (Si, Ay, Us, V)
Output: Total Prediction Set O, Oynseen and Oseen,
and F1 Scores for O, Oynseen and Oseen in
Target Domain
// Testing Data D:s includes all negative
and positive samples constructed as § 4.5
in Target Domain
Data: Testing Data D;,, All Slot Types in Source
Training Domains A*", All Slot Types in
Target Domain A"
1 for testing sample D; € D;s do
2 ifS; € A®and S; ¢ A" then

3 L thsnseen <~ D; // add D; to szLSnseen
4 elseif S; € A*and S; € A" then
5 | Dis" < D; // add D; to D"

¢ for testing batch D € D, do
7 for D; € D do

8 OZ =
CRF(W; ® (PLM((S¢, As,Us)) + bi))
9 | O« 0O; // add O; to O

10 for unseen slots testing batch Di'" € Duynseen do
1 for D; € D" do

12 O; =
CRF(W; @ (PLM((S:, Ar,Us)) + bi))
13 L Ounseen < O; // add O; to Ounseen

14 for seen slots testing batch D;" € Dseer, do
15 for D; € D;" do

16 O; =
CRF(W; ® (PLM((S:, As,U;)) + bi))
17 L Oseen — O; // add O; to Ogeen

18 calculate f1 score for O
19 calculate f1 score for Oynseen
20 calculate f1 score for Osecen

in NER task, while it is the first of its kind for us
to introduce token level CL, and we innovatively
present a hierarchical CL architecture and empir-
ically verify that the combination of entity- and
token- level CL will significantly outperform either
of them. Secondly, we explore a more challenge re-
search orientation, i.e., zero-shot task of single-turn
and multi-turn task-oriented dialogues instead of
few-shot NER task that comprises single indepen-
dent sentences (Das et al., 2022). Finally, we take
a deep dive into the pre-trained general language
models for task-oriented dialogue (TOD), evaluate
and compare it with our professionally designed
expert model of ZSSF (HiCL). Most researchers
will be curious about whether the vanilla capability
of pre-trained general TOD models would replace
that of all small expert models of ZSSF in this sce-
nario, and whether specially designed generaliza-
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Figure 5: t-SNE visualization in testset of GetWeather target domain on SNIPS dataset for different methods. 1-4
denote unseen slots and 5-9 denote seen slots in all the subfigures.

tion techniques would still work or bring benefits
for pre-trained general models in this specific field.
This even brings some enlightenment to the re-
search of large language models (LLMs) like Chat-
GPT 2, our work bring some explorations into this
kind of thoughts. We introduce the pre-training ex-
pert model (TOD-BERT) that pre-trained on large
corpora of task-oriented dialogue as a baseline to
explore that whether this model is good enough
for unseen slots generalization, and whether our
method can continue to improve the unseen slots
performance on top of TOD-BERT, which is also
missing from the research (Das et al., 2022).

A.2 Contrastive Learning in Slot Filling

He et al. (2020) advocate an adversarial attack
strengthened contrastive learning with an objec-
tive of optimizing the mapping loss from slot en-
tity to slot description in representation space for
cross-domain slot filling. Wu et al. (2020) pre-
train natural language understanding BERT (De-
vlin et al., 2019b) for task-oriented dialogue with
the joint masked language modeling (MLM) loss

“https://openai.com/blog/chatgpt

and response contrastive loss (RCL), achieving im-
provements on slot filling performance for dialogue
state tracking. Liu et al. (2021) propose a joint
contrastive learning for few-shot intent classifica-
tion and slot filling in task-oriented dialogue sys-
tem. Wang et al. (2021) propose a prototypical con-
trastive learning to bridge semantics gap between
token features and slot types in ZSSF. Heo et al.
(2022) train BERT encoder with momentum con-
trastive learning to develop a robust ZSSF model.

In this work, we introduce a Gaussian embed-
ding based hierarchical CL framework. At first,
it coarsely learns entity-class knowledge of en-
tity type and boundary via entity-level CL. Then,
it combines the learned entity-level features, to
finely learn token-class knowledge of BIO type and
boundary via token-level CL. Our method is essen-
tially different from the above approaches.

B Additional Analysis

B.1

In Tabel 1, 2, 3, 4, we observe that, with the in-
crease of dataset volume (see Table 10), the per-
formance gain of HiCL against baselines gradually

Performance Gain vs. Dataset Volume
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Zero-shot
AP BR GW PM RB SCW FSE | AVGFI
SEen UNseen Seen UNSEeen Seen UNSEen SEeen UNSeen Seen UNSeen Seen UNseen seen unseen| seen unseen

Training Setting
Method | Domain =

CTT 4715 5.18 5143 187 39.54 2.11 4648 0.13 25.10 0.13 3959 - 11.32 10.84 [37.23 3.38
RzT! 5750 3.48 43.84 7.14 62.84 234 4745 0 2541 013 3927 - 1061 0 [4099 2.19
RNN based | Coach® 64.65 7.94 5588 289 6397 220 31.69 878 4042 18.81 4435 - 2727 1521|4622 931
pcLct 7332 257 62.81 1656 65.84 14.20 45.17 17.53 3470 2570 5351 - 29.66 22.71 |51.68 17.38
HiCL+BiLSTM (ours) |65.83 17.67 54.31 1478 66.47 14.54 46.87 1692 40.54 19.68 54.07 - 24.57 18.96 |50.38 17.10
ELMo based LEONAI 59.82 8.62 67.73 17.49 7791 7.53 60.12 13.94 4231 11.02 4586 - 32.16 23.43 [55.13 13.67
HiCL+ELMo (ours) |65.34 17.43 71.75 15.17 73.55 18.18 58.69 18.13 40.38 20.18 49.96 - 3532 23.97 [56.43 18.84
TOD-BERT 70.27 15.97 72.57 16.75 84.12 3.03 51.63 10.79 39.57 1642 6285 - 46.60 3836 |61.09 16.89
mcBERT® 77.60 17.73 81.12 34.06 91.02 10.26 52.32 1042 68.25 10.00 70.72 - 4627 3521 |69.61 19.61

BERT based |RCSF - - - - - - - - - - _
HiCL+BERT (ours) |77.91 18.89 81.73 38.09 90.32 31.17 58.81 21.09 55.96 26.85 73.22 -

75.17 17.90 83.79 29.79 88.17 26.51 67.34 12.59 67.04 22.19 72.06 -
78.29 14.18 73.41 32.92 91.95 25.82 61.41 24.31 56.86 21.15 70.63 -

- } - 2544
44.65 42.15 |68.94 29.71

46.31 41.63 (71.41 25.10
42.76 35.81 [67.90 25.70

w/o coarse CL (ours)
w/o fine CL (ours)

Table 6: Detailed F1 scores on SNIPS for seen and unseen slots across all target domains.  denotes the results
reported in (Wang et al., 2021). ¥ denotes that we run the publicly released code (Siddique et al., 2021) to obtain the
experimental results and ? denotes that we re-implemented the model, and we reevaluate their performance on seen
and unseen slots following the split method of unseen- and seen-slots sub-test set in Appendix F and the test method
of iterative label set semantics inference in Algorithm 2.

Training Setting Zero-shot
Method | Domain = AR AF AL FT GS oS AVG F1

SEEN UNSeen SEen UNSEENn SEEN UNSEen SEen UNSEEn SEen UNseen Seen unseen| seen unseen

ELMo based LEONAY 59.54 6.17 96.56 - 93.11 - 8565 3.71 51.07 31.27 84.70 - |78.44 13.72
HiCL+ELMo (ours) |55.34 14.81 9834 - 9324 - 8647 555 52.61 40.00 83.67 - |78.28 20.12

TOD-BERT 47770 9.73 9654 - 89.02 - 87.09 645 6130 2222 7580 - [76.24 12.80

mcBERT? 6632 9.05 9856 - 9282 - 8926 920 74.58 64.44 8135 - |83.82 27.56

BERT based |HiCL+BERT (ours) |72.51 17.65 98.09 - 9220 - 88.87 12.12 77.95 85.18 8241 - |8534 38.32
w/o coarse CL (ours)[68.27 11.76 98.75 - 9420 - 90.34 938 69.75 85.71 71.08 - [82.07 35.62

w/o fine CL (ours) |65.58 15.76 9840 - 9351 - 89.00 10.66 81.02 83.33 84.00 - |85.25 36.58

Table 7: Detailed F1 scores on ATIS for seen and unseen slots across all target domains.

Training Setting Zero-shot . . s
" . Movie Restaurant | AVG invariant slot features for cross-domain ZSSF.
ethod | D = -
SECn_Unseen_seen_Unseen| seen_unseen

TOD-BERT 71.72 - 56.87 0.90 [64.30 0.90 1 3
mcBERT? 76.51 - 67.81 5.71 |72.16 5.71 C Dataset and Spllt Detalls

BERT based | HiCL+BERT (ours) |77.75 - 66.93 10.12 |72.34 10.12
w/o coarse CL (ours)|74.99 -  58.16 3.71 |66.58 3.71 C.I Dataset
w/o fine CL (ours) |75.15 - 67.51 6.34 [71.33 6.34

We evaluate our approach on four TOD tasks
datasets, i.e., SNIPS (Coucke et al., 2018), ATIS
(Hemphill et al., 1990), MIT_corpus (Nie et al.,
2021) and SGD (Rastogi et al., 2020).

Table 8: Detailed F1 scores on MIT_corpus for seen
and unseen slots across all target domains.

Training Setfing Zero-shot ) .
e SNIPS (Coucke et al., 2018) is a personal voice
TOD-BERT 45.19 27.66 7546 21.36 81.23 58.86 56.93 50.91 [64.70 39.70 1 1 1
I 2510 2826 6540 1340 8149 4787 987 3521|5872 3618 assistant dataset that contains 7 domains.
ased | HICL+BERT (ours, 32.83 21.23 64.84 14.28 83.00 63.69 54.66 51.78 |58.83 37.75 . .
HICLVTOD-BERT (our)[35.15 22,02 7522 2364 8340 o047 3511 5937 6227 4888 ATIS (Hemphlll et al., 1990) is a dataset that con-
w/o coarse CL (ours) 34.54 18.64 67.68 15.87 83.43 83.70 54.35 44.87 (60.00 40.77
w/o fine CL (ours) 28.69 29.97 60.59 17.51 80.53 24.76 58.85 30.42 [57.17 25.67 tains transcribed audio recordings Of people mak_

Table 9: Detailed F1 scores on SGD for seen and unseen
slots across all target domains.

diminishes. Besides, as indicated in Table 6, 7,8,
9, on the large dataset, HiCL needs to sacrifice
more seen slots performance to improve unseen
slots performance. This phenomenon indicates that
the zero-shot generalization ability of the baseline
models gradually becomes stronger with the growth
of dataset volume and the diversity of slot types,
which helps baseline models to learn more domain-

ing flight reservations with 18 domains. Domains
that contain less than 100 utterances are merged
into a single domain Others in our experiments.

MIT_corpus ? is a spoken query dataset that con-
sists of MIT restaurant domain and MIT movie
domain. MIT movie domain contains eng corpus
and trivialOk13 corpus, namely simple query ver-
sion and complex query version, respectively. We
merge the two version into one corpus and call it
MIT movie domain.

3The original MIT corpora can be downloaded from
https://groups.csail.mit.edu/sls/downloads
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SGD (Rastogi et al., 2020) contains 16 domains.
However, we find that training on 15 domains ex-
cept a single target domain, almost all slot types
become seen slots. To increase unseen slots and
knowledge transfer difficulty, we adopt the same
dataset span as (Gupta et al., 2022; Coope et al.,
2020) and choose four domains for SGD dataset,
namely buses, events, homes, rental cars.

C.2 Unseen Slots and Seen Slots in Different
Domains

Table 12 presents detailed unseen slots and seen
slots in different domains for four datasets, i.e.,
SNIPS, ATIS, MIT_corpus and SGD.

D Implementation Details

We use uncased BERT* to implement the encoder
in our model, which has 12 attention heads and
12 transformer blocks. For TOD-BERT, we use
the stronger variant® that pre-trained using both
the MLM and RCL objectives. We uses 100
dimensional Gaussian embeddings, AdamW op-
timizer (Loshchilov and Hutter, 2019) with ,6’/
= (0.9, 0.999) and warm-up strategy (warm-up
steps is 1% of total training steps). Early stop
of patience is set to 30 for stability. 7=0.07
for Eq.(6). dropout rate is 0.3. We set a=1
and (=1 in Eq.(10). We select the best hyper-
parameters by searching a combination of batch
size, learning rate and ~y in Eq.(10): learning rate
is in {1x107%5%x107%1x107°,5 x 107°},
batch size is in {8,16,32,64}, and § is in
{0.001,0.01,0.05,0.1,0.5}. For instance, an opti-
mal learning rate is 1 x 107> for SNIPS dataset,
and 1 x 10~ for MIT_corpus dataset. We select
the best-performing model on dev set and evaluate
it on test set. We run 5 times for all our experiments
and then average them to generate the results. We
train and test our model on 4 NVIDIA GeForce
RTX 3090 GPUs and 1 NVIDIA Tesla A100 GPU,
and it takes averagely less than one hour to reach
convergence.

E Baseline Details

We compare HiCL with the following competing
models.

* Concept Tagger (CT) (Bapna et al., 2017) is
a one-stage leading model for ZSSF, which
4https://huggingface.co/bert—base—uncased

Shttps://huggingface.co/TODBERT/
TOD-BERT-JNT-V1
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adopts slot descriptions to promote the perfor-
mance on unseen slots in the target domain.

Robust Zero-shot Tagger (RZT) (Shah et al.,
2019) incorporates additional slot example
entities combined with slot descriptions to im-
prove zero-shot adaption.

Coarse-to-fine Approach (Coach) (Liu et al.,
2020) is a pioneer of two-stage framework
for ZSSF, which divides the ZSSF task into
two stages: coarse-grained slot entity segmen-
tation in the form of BIO and fine-grained
alignment between slot entities and slot types
by utilizing slot descriptions. We use their
stronger variant Coach+TR and call it Coach
for brevity.

Contrastive Zero-Shot Learning with Ad-
versarial Attack (CZSL-Adv) (He et al.,
2020) is an improver of Coach, which em-
ploys contrastive learning and adversarial at-
tack training to optimize the performance of
the framework.

Prototypical Contrastive Learning and La-
bel Confusion (PCLC) (Wang et al., 2021)
is a two-stage based approach, which em-
ploys prototypical contrastive learning and
label confusion strategy to enhance the robust-
ness of unseen slots filling under zero-shot
setting.

Linguistically-Enriched and Context-
Aware (LEONA) (Siddique et al., 2021)
is an advocate of three-stage ZSSF model,
which utilizes context-aware and linguistic
token representation to improve the effect
on semantic similarity modeling between
utterance tokens and slot descriptions based
on attention mechanism.

Reading Comprehension for Slot Filling
(RCSF) (Yu et al., 2021) is the current ques-
tion answering (QA) based SOTA model,
which formulate ZSSF task as a machine read-
ing comprehension (MRC) problem.

Momentum Contrastive Learning with
BERT(mcBERT) (Heo et al., 2022) is cur-
rent state-of-the-art model (to our knowledge),
which improves ZSSF performance by adopt-
ing BERT backbone and training it with mo-
mentum contrastive learning.


https://huggingface.co/bert-base-uncased
https://huggingface.co/TODBERT/TOD-BERT-JNT-V1
https://huggingface.co/TODBERT/TOD-BERT-JNT-V1

e TOD-BERT (Wu et al., 2020) Pre-trained
Natural Language Understanding for Task-
Oriented Dialogue. This model is current
state-of-the-art pre-training model for TOD,
we use their stronger variant that pre-trained
with the joint technique of masked language
modeling (MLM) loss and response con-
trastive loss (RCL), and name it TOD-BERT

for brevity.
BN Seen Sample W Unseen Sample
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Figure 6: Unseen and seen slots test set split on SNIPS
dataset with the method of Coach (Liu et al., 2020). The
figure on the top of bar chart denotes the number of seen
or unseen samples for different target domain in test set.
"0" represents no sample (unseen or seen) exists.
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Figure 7: Unseen and seen slots test set split on SNIPS
dataset with our method. The figure on the top of bar
chart denotes the number of seen or unseen slots for
different target domain in test set. "0" represents no
unseen-slot exists.

F Rectified Test Set Split for Unseen Slots
and Seen Slots

In the cross-domain slot filling scenario, seen slots
refer to those slot types that appear in both source

domains and target domain, while unseen slots re-
fer to those slot types that only appear in target
domain. As shown in Figure 6, Liu et al. (2020)
divide SNIPS (Coucke et al., 2018) test set into
unseen and seen subset according to whether an
utterance contains at least one unseen slot, which
leads to unseen-seen slots overlapping problems in
unseen slots performance evaluation. Since the per-
formance results of the unseen samples are actually
entangled with seen slots (unseen sample test set
contains both unseen slots and seen slots), which
seriously causes a bias in testing a model’s actual
performance on unseen slots.

For example, for an utterance "will it be colder
in connorville" in target test set, its corresponding
slot label is "O O O B-condition_temperature O B-
city", this utterance sample comprises both unseen
slot type condition_temperature and seen slot type
city. Nevertheless, this sample will be classified
into unseen test set according to the method of
Coach (Liu et al., 2020).

We rectify this bias by splitting unseen and seen
test set with slot granularity strategy instead of sam-
ple granularity method used in Coach (Liu et al.,
2020). This slot granularity split method is illus-
trated in § 4.5, Algorithm 1 and 2 (iterative label set
semantics inference), which is able to train and test
unseen and seen slots, separately and unbiasedly.
For instance, following this new split method, as
shown in Figure 7, slot type condition_temperature
and city, will be re-classified into unseen subset
and seen subset for the utterance "will it be colder
in connorville" , respectively (§ 4.5). Through the
comparison between Figure 6 and Figure 7, it is
observed that unseen and seen sub-test set across
domains distribute more evenly by employing our
approach over Coach (Liu et al., 2020) method.
Furthermore, we can find the defect of original
Coach (Liu et al., 2020) split method. For example,
in target domain RateBook, as shown in 6, the split
result indicates that the number of seen samples
(or seen slots) is zero and all samples are unseen
ones. However, splitting with our new method, the
number of seen slots is 3,112 and the number of un-
seen slots is 7,780. We can see approximately one
third of slots in domain RateBook are seen slots,
but they were wrongly classified into unseen test
set by this biased split method of Coach (Liu et al.,
2020), and their performance was regarded as that
of unseen samples. To our knowledge, almost all
baselines follow the split method of Coach (Liu
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et al., 2020), so we have to reevaluate their real
performance for unseen slots with our new split
method, i.e., iterative label set semantics inference
illustrated in § 4.5, Algorithm 1 and 2.

Dataset Query Numbers
train val test seen slots | unseen slots
SNIPS 110,007 | 27,519 82,488 38,917 46,651
ATIS 342,574 | 85,741 | 256,833 | 216,147 40,817
MIT_corpus | 1,464,532 | 365,433 | 1,099,099 | 935,265 163,853
SGD 2,780,748 | 695,285 | 2,085,463 | 1,367,438 718,025

Table 10: Data statistics of training, validation and test
for all domains of SNIPS, ATIS, MIT_corpus and SGD,
respectively, after data augmentation. All baselines and
HiCL are fine-tuned on the same augmented dataset.

14500



Gold

HiCL

mcBERT

test sample

=  book indian food at a highly rated pub for 1 for 02:22 pm

restaurant_name : None
facility : None
indian
pub
served_dish : None

poi : None
party_size_description : None
city : None
02:22 pm

country : None

highly rated
spatial_relation : None
state : None

vs. slot entities
restaurant_name : None
facility : None
indian
pub
served_dish : None
party_size_number : None

poi : None

city : None
1 02:22 pm
country : None
highly rated
spatial_relation : None
state : None

restaurant_name : None
facility : None
cuisine : None

pub
served_dish : None
party_size_number : None
poi : None
party_size_description : None

city : None
02:22 pm
indian
highly rated
spatial_relation : None
state : None

test sample =

id like a table for ten in 2 minutes at french horn sonning eye

french horn sonning eye
facility : None
cuisine : None
restaurant_type : None
served_dish : None

ten

poi : None
party_size_d

city : None

in 2 minutes
country : None
sort : None
spatial_relation : None
state : None

vs. slot entities
french horn sonning eye
facility : None
cuisine : None
restaurant_type : None
served_dish : None
party_size_number : None

d

city : None

in 2 minutes
country : None
sort : None
spatial_relation : None
state : None

french horn sonning eye
french horn sonning eye
french sonning
restaurant_type : None
served_dish : None
party_size_number : None
french horn sonning eye
ize_descrinti

city : None

ten in 2 minutes
country : None
sort : None
spatial_relation : None
state : None

test sample

= how cold will it be here in 1 second

cold
here
condition_description : None
geographic_poi : None

vs. slot entities
cold
current_location : None
condition_description : None
geographic_poi : None

cold
current_location : None
condition_description : None
geographic_poi : None

in 1 second
state : None
city : None
country : None
spatial_relation : None

in I second
state : None
city : None
country : None
spatial_relation : None

in I second
state : None
city : None
country : None
spatial_relation : None

test sample =

will it get warmer in czechia

warmer
current_location : None
condition_description : None

timerange : None
state :None
city : None

czechia
spatial_relation : None

vs. slot entities
warmer
current_location : None
condition_description : None
geographic_poi : None

timerange : None
state :None
city : None

czechia
spatial_relation : None

warmer
current_location : None
condition_description : None

timerange : None

state :None

city : None
czechia

spatial_relation : None

test sample =

tell me if it 1 be freezing next month in rhode island

freezing
current_location : None
condition_description : None
geographic_poi : None

vs. slot entities
freezing
current_location : None
condition_description : None
geographic_poi : None

condition_temperature : None
current_location : None
condition_description : None
geographic_poi : None

next month
rhode island

city : None
country : None
spatial_relation : None

next month
rhode island
city : None
country : None
spatial_relation : None

next month
rhode island
city : None
country : None
spatial_relation : None

test sample =

when will it be temperate in lansford

temperate
current_location : None
condition_description : None
geographic_poi : None

vs. slot entities
temperate
current_location : None
condition_description : None
geographic_poi : None

condition_temperature : None
current_location : None
condition_description : None
geographic_poi : None

timerange : None
state : None
lansford

country : None
spatial_relation : None

timerange : None
state : None

lansford
country : None
spatial_relation : None

timerange : None
state : None

lansford
country : None
spatial_relation : None

test sample =

is maalaea has chillier weather

chillier
current_location : None
condition_description : None

timerange : None
state : None

maalaea
country : None
spatial_relation : None

vs. slot entities
chillier
current_location : None
condition_description : None
geographic_poi : None
s

timerange : None
state : None

maalaea
country : None
spatial_relation : None

condition_temperature : None
current_location : None
condition_description : None
geographic_poi : None

timerange : None
state : None

city : None

country : None
spatial_relation : None

Table 11: Iterative label set semantics inference (ILSSI) prediction examples from SNIPS dataset with BookRestau-
rant, GetWeather as target domain, respectively.
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Target Domain

Unseen Slots

Seen Slots

AddToPlaylist entity_name, playlist_owner artist, playlist, music_item
arty_size_description, restaurant_type, poi, served_dish, . . . .
BookRestaurant party_ . P - N ype. p — city, spatlalirelauon, state, sort, IlmeRange, country
party_size_number, cuisine, facility, restaurant_name
condition_description, current_location, condition_temperature, . . . .
GetWeather - : P - temp country, spatial_relation, state, timeRange, city
geographic_poi
PlayMusic track, service, album, year, genre artist, music_item, sort, playlist
object_select, rating_unit, rating_value, best_rating, . .
RateBook Ject s 8 o= - s object_name, object_type
object_part_of_series_type
SearchCreativeWork - object_type, object_name
FindScreeningEvent object_location_type, movie_type, location_name, movie_name object_type, timeRange, ’spatial_relation’

Target Domain

Unseen Slots

Seen Slots

Abbreviation

booking_class, meal_code, days_code

meal, airline_code, cla
aircraft_code, fare_basis
airline_name

_type, airport_code, mod, fromloc.city_name,
_code, toloc.city_name’, restriction_code,

Airfare

flight_number, fare_amount, arrive_date.date_relative, flight_time,
cost_relative, fromloc.city_name, return_date.day_number,
toloc.city_name, depart_date.day_number, toloc.state_name,
flight_mod, arrive_date.day_name, depart_date.date_relative, connect,
depart_time.time_relative, stoploc.city_name, toloc.airport_name,
airline_name, arrive_time.time_relative, arrive_date.day_number,
economy, arrive_time.time, depart_time.period_mod, depart_date.day
_name, return_date.date_relative, return_date.month_name,
aircraft_code, meal, fromloc.airport_code, arrive_date.month_name,
fromloc.state_name, flight_stop, or, fromloc.airport_name,
depart_date.month_name, toloc.state_code, depart_time.time,
class_type, airline_code, toloc.airport_code, round_trip,
depart_date.today_relative, depart_time.period_of_day,
return_date.day_name, fromloc.state_code, depart_date.year,
flight_days

Airline

depart_time.time, mod, flight_stop, toloc.state_code, fromloc.city_name,
city_name, airport_name, flight_days, flight_number,
arrive_time.period_of_day, connect, airline_code, cost_relative,
depart_time.period_of_day, fromloc.airport_code,
fromloc.airport_name, depart_time.start_time, arrive_date.month_name,
depart_time.end_time, arrive_time.time, toloc.city_name, class_type,
fromloc.state_code, toloc.airport_name, depart_date.day_number,
depart_date.month_name, airline_name, depart_time.time_relative,
arrive_date.day_number, depart_date.day_name, stoploc.city_name,
round_trip, depart_date.today_relative, depart_date.date_relative,
toloc.state_name, aircraft_code

Flight

stoploc.airport_code, stoploc.state_code, flight, return_time.period_mod,
compartment, return_time.period_of_day, toloc.country_name,
arrive_time.end_time, stoploc.airport_name, arrive_time.period_mod,
arrive_date.today_relative, return_date.today_relative,
arrive_time.start_time

mod, fare_amount, depart_date.month_name, day_name, airport_name,
toloc.city_name, arrive_time.time_relative, cost_relative, flight_time,
flight_number, flight_mod, period_of_day, or, fare_basis_code,
depart_date.year, fromloc.city_name, depart_date.day_name,
toloc.airport_code, return_date.date_relative, arrive_date.date_relative,
fromloc.airport_name, class_type, meal_description,
depart_date.date_relative, depart_time.period_mod, toloc.state_code,
flight_days, return_date.day_number, depart_date.day_number,
economy, arrive_time.period_of_day, flight_stop, meal, aircraft_code,
depart_time.time, toloc.state_name, depart_date.today_relative,
depart_time.end_time, airport_code, airline_name, city_name,
return_date.month_name, round_trip, arrive_time.time,
arrive_date.day_number, return_date.day_name,
depart_time.time_relative, arrive_date.month_name, airline_code,
connect, depart_time.start_time, toloc.airport_name, depart_time.
period_of_day, fromloc.state_code, fromloc.state_name,
arrive_date.day_name, fromloc.airport_code, stoploc.city_name

Ground Service

day_number, today_relative, time, time_relative, month_name

depart_date.day_name, or, fromloc.city_name, state_name,
depart_date.day_number, day_name, toloc.airport_name, airport_code,
depart_date.date_relative, flight_time, state_code, city_name,
depart_date.month_name, toloc.city_name, airport_name,
period_of_day, transport_type, fromloc.airport_name

Others

airport_name, flight_time, toloc.state_code, fromloc.state_name,
depart_date.day_number, round_trip, flight_number, airport_code,
fromloc.airport_name, fare_amount, flight_days, toloc.airport_name,
stoploc.city_name, toloc.city_name, depart_date.today_relative,
transport_type, economy, aircraft_code, toloc.state_name,
arrive_date.month_name, cost_relative, city_name, restriction_code,
toloc.airport_code, flight_mod, state_code, fromloc.airport_code, mod,
meal, depart_date.date_relative, meal_description,
depart_date.month_name, arrive_time.time_relative,
arrive_date.day_number, airline_code, depart_time.time,
depart_date.day_name, depart_time.time_relative,
arrive_date.day_name, class_type, or, fromloc.city_name,
arrive_time.time, flight_stop, fare_basis_code, state_name,
airline_name, depart_time.period_of_day

Target Domain

Unseen Slots

Seen Slots

director, ratings_average, plot, rating, title, trailer, actor, review, year,

Movie - genre, character, song, quote, opinion, award, origin, soundtrack,
character_name, relationship
year, director, actor, song, title, rating, quote, trailer, plot, opinion,
Restaurant location, dish, hours, cuisine, restaurant_name, price, amenity review, origin, genre, character, soundtrack, relationship,

character_name, ratings_average, award
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Target Domain

Unseen Slots

Seen Slots

origin_airport, destination_city, origin_city, from_station, to_location,
destination_airport, fare, origin, from_city, from_location,
origin_airport_name, origin_station_name, to_city,

venue, percent_rating, street_address, price, address, destination,
movie_title, leaving_date, alarm_time, date, return_date, pickup_city,
time, average_rating, rating, alarm_name, attraction_name,

Buses ; . : L . . K
outbound_arrival_time, departure_time, destination_airport_name, phone_number, check_in_date, city, event_name, start_date,
outbound_departure_time, to_station, destination_station_name, hotel_name, pickup_date, place_name, category, price_per_ticket,
leaving_time, inbound_departure_time venue_address, departure_date, price_per_night
rating, movie_title, destination, balance, wait_time, leaving_date,
. . . attraction_name, hotel_name, return_date, venue_address, pickup_date,
genre, cast, humidity, temperature, event_date, starring, city_of_event, . . . "
. . . . . . ride_fare, end_date, date, departure_date, time, city, phone_number,
director, available_start_time, address_of_location, title, event_location, A . .
Events . . . . . category, pickup_time, price_per_day, street_address, venue, start_date,
available_end_time, wind, subcategory, cuisine, artist, account_balance, . s ] .
R ) . event_name, approximate_ride_duration, movie_name, address,
album, precipitation, song_name, directed_by, aggregate_rating ? . . . . .
average_rating, price_per_ticket, pickup_location, percent_rating,
price_per_night, place_name
dropoff_date, start_date, total_price, ride_fare, destination, pickup_time,
pickup_location, phone_number, address, balance, rent, price,
Homes area . . . N |
pickup_date, alarm_time, approximate_ride_duration, alarm_name,
visit_date, wait_time, property_name
pickup_city, total_price, pickup_date, start_date, city, price_per_night,
dropoff_date, average_rating, end_date, rent, destination,
Rental Cars check_out_date, location, car_name pickup_location, phone_number, attraction_name, address,

property_name, movie_name, pickup_time, street_address, hotel_name,
check_in_date, price_per_day, leaving_date, visit_date, rating

Table 12: Unseen and seen slots in different domains of SNIPS, ATIS, MIT_corpus, and SGD dataset, respectively.
The evaluation paradigm is that adopting each single domain as target or test domain and the remainder of domains

as training domains in the dataset.

)

-” denotes no slot type exists.
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