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Abstract

We investigate the ability of transformer mod-
els to approximate the CKY algorithm, using
them to directly predict a sentence’s parse and
thus avoid the CKY algorithm’s cubic depen-
dence on sentence length. We find that on stan-
dard constituency parsing benchmarks this ap-
proach achieves competitive or better perfor-
mance than comparable parsers that make use
of CKY, while being faster. We also evaluate
the viability of this approach for parsing under
random PCFGs. Here we find that performance
declines as the grammar becomes more ambigu-
ous, suggesting that the transformer is not fully
capturing the CKY computation. However, we
also find that incorporating additional induc-
tive bias is helpful, and we propose a novel
approach that makes use of gradients with re-
spect to chart representations in predicting the
parse, in analogy with the CKY algorithm be-
ing a subgradient of a partition function variant
with respect to the chart.

1 Introduction

Parsers based on transformers (Vaswani et al.,
2017) currently represent the state of the art in
constituency parsing (Mrini et al., 2020; Tian et al.,
2020), and recent work (Tenney et al., 2019; Jawa-
har et al., 2019; Li et al., 2020; Murty et al., 2022;
Eisape et al., 2022; Zhao et al., 2023) has found that
transformers are capable of learning constituent-
like representations of spans of text. Given these
successes, it is natural to wonder whether trans-
formers capture the algorithmic processes we asso-
ciate with constituency parsing, such as the CKY
algorithm (Kasami, 1966; Younger, 1967; Baker,
1979). Indeed, one might suspect that the layers of
a transformer are building up phrase-level represen-
tations, much as the CKY algorithm itself builds
up its chart. Such a hypothesis has become par-
ticularly compelling in light of recent work study-
ing the ability of transformers, and graph neural

networks more generally, to implement or approxi-
mate classical algorithms (Xu et al., 2019; Csordás
et al., 2021; Dudzik and Veličković, 2022; Delétang
et al., 2022, inter alia).

If standard transformers were indeed approxi-
mating CKY, there would be several implications.
Practically, such a finding might lead to faster
neural parsers. Whereas state-of-the-art parsers
(e.g., that of Kitaev and Klein (2018) and follow-
up work (Kitaev et al., 2019; Tian et al., 2020))
tend to implement CKY on top of transformer-
representations, thus incurring a parsing time-
complexity that is cubic in the sentence length,
we could conceivably extract a parse from sim-
ply running a transformer over the sentence; this
would involve a time-complexity cost that is only
quadratic in the sentence length. Moreover, since
there is significant academic and industrial effort
aimed at making standard transformers faster (e.g.,
that of Dao et al. (2022)), this progress could con-
ceivably transfer automatically to the parsing case.

In addition to more practical considerations, the
task of producing CKY parses with transformers
provides an excellent opportunity for investigating
whether endowing transformers with additional in-
ductive bias can help them in implementing classi-
cal algorithms, a topic recently studied by Csordás
et al. (2021) and others. The results of such an
investigation would also bear on recent results re-
lating to the computational power of transformers
trained in the standard way (Delétang et al., 2022;
Liu et al., 2023).

Accordingly, we first show that having a pre-
trained transformer simply predict an entire parse
by independently labeling each span — an ap-
proach similar to that taken in a different con-
text by Corro (2020) only at training time — is
sufficient to obtain competitive or better perfor-
mance on standard constituency parsing bench-
marks, while being significantly faster.

While these constituency parsing results are en-
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couraging, they do not imply that trained trans-
formers are implementing the CKY algorithm, be-
cause the transformer may simply be predicting a
parse without it being highest-scoring under some
grammar. We accordingly go on to investigate
transformers’ performance in predicting a CKY
parse under randomly generated PCFGs. Given a
randomly generated PCFG, it is of course easy to
check whether a predicted parse is indeed highest-
scoring. In this setting we find that the performance
of transformers negatively correlates with the am-
biguity of the PCFG, suggesting that they are not
in fact implementing something CKY-like. At the
same time, we find that incorporating additional in-
ductive bias into the standard architecture is helpful,
and we propose a novel approach, which makes use
of gradients with respect to chart representations in
predicting the parse. This inductive bias is inspired
by the fact that the CKY algorithm can be viewed
as computing the gradient of the “max score” parti-
tion function (Eisner, 2016; Rush, 2020), and we
find that this improves performance on random
PCFGs significantly.

In summary, we show that:

• using transformers to directly predict parses
performs competitively with explicit CKY-
based approaches, while being faster;

• this impressive performance is likely not due
to transformers implicitly implementing the
CKY algorithm, as they fail to accurately
parse ambiguous synthetic PCFGs;

• biasing the model to produce parses from gra-
dients with respect to the chart signifcantly im-
proves synthetic PFCG parsing performance.

Code for reproducing all experiments is available at
https://github.com/ghazalkhalighinejad/
approximating-cky.

2 Background and Notation

The CKY algorithm (Kasami, 1966; Younger,
1967; Baker, 1979) computes a highest scoring
parse of a sentence under a probabilistic context-
free grammar (PCFG). Let G = (N ,Σ,R, S,W)
be a PCFG, with N the set of non-terminals, Σ
the set of terminals, R the set of rules, S a start
non-terminal, and W a set of probabilities per rule
(which normalize over left-hand-sides). Given a
sentence x ∈ ΣT , the CKY algorithm uses a dy-
namic program to compute a highest scoring parse

of x under G, and it requires O(|R|T 3) computa-
tion time.

Following the notation in Rush (2020), let ℓR ∈
R|R|×|N |×|N | represent the log potentials (e.g., log
probabilities) associated with the rules in PCFG G,
and let ℓE(x) ∈ RT×|N| represent the log poten-
tials corresponding to each token in input sentence
x. We can use these log potentials to compute the
chart β ∈ RT×T×|N| for x, where β[i, j, a] repre-
sents the sum (under a particular semiring) of all
weight associated with the a-th non-terminal yield-
ing xi:j . These log potentials can also be used to
compute a highest-scoring parse, which we will
refer to as β∗ ∈ {0, 1}T×T×|N|; this is the one-hot
representation of a parse, with β∗[i, j, a] = 1 iff
j ≥ i and nonterminal a yields xi:j in the parse.

CKY as a subgradient Recent work (Eisner,
2016; Rush, 2020) has emphasized that inference
algorithms such as CKY may be fruitfully viewed
as a special case of calculating the gradient or a
subgradient of a generalized log partition function
with respect to (some function of) the log potentials
associated with an input. In particular, the CKY
algorithm can be viewed as computing a subgra-
dient of the “max score” variant of the log parti-
tion function with respect to an input sentence x’s
chart; see Appendix A for details. Thus, β∗ is rela-
tively easily obtained with automatic differentiation
frameworks. However, computing it in this way is
exactly equivalent to running the traditional CKY
algorithm, and so still requires O(|R|T 3) time.

Transformer-based CKY approximations The
remainder of the paper focuses on training a model
(i.e., an inference network (Kingma and Welling,
2014; Johnson et al., 2016; Tu and Gimpel, 2018))
to predict β∗ directly, in the hope of parsing more
efficiently. Rather than use ℓR and ℓE(x) to recur-
sively compute β∗ as the traditional CKY algorithm
does, or compute β∗ by differentiating with respect
to β, we instead propose to simply train a trans-
former to map a sentence to a correct β∗ for it. The
hope is that the trained transformer will learn to
represent information about the grammar implicitly
in its weights, and that it can then be used with-
out log potentials to parse unseen sentences from
the same grammar. This approach is illustrated in
schematic form in Figure 1.

We seek to evaluate our trained inference net-
work’s approximation to β∗ on held-out sentences
that are from the same distribution (i.e., sampled
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Figure 1: A schematic view of training and inference under the classical approach (top) and under learned transformer
approximation (bottom). Classical parsing has no training phase, and uses pre-defined log potentials to parse unseen
sentences. Our proposed learned parser (an “inference network”) trains on pairs of sentences and parses computed
under a set of log potentials, and then parses unseen sentences without access to the potentials.

from the same PCFG) as the training sentences.
This contrasts with the vast majority of work on
approximating classical algorithms with neural net-
works (Graves et al., 2014; Kaiser and Sutskever,
2016), which instead evaluates performance on out-
of-distribution, and in particular longer, inputs than
those on which the model was trained. We do not
focus on length generalization, first because we
believe generalizing even in-domain is useful in
parsing applications, and second because we find
transformers trained on random PCFGs struggle to
generalize even to inputs of the same length.

CKY variants Modern span-based neural con-
stituency parsers do not assume an underlying
PCFG. Rather, these parsers score spans compo-
sitionally (Stern et al., 2017; Gaddy et al., 2018;
Kitaev and Klein, 2018) using log potentials ℓS ∈
RT×T×|N| produced by a neural network, such as
a transformer. Such parsers use a CKY variant that
requires O(T 3) computation time. We focus on us-
ing transformers to approximate both the classical
CKY algorithm and this simpler variant.

3 Predicting Parses

As described in Section 2, we define β∗ ∈
{0, 1}T×T×|N| to be a chart-sized tensor represent-
ing a CKY parse of a sentence x, with β∗[i, j, a] =
1 if and only if nonterminal a yields xi:j . We will
use a very simple approach to predict β∗ with a
transformer.

Let hi ∈ Rd be an encoder-only transformer’s
final-layer representation of the i-th token in x,
and let hi,:d/2 and hi,d/2:, both in Rd/2, be (respec-
tively) the first and last d/2 elements in hi. We

then define β̂ij ∈ ∆|N | as

β̂ij
def
= softmax(FFN([hi,:d/2;hj,d/2:])), (1)

where above we have concatenated the first half
of hi and the second half of hj , and where FFN
is a BERT-like (Devlin et al., 2019) classification
head comprising a single hidden-layer, GELU non-
linearity (Hendrycks and Gimpel, 2016), Layer-
Norm (Ba et al., 2016), and final linear projection
to |N |+1 scores. This classification head produces
a score for each nonterminal label as well as for a
non-constituent label. This representation is simi-
lar to (but distinct from) that computed by Kitaev
and Klein (2018) before using CKY on top of the
computed scores. We set the lower triangle of β̂
(i.e., along the first two dimensions) to zero, and
use it as our approximation of β∗.

Decoding Note that forming β̂ from the hi is
only quadratic in sentence-length, and so if we can
extract a parse from it in sub-cubic time we will im-
prove (asymptotically) over CKY. In practice, we
simply take the highest-scoring label for each span,
and ignore spans for which the highest-scoring la-
bel is non-constituent. We then sort the predicted
spans, first in decreasing order of end-token and
then (stably) in increasing order of start-token, and
build up the tree from left to right. We thus incur
only an O(T 2(|N |+ log2 T )) decoding cost.1

Training Given a gold (binarized) parse β∗, we
simply treat predicting the labels of each span
as T (T + 1)/2 independent multi-class classifi-

1Note this procedure is only necessary for constituency
parsing, where unary productions are allowed. For parsing
PCFGs in CNF we simply take the T−1 highest scoring spans.
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cation problems, and we use the standard cross-
entropy loss. Note that Corro (2020) proposes this
independent-span-classification training approach
in the context of discontinuous constituency pars-
ing (though with a fixed zero-weight for the non-
constituent label). We note that concurrent work
by Yang and Tu (2023) also explores both training
and decoding by making span predictions indepen-
dently.

3.1 Decoding Parses from Chart Gradients
As described in Section 2 (also see Appendix A), a
CKY parse is a subgradient of the “max score” par-
tition function, which calculates the maximum log
(joint) probability under a PCFG of a sentence and
its parse tree. If we are interested in making CKY-
like predictions, then, it may be a useful inductive
bias to form a predicted parse from the gradient
of some scoring function, just as CKY does. We
propose to use a transformer to define this scoring
function, and to predict a parse from the gradients
of this scoring function with respect to its inputs.

More concretely, again letting hi be an encoder-
only transformer’s final-layer representation of the
i-th token in sentence x, we define the following
“inner” score of x:

score(x)
def
= FFN(1/T

T∑

i=1

hi),

where FFN is a BERT-like classification head pro-
ducing only a single logit. Thus, we simply mean-
pool over the transformer’s final-layer token rep-
resentations, and feed them to a feed-forward net-
work to obtain a scalar score.

Let h(l)
i denote an encoder-only transformer’s

l-th layer representation of the i-th token. Since
score is a differentiable function of all the h

(l)
i , we

may take gradients with respect to them. In particu-
lar, let gi

def
= 1

L

∑L
l=1∇h

(l)
i

score(x). That is, gi is
the average of the gradients of score with respect to
each transformer layer’s representation of the i-th
token. We can then form span-predictions from the
gi, substituting them for the hi in Equation (1), to
obtain

β̂+
ij

def
= softmax(FFN([gi,:d/2;gj,d/2:])). (2)

In the remainder of the paper, we refer to models
making use of Equation (2) as “grad decoding.”

Training a grad decoding model requires back-
propagating parameter gradients through a back-

propagation with respect to the h
(l)
i . Fortu-

nately, this is now simple to achieve with mod-
ern auto-differentiation frameworks, such as Py-
torch (Paszke et al., 2019), which we use in all
experiments.

Discussion It is worth noting that while β∗ is
itself a subgradient of the max score partition func-
tion, our proposal above merely decodes β̂+ from
the gradient of the inner score function. That is,
the gradients gi are concatenated and fed into an
additional classification head, which is used to pro-
duce something chart-sized. The reason for this
discrepancy is computational: if we were to feed
something chart-sized into our score function, and
if score required running a transformer over its in-
put, our approach would be quartic in T . Instead,
our approach retains quadratic dependence on T .
Because it involves calculating gradients with re-
spect to the LTd-sized transformer representations,
however, it is in practice more expensive than using
Equation (1); see Appendix C for details.

4 Constituency Parsing Experiments

We conduct experiments in two main settings. We
first consider modern neural constituency parsing
on standard benchmark datasets. We then consider
parsing under randomly generated PCFGs. We
highlight several important differences between
these two settings. First, modern constituency pars-
ing is grammarless. As such, modern constituency
parsers do not predict the highest scoring parse
under some PCFG, and they use a simpler vari-
ant of CKY which composes spans but has no no-
tion of grammar-rules. While it is still interesting
(at least from a computational efficiency perspec-
tive) to see if directly predicting parses is compet-
itive with running this simpler CKY variant, it is
difficult to distinguish a transformer learning this
CKY variant from it simply learning to predict
gold parses. This concern motivates our second
setting, of randomly generated PCFGs, where there
are well-defined highest-scoring parses under each
PCFG, and where we can evaluate whether the
transformer has predicted them. We consider this
random PCFG setting in Section 5.

Datasets We conduct constituency parsing exper-
iments on the English Penn Treebank (PTB; Mar-
cus et al., 1993), the Chinese Penn Treebank (CTB;
Xue et al., 2005), as well as the treebanks in the
SPMRL 2013 and 2014 shared tasks (Seddah et al.,
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English Chinese German Korean
Dev Set Test Set Dev Set Test Set Dev Set Test Set Dev Set Test Set

Kitaev et al. (2019)a - 95.59 - 91.75 - 90.20 - 88.80
Kitaev et al. (2019)b 95.61 95.48 94.23 92.13 93.39 90.32 89.74 88.55
Ours 95.50 95.64 93.17 90.54 93.47 90.13 89.74 89.05
Ours + grad decode 95.07 95.16 93.75 91.25 93 89.63 89.26 88.46

Table 1: Comparison of F1 score on PTB, CTB, and the German and Korean treebanks from the SPMRL 2014
shared task. All models use the same pretrained initialization; see text for details. The Kitaev et al. (2019)a results
are those reported in the paper, which make use of an additional factored self-attention layer, while Kitaev et al.
(2019)b are the results of running their code without this additional layer.

2013). We use the standard dataset splits through-
out.

Model Details We adapt the chart parser first pro-
posed by Kitaev and Klein (2018), and later refined
by Kitaev et al. (2019) to involve fine-tuning a pre-
trained model. In particular, while Kitaev et al.
(2019) fine-tune a pretrained BERT model (De-
vlin et al., 2019) using a margin-based structured
loss between the CKY parse and the gold parse,
we instead fine-tune BERT to simply predict the
parse as in Equation (1), and we train with the
independent-span cross-entropy loss described in
Section 3. Some of the experiments in Kitaev
et al. (2019) also make use of an additional fac-
tored self-attention layer that consumes the BERT
representations, but we do not use this layer when
predicting according to Equations (1) or (2).

Our implementation is a modification of the pub-
lic Kitaev et al. (2019) implementation,2 which
also forms our main baseline. While this parser
is not always state-of-the-art, it is quite close, and
state-of-the-art parsers generally make use of its
architecture and approach (Mrini et al., 2020; Tian
et al., 2020).

The pretrained models used to initialize both the
Kitaev et al. (2019) model and our own for the
English and Chinese treebanks are BERT-large-
uncased (Devlin et al., 2019) and BERT-base-
chinese3, respectively; BERT-base-multilingual-
cased (Devlin et al., 2019) is used to initialize
models for Korean, German, and the rest of the
SPMRL treebanks (see Appendix D). As in the im-
plementation of Kitaev et al. (2019), we train with
AdamW (Loshchilov and Hutter, 2018; Kingma
and Ba, 2015) until validation parsing performance
stops increasing. We use the same learning rate
scheduler as suggested in Kitaev et al. (2019),

2https://github.com/nikitakit/
self-attentive-parser

3https://huggingface.co/bert-base-chinese

Inference Speed (sent/s) PTB CTB

Kitaev et al. (2019) 485 (1.00x) 704 (1.00x)
Ours 949 (1.96x) 1466 (2.08x)

Table 2: Inference speed (in sentences/second) of the
CKY-based Kitaev et al. (2019) parser and our own,
averaged over the PTB and CTB development sets.

which starts with 160 steps of warm-up, then de-
creases the learning rate by multiplying it by 0.5
when the F1 score stops improving. We used a grid-
search to select hyperparameters, and we provide
the grid search details and the optimal hyperparam-
eters found in Appendix F.

Results In Table 1 we report parsing results on
these datasets, using the standard evalb evalua-
tion. We find that our approach is competitive with
the Kitaev et al. (2019) approach, slightly outper-
forming it on the English and Korean datasets, and
slightly underperforming it on the Chinese and Ger-
man datasets (see Appendix D for the results on
the rest of the SPMRL treebanks). In this setting,
grad decoding does not improve over simply using
Equation (1). However, as we discuss in Section 5,
sharing transformer layers is important in seeing
the benefits of grad decoding, which we cannot do
effectively with pretrained BERT models.

The fact that our simplest approach is competi-
tive on these constituency parsing benchmarks is
interesting, given that it is much faster. In Table 2
we compare the speed of our approach (in sentences
parsed per second) to that of the baseline parser,
and we see it is roughly two times faster. These
numbers reflect the time necessary to parse the
PTB and CTB development sets using the Kitaev
et al. (2019) parser, and using our modification of it.
Both experiments were run on the same machine,
using an NVIDIA RTX A6000 GPU. We also em-
phasize that this comparison is somewhat favorable
to the baseline parser, since we use the original
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PTB CTB

Kitaev et al. (2019) 89.83 81.72
Ours 90.07 80.98
Ours + SL + grad decode 89.91 81.76

Table 3: Performance of our approaches and baseline
when trained from scratch and evaluated in terms of F1

on the PTB and CTB development sets (respectively).
"SL" indicated that transformer layers are shared.

code’s batching, whereas our approach makes it ex-
tremely easy to create big, padded batches, and thus
speed up parsing further. Additionally, we made
a comparison with Supar’s (Zhang et al., 2020b,a)
implementation, which we did not include since it
was slower than Kitaev et al. (2019).

While the above experiments all fine-tune pre-
trained BERT-style models for parsing, it is also
worth examining the performance of these mod-
els when trained from scratch. We accordingly
train transformers from scratch using models of the
same size as those in Table 1 on the PTB and CTB
training sets, and report results on the development
sets in Table 3. We find again that non-CKY based
models are competitive. Furthermore, since we
can now easily share transformer layers without
sacrificing the advantage of pretrained layers, grad
decoding has a more positive effect. We did not
see a corresponding benefit to sharing transformer
layers when predicting without grad decoding.

5 Random PCFG Experiments

To generate random PCFGs, we follow the method
used by Clark and Fijalkow (2021).4 Their method
involves first generating a synthetic context-free
grammar (CFG) with a specified number of termi-
nals, non-terminals, binary rules, and lexical rules.
To assign probabilities to the rules, they then use an
EM-based estimation procedure (Lari and Young,
1990; Carroll and Charniak, 1992) to update the
production rules such that the length distribution
of the estimated PCFG is similar to that of the PTB
corpus (Marcus et al., 1993).

5.1 Data
The approach of Clark and Fijalkow (2021) allows
us to construct random grammars with a desired
number of nonterminals and rules, and we generate
grammars having 20 nonterminals,5 and 100, 400,

4See https://github.com/alexc17/syntheticpcfg.
5We found performance patterns were the same when using

more than 20 nonterminals, though results are slightly higher

and 800 rules, respectively. The number of termi-
nals and lexical rules is set to 5000. Having more
rules per nonterminal generally increases ambigu-
ity, and so we would expect a synthetic grammar
with 800 rules to be significantly more difficult to
parse than one with 100, and a synthetic grammar
with 20 nonterminals to be more difficult than one
with more.

It is common to quantify ambiguity in terms of
the conditional entropy of parse trees given sen-
tences (Clark and Fijalkow, 2021), which can be
estimated by sampling trees from the PCFG and
averaging the negative log conditional probabilities
of the trees given their sentences. The conditional
entropy of a PCFG G is thus estimated as

ĤG(τ |x) = − 1

N

N∑

n=1

log
pG(x

(n), τ (n))

pG(x(n))
,

where the (x(n), τ (n)) are sampled from G, and
where pG(x

(n)) is calculated with the inside al-
gorithm. We use N = 1000 samples. Below
we report the ĤG(τ |x) of each random grammar
along with parsing performance; we will see that
ĤG(τ |x) negatively correlates with performance.

Our datasets consist of sentences sampled from
these PCFGs and their corresponding parses, which
were parsed with the CKY algorithm.

Dataset size Because we are interested in test-
ing the ability of transformers to capture the CKY
algorithm, we must ensure that the training set is
sufficiently large that prediction errors can be at-
tributed to the transformer failing to learn the algo-
rithm, and not to sparsity in the training data. We
ensure this by simply adding data until validation
performance plateaus. In particular, we use ∼200K
sentences for training and 2K held-out sentences.
To control the complexity of our datasets, we also
limit the maximum sentence length to 30, which
decreases the average sentence length from 20-25
words per sentence to 18.

5.2 Models and baselines
Whereas the experiments in the previous section
mostly make use of standard BERT-like architec-
tures, either fine-tuned or trained from scratch, in
this section we additionally consider making parse
predictions (as in Equations (1) and (2)) with trans-
former variants which are intended to improve per-
formance on “algorithmic” tasks. Indeed, recent

since the grammars become less ambiguous.
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|R| 100 400 800
ĤG(τ |x) 0.35 3.99 9.74

F1 ∆lp F1 ∆lp F1 ∆lp

CKY 100.0 0 100.0 0 100.0 0
Transformer 98.31 0.04 87.86 0.29 74.80 0.45
Transformer + SL 98.61 0.03 89.89 0.19 79.91 0.29
Transformer + SL + CG 98.97 0.02 89.43 0.21 78.64 0.31
Transformer + SL + GD 99.06 0.01 91.07 0.17 81.78 0.28

Table 4: Labeled span F1 performance (as in evalb) on randomly generated PCFGs with |N | = 20 nonterminals,
and |R| = 100, 400, and 800 rules, respectively. ĤG(τ |x) indicates the estimated conditional entropy of the
grammar. ∆lp is the average log probability difference between CKY and predicted parses. “SL” indicates that
transformer layers are shared, “CG” that a copy-gate is used, and “GD” that grad decoding is used.

research has shown that transformers often fail
to generalize on algorithmic tasks (Saxton et al.,
2019; Hupkes et al., 2020; Dubois et al., 2020;
Chaabouni et al., 2021), which has motivated ar-
chitectural modifications, such as the Universal
Transformer (UT; Dehghani et al., 2018) and the
Neural Data Router (NDR; Csordás et al., 2021).

One major architectural modification common
to both UT and NDR is that all transformer lay-
ers share the same parameters; this modification
is intended to capture the intuition that recursive
computation often requires applying the same func-
tion multiple times. NDR additionally makes use
of a “copy gate,” which allows transformer repre-
sentations at layer l to be simply copied over as the
representation at layer l + 1 without being further
processed, as well as “geometric attention,” which
biases the self-attention to attend to nearby tokens.
We found geometric attention to significantly hurt
performance in preliminary experiments, and so
we report results only with the shared-layer and
copy-gate modifications.

All models in this section are trained from
scratch. This is convenient for UT- and NDR-style
architectures, for which we do not have large pre-
trained models, but we also found in preliminary ex-
periments that on random PCFGs pretrained vanilla
transformers (such as BERT) did not improve over
transformers trained from scratch. We did find a
modest benefit to fine-tuning a BERT-style model
that we pretrained on sentences from our randomly
generated grammars (rather than on natural lan-
guage), which accords with the recent work of Zhao
et al. (2023); see Appendix E for details. Our im-
plementation is based on the BERT implementation
in the Hugging Face transformers library (Wolf
et al., 2020).

sentences/second

batch size 32 64 128

CKY 698 1162 1576
Ours 1817 2132 2161

Table 5: Inference speed of GPU-based torch-struct
CKY parsing and our transformer-based approach on a
random grammar with |R| = 400 rules. We report the
median speed of running our model and CKY 5 times on
60K samples in batches of 32, 64, and 128, respectively.

Evaluation We evaluate our predicted
parses against the CKY parse returned by
torch-struct (Rush, 2020), using F1 over
span-labels as in evalb. Since there may be
multiple highest-scoring parses, we also report the
average difference in log probability, averaged
over each production, between the CKY parse
returned by torch-struct and the predicted parse.
We refer to this metric as “∆lp” in tables. Because
transformer-based parsers may predict invalid
productions, we smooth the PCFG by adding 10−5

to each production probability and renormalizing
before calculating ∆lp.

Results The results of these synthetic parsing ex-
periments are in Table 4, where we show parsing
performance over three random grammars with dif-
ferent conditional entropies. We see that transform-
ers struggle as the ambiguity increases, suggest-
ing that these models are not in fact implementing
CKY-like processing. At the same time, we see that
incorporating inductive bias does help in nearly all
cases, and that gradient decoding together with
sharing transformer layers performs best for all
grammars.

We conduct a speed evaluation in Table 5, where
we compare with the CKY implementation in
torch-struct (Rush, 2020), which is optimized
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for performance on GPUs. For a fixed number of
nonterminals, neither the speed of torch-struct’s
CKY implementation nor of our transformer-based
approximation is significantly affected by the num-
ber of rules. Accordingly, we show speed results
for parsing just the synthetic grammar with 400
rules, for three different batch-sizes. All timing
experiments are run on the same machine and uti-
lize an NVIDIA RTX A6000 GPU. We see that the
transformer-based approximation is always faster,
although its advantage decreases as batch-size in-
creases. We note, however, that because our im-
plementation uses Hugging Face transformers
components (Wolf et al., 2020), which at present
do not make use of optimization such as FlashAt-
tention (Dao et al., 2022), our approach could likely
be sped up further.

6 Related Work

Modern neural constituency parsers typically fall
into one of three camps: chart-based parsers (Stern
et al., 2017; Gaddy et al., 2018; Kitaev and
Klein, 2018; Mrini et al., 2020; Tian et al.,
2020; Tenney et al., 2019; Jawahar et al., 2019;
Li et al., 2020; Murty et al., 2022), transition-
based parsers (Zhang and Clark, 2009; Cross
and Huang, 2016; Vaswani and Sagae, 2016; Vi-
lares and Gómez-Rodríguez, 2018; Fernandez As-
tudillo et al., 2020), or sequence-to-sequence-style
parsers (Vinyals et al., 2015; Kamigaito et al.,
2017; Suzuki et al., 2018; Fernández-González
and Gómez-Rodríguez, 2020; Nguyen et al., 2021;
Yang and Tu, 2022).

Our approach most closely resembles chart-
based methods, in that we compute scores for
all spans for all non-terminals. However, unlike
chart-based parsers, we aim to only approximate,
or amortize, running the CKY algorithm. Un-
like transition-based or sequence-to-sequence-style
methods, our approximation involves attempting
to predict a parse jointly and independently, rather
than incrementally. Within the world of chart-based
neural parsers, those of Kitaev and Klein (2018)
and Kitaev et al. (2019) have been enormously in-
fluential, and state-of-the-art constituency parsers,
such as those of Mrini et al. (2020) and Tian et al.
(2020), adapt this approach while improving it.

The approach of employing an independent-span
classification training objective along with greedy
decoding for inference has also been explored
by Zhang et al. (2019) in the context of depen-

dency parsing. It is worth emphasizing that while
the Zhang et al. (2019) work shows that a scor-
ing model with quadratic complexity can approx-
imate the also quadratic Chu-Liu-Edmonds algo-
rithm (Chu and Liu, 1965), used for decoding in
dependency parsing, our work focuses on approx-
imating a cubic complexity decoding algorithm
using a scoring model with quadratic complexity.

We are additionally motivated by recent work
on neural algorithmic reasoning (Xu et al., 2019;
Csordás et al., 2021; Dudzik and Veličković, 2022;
Delétang et al., 2022; Ibarz et al., 2022; Liu et al.,
2023), some of which has endeavored to solve clas-
sical dynamic programs (Veličković et al., 2022)
and MDPs (Chen et al., 2021) with graph neural net-
works and transformers, respectively. One respect
in which learning to compute CKY differs from
many other algorithmic reasoning challenges (in-
cluding other dynamic programs) is that in addition
to its discrete sentence input, CKY also consumes
continuous log potentials.

Finally, the idea of training a model to produce
the solution to an optimization problem is known
as training an “inference network,” and has been
used famously in approximate probabilistic infer-
ence scenarios (Kingma and Welling, 2014) and
in approximating gradient descent (Johnson et al.,
2016). Most similar to our approach, Tu and Gim-
pel (2018) train an inference network to do Viterbi-
style sequence labeling, although they do not con-
sider parsing, and they require inference networks
for both training and test-time prediction due to
their large-margin approach.

7 Discussion and Conclusion

Our findings on the ability of transformers to ap-
proximate CKY are decidedly mixed. On the one
hand, using transformers to independently predict
spans in a constituency parse is competitive with
using very strong neural chart parsers, and it is
moreover much faster to predict parses in this inde-
pendent, non-CKY-based way. On the other hand,
if transformers are capturing the CKY computation,
they ought to be able to parse even under random
PCFGs, and it is clear that as the ambiguity of the
grammar increases they struggle with this.

We have also found that making a transformer’s
computation more closely resemble that of a classi-
cal algorithm, either by sharing computation layers
as proposed by Dehghani et al. (2018) and Csor-
dás et al. (2021), or by having it make use of the
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gradient with respect to a scoring function, is help-
ful. This finding both confirms previous results in
this area, and also suggests that the inductive bias
we seek to incorporate in our models may need to
closely match the problem.

There are many avenues for future work, and
attempting to find a minimal general-purpose archi-
tecture that can in fact parse under random PCFGs
is an important challenge. In particular, it is worth
exploring whether other forms of pretraining (i.e.,
pre-training distinct from BERT’s) might benefit
this task more. Another important future challenge
to address is whether it is possible to have a model
consume both the input sentence as well as the
parameters (as the CKY algorithm does), rather
than merely pretrain on parsed sentences generated
using the parameters.

Limitations

A limitation of the general paradigm of learning to
compute algorithmically is that it requires a training
phase, which can be expensive computationally,
and which requires annotated data. This is less
of a limitation in the case of constituency parsing,
however, since we are likely to be training models
in any case.

Another important limitation of our work is that
we have only provided evidence that transformers
are unable to implement CKY in our particular ex-
perimental setting. While we have endeavored to
find the best-performing combinations of models
and losses (and while this combination appears to
perform well for constituency parsing), it is pos-
sible that other transformer-based architectures or
other losses could significantly improve in terms of
parsing random grammars.

We also note that a limitation of the grad decod-
ing approach we propose is that we have found that
it is more sensitive to optimization hyperparame-
ters than are the baseline approaches.

Finally, we note that our best-performing con-
stituency results make use of large pretrained mod-
els. These models are expensive to train, and do
not necessarily exist for all languages we would
like to parse.

Ethics Statement

We do not believe there are significant ethical is-
sues associated with this research, apart from those
that relate to training moderately-sized machine
learning models on GPUs.
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A Additional background on CKY

Letting ℓR ∈ R|R|×|N |×|N | represent the log po-
tentials (e.g., log probabilities) associated with the
rules in PCFG G, and ℓE(x) ∈ RT×|N| the log
potentials corresponding to each token in input sen-
tence x, we compute the chart β ∈ RT×T×|N| for
x, where β[i, j, a] represents the sum (under a par-
ticular semiring) of all weight associated with the
a-th non-terminal yielding xi:j . In particular, with
semiring operations ⊕ and ⊗, and if 1 ≤ i < j ≤
T , we have β[i, j, a] =

⊕
k,b,c ℓ

R
a,b,c ⊗ β[i, k, b]⊗

β[k + 1, j, c]. Assuming the first slice of ℓR along
the first dimension (i.e., ℓR1,:,:) corresponds to rules
with S on the left-hand-side, the log partition func-
tion is then given by A(ℓR, ℓE) = β[1, T, 1].

Furthermore, under the max-plus semiring, one
of the subgradients of A(ℓR, ℓE) with respect to
β is a one-hot representation of a highest scoring
parse for x under G (Eisner, 2016; Rush, 2020).
We refer to such a one-hot subgradient as β∗ ∈
{0, 1}T×T×|N|. Rush (2020) therefore proposes to
compute β∗ using automatic differentiation, and
provides a fast implementation tuned for use on
GPUs.

B Model, Training, and Dataset Details

Dataset Details We provide details on the stan-
dard constituency parsing datasets used in our ex-
periments in Table 6.

train dev test

PTB 39,831 1,700 2,416
CTB 17,544 352 348
German 40,472 5,000 5,000
Korean 23,010 2,066 2,287

Table 6: Number of examples in the standard splits
of the English Penn Treebank (Marcus et al., 1993),
the Chinese Penn Treebank (Xue et al., 2005), and the
SPMRL Treebanks (Seddah et al., 2013).

Terms of Use We used the standard English Penn
Treebank, Chinese Penn Treebank, and treebanks
(except for Arabic) from SPMRL 2013 and 2014
shared tasks in accordance with their licenses. Both
PTB and CTB are under the Linguistic Data Con-
sortium (LDC) licenses. The German, Hebrew,
Korean, and Swedish Treebank are not under any
specific licenses. The Basque Treebank is licensed
under the Creative Commons license. The Polish
Treebank is licensed under GPL v3. We also use
Hugging Face code and models in accordance with

their licenses (Apache 2.0). For our deep learning
framework, we use PyTorch (Paszke et al., 2019)
which is under the BSD-3 license. We also make
use of code provided by Kitaev et al. (2019)6. Their
code is available under the MIT license.

Computational Budget All of our experiments
were run on NVIDIA RTX A6000 GPUs. We pro-
vide the computational time of our experiments on
constituency parsing datasets and a random PCFG.
Since the training times of random PCFGs with
|R| = 100, 400, and 800 rules are similar, we only
provide that of the PCFG with |R| = 400.

Models Details In Table 7 and 8, we provide the
number of model parameters used in constituency
parsing and random PCFG experiments, respec-
tively.

Model Size

PTB BERT-large-uncased 345M
CTB BERT-base-chinese 102M
SPMRL BERT-base-multilingual-cased 178M

Table 7: Model sizes for constituency parsing exper-
iments. All models are initialized from the Hugging
Face transformers library (Wolf et al., 2020).

Model Size

Transformer 89.6M
Transformer + SL 11.1M
Transformer + SL + CG 11.9M
Transformer + SL + GD 11.7M

Table 8: Model sizes for random PCFG experiments.

PTB CTB German Korean

Ours 1 0.5 4.5 1.5
Ours + grad decode 8 4.5 8.5 2.5

Table 9: Approximate total training time (in number of
hours) of our model with and without grad decoding on
the parsing datasets. We find that grad decoding models
take longer to converge.

C Gradient Decoding Details

Speed Comparison In Table 11 we compare the
inference time between our models (with and with-
out gradient decoding) and CKY.

6https://github.com/nikitakit/
self-attentive-parser
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|R| = 400

Transformer 11
Transformer + SL 7
Transformer + SL + CG 6
Transformer + SL + GD 15

Table 10: Approximate total training time (in number of
hours) of our model on a random PCFG. “SL” indicates
that transformer layers are shared, “CG” that a copy-
gate is used, and “GD” that grad decoding is used.

sentences/second

batch size 32 64 128

CKY 698 1162 1576
Ours 1817 2132 2161
Ours + GD 1111 1524 1632

Table 11: Inference speed of GPU-based torch-struct
CKY parsing and our transformer-based approach on
a random grammar with |R| = 400 rules. We report
the median speed of running our models and CKY 5
times on 60K samples in batches of 32, 64, and 128,
respectively.

Memory Comparison The maximum memory
allocation of our model with gradient decoding is
1.52 GB, which is only 10% higher compared to
our model without gradient decoding, which has a
maximum memory allocation of 1.38 GB.

D Constituency Parsing Results on
SPMRL

Table 12 shows that our approach outperforms Ki-
taev et al. (2019) on half of the SPMRL treebanks.
We excluded the Arabic treebank since we were
unable to get its corresponding license.

Considering that gradient decoding did not lead
to substantial improvements in the results for PTB,
CTB, German, and Korean, as indicated in Table 1,
we decided not to perform the gradient decoding
experiments on the rest of the SPMRL treebanks
due to limitations in computational resources.

E MLM Pretraining on Random
PCFG-Generated Data

Several works have suggested that pretrained mod-
els can capture syntactic information (Hewitt and
Manning, 2019; Manning et al., 2020; Maudslay
and Cotterell, 2021; Zhao et al., 2023). In partic-
ular, Zhao et al. (2023) argued that a connection
exists between MLM and the inside-outside algo-
rithm. Through probing, they show that models

pretrained on synthetic PCFG data may be approx-
imating the inside-outside algorithm. Since inside-
outside and CKY are related, it is natural to ques-
tion whether MLM pretraining can also be helpful
when it comes to approximating CKY.

We therefore pretrain a transformer model on
500K sentences generated from the random PCFG
with 800 rules. We selected our training setup fol-
lowing the Cramming training recipe (Geiping and
Goldstein, 2022). For training, we utilized a large
batch size of 4096, accumulating gradients and per-
forming an update every 32 steps. We employed a
linear warmup schedule for 10% of the total train-
ing steps, with a peak learning rate of 1 × 10−4.
The model achieved a training perplexity of 92.01
and a validation perplexity of 92.20.

In Table 13, we show that fine-tuning the pre-
trained model leads to performance improvements,
particularly when layers are not shared. It is impor-
tant to highlight that while pretraining is helpful, it
comes with higher computational costs compared
to relying solely on inductive biases, and it demon-
strates less improvement compared to gradient de-
coding.

F Hyperparameters

Table 14 shows the grid we used to search for the
optimal hyperparameters of the models used in con-
stituency parsing and random PCFG experiments.
We also provide the optimal hyperparameters in
Table 15 and 16. For the baseline result (Kitaev
and Klein, 2018) in Table 1, we used the hyperpa-
rameters recommended in their code. The results
in Table 1 and 4 make use of the optimal hyperpa-
rameters and are based on a single run using a fixed
seed throughout all experiments.

14
14029



German Korean Basque French Hebrew Hungarian Polish Swedish

Kitaev et al. (2019) 90.20 88.80 90.70 87.35 92.95 94.60 96.26 89.94
Ours 90.13 89.05 90.93 87.59 92.69 94.64 95.86 89.29

Table 12: Comparison of F1 score on the test sets of the SPMRL treebanks. The Kitaev et al. (2019) results are
those reported in the paper.

|R| = 800

Transformer 78.14
Transformer + SL 78.88
Transformer + SL + GD 80.64

Table 13: F1 performance of pretrained models on ran-
domly generated PCFGs with |N | = 20 nonterminals,
and |R| = 800 rules.

Constituency parsing Experiments

Hyperparameter Values

Scheduler [defaulta, linearb]
Learning rate [5e-5, 6e-5, 7e-5, 8e-5]
Gradient clipping [0, 0.2, 0.3, 0.4]
Weight decay [0, 1e-3, 1e-2]
Attention dropout [0.1, 0.2]

Random PCFG Experiments

Scheduler constant + warmup
Learning rate [1e-4, 1.3e-4, 1.5e-4, 1.7e-4]
Gradient clipping [0.3, 0.4, 1]
Weight decay [0, 1e-3, 1e-2]
Attention dropout [0.1, 0.2]
Warmup steps [2000, 4000]

Table 14: The grid we used to search for the optimal hy-
perparameters in our constituency parsing and random
PCFG experiments. aThe default scheduler used in Ki-
taev et al. (2019) as mentioned in section 4. b160 steps
of warm-up then decreasing the learning rate linearly.

Ours

scheduler LR grad clip WD AD

English linear 5e-5 0.3 0 0.1
Chinese default 6e-5 0.4 0 0.1
German default 5e-5 0.3 0 0.1
Korean default 5e-5 0 0 0.1
Basque default 5e-5 0.3 0 0.1
French default 6e-5 0 0 0.1
Hebrew default 5e-5 0.5 0 0.1
Hungarian default 5e-5 0.3 0 0.1
Polish default 5e-5 0.3 0 0.1
Swedish default 6e-5 0.3 0 0.1

Ours + grad decode

English default 7e-5 0.2 0 0.1
Chinese default 8e-5 0.3 0 0.1
German default 8e-5 0.3 0 0.1
Korean default 7e-5 0.2 0 0.1

Kitaev et al. (2019)

All default 5e-5 0 0.001 0.2

Table 15: Optimal hyperparameters used for our con-
stituency parsing experiments. We denote the learn-
ing rate as “LR”, weight decay as “WD”, and atten-
tion dropout as “AD”. Similar hyperparameters are used
in the baseline model (Kitaev et al., 2019) across the
datasets. Results are provided in Table 1.

Transformer

LR grad clip WD AD WS

|R| = 100 1e-4 1 1e-3 0.3 4000
|R| = 400 1e-4 1 1e-3 0.3 4000
|R| = 800 1e-4 1 1e-3 0.3 4000

Transformer + SL

|R| = 100 1e-4 1 1e-3 0.3 4000
|R| = 400 1.3e-4 1 1e-3 0.3 4000
|R| = 800 1.3e-4 1 1e-3 0.3 4000

Transformer + SL + CG

|R| = 100 1.3e-4 1 1e-3 0.3 4000
|R| = 400 1e-4 1 1e-3 0.3 4000
|R| = 800 1e-4 1 1e-3 0.3 4000

Transformer + SL + GD

|R| = 100 1e-4 0.4 1e-3 0.3 4000
|R| = 400 1.3e-4 0.4 1e-3 0.3 4000
|R| = 800 1e-4 0.4 1e-3 0.3 4000

Table 16: Optimal hyperparameters used for our random
PCFG experiments. We denote the learning rate as
“LR”, weight decay as “WD”, attention dropout as “AD”,
and the number of warmup steps as “WS”. Results are
provided in Table 4.
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