Abstract
Figures of speech such as metaphors, similes, and idioms are integral parts of human communication. They are ubiquitous in many forms of discourse, allowing people to convey complex, abstract ideas and evoke emotion. As figurative forms are often conveyed through multiple modalities (e.g., both text and images), understanding multimodal figurative language is an important AI challenge, weaving together profound vision, language, commonsense and cultural knowledge. In this work, we develop the Image Recognition of Figurative Language (IRFL) dataset. We leverage human annotation and an automatic pipeline we created to generate a multimodal dataset, and introduce two novel tasks as a benchmark for multimodal figurative language understanding. We experimented with state-of-the-art vision and language models and found that the best (22%) performed substantially worse than humans (97%). We release our dataset, benchmark, and code in hopes of driving the development of models that can better understand figurative language.- Anthology ID:
- 2023.findings-emnlp.74
- Volume:
- Findings of the Association for Computational Linguistics: EMNLP 2023
- Month:
- December
- Year:
- 2023
- Address:
- Singapore
- Editors:
- Houda Bouamor, Juan Pino, Kalika Bali
- Venue:
- Findings
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 1044–1058
- Language:
- URL:
- https://aclanthology.org/2023.findings-emnlp.74
- DOI:
- 10.18653/v1/2023.findings-emnlp.74
- Cite (ACL):
- Ron Yosef, Yonatan Bitton, and Dafna Shahaf. 2023. IRFL: Image Recognition of Figurative Language. In Findings of the Association for Computational Linguistics: EMNLP 2023, pages 1044–1058, Singapore. Association for Computational Linguistics.
- Cite (Informal):
- IRFL: Image Recognition of Figurative Language (Yosef et al., Findings 2023)
- PDF:
- https://preview.aclanthology.org/dois-2013-emnlp/2023.findings-emnlp.74.pdf