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Abstract

We introduce SHARCS for adaptive inference
that takes into account the hardness of input
samples. SHARCS can train a router on any trans-
former network, enabling the model to direct
different samples to sub-networks with varying
widths. Our experiments demonstrate that: (1)
SHARCS outperforms or complements existing
per-sample adaptive inference methods across
various classification tasks in terms of accuracy
vs. FLOPs; (2) SHARCS generalizes across dif-
ferent architectures and can be even applied to
compressed and efficient transformer encoders
to further improve their efficiency; (3) SHARCS
can provide a 2× inference speed up at an in-
significant drop in accuracy.

1 Introduction

Web-scale pretrained models, including Large Lan-
guage Models (LLMs), are widely used in vari-
ous applications (Devlin et al., 2018; Liu et al.,
2019a; Brown et al., 2020). However, their compu-
tational resource requirements can be problematic,
especially in environments with limited resources.
To address this issue, more efficient methods are
needed, particularly those that can run on-device
with efficient inference (Sanh et al., 2019).

Several methods (e.g., knowledge distillation
(Hinton et al., 2015), pruning (Lagunas et al.,
2021; Xia et al., 2022), and quantization (Shen
et al., 2019)) have been proposed to improve the
inference efficiency of transformer-based models.
While these methods are promising, one drawback
is that the resulting model is static. This raises con-
cerns about whether the model is too complex for
simple samples and not complex enough for more
challenging ones. To tackle this problem, previous
work have investigated sample-adaptive inference
methods that use varying amount of compute to
process different input samples (Kaya and Dumi-
tras, 2018). Two predominant approaches exist in
the field of sample adaptive inference: early-exiting

and token dropping. The former incorporates inter-
nal classifiers into intermediate layers of the model.
Various techniques have been explored for early
exiting, including using confidence scores or en-
tropy of internal classifier predictions (Liu et al.,
2020; Xin et al., 2020), using a module that pre-
dicts whether a layer should exit early (Xin et al.,
2021), or implementing a patience-based method to
adjust these internal predictions (Zhou et al., 2020).
The other category of sample-adaptive inference
methods, token dropping, enhances efficiency by
progressively decreasing sequence length as the
forward pass proceeds layer by layer (Goyal et al.,
2020; Guan et al., 2022).

In this paper, we propose Sample Hardness
Aware Routing based on Confidence Scores
(SHARCS1), which is a novel category within the
efficient sample adaptive inference domain. Our
approach introduces training a light-weight router.
The router dynamically assigns input samples,
based on their hardness (Ethayarajh et al., 2021),
to one of the sub-networks with varying widths.
Due to the lack of ground truth notion of hardness,
we estimate sample hardness heuristically based
on the network’s prediction history during training
for each sample. These estimates are then used as
labels to train the router.

We make the following contributions:

1. SHARCS introduces a router that predicts the
hardness of a sample and can be trained on any
transformer network. It enables dynamic in-
put processing using sub-networks of varying
widths, determined by the predicted hardness.

2. SHARCS delivers substantial efficiency improve-
ments in terms of accuracy vs. FLOPs trade-off
across different datasets & transformer encoders.
For example, on QQP (Wang et al., 2017), it
reduces the FLOPs of RoBERTabase by 2.75×
with only 1% accuracy drop. Compared to other
1pronounced sharks.
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Figure 1: (a) At inference the router selects the reduc-
tion factor. Red parts denote the changes enforced by the
router. (b) Training the router. The confidence scores
of the last W epochs for each input sample is recorded.
Then they are compared with confidence thresholds and
labels for training the router are assigned accordingly.

sample adaptive inference techniques, SHARCS
either outperforms them or can be paired with
them to achieve even greater efficiency.

3. The gains from SHARCS can be realized in real-
world deployment with significant latency reduc-
tion in CPU-based inference. On QQP, SHARCS
can speed up BERTbase more than 2× with less
than 1% drop in accuracy.

2 Method

We introduce SHARCS for adaptive inference that
takes into account the hardness of input samples.
Our approach has three main steps: (1) Obtaining
labels that represent sample hardness (§2.1); (2)
Training a router that can predict sample hardness
(§2.2); (3) Adjusting the network’s inference ca-
pacity according to the predicted hardness (§2.3).

2.1 Estimating Hardness of a Sample

Our objective is to learn a sample hardness aware
router, enabling us to dynamically direct the input
sample to one of the sub-networks with varying ca-
pacities (including the main network) for efficient
inference. As there are no ground-truth labels that
represent hardness, we leverage network’s predic-
tion history during training. We assume that there
are M possible hardness levels for a sample, with
level 1 being the easiest and M being the hardest.
Our goal is to assign a hardness label ŷ ∈ {0, 1}M
to samples in the training set and train the router
with them. Toward this end, we employ a heuristic
procedure which is illustrated in Figure 1b: If the
model predicts the ground truth class for a training
sample with a probability within a confidence in-
terval [T i

low, T
i
high], then the ith entry in the label

ŷ would be 1; otherwise it would be zero. Here, i
ranges from 1 to M , and T i’s are hyperparameters
associated with hardness level i.

Because of the stochastic nature of training, it
is possible that the samples denoted as easy ear-
lier will potentially be denoted as hard after that,
posing instabilities while training the router. To
mitigate such randomness, the ith entry is 1 only
if the predicted ground truth probability is within
the interval for a moving window of last W epochs.
The assigned hardness labels will be used as labels
to train the router in the next epoch. We do not train
the router during the first W epochs and just train
the network and record the network’s predictions.
Please see appendix E.0.5 for more details on the
role of window size.

2.2 Training Sample Hardness Aware Router

We split the main transformer network with L lay-
ers into non-adaptive and adaptive parts, and in-
corporate the router between these networks (see
Figure 1a). The non-adaptive network is comprised
of the first 0<K <L−1 layers while the adaptive
part consists of the remaining L−K layers. The
adaptive component is a shared network that con-
sists of sub-networks with varying widths, where
the width of each sub-network is a fraction of the
width of the network.

More formally, sub-networks are associated with
a given a set of reduction factors {ri}Mi=1, 0 < ri ≤
1, where the width of i-th sub-network is 1/ri×
smaller than that of main network.We map the hard-
ness level i to the width reduction factor ri. During
training, for each input, we sample one of the re-
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Figure 2: Results on the three of the sub-tasks in the GLUE benchmark. For the full set of plots on 8 tasks please
refer to the appendix D.0.1. Best viewed in color.

duction factors with entry 1 in the router label for
that input and do the forward and backward pass
with just the network associated with that reduc-
tion factor. During inference, given the output of
non-adaptive network for input sample x, the ob-
jective of the router is to determine the width of
sub-network in the adaptive module to process x.
We train the sub-networks and the router with the
following objective:

L = λtask · Ltask + λrouter · Lrouter (1)

where Lrouter is a binary cross-entropy loss be-
tween predicted and ground-truth hardness label,
Ltask is a task-specific loss, and λtask and λrouter

are loss weights which are hyper-parameters.

2.3 Reducing Width of Adaptive Module

The basic building block in both multi-head at-
tention (MHA) module and feed forward network
(FFN) in transformers is the linear layer (Vaswani
et al., 2017). Given the fully-connected nature of
linear layers, to reduce their width, we retain the
leftmost r · dmodel neurons in both input and out-
put (Kusupati et al., 2022). It is worth noting that
as we reduce the input and output dimensions of
matrix multiplications by a factor of 1/r, the flops
will be reduced by a factor of 1/r2. We follow a
similar procedure for reducing the width of affine
parameters in LayerNorm (Ba et al., 2016). Also in
our setup, we do not change the head dimensions
in MHA and instead decrease the number of heads
by a factor of 1/r. As Figure 1a illustrates, we
down-project the input hidden states to the adap-
tive layers using a pooler module and up-project it
back before feeding to the single classifier for all
of the sub-networks. Please see Appendix B for a

detailed description of width reduction of different
components in transformer layer.

3 Experimental setup

Datasets. We evaluate SHARCS on 8 classifica-
tion tasks in the standard GLUE benchmark (Wang
et al., 2018): MNLI-m (Williams et al., 2018),
QNLI (Wang et al., 2018; Rajpurkar et al., 2016),
QQP (Wang et al., 2017), SST-2 (Socher et al.,
2013), MRPC (Dolan and Brockett, 2005), RTE
(Dagan et al., 2005), CoLA (Warstadt et al., 2019),
WNLI (Levesque et al., 2012).

Evaluation metrics. Following previous work,
we report the accuracy on the validation set, with an
exception to CoLA for which we report Matthews
correlation. We measure the total FLOPs on the
validation set as it is invariant to the run time envi-
ronment (Liu et al., 2020).

Training details. We train network with AdamW
optimizer (Loshchilov and Hutter, 2019). We
choose the number of epochs in {5, 10, 15} and
use learning rate in {2e− 5, 5e− 5} in our experi-
ments. Please see Appendix C for more details.

4 Results

4.1 SHARCS is Better

We compare SHARCS with existing sample adaptive
inference methods: RTJ (Schwartz et al., 2020),
DeeBERT (Xin et al., 2020), FastBERT (Liu et al.,
2020), BERxiT (Xin et al., 2021), and PABEE
(Zhou et al., 2020). Figure 2 shows the accuracy-
FLOPs trade-off plots for different sample adap-
tive approaches with RoBERTabase model on three
GLUE subtasks (See appendix D.0.1 for the full
set of plots). Our results show that SHARCS signif-
icantly outperforms other methods, especially in
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Table 1: Comparison of different adaptive inference
methods on MNLI-m dataset for different FLOP
ranges. For the full table, please see Appendix D.0.2

FLOPs range
(Tera FLOPs)

Best Baseline SHARCS

Acc.(%) ↑ FLOPs ↓ Acc. FLOPs

Roberta (Acc: 87.6, FLOPs: 33.5)

0-10 61.83 9.56 76.37 4.91
10-20 84.19 18 85.93 17.92
20-30 87.53 29.86 87.38 28.35

BERT (Acc: 84.8, FLOPs: 33)

0-10 48.87 8.76 72.7 8.94
10-20 72.50 19.99 81.61 16.73
20-30 83.27 27.99 83.04 22.76

DistilBERT (Acc: 82.2, FLOPs: 16.57)

0-5 48.87 4.7 64.72 3.80
5-10 64.44 9.95 76.02 8.87
10-15 80.38 14.91 81.61 14.39

DynaBERT 0.25 width (Acc: 83.9, FLOPs: 8.26)

0-4 65.61 3.78 78.92 3.99
4-6 76.01 5.42 81.48 5.21
6-8 83.86 7.92 83.40 7.33

the low-FLOPs regime. This can suggest that by
substantially reducing the width of deeper layers in
the model, SHARCS can achieve a significant reduc-
tion in FLOPs. Furthermore, we can maintain the
accuracy better compared to fully skipping deeper
layers as commonly done in early exiting methods.

4.2 SHARCS is Model Agnostic

SHARCS can be seamlessly integrated with any state-
of-the-art non-efficient and efficient transformer-
based encoders to further improve their efficiency.
We use SHARCS and the baseline sample adaptive
inference methods in (§4.1) with two standard non-
efficient (RoBERTabase and BERT-Basebase) and
efficient (DistilBERT (Sanh et al., 2019) and Dyn-
aBERT (Hou et al., 2020)) models. Table 1 shows
that SHARCS consistently improves the efficiency of
different models while maintaining the accuracy
better than other baseline sample adaptive methods.
Note that, for brevity, we have selected the highest
accuracy among all the sample adaptive baselines
for each FLOPs range; please see Table 5 in Ap-
pendix D.0.2 for the full set of results. As an exam-
ple, SHARCS can reduce the FLOPs of BERTbase to
half with near 3% reduction in accuracy whereas
in other methods the drop is more than 12%. Inter-
estingly, SHARCS can further improve the efficiency
of already optimized networks. For instance, infer-
ence with SHARCS on DynaBERT 0.25 width takes
10-15% less FLOPs with less than 1% drop in ac-
curacy. More accuracy vs. FLOPs trade-off results
for DynaBERT 0.25 and DistilBERT can be found
in Figure 10 and 11.

4.3 SHARCS is Fast

We compare the latency of SHARCS applied to
BERTbase with the baseline adaptive approaches on
the QQP (Wang et al., 2017) dataset. The latency
measurements are conducted on an Intel Xeon Gold
6230 CPU with a batch size of 1. We use two reduc-
tion factors {0.25, 1.0} and place the router after
layer 2 or 4 to get different accuracy-speed up trade
offs. We keep the speed up between 2 to 3 and re-
port the best accuracy for each method in this range.
Table 2 shows that our method obtains higher or
comparable accuracy in this speed up range. In-
terestingly, SHARCS achieves a performance on par
with DistilBERT, which is trained with distillation
on a much larger dataset, but with higher speed up.

4.4 SHARCS Paired with Token Dropping

As discussed in Section 1, in addition to early-
exiting, token dropping is another well-known
approach to sample-adaptive inference efficiency
(Goyal et al., 2020; Guan et al., 2022). Token drop-
ping enhances efficiency by progressively dropping
tokens layer by layer, thereby decreasing the hid-
den states sequence length as the forward pass pro-
ceeds. In contrast, SHARCS improves efficiency via
reducing the transformer block’s width. Therefore
token dropping and SHARCS should not interfere
with each other and in fact, they can be paired to-
gether to bring more efficiency. To showcase this,
we combine SHARCS with a RoBERTabase network
that has already been made more efficient using
Transkimmer token dropping. Table 3 shows that
on QNLI dataset, SHARCS reduces the FLOPs of
RoBERTa + Transkimmer by 40% with a negligi-
ble drop in accuracy.

Table 2: Inference speed up results on the QQP
dataset on CPU for various adaptive inference tech-
niques applied to BERT. For SHARCS we place the
router after layers 2 and 4 and report two numbers.

Accuracy (%) ↑ Speed up (×) ↑
BERT 90.90 1

DistilBERT 88.50 2
BERxiT 85.60 2.04
FastBERT 83.99 2.17
DeeBERT 83.82 2.14
PABEE 89.09 2.06
RTJ 84.44 2

SHARCS (layer 2) 88.43 2.57
SHARCS (layer 4) 90.05 2.05
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Table 3: SHARCS can be applied to RoBERTa in addi-
tion to Transkimmer to bring more efficiency. The
decrease in FLOPs and Accuracy in parantheses are
with respect to RoBERTa + Transkimmer.

QNLI Acc. TeraFLOPs

RoBERTa Base 92.8% 24.5
+Transkimmer 89.45% 14.08

+Transkimmer + SHARCS 88.83% (-0.62%) 8.56 (∼40%↓)

4.5 Ablating the Router

To show the efficacy of the router and its training
strategy in SHARCS, we replace it with the routing
strategy used in BERxiT (Xin et al., 2021): while
training two sub-networks with reduction factors
{0.25, 1.0}, we feed the training sample to both
of them; if a sub-network correctly classifies the
sample, the router label for that sub-network in
that iteration would be 1. Otherwise, it would be
zero. The backward pass is then done with all the
losses of sub-networks and the router loss. Table
4 shows the area under the normalized accuracy
FLOPs curve (AUC) for both methods on MNLI-
m. Please find more detailed ablation results and
experiments in Appendix E.

Table 4: While using adaptive width with RoBERTabase
on MNLI-m, SHARCS router outperforms BERxiT router.

Router on RoBERTabase AUC ↑
SHARCS 0.78
BERxiT 0.73

5 Conclusion

We presented SHARCS as a new sample adaptive in-
ference approach that can improve any network’s
inference efficiency. SHARCS incorporated a light-
weight router which is trained with a novel ap-
proach using the confidence of the network predic-
tions during training. Our experiments showed the
superiority or complementary role of SHARCS com-
pared to other sample adaptive inference methods
across various datasets and backbones.

Limitations

While the router and training approach in SHARCS
are general purpose, a limitation of this paper is
its focus solely on studying the impact on trans-
former encoders. Nonetheless, decoder-only (Rad-
ford et al., 2018, 2019) and encoder-decoder (Raf-
fel et al., 2019; Lewis et al., 2020) models are

widely used classes of models for which we plan to
integrate SHARCS in the future work. It should be
noted that although our approach can be applied to
regression tasks with minor adjustments, this work
does not include any results for regression tasks.
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A Background and Related Work

Efficient non-adaptive inference In the context
of non-adaptive methods, numerous studies in the
literature have improved the inference efficiency
of transformers through various techniques such
as knowledge distillation (Hinton et al., 2015) into
smaller models (Sanh et al., 2019; Sun et al., 2020;
Hou et al., 2020; Jiao et al., 2019), pruning unim-
portant weights of the model (Xia et al., 2022; La-
gunas et al., 2021; Sanh et al., 2020; Liu et al.,
2019b), and weight quantization (Shen et al., 2019;
Kim et al., 2021) to store weights of a network
with lower precision values. The aforementioned
approaches result in smaller and more efficient al-
beit fixed and static models.

Efficient adaptive inference. Another line of
work have proposed adaptive inference methods
that allow the network to allocate varying amounts
of compute for each sample. The predominant tech-
nique in this area is early exiting via adding internal
classifiers to intermediate layers (Schwartz et al.,
2020; Kaya and Dumitras, 2018; Xin et al., 2020;
Teerapittayanon et al., 2017; Zhou et al., 2020; Liu
et al., 2020): To early exit, prior work either use the
confidence score of internal classifiers’ predictions
(Schwartz et al., 2020; Xin et al., 2020); the entropy
of these predictions (Liu et al., 2020); a module that
predicts whether a layer should early exit or not
(Xin et al., 2021); a patience based change in these
internal prediction (Zhou et al., 2020); or a hash
based mechanism to do token level early exiting
(Sun et al., 2022).

Devvrit et al. (2023) recently proposed Mat-
Former that can enable adaptive compute based
on the resource constraints but does not utilize dy-
namic token-based routing making SHARCS com-
plementary to it.

B Implementation Details

B.0.1 Transformer Networks
Transformer networks (Vaswani et al., 2017) are
composed of a stack of L layers and each layer
has two main components: Multi-head attention
(MHA) and Feed-forward network (FFN).

MHA consists of nh heads where each head
computes the attention operation (Vaswani et al.,
2017) on the projection of a sequence of l tokens
x = (x1, x2, ..., xl) into key, query, and values:
oihead = Attention(WKx,WQx,WVx), wherein

1≤ i≤H , oihead ∈ Rdhead and WK ,WQ,WV ∈
Rdmodel×dhead are the key, query, and value projec-
tion matrices, and dhead = dmodel/nh. The out-
puts from different heads are concatenated into
oheads ∈ Rdmodel and projected with another ma-
trix WO ∈ Rdmodel×dmodel and passed through a
layer norm (Ba et al., 2016) to get the output:
oMHA = LayerNorm(x+ Wooheads).

FFN consists of two feed-forward layers W1

and W2 with GeLU (Hendrycks and Gimpel,
2016) non-linearity and takes the output of
MHA module and computes LayerNorm(oMHA +
GeLU(W1oMHA)W2).

B.0.2 Reducing Width of a Transformer
Layer

Figure 3 illustrates our approach in reducing the ca-
pacity of a transformer network based on the given
reduction factor. We leave the first K layers (aka
non-adaptive module) of the model intact, where
K is a hyperparameter. Given an input sequence
x, after computing the intermediate representation
h ∈ Rl×dmodel by the non-adaptive module, and
the reduction factor r by the router, we reduce the
width of different components which we will de-
scribe in detail next.

Before passing h to adaptive layers, we pass it
through a pooler module that reduces its dimension-
ality to dmodel × r. For example, if dmodel = 768
and r = 0.25, the input to the adaptive module will
be 192 dimensional. Although we experimented
with affine transformations for the pooler, in prac-
tice we observed that a simpler pooling operation
such as selecting just the first dmodel × r dimen-
sions works as good. Therefore, as this pooler is
simpler and importantly adds no extra FLOPs to in-
ferece, we opted for that. For the unpooler, we used
an affine transformation that transforms the hidden
state with reduced dimensionality (i.e. r · dmodel) to
dmodel. Note that for the unpooler layer, the dimen-
sionality of the input can change while the output
dimensionality if always dmodel.

Throughout this paper, whenever we decrease
a dimension of a component (e.g. input vectors
or weights) from d to d′, we exclusively use the
first d′ dimensions and disregards the remainder
in the computations. This is illustrated schemati-
cally in Figure 4 for FFN and MHA components in
transformer models.

In what follows we describe how we reduce the
width of different components by the reduction
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Figure 3: Detailed schematic of reducing with of dif-
ferent components in a transformer model based on the
prediction of the router.

factor r which is also depicted in detail in Figure 3.

Reducing MHA Width. We reduce the width of
MHA using the following steps:

1. The input dimension dmodel of self-attention
projection matrices WK , WQ, and Wv is de-
creased to dmodel · r. We do not change the output
dimension dhead of the linear projections.

2.The adaptive module only computes the output
of the first nh · r heads and disregards the other
heads. Therefore the dimensionality of oheads is de-
creased to dmodel ·r. Note that we could also reduce
the dimensionality of each head instead, however,
we built on previous findings in the literature that
many of the heads in transformers are redundant
and can be pruned without hurting the performance
(Michel et al., 2019; Voita et al., 2019).

3. For the output projection Wo of MHA, the
input and output dimensions, which are both equal
to dmodel, are reduced to dmodel · r.

Throughout all the changes above, we do not

alter the sequence length of the input (i.e. l) or any
of the hidden states.

Reducing FFN width. Similar to the output pro-
jection Wo of MHA, the input and output dimen-
sions of the feed-forward layers W1 and W2 in
the FFN are reduced by a factor of 1/r. Therefore,
the output dimension of all the adaptive layersare
reduced by a factor of r to Dmodel × r.

It is important to note that majority of operations
in FFN and MHA components are comprised of
matrix multiplications and reducing the input and
output dimensions of these multiplications by a
factor of rj will reduce their flops by a factor of r2j .

Reducing layernorms width. We also reduce the
width of the layer norm parameters by a factor of r.
In our experiments, we find it beneficial to initialize
the layernorm parameters with the corresponding
first dimensions of original layernorm parameters
instead of training them from scratch.

B.0.3 Inference
In contrast to training where the width of the adap-
tive layers doing forward pass is enforced by the
router labels, at inference, the router predicts the
reduction factor. More formally, given the input
sample x and router logits Ŵ ∈ RM , we select the
reduction factor rj to do the forward pass where j
is argmax(Ŵ ).

C Training Details

Similar to (Hou et al., 2020), we reorder the heads
based on their importance before fine-tuning on the
down-stream task. We set λtask to 1 and λrouter to
0.5 in our approach and use a set of two reduction
factors {0.25, 1.0}. We choose the batch size in
{16, 32} depending on the model and dataset. We
do a grid search over the lower and upper bound on
the confidence thresholds and do the forward pass
of each reduction factor on a separate GPU. We
choose the window size values in {3, 5}. We set
λtask to 1 and λrouter to 0.5 in our approach and
use a set of two reduction factors {0.25, 1.0}. We
do a grid search over the lower and upper bound on
the confidence thresholds and the hyperparamters
of the baselines and do the forward pass of each
reduction factor on a separate GPU. Similar to pre-
vious work (Hou et al., 2020), we pad the input
sequences in a batch to 128 tokens while training.
To train SHARCS with Transkimer on RoBERTa, we
first train RoBERTa + Transkimmer with skim co-
efficient of 0.3. We then start from this model as
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Figure 4: Reducing the width of FFN and MHA in adaptive layers.

an initial checkpoint and train for 10 epochs using
both our loss and Transkimmer loss. Here, train-
ing the router is done with with 0.25 and 1.0 as
reduction factors.

D Results Details

D.0.1 GLUE Results

We do a thorough hyperparameter search with dif-
ferent sample adaptive inference methods to get
the accuracy of the RoBERTabase model across dif-
ferent FLOPs values. We report the total number
of FLOPs on the validation set and do not pad the
input sequences before feeding to the model. Fig-
ure 12 shows the plots for 8 of the sub-tasks in the
GLUE benchmark.

D.0.2 Different Backbone Results

Table 5 shows the comparison of different sam-
ple adaptive inference methods applied to different
backbones.

E Ablations and Discussion

E.0.1 Router Ablation

Figure 5 shows the accuracy FLOPs plot for two
methods: 1) The router introduced in SHARCS with
adaptive width sub-networks. 2) A router similar
to the early-exiting router used in BERxiT (Xin
et al., 2021) with adaptive-width sub-networks. We
report the AUC for a similar range of FLOPs for
both methods and scale the accuracy and FLOPs
values to [0, 1].

Figure 5: Accuracy vs. FLOPs plot for Adaptive width
sub-networks trained with SHARCS router (orange) and
BERxiT (Xin et al., 2021) router (blue).

E.0.2 Number of Reduction Factors

We change the number of reduction factors
(or hardness levels) M to three and four and
use the reduction factors {0.25, 0.5, 1.0} and
{0.25, 0.5, 0.75, 1.0} respectively. Figure 6 shows
the results of changing the number of reduction fac-
tors with RoBERTabase model on MNLI-m dataset.
The model trained with two reduction factors out-
perform the other cases for FLOPs values above 15
teraFLOPs significantly and four reduction factors
can get better results in the range of 10-15 Tera
FLOPs.
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Table 5: Comparison of different adaptive inference methods on MNLI-m dataset for different FLOP ranges.

FLOPs range
(Tera Flops)

RTJ DeeBERT PABEE FastBERT BERxiT SHARCS

Acc. ↑ FLOPs ↓ Acc. FLOPs Acc. FLOPs Acc. FLOPs Acc. FLOPs Acc. FLOPs

Roberta (Acc: 87.6, FLOPs: 33.5)

0-10 54.27 9.59 61.83 9.56 53.98 8.53 45.39 2.84 53.69 8.41 76.37 4.91
10-20 82.29 19.77 77.18 19.80 84.19 18 59.79 15.06 83.39 19.91 85.93 17.92
20-30 86.92 25.76 81.35 23.67 87.53 29.86 77.24 29.95 87.23 27.92 87.38 28.35

BERT (Acc: 84.8, FLOPs: 33)

0-10 47.32 9.46 42.32 9.97 42.97 7.51 48.87 8.76 46.86 9.88 72.7 8.94
10-20 58.12 15.61 61.57 19.89 66.33 17.29 70.25 19.18 72.50 19.99 81.61 16.73
20-30 78.96 28.53 80.57 29.34 81.13 27.66 83.27 27.99 80.82 25.73 83.04 22.76

DistilBERT (Acc: 82.2, FLOPs: 16.57)

0-5 41.92 2.76 43.98 2.76 41.45 2.76 48.87 4.7 41.47 4.07 64.72 3.80
5-10 52.72 9.56 59.87 9.45 64.44 9.95 64.24 9.76 55.10 9.76 76.02 8.87

10-15 72.93 13.90 80.38 14.91 79.29 14.12 79.72 14.84 60.25 11.68 81.61 14.39

DynaBERT 0.25 width (Acc: 83.9, FLOPs: 8.26)

0-4 60.95 3.98 56.13 3.38 56.09 3.97 65.61 3.78 56.19 3.58 78.92 3.99
4-6 74.55 5.82 75.26 5.62 69.81 5.93 76.01 5.42 - - 81.48 5.21
6-8 83.43 7.70 83.36 7.70 81.31 7.87 83.86 7.92 83.08 7.60 83.40 7.33

Figure 6: Results of different number of sub-networks
(or reduction factors) with RoBERTabase model on
MNLI-m.

E.0.3 Confidence Thresholds

We study the effect of changing confidence thresh-
olds on our results with a simple experiment: With
two reduction factors {0.25, 1.0} we use the fol-
lowing confidence score lower and upper bounds:
[0.0, x] for full network and [x, 1.0] for 0.25 net-
work, where x ∈ {0.5, 0.7, 0.9}. We place the
router after layer 1 (i.e. K = 1). Figure 7 shows
the results of RoBERTabase model on MNLI-m
dataset. According to the figure, higher value of
x leads to better acuracies for a fixed number of
FLOPs. Furthermore, as we decrease x, we can
reach lower values of FLOPs. This is intuitive as
decreasing the lower bound of smallest reduction
factor makes more samples be routed to that which
reduces the overall FLOPs.

Figure 7: Results of changing confidence thresholds
with RoBERTabase model on MNLI-m dataset. We
use reduction factors {0.25, 1.0} and confidence thresh-
olds [0, x] for reduction factor 0.25 and confidence
thresholds [x, 1] for reduction factor 1, where x ∈
{0.5, 0.7.0.9}.

E.0.4 Using Entropy or Confidence-based
Hardness Labels to Train Router

Similar to sample adaptive inference in early ex-
iting methods (Xin et al., 2020; Liu et al., 2020),
one can get hardness labels by defining thresholds
on entropy of the network predictions instead of
the confidence. We use the following formula to
compute the entropy of network’s prediction:

H = −
C∑

i=1

pi · log pi,

wherein C denotes the number of classes of the
classifier, and pi is the softamx probablity that the
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Figure 8: Comparing entropy and confidence based
hardness labels for training the router.

Figure 9: Effect of changing history window size in
SHARCS on MNLI-m Accuracy FLOPs trade-off.

classifier assigns to class i. Figure 8 shows the ac-
curacy FLOPs trade-off for both of these metrics on
MNLI-m dataset with RoBERTabase model. Given
that the confidence score is a simpler approach and
does not require any additional computation, we
opted for using that in our method.

E.0.5 Changing History Window Size in
Training the Router

As mentioned in (§2.1), having a larger window
size helps stabilizing training the router as the
hardness label for a training sample might change
throughout training. To illustrate this effect, we
train SHARCS on RoBERTabase model with three
different window sizes {1, 3, 5} for 10 epochs on
MNLI-m dataset. We place the router at layer 2,
use two reduction factors {0.25, 1.0}, and set the

Figure 10: Accuracy FLOPs plot for SHARCS applied to
DynaBERT 0.25 W (Hou et al., 2020) model. We set
the reduction factors to {2/3, 1.0}. By placing router
at different layers and changing the confidence thresh-
olds, we can get different points in the plot. Note that
the FLOPs for each sub-network in each point is also
reported.

confidence thresholds to [0.0, 0.8] for reduction fac-
tor 1 and [0.8, 1.0] for reduction factor 0.25. Fig-
ure 9 shows the accuracy FLOPs trade offs that
different checkpoints with different window sizes
get throughout training on the validation set. Ac-
cording to the figure, the network can reach higher
accuracy when trained with window size 3 or 5. We
did not see any significant improvements by using
a window size larger than 5.
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Figure 11: Accuracy FLOPs plot for SHARCS applied
to DistilBERT(Sanh et al., 2019) model. We set the
reduction factors to {2/3, 1.0} or {0.5, 1.0}. By placing
router at different layers and changing the confidence
thresholds, we can get different points in the plot. Note
that the FLOPs for each sub-network in each point is
also reported.
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Figure 12: GLUE benchmark results. Best viewed in color.

10532


