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Abstract

Variational autoencoders (VAEs) are a popular
family of generative models with wide appli-
cability. Training VAEs, especially for text,
often runs into the issue of posterior collapse,
resulting in loss of representation quality. De-
terministic autoencoders avoid this issue, and
have been explored particularly well for im-
ages. It is however unclear how to best modify
a deterministic model designed for images into
a successful one for text. We show that with
suitable adaptations, we can significantly im-
prove on batch-normed VAEs (BN-VAEs), a
strong benchmark for language modeling with
VAEs, by replacing them with analogous de-
terministic models. We employ techniques
from contrastive learning to control the entropy
of the aggregate posterior of these models to
make it Gaussian. The resulting models skip
reparametrization steps in VAE modeling and
avoid posterior collapse, while outperforming
a broad range of VAE models on text gener-
ation and downstream tasks from representa-
tions. These improvements are shown to be
consistent across both LSTM and Transformer-
based VAE architectures. Appropriate compar-
isons to BERT/GPT-2 based results are also
included. We also qualitatively examine the la-
tent space through interpolation to supplement
the quantitative aspects of the model.

1 Introduction

The variational autoencoder (Kingma and Welling,
2013) - henceforth referred to simply as the VAE
- is a classical neural model that utilizes a paired
encoder-decoder structure. For every data instance
xi, the encoder network in the VAE is responsi-
ble for creating a compressed code distribution
P (zi|xi) parametrically. The decoder network, in
turn, uses this P (zi|xi) to form an approximation
of the real input, x̂i through an intermediate sam-
pling step. By minimizing a reconstruction loss
between xi and x̂i, along with a KL-divergence

between P (zi|xi) and the isotropic Gaussian dis-
tribution, VAEs can perform both generative and
denoising (reconstructive) tasks. Minimization of
the KL loss allows the VAE to create an isotropic
Gaussian distribution to sample and decode from.
However, note that the isotropic Gaussian is not
required and in NLP researchers have considered
training the latent distribution (Fang et al., 2019)
and learning structured, discrete representations
(Zhao et al., 2018b).

One of the most pressing problems in practical
VAE training arises when the encoder’s distribu-
tion collapses to the standard Gaussian for every
instance, that is, P (zi|xi) becomes ≈ N (0, I) ∀i.
This problem is commonly termed as posterior
collapse (Bowman et al., 2016; Razavi et al., 2019;
Lucas et al., 2019; He et al., 2019) and lies at the
heart of modern issues with VAEs. Many fixes
have been proposed towards this problem, ranging
from setting a lower bound on the KL term (δ-VAE)
(Razavi et al., 2019), aggressively training the en-
coder and analyzing the ‘lag’ between the encoder
and the decoder (Agg-VAE) (He et al., 2019), force
meaningful usage of the code zi through skip con-
nections (Skip-VAE) (Dieng et al., 2019). These
issues worsen when the VAE employs an autore-
gressive structure, such as for text or videos (Fang
et al., 2019; Zhao et al., 2018b; Dai et al., 2020;
Long et al., 2019). Thus, mitigating posterior col-
lapse in VAE architectures is likely to have out-
sized benefits in NLP.

Independent of the VAE model, there exists the
idea of aligning the aggregate posterior. The aggre-
gate posterior consists of the latent space distribu-
tion, i.e. the distribution over z formed by evaluat-
ing

∫
P (xi)P (zi|xi) over all xi, where the distri-

bution over xi is usually computed by an empirical
average over the training set. In these methods,
the individual distributions, P (zi|xi) may even be
Dirac distributions, i.e. the mapping between zi
and xi is purely deterministic. We can still find,
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in aggregate, a distribution over z that is close
to an isotropic Gaussian. Methods in this vein
utilize Wasserstein-based optimal transport (Tol-
stikhin et al., 2017), maximum mean discrepancy
(Kolouri et al., 2018), etc. for this purpose. These
methods cannot truly be termed VAEs, as they are
often deterministic, but they work similarly. Due
to their deterministic nature and differing loss func-
tions, posterior collapse does not usually occur. In
VAEs, the quantity to be maximized is the log like-
lihood logP (xi). This proves intractable, and an
equivalent optimization is done via the ELBO (Ev-
idence Lower BOund) objective. While VAEs can
be evaluated by log likelihood, another metric is
to evaluate their reconstruction error, as well as
the quality of samples generated when, in place of
P (z), an isotropic Gaussian N (0, I) is substituted
and the Gaussian samples fed through the decoder
network. This notion of sample-based evaluation
can also be done for deterministic autoencoders,
which do not allow an ELBO evaluation. This al-
lows us to compare deterministic autoencoders to
variational options fairly to determine superiority.

1.1 Our Contributions

We seek to draw parallels to findings in image
datasets that indicate deterministic autoencoding
models outperform variational ones in terms of
sample quality (Ghosh et al., 2019). Due to their
relative freedom from posterior collapse, and the
aforementioned outsized impact of posterior col-
lapse in language modeling, adapting these deter-
ministic architectures to NLP may improve autoen-
coders. We find that replacing a previous highly
performing architecture - the BN-VAE (Zhu et al.,
2020) with a similar deterministic variant improves
the performance in language modeling tasks. We
engage in an information theoretic analysis of the
constant variance VAE, demonstrating that this case
allows mutual information maximization. To aid
convergence, we add an entropic regularization
through contrastive learning (He et al., 2020). To
our knowledge, this linkage of contrastive learn-
ing to entropic maximization is novel, though en-
tropic regularization has previously been utilized
for deterministic autoencoders (Ghose et al., 2020).
We evaluate using perplexity-based benchmarks in
both forward and reverse directions (Zhao et al.,
2018a) and test the accuracy of our formulation us-
ing relatively large autoencoders built using trans-
former encoder-decoder pairs. In all cases, we
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Figure 1: CEAE (Contrastive Entropic Autoencoder)
architecture replacing instance-specific noise with con-
trastive loss. Constant noise (not shown) is annealed
over training to make the latent ZCEAE deterministic.

observe improvements not only over the previous
BN-VAE, but over a broad array of VAE architec-
tures. We term our architecture CEAE (Contrastive
Entropic Autoencoder) in figure 1. To account
for the increasing relevance of large language
models, we also test against appropriate archi-
tectures that utilize BERT and GPT-2 as parts
of an overall VAE architecture.

2 Definitions and Prior Work

2.1 Variational Autoencoder
We present here first the classical set up of the VAE.
We denote D, E as the decoder, encoder halves of
the VAE. Generally, D, E are comparable in size,
shape, architecture, etc. We propagate every data
instance xi through subnetworks Eµ, Eσ2 :

µi = Eµ(xi),σ
2
i = Eσ2(xi) (1)

These parameters, in turn, define a Gaussian
distribution, from which zi is drawn.

zi ∼ N (µi,σ
2
i ) (2)
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The decoder is then used to produce an (approxi-
mate) reconstruction x̂i of xi:

x̂i = D(zi) (3)

The loss function for VAE optimization is:

1

2
||x̂i − xi||2 +KL(N (µi,

2
i )||N (0, I)) (4)

where the || sign between the two normal distribu-
tions denotes the KL-divergence. Note also that the
first term (squared loss) is commonly used in pa-
pers that describe VAEs, but it should be replaced
by cross entropy in classification tasks (including
most NLP tasks). Furthermore, the loss function
may not be the same for all variants of the VAE.
For instance, the β-VAE (Higgins et al., 2016) per-
forms the optimization based on

1

2
||x̂i − xi||2 + βKL(N (µi,σ

2
i )||N (0, I)) (5)

β turns into a tunable hyperparameter, and is
generally not 1. Such tuning may improve perfor-
mance - in particular avoiding posterior collapse.

2.2 Deterministic Autoencoders
Utilizing the same notation as the VAE, if we in-
stead consider replacing the sampling step

zi ∼ N (µi,σ
2
i ) (6)

with zi = µi, the resulting flow is completely
deterministic. In this case, training minimizes:

1

2
||x̂i − xi||2 +R(zi) (7)

where R can be any regularizer on z, with the sim-
plest form being a least-squares regularizer, i.e.
R(z) = ||z||2, forming a Regularized autoen-
coder (RAE) (Ghosh et al., 2019). To generate
samples from the RAE, a Gaussian, or a Gaussian
mixture model, is fit to the distribution of z after
training. With a suitable regularizer R, such as the
MMD regularizer forming the Wasserstein autoen-
coder (WAE) (Tolstikhin et al., 2017), guarantees
can be made on the latent space distribution P (z)
that do not require this post hoc fitting and allow
drawing samples from N (0, I) directly - this case
is our focus of interest. For image datasets such as
MNIST, CIFAR-10, and CelebA, deterministic au-
toencoders have a notable advantage (Ghosh et al.,
2019) and we would like to carry this over to text.

2.3 VAE Optimization for Language Modeling

The failure mode in VAE optimization (when mod-
eling text, images or general datasets) manifests
itself by posterior collapse, where N (0, I) takes
the place of every latent code’s distribution. Au-
toregressive VAEs suffer the worst in this matter,
which impacts NLP disproportionately as non-
autoregressive models are generally not usable. It
has been suggested that a primary cause of the col-
lapse is due to training dynamics (He et al., 2019).
In this view, the inference network (encoder) is
in terms of training initially at a very poor perfor-
mance, which causes the generator network (de-
coder) to neglect the latent codes generated by the
encoder. This in turn leads to uninformative codes
(the posterior collapse phenomenon). Alternative
fixes include looking at weighing of the KL-term.
Such methods include the β-VAE which adds a
weight of β to the KL term (Higgins et al., 2016),
and methods which do not allow the KL to go to
zero (Razavi et al., 2019). Architecture-wise, skip-
connections reduce posterior collapse (Dieng et al.,
2019), as does reducing the complexity of the de-
coder network. During the main training loop, the
loss can be amortized (Kim et al., 2018), annealed,
or applied in a cyclic manner (Fu et al., 2019), all
of which reduce the phenomenon. Finally, the op-
timizer itself may be changed, with SGD being
somewhat preferable to ADAM (Srivastava and
Sutton, 2017) for the purposes of avoiding poste-
rior collapse. Orthogonal to all these fixes, we may
of course simply use deterministic autoencoders.

2.4 BN-VAE Architecture - a Strong Baseline

Let µij , σij denote the j-th index of the posterior
parameters of the i-th instance of a latent code of
dimension K. It may be shown that the expectation
of the KL divergence obeys the relation (Zhu et al.,
2020):

E[KL] =
1

2

K∑

j=1

E[µ2
ij ] +E[σ2

ij ]−E[log σ2
ij ]− 1

(8)
where the expectation is taken over the samples i.e.,
over i. We directly use the resulting inequality:

E[KL] ≥ 1

2

K∑

j=1

E[µ2
ij ]

Because E[σ2
ij ]−E[log σ2

ij ]−1 ≥ 0 as ex−x ≥
1. We know that for any random variable X that
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has a defined first and second moment, E[X2] =
V ar(X)+(E[X])2. We enforce a batch norm con-
straint on µij , that fixes the expectation and/or the
variance, thereby setting the lower bound on the ex-
pectation of KL. Batch normalization here simply
refers to the near-ubiquitous practice of minibatch-
level normalization, i.e., adding a layer of the form:

BN(xi) =
xi − µ

σ
(9)

where µ,σ represent the mean and standard de-
viation computed over the minibatch of xi. This
batch norm layer is usually accompanied by an
affine function, i.e., a function of the form f(x) =
Ax+ b (Ioffe and Szegedy, 2015). We will ex-
plicitly make a distinction between the two parts.
Over experiments against other architectures such
as Skip-VAE and others (all of which are purported
designs to circumvent the posterior collapse issue)
BN-VAE results in superior performance in both
language modeling (NLL metrics) and the down-
stream usage of learnt representations (Zhu et al.,
2020). Our lesson from this success is to set a
baseline with a VAE which batch normalizes the
means of latent representations.

3 Information Theory of Constant
Variance Batch Normed Autoencoders

Let the generation process of the latent code be :

zij ∼ N (µij , σ
2
ij)

With the batch norm constraint that :

E[µij ] = a, V ar[µij ] = b ≥ 0

Consider an intermediate case between the VAE
(where each σj can be distinct) and the determin-
istic autoencoder (each σj = 0). Set every σj = c,
c > 0 constant. Then, indexwise and vectorwise,

zij = µij + c, zi = µi + Z

where Z is a random vector from N (0, c2I).
Consider the mutual information between z,µ.
This denotes the amount of useful information sent
through the encoding and maximizing it avoids
posterior collapse (Zhao et al., 2017). It equals

H(z)−H(z|µ)
Where H is the entropy function. Now, z|µ =

(µ+ Z)|µ. Therefore, the required entropy is of

H(µ+ Z|µ) = H(Z|µ)
Z is independent of µ. This differs from general

VAEs, where the variance is instance dependent
and σi,µi are related, relating Z,µ. Note that
here we refer to the instance-index i and not the
dimension index j as we discuss instance-level de-
pendence. This yields the final mutual information
expression as :

H(z)−H(Z)

Now, H(z) has a fixed value of E[z] and also a
fixed variance, since it is the direct sum of two ran-
dom variables Z and µ, both of which, by hypoth-
esis, have fixed means and variances. Under this
condition of fixed mean and variance, it is known
that the entropy H is maximized iff z is distributed
as a Gaussian (Thomas and Cover, 1999). There-
fore, a more informative constant variance batch
normed VAE induces a more Gaussian represen-
tation on z. Since µ = z− Z, and z approaches a
Gaussian, while Z is itself one, the desired latent
mean µ also approaches a Gaussian as mutual in-
formation rises. Note that our analysis holds for
any c > 0. This means even very low values of c -
slowly annealed to 0, approximating the determin-
istic autoencoder case - will work as long as the
mutual information required is high. To create an
aggregate posterior which is the isotropic Gaussian,
we assume a = 0, b = 1, i.e.

E[µi] = 0, V ar[µi] = 1

When µi becomes a Gaussian with the above
two constraints, our job of creating an appropri-
ate deterministic autoencoder with the right ag-
gregate posterior is done. We have already dis-
cussed the interaction of mutual information with
that process, but now, observe that becoming a
Gaussian can also be done by controlling the en-
tropy H , which is maximized iff µi is Gaussian,
which also implies zi is Gaussian. The process
accelerates when minimizing a regularizer in the
form of −λH(µi), λ ≥ 0.

3.1 Entropy and Contrastive Regularization

We require an effective entropic estimator for
H(µi) to make it Gaussian. A first step
may be repulsion-based estimators such as the
Kozachenko-Leonenko estimator : (Delattre and
Fournier, 2017) for a sample consisting of
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X1, X2, . . . , XN+1 ∈ Rd drawn from an unknown
distribution P , assuming N > 1, With Ri =
minj ̸=i ||Xi − Xj ||2, Yi = N(Ri)

d, Bd the vol-
ume of the unit ball in Rn, γ the Euler-Mascheroni
constant ≈ 0.577, an estimate of the entropy of the
distribution is:

H(P ) ≈ 1

N + 1

N+1∑

i=1

log Yi + logBd + γ

The estimator relies primarily on the leading sum
over Yi, which computes “repulsions" between la-
tent representations which are too close. Only this
sum (with weight λ) needs to be computed at all
for gradient based learning, as the other terms are
constants. In practice, this estimator has been used
only sporadically for image autoencoders (Ghose
et al., 2020) and rarely in general for neural net-
works, and direct implementations of the method
for language autoencoders leads to convergence
failure.

We turn to the contrastive learning literature to
look for a solution, which has recently emerged
as a strong baseline in representation learning for
both unsupervised (Chen et al., 2020; Zhang et al.,
2022) and supervised (Khosla et al., 2020; Zhang
et al., 2022) contexts. In unsupervised contrastive
learning, it is desired to learn two alternative rep-
resentations Zi, Z

+
i of some instance Xi ∈ X , so

that Zi, Z
+
i are close (e.g. by the inner product)

and Zj arising from Xj ∈ X , j ̸= i has a low inner
product. This is done by minimizing:

−
∑

Xi∈X
log

exp(⟨Zi, Z
+
i ⟩)∑

Xj∈X ,j ̸=i exp(⟨Zi, Zj⟩)

Z+
i arises from a noisy or augmented version of

Xi, such as a crop (if X is an image). One suitable
method is momentum contrast (MoCo) (He et al.,
2020), where Zi is generated by a model with pa-
rameters θ, and a model with θ′, a time average of
θ, generates Z+

i . Therefore, the encoding method
learns to be insensitive to these noises and learns
encodings Zi, Z

+
i that are more or less invariant

to such. Simultaneously, the denominator discour-
ages proximity between codes Zi, Zj arising from
different instances Xi, Xj - a repulsive regulariza-
tion controlling the entropy which sketches our
derivation. Unlike directly controlling the en-
tropy with a Kozachenko-Leonenko repulsion

loss, this method is well understood empirically
in terms of training and implementation. Further,
it can be shown that this loss approximates the
entropic regularizer for Gaussian distributions
in high dimensions. The full proof and derivation
appears in the appendix. We use the following loss
function Lent, with µi, µ

+
i being respectively gen-

erated by Eθ, Eθ′ , where θ′ = mθ′ + (1−m)θ is a
time averaged version of the main model Eθ.

Lent = −λt ×
∑

xi∈X
log

exp(⟨µi, µ
+
i ⟩)∑

xj∈X ,j ̸=i exp(⟨µi, µj⟩)

The details of how to choose m,λt and their
justifications also appear in the appendix. The over-
all training loss is formed by adding Lent to the
reconstruction loss Lrec =

1
2 ||x̂i − xi||2.

4 Experimental Details and Methodology

4.1 Dataset Choices

We present results primarily using the Yahoo and
Yelp corpora (Yang et al., 2017) for language mod-
eling tasks using LSTM encoder-decoder architec-
ture autoencoders. This maintains consistency with
the BN-VAE (Zhu et al., 2020) in terms of compar-
ing performance for these tasks. We additionally
use a small-scale transformer, with its structure
based on the Transformer-XL model (Dai et al.,
2019) specifically for Penn Tree Bank(PTB) dataset
(Marcus et al., 1993), for results on this dataset
(in appendix). Unlike transformer-XL, which is
a decoder-only model, we employ an encoder-
decoder transformer, but keep hyperparameter and
training recommendations aligned with the original
source code for the PTB Transformer-XL details.
We name our architecture CEAE - Contrastive En-
tropic Autoencoder.

4.2 Metrics

Generally, variational autoencoders are compared
on the following metrics:

• Negative log-likelihood of the data (usually
estimated via ELBO/importance sampling)

• Mutual information between xi, zi, capturing
latent code quality(Alemi et al., 2016)

• KL divergence (averaged) between each latent
code’s distribution and the isotropic Gaussian,
i.e. (N (µi,σ

2
i )||N (0, I))
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Other metrics such as active units (AU) (Burda
et al., 2015) may be used, which capture the num-
ber of latent dimensions which are actually being
utilized in the autoencoder. None of the above
mentioned metrics (except the AU) can be used
to compare VAEs with deterministic autoencoders.
We hence use a different suite of metrics based
on forward and reverse perplexities (Zhao et al.,
2018a; Gagnon-Marchand et al., 2019):

• Reconstruction error, measured by negative
log likelihood of decoder-reconstructed input.

• Forward perplexity, where we generate and
decode 1000 samples from N (0, I). The per-
plexity of this sample is evaluated by a critic
model, optionally after training on the corre-
sponding train segment of the corpus.

• Reverse perplexity, in which 10, 000 samples
are generated from the autoencoder just as
above, but are now used for training a different
model, then tested on the test segment of the
corresponding corpus.

We chose two different critic models to reflect
two different ends of the model power spectrum: a
simple LSTM model for language modeling, and
GPT-2 (Radford et al., 2019) (standard configura-
tion, 117M parameters). The reverse-perplexity
task was performed only with the LSTM critic, as
it was found that training GPT-2 on the (relatively
low quality compared to real text) samples hurt
downstream performance on the uncorrupted test
corpus. We add human evaluation of generated
samples as a sanity check.

4.3 Comparisons and Benchmarking

We include a full suite of comparisons for the Ya-
hoo and Yelp corpora, with the following architec-
tures targeting the posterior collapse problem:

• Skip-VAE: latent-decoder skip connection
(Dieng et al., 2019)

• Annealing the KL loss (Bowman et al., 2015)

• β-VAE (KL weight β) (Higgins et al., 2016)

• Cyclic annealing of KL loss (Fu et al., 2019)

• Free bits in the KL loss (Kingma et al., 2016)

• δ-VAE (minimum KL δ) (Razavi et al., 2019)

• Von-mises fischer (vMF) VAE (Xu and Dur-
rett, 2018)

• Semi-amortized (SA) VAE (Kim et al., 2018)

• Aggressive-VAE (He et al., 2019)

These benchmarks correspond to the ones in
(Zhu et al., 2020), from which we also find the
required reconstruction metrics and BN-VAE vari-
ants. We add a vanilla VAE and LSTM language
model for baselines. For the PTB dataset, we com-
pare the deterministic autoencoder to a VAE setup
optimized analogously to the much larger BERT-
GPT-2 VAE in (Li et al., 2020). Only the standard
VAE is considered, with KL annealing kept for con-
sistency. Standard deviations, implementation
and architectural details, hyperparameters etc.
are in the appendix.

4.4 Large Language Model Comparison

We also add a comparison to OPTIMUS architec-
ture of VAEs (Li et al., 2020) with BERT as the
encoder, GPT-2 as the decoder, and pre-training on
the Wikipedia dataset (details in appendix). Fur-
ther, the embeddings learnt by our method were
compared to BERT zero-shot embeddings per
sentence (this result appears in the appendix).

5 Results

In terms of text modeling, results appear in Ta-
bles 1 and 2. In general, our method outperforms
the competitors and if not is close to the top per-
former. It should be noted that realistically, the
LSTM critic’s performance relative to GPT-2 is
due to the fact the LSTM is trained on the rele-
vant corpus while GPT-2 is tested zero-shot. Even
though GPT-2 is a stronger model, the LSTM has
more domain knowledge, causing their perplexities
to be close. This implies that GPT-2 evaluates the
samples based on general knowledge of the English
language and plausibility as English sentences (as
it is tested zero-shot) while the LSTM evaluates it
with emphasis on the domain knowledge (which is
the sole train data). Having both perplexities thus
evaluates differently, and we perform well on both.

To evaluate the quality of the latent space for
downstream tasks, we extract the latent representa-
tions in a shortened Yelp dataset following (Shen
et al., 2017), along with the labels for a small frac-
tion of the dataset. These labels reflect the nature
of the shortened review (positive or negative). We
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Yahoo Yelp
Model Rec GPT2-F L-F L-R Rec GPT2-F L-F L-R

LSTM-LM 328.0 136.7 171.5 202.3 351.1 125.2 95.1 132.0
VAE 328.6 118.2 141.7 175.8 357.9 100.1 87.8 115.5

β-VAE (0.4) 322.4 126.4 136.3 173.9 354.0 97.4 91.8 113.6
cyclic 328.5 125.4 131.8 182.6 357.5 100.6 87.8 112.8

Skip-VAE 326.2 130.3 138.4 175.9 355.7 95.2 91.7 109.6
SA-VAE 322.0 124.6 139.2 177.5 353.1 96.6 86.3 119.4
Agg-VAE 321.0 118.9 145.7 178.6 352.1 97.5 85.0 121.7

FB (4) 326.9 129.5 134.4 172.7 355.2 92.1 82.6 109.8
FB (5) 324.9 128.2 131.5 170.2 354.9 98.8 87.2 109.0

δ-VAE (0.1) 327.5 122.0 130.7 171.8 356.6 95.5 84.2 109.4
vMF-VAE (13) 325.4 117.6 134.8 168.2 355.5 105.2 85.3 115.0
BN-VAE (0.6) 320.5 110.6 128.6 165.4 350.5 92.2 78.2 112.7
BN-VAE (0.7) 318.6 109.0 124.5 168.9 346.8 90.5 80.5 109.2

CEAE 316.7 107.6 119.8 163.1 342.0 88.1 78.0* 110.2

Table 1: Language modeling. Reconstruction log loss (Rec), Forward perplexity with GPT-2 (GPT2-F), Forward
perplexity with LSTM (L-F), Reverse perplexity with LSTM (L-R) in that order on Yahoo, Yelp. Reverse perplexity
with GPT-2 was not meaningful as the fine-tuning is without effect due to pre-existing large corpus in the pretraining
phase. Statistical analysis - standard deviations and confidence intervals etc. - appears in appendix. * indicates
statistically insignificant best method.

Yahoo Yelp
Small-scale transformer results

Model Rec G2-F L-F L-R Rec G2-F L-F L-R
VAE 304.6 98.0 121.4 130.5 328.2 70.1 77.8 95.2

β-VAE (0.4) 305.2 86.2 116.9 120.2 330.2 72.4 71.9 102.8
cyclic 304.6 85.6 91.8 103.5 332.7 75.6 70.4 97.5
FB (7) 303.2 79.6 94.9 105.1 329.4 74.6 68.5 98.1

BN-VAE (0.7) 301.7 76.9 102.0 112.9 328.5 65.7 70.2 96.8
CEAE 300.2 72.5 89.2 101.6 326.1 69.7 70.9 92.1

OPTIMUS (BERT encoder, GPT-2 decoder) results
Model Rec G2-F L-F L-R Rec G2-F L-F L-R

OPTIMUS 282.8 43.8 80.5 96.1 334.3 47.0 61.8 83.7
BN-VAE (0.7) 285.8 45.5 85.4 99.2 330.5 45.8 60.4 82.5

CEAE 278.7 42.4 79.4 91.8 328.7 45.0* 57.2 80.6

Table 2: Performance of transformer autoencoders on Yahoo and Yelp, evaluated using the same metrics.

then apply a simple shallow neural classifier to
get the labels (review valence). Note that the task
of representation learning always has access to the
same number of unlabeled sentences, only the num-
ber of labels is varied. Our method proves superior
especially as more labels become available with
all results in Table 3. For human evaluation, we
gathered five individuals (graduate students or ma-
chine learning engineers) who were provided 200
choice-based questions and asked to pick the most
coherently generated choice among permuted op-
tions. Each choice corresponded to a sample from
a method on a corpus. We compare to the BN-VAE
and vanilla VAE and find a significant advantage
in terms of being chosen across both LSTM and
transformer architectures, as shown in Tables 4 and
5. A follow-up with GPT-4 appears in the ap-
pendix. Overall, across a broad variety of tasks,
we improve on the BN-VAE architecture.

#label 100 500 1k 2k 10k
AE 78.6 87.1 91.0 92.4 94.7
VAE 56.5 86.7 91.4 91.1 95.1
δ-VAE 57.6 73.4 90.8 91.0 94.5
Agg-VAE 72.3 82.4 90.2 91.3 94.2
cyclic 65.4 76.4 88.5 91.1 93.7
FB (9) 74.3 87.2 90.6 91.5 95.2
AE+FB (6) 82.4 91.0 93.1 94.2 95.3
BN-VAE (0.6) 85.6* 92.4 93.0 94.3 95.3
CEAE 85.6* 92.7 93.5 94.6 95.5

Table 3: Accuracy on Yelp - downstream task perfor-
mance, with a small MLP trained on labeled samples of
a fixed number. * indicates statistical insignificance.

Candidate CEAE BN-VAE VAE
Yahoo 46.2 % 36.2 % 17.6 %
Yelp 56.1 % 30.4% 13.5 %

Table 4: Frequency of choice among generated samples
among LSTM models.
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Candidate CEAE BN-VAE VAE
Yahoo 49.8 % 30.5 % 19.7 %
Yelp 43.6 % 33.6 % 22.8 %

Table 5: Frequency of choice among generated samples
among transformer models.

6 Qualitative and Quantitative Analysis
of Interpolations

Autoencoders allow smooth linear interpolation be-
tween two sentences in the latent space in a manner
that should allow both syntactic (sentence struc-
ture) and semantic meaning. This is captured using
the subset of the short Yelp review dataset, which
consists of small single sentence reviews of estab-
lishments with either 0 or 1 for a negative or posi-
tive review, and is used in the classification task in
Table 3. We perform the following sanity checks:

• That interpolating between a positive and a
negative review yields a neutral review.

• That interpolating between two reviews of
the same nature (positive-positive or negative-
negative) always yields reviews of the same
nature, but of differing content or sentence
structure, reflecting the source sentences.

• That these interpolations have numerical
scores (from the classifier of Table 3) that
match the decoded content.

Results demonstrating these qualitative charac-
teristics are summarized in Table 6. Moving be-
tween reviews of different kinds changes the score
as expected to one which is ambivalent i.e. around
0.5, which reflects in the text as well such as in the
example on row 3 of the positive and negative inter-
polation. Between reviews of the same nature (clus-
tered around 0 or 1) interpolation causes changes in
sentence structure and content - in the case of two
negative reviews, the interpolation closer to the sen-
tence “are you kidding me?" begins with “are you",
and the interpolation involving two positive reviews
also associates common sentence structures.

7 Conclusions and Future Work

Attention based transformer models (Vaswani et al.,
2017) have achieved great success in all areas of
NLP (Devlin et al., 2018; Radford et al., 2018,
2019) . Transformer models retain an autoencoder-
like parallel with encoder and decoder modules.
Though they are dissimilar to VAEs in the sense

that often, decoder-only models are used for text
generation, whereas encoder-only models are used
for representation learning, using both simultane-
ously creates a VAE-like architecture. This anal-
ogy has been used to train massive VAEs for NLP
e.g. OPTIMUS (Li et al., 2020) that employ pre-
trained encoders. We view our work as an indi-
cation that deterministic autoencoding, unlike tra-
ditional VAEs, can design better autoencoders for
text. Issues of VAE training, namely posterior col-
lapse, worsen with increasing model power (Yang
et al., 2017; Semeniuta et al., 2017; Razavi et al.,
2019). Powerful VAE design requires tackling this
and deterministic models may offer the solution.
We also consider our work to be of significance to
the field in its successful usage of contrastive learn-
ing for NLP, which for text often suffers from less
clear augmentations (Rethmeier and Augenstein,
2021) relative to images. We focus on BatchNorm,
however, in natural language tasks, increasing em-
phasis is being laid on layer normalization aka Lay-
erNorm (Ba et al., 2016; Xu et al., 2019) which
forms a key part of Transformers. We discuss the
Layer norm case further in the appendix.

8 Limitations

Our methodology focuses on autoencoders which
may include transformer architectures, however, by
necessity, autoencoders involve an encoder-decoder
pairing which may be absent in some architectures
which may be encoder-only (for word embeddings)
or decoder-only (for language generation). In these
cases, our approach is not scalable and will require
some rethinking. Further, text generation is a field
in a state of flux. Although we have tested with
large models in the form of GPT-2, it is possible
our results do not scale to as-of-yet unreleased but
extremely potent models, such as GPT-4.

9 Ethics Statement

Text generation may include harmful content, un-
desirable generation and algorithmic bias. We do
not, however, view our work as being particularly
prone to these failure modes any more than other
papers in this domain, and we believe no particu-
larly strong ethical statement is warranted.
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Appendix : contents

In order, we go over :

• The training process and hyperparameters -
and how to choose them

• Proof of how MoCo begins to approximate
the entropy regularizer

• Additional results on penn tree bank

• GPT-4 validation of human evaluators

• BERT validation of embeddings

• Layer norm discussion

• Confidence intervals and standard deviations
of results

A Details of Training Process and
Hyperparameters

A.1 Training Flow
From the discussion in section 3.1, it is clear that
we will achieve our goal of an aggregate Gaussian-
distributed, deterministic µi by either driving up
its entropy or requiring high mutual information.
Let the σi = c. The overall maximum mutual
information equals :

H(z)−H(Z)

By applying the Gaussian entropy formula which
states that for variance V , the entropy of a Gaussian
random variable is 1

2 log(2πeV ), we obtain that the
mutual information per latent dimension equals

≤ 1

2
log(2πe(1 + c2))− 1

2
log(2πe(c2))

=
1

2
log(1 + 1/c2)

The upper bound is reached, and the Gaussian
distribution formed only when c is high, and the
expression is bounded above by a low value which
is reached to lower the reconstruction error. We
set for epoch t : ct = c0/t, t ≤ tmax, ct = 0∀t >
tmax - tmax is the point where deterministic train-
ing begins, i.e. c = 0. Depending on the dataset,
the value of c0 is can be chosen with justifica-
tions and our process of choosing it appears in
appendix A.4. As c goes to zero, the final epochs
are trained deterministically, with the entropic loss

Lent taking over - since the need to raise mutual
information arises from the high values of ct, we
utilize an epoch dependent regularization on H(µi)
minimizing the contrastive loss, unifying notation
from Xi to xi

Lent = −λt ×
∑

xi∈X
log

exp(⟨µi, µ
+
i ⟩)∑

xj∈X ,j ̸=i exp(⟨µi, µj⟩)

with λt = (1− 1/t)λ0, and µi, µ
+
i being respec-

tively generated by Eθ, Eθ′ , where θ′ = mθ′+(1−
m)θ is a time averaged version of the main model
Eθ. m ≈ 1 and we use m = 0.999 to make θ′

update slowly in keeping with standard implemen-
tations (He et al., 2020). The overall training loss
is formed by adding Lent to the reconstruction loss
Lrec = 1

2 ||x̂i − xi||2. Due to Lent in the second
and c in the first stage of training, there is no need
to fit a post hoc distribution (Ghosh et al., 2019)
and the resultant posterior is a Gaussian. Two-stage
training is necessary as the contrastive loss only be-
gins to approximate the entropy under assumptions
reached later in the training process.

A.2 Architectural Details
For the LSTM-based VAE for Yahoo and Yelp,
architectural details were tuned to match the BN-
VAE, with latent dimension of 512, and single layer
LSTMs of size 1024 for both decoder and encoder,
with corresponding feeding patterns of the latent
code following exactly the BN-VAE implementa-
tion. Minibatches of size 32 with SGD and gradient
clipping were used for training, along with anneal-
ing on either the KL or the entropy loss following
original BN-VAE implementation 1.

For training critic models in the forward and re-
verse perplexity tasks, a simple recurrent LSTM
with two hidden layers of size 200 was used and
trained also by SGD. While the LSTM was trained
on the text corpus before evaluation on the sam-
ple for forward perplexity, GPT-2 was tested zero-
shot. Due to the structure of GPT-2, the sample
is also evaluated for coherence over all generated
sentences, even though each sentence is generated
individually. However, we expect differences be-
tween our models to respect only the individual
quality of generated sentences, as all of them have
this independent generation framework. For the
Penn Tree Bank models using a transformer model
based on Transformer-XL, we built on source code

1https://github.com/valdersoul/bn-vae
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2 released from the author’s website. The decoder-
only model was modified (keeping hyperparame-
ters and latent sizes) to an encoder-decoder model.
Architectural details were kept as-is, with 6 lay-
ers for both encoding and decoding and using a
sentence level representation based on the start of
sentence token.

A.3 Randomness and Seed Dependence,
Hardware, Number of Runs

We do not consider our method to depend on
randomness i.e. the seed meaningfully. For the
BN-VAE architectures we ran with both the pre-
provided fixed seed 783435 for the BN-VAE repos-
itory and also without setting any seed averaged
over 10 runs. The best result among the two was re-
ported (except the reconstruction loss for which we
directly use the previous figures reported - we could
not actually replicate those numbers in re-running
them, however, we got within 0.1 so we consider
them correct in the original BN-VAE paper). For
our methods, no fixed seed was set and the average
over 10 runs was reported directly. Results were
reported with a Tesla V100 32 GB, using Pytorch
1.6, on Ubuntu 18.04.

A.4 Hyperparameter Optimization and Notes
on Transformer Training

In general, we keep all hyperparameter and archi-
tectural details in line with previous implementa-
tions (linked in footnotes). As reported in the paper,
the number of cached minibatches is r = 3, and ev-
ery K = 5 minibatches we use the global statistics
of the batchnorm. Further we try m = 0.99, 0.999
for the momentum update step and find better re-
sults with 0.99 which leads to the figures reported
in the paper, however m = 0.999 also outperforms
BN-VAE. The SGD is trained with a gradient clip
of 5.0 and initial learning rate of 0.5 (BN-VAE)
and 0.1 (ours) decayed by a factor of 2 (i.e. multi-
plied with 0.5) at most 5 times with a decay crite-
rion based on non-improvement on validation for
5 epochs (same as BN-VAE). However, in our ex-
periments, we find that the gradient clip is the only
sensitive hyperparameter for both architectures.

The BN-VAE parameters that fix batch norm
statistics (γ) are set according to the original imple-
mentation’s best performances, at 0.6, 0.7, while
for our case the results reported in the paper cor-
respond to setting the contrastive entropic reg-

2http://zihangdai.github.io/misc/ptb.zip

ularizer’s weight to 6 × 10−3. This hyperpa-
rameter was based on trying all combinations of
{2, 3, 6, 7} × 10{−3,−4}, i.e. among 8 choices. All
entropic hyperparameters with 10−3 order obtained
comparable results to the ones reported in the pa-
per, and with 10−4 still outperformed BN-VAE. In
general, all architectural details, parameters, hy-
perparameters that do not differ between BN-VAE
and our method follow exactly for LSTMs. For
transformers, the same KL weight, r,K,m was
kept as for LSTMs. However the other parame-
ters were shifted to match the implementation of
a small scale transformer for Penn Tree Bank as
in Transformer-XL with the exception of chang-
ing the decoder-only model to a model using both
transformer encoder and decoder layers to more
closely match the autoencoder framework.

Choice of c0 and associated parameters : We
recall from the main text that at epoch zero the
initial channel capacity (maximum mutual infor-
mation) of the autoencoder with P latent units is
:

P

2
log(1 + 1/c20)

For perfect decoding of even the train set consist-
ing of M sentences with lengths ni, . . . , nM , we
have to consider all valid targets. For a sentence,
this is any contiguous subsentence. For a length ni,
it equals ni(ni−1)

2 . So we compute the total valid
subsegments of the train set as :

S =

M∑

i=1

ni(ni − 1)

2

By the channel capacity theorem, for perfect
reconstruction we would need

(1 + 1/c20)
P/2 ≥ S

However, this assumes a perfect function approx-
imator on part of the decoder and encoder. As such,
we choose c0 to support (1 + 1/c20)

P/2 = 5S.

A.5 OPTIMUS training

We followed the training procedure from the orig-
inal paper (Li et al., 2020), taking the lowest λ
model unless there was a tie in the perplexity val-
ues and a better reconstruction was available. Note
that we also examined experimental results using
different λ values. The following figures should be
taken in context with respect to Table 2. For Yahoo,
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both λ = 0.5, 1 do obtain better reconstruction ac-
curacy (275.9, 270.8) respectively for OPTIMUS.
However, this comes at the cost of significantly
worse metrics for G2-F, L-F, and L-R (written as
triplets) : (45.2, 84.7, 97.5) for λ = 0.5 (i.e. sta-
tistically comparable to BN-VAE and significantly
worse than CEAE) and (47.6, 88.2, 100.2) at λ = 1
which is worse than the other two models. For
Yelp, only λ = 1 is superior with a reconstruc-
tion of 325.8. However, this comes with a G2-F,
L-F, L-R triplet of (49.2, 63.1, 84.8) which is again
significantly worse than our CEAE result.

For adapting BN-VAE and CEAE, we note that
the original training process used a KL threshold-
ing. This was kept as-is. To create smoother train-
ing, we train GPT-2 for 1 epoch as a fine-tune step
as per OPTIMUS before beginning the main train-
ing loop for all of our models.

B Relation of MoCo to Entropy
Approximation

Our analysis here follows previous theoretical anal-
yses of contrastive learning (Wang and Isola, 2020).
We also repeatedly use the property that high di-
mensional isotropic Gaussians are clustered around
a scaled hypersphere, that is, their L2 norm is
tightly concentrated. For an exposition on these
matters, we refer the reader to (Vershynin, 2018).
We use the properties of isotropic Gaussians in
high dimensions without further reference. We re-
call that we use a MoCo loss of the form (with
the understanding that µi arises from Xi through
an encoder Eθ and correspondingly µ+

i is from an
encoder of parameters θ′ :

−
∑

Xi∈X
log

exp(⟨µi, µ
+
i ⟩)∑

Xj∈X ,j ̸=i exp(⟨µi, µj⟩)

Generally, this loss includes the positive pair in
the denominator, i.e.

−
∑

Xi∈X
log

exp(⟨µi, µ
+
i ⟩)∑

Xj∈X exp(⟨µi, µj⟩)

Note that in the general case there is also a tem-
perature hyperparameter τ which scales the inner

products, i.e. ⟨µi, µ
+
i ⟩ becomes ⟨µi,µ

+
i ⟩

τ and so on.
We ignore this for the sake of exposition and set
τ = 1, our methods will carry over to that case
as well. Recall that µi, µ

+
i for us arise from two

distinct encoders respectively both of which re-
ceive Xi or xi (abusing notation), one of which
has parameters θ, and the other has parameters
θ′ = mθ′+(1−m)θ, updated with m ≈ 1. When
near convergence, we may assume that µi ≈ µ+

i ,
since θ′ ≈ θ. Let us now assume for the moment
that ∥µi∥ = c, a constant. The above sum for the
second case then becomes :

−
∑

Xi∈X
log

exp(c2)∑
Xj∈X exp(⟨µi, µj⟩)

Since c is a constant, the log can be taken out,
and

∑
Xi∈X is just an expectation over the dataset.

We are left with minimizing

E log
∑

Xj∈X
exp(⟨µi, µj⟩)

The term within the log, in expectation, is a ker-
nel function (a valid kernel for probability density
estimation and thus an estimator of the density).
Specifically, it is the (unscaled) vMF (Von Mises
Fisher) kernel (Banerjee et al., 2005), which uses
the cosine distance on the hypersphere. We then
have that

∑

Xj∈X
exp(⟨µi, µj⟩) = C(d, |X |)P (µi)

Where C(d, |X |) is a scaling function for the ker-
nel density dependent on the number of elements
and the dimension, and P (µi) is the kernel estimate
of the probability. The expectation of the log then
asymptotically converges to the entropy.

Now let us examine the cases of :

• µi is not of constant norm

• The sum does not include the positive term

• The convergence is not asymptotic

Varying norm : In this case, we turn

−
∑

Xi∈X
log

exp(c2)∑
Xj∈X exp(⟨µi, µj⟩)

into

−
∑

Xi∈X
log

exp(∥µi∥2)∑
Xj∈X exp(⟨µi, µj⟩)

Which can be turned into minimizing :
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−E∥µi∥2 + E log
∑

Xj∈X
exp(⟨µi, µj⟩)

But by hypothesis, all µi are batch-normed with
fixed statistics (0 mean 1 variance). We conclude
that the new term introduced is a constant, and
cannot influence optimization.

More pressingly, we are no longer on the hy-
persphere, and cannot use the vMF kernel without
checking it works. However, note that the vMF
kernel, i.e.

exp(⟨µi, µj⟩)α exp(⟨µi, µj⟩−
1

2
∥µi∥2−

1

2
∥µj∥2)

where α denotes proportionality, and this pro-
portionality holds when ∥µi∥ = ∥µj∥ and constant.
We recognize the right hand side as the Gaussian
kernel (Keerthi and Lin, 2003), which is always
applicable. It simply remains to ask if the cor-
rection factor exp(−1

2∥µi∥2 − 1
2∥µj∥2) between

the two kernels is strongly concentrated. By hy-
pothesis, we are near convergence, i.e. µi is ap-
proximately distributed in a Gaussian fashion. We
know that high dimensional Gaussians are closely
approximated by the uniform distribution on the
hypersphere - that is, ∥µi∥2 is strongly concen-
trated around a constant (1) - and thus, since the
function in question is Lipschitz over the domain,
exp(−1

2∥µi∥2− 1
2∥µj∥2) also concentrates in mea-

sure.
Non-inclusion of the positive term : If we in-

stead have :

E log
∑

Xj∈X ,j ̸=i

exp(⟨µi, µj⟩)

Then this is a leave-one-out evaluator of the
kernel (Barnard, 2010). It is well known that in
this case, the sum (upto some scaling, and with a
different bandwidth than the original sum) again
approximates the entropy, but with an error equal
to (in expectation) the generalization error. Hence,
these two analyses do not differ asymptotically.

Non asymptotic convergence : For this case,
we bring back the temperature term and assume
it to be set “correctly". Asymptotic results guar-
antee convergence for all temperatures, but in the
nonasymptotic domain, this case is only analyzable
in the low temperature limit, because under the
non-low temperature scenario we have :

E log
∑

Xj∈X
exp(

⟨µi, µj⟩
τ

)

However, we recognize that the sum (after E log)
is of a random variable which is the exponential
of a Gaussian when µi, µj are isotropic Gaussians.
This is because ⟨µi, µj⟩ is the scaled projection
of all µj on a fixed random vector µi. This is a
1-dimensional gaussian, making the sum a sum of
log normal random variables. While this can be
approximately expressed via methods such as the
Fenton-Wilkinson moment matching method, this
is far less clean than the case of low τ .

Instead, consider τ << 1. We have that :

E log
∑

Xj∈X
exp(

⟨µi, µj⟩
τ

)

is approximately equal to :

argmax
j

⟨µi, µj⟩
τ

We recall the definition of the Kozachenko
Leonenko estimator : for a sample consisting
of X1, X2, . . . , XN+1 ∈ Rd drawn from an un-
known distribution P , assuming N > 1, With
Ri = minj ̸=i ||Xi − Xj ||2, Yi = N(Ri)

d, Bd

the volume of the unit ball in Rd, γ the Euler-
mascheroni constant ≈ 0.577, an estimate of the
entropy of the distribution is:

H(P ) ≈ 1

N + 1

N+1∑

i=1

log Yi + logBd + γ

We do not need to calculate Bd and γ as they are
constants per instance. Rather, we observe that :

log Yi = d(logN + logRi)

Changing notation from Xi to µi for the purpose
of unifying our derivations, note that Ri is attained
at the lowest value of ||µi−µj ||2 i.e. at the highest
value of ⟨µi, µj⟩ if ||µi||, ||µj || are constants.

However, since we do not care about scaling or
constant shifts (recall that optimizing a function f
is equivalent to working with λf + c for any λ > 0
and any constant c), we can express logRi as :

1

2
× 2 logRi =

1

2
logR2

i

= argmin
j

1

2
log ||µi − µj ||2
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Expanding the norm squared, we get

argmin
j

1

2
log(||µi||2 + ||µj ||2 − 2⟨µi, µj⟩)

We can use the fact ||µi||2, ||µj ||2 concentrate to
approximate the above as

≈ argmin
j

1

2
log(2− 2⟨µi, µj⟩)

Take the 2 in common, and note that this comes
out of the log as log(ab) = log a + log b. But we
do not care about such constants as optimizing f is
equal to working with a linear transform of f upto
the learning rate, leaving us with

argmin
j

1

2
log(1− ⟨µi, µj⟩)

Finally, note that µi, µj are high dimensional
isotropic Gaussians of dimension d. Thus, ⟨µi, µj⟩
is a zero mean univariate Gaussian of variance 1

d ,
i.e. with high probability, we have that :

⟨µi, µj⟩ << 1

Allowing us to replace the above term with (ap-
plying the identity that for x << 1, log(1+x) ≈ x)
:

argmin
j

1

2
(−⟨µi, µj⟩)

Swapping argmin with argmax and positive with
minus we finally get :

argmax
j

1

2
⟨µi, µj⟩

Which is (upto scaling by 2
τ ) the desired non-

asymptotic approximation.

C Extra Results - Penn Tree bank

Here, we add results on the penn tree bank dataset
in table 11. Only a subset of all models that do
not use fixes specific to the LSTM architecture
were considered, since we had to adapt the tricks to
transformers. Our base model is Transformer-XL.

D GPT-4 validation

We asked GPT-4 to validate the choices generated
by our models, using the following prompt : “You
are a human asked to choose between more realistic
sentences. Among the following sentences, which

is the most consistent and high quality semantically,
grammatically, and linguistically ?". This yielded
the following results. Note that GPT-4 actually
yielded more strong results towards our model than
the human evaluators.

Candidate CEAE BN-VAE VAE
Yahoo 55.7 % 28.9 % 15.4 %
Yelp 67.3 % 24.5% 8.2 %

Table 7: Frequency of choice among generated samples
among LSTM models by GPT-4.

Candidate CEAE BN-VAE VAE
Yahoo 59.4 % 25.1 % 15.5 %
Yelp 52.0 % 30.4 % 17.6 %

Table 8: Frequency of choice among generated samples
among transformer models by GPT-4.

E BERT validation

We randomly selected 1000 sentences from Yelp
and Yahoo corpora. This yields a total of 1000×
999 × 1

2 pairs of sentences, each of which yields
an inner product similarity. The corresponding
similarities were computed from BERT (Devlin
et al., 2018). We can then compare the quality
of embeddings from BN-VAE, VAE, CEAE with
respect to BERT over three choices of correlation
metrics : Pearson (linear), Spearman (rank-based)
and Kendall (pairwise). The results are as follows.

Metric CEAE BN-VAE VAE
Pearson 0.46 0.35 0.33
Spearman 0.76 0.70 0.68
Kendall 0.82 0.75 0.70

Table 9: Yahoo dataset, comparison of correlation met-
rics w.r.t BERT.

F The Layer norm case

Under layer normalization (Ba et al., 2016), the
normalization is not done over a minibatch but over
a layer. A consequence of this is the fact that the
resulting latents form a hyperspherical space, i.e.
∥z∥ = c where c is a constant. Now, we know that
:

argmaxH(z), ∥z∥ = c

is the uniform distribution over the hyperspheri-
cal shell of radius c. It is also well known that in
high dimensions, the multivariate isotropic Gaus-
sian has almost all of its support (Vershynin, 2018)
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Metric CEAE BN-VAE VAE
Pearson 0.58 0.45 0.48
Spearman 0.82 0.78 0.75
Kendall 0.86 0.75 0.79

Table 10: Yelp dataset, comparison of correlation met-
rics w.r.t BERT.

concentrated around the hyperspherical shell of√
d, where d is the dimensionality. Hence, under

the entropic regularizer, Layernorm approximates
a hyperspherical distribution which in turn approx-
imates a Gaussian.

Although this direction is promising, we were
only able to get our method (CEAE) operational
under these circumstances, while BN-VAE did not
converge. In the absence of a full evaluation, the
Layernorm case is as of now inconclusive.
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G Statistical Analysis

Here we present results (in tables 12 and 13) on
the standard deviation and confidence intervals on
Yahoo and Yelp for selected models that perform
well in terms of point estimates and rank at or near
the top. These are the δ-VAE, BN-VAE and our
method (CEAE). Bolding indicates passing a t-test
with p < 0.01.
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Model Rec GPT2-F L-F L-R
VAE 42.8 62.7 138.5 211.7

β-VAE (0.4) 43.2 64.2 140.5 225.8
cyclic 41.2 70.2 141.8 230.2
FB (7) 41.7 56.5 130.2 215.6

δ-VAE (0.1) 42.0 58.9 132.9 208.3
BN-VAE (0.7) 41.5 54.6 135.6 202.8

CEAE 39.2 54.0 127.7 195.4

Table 11: Language modeling results on Penn Tree Bank using a 6-6 encoder-decoder transformer model with
hyperparameters based on the Transformer-XL setup for Penn Tree Bank as released by the authors.

Model Rec GPT2-F L-F L-R
δ-VAE (0.1) 327.2-328.0(0.3) 120.8-124.0 (1.1) 129.5-131.8 (0.8) 169.5-174.2 (1.5)

BN-VAE (0.7) 317.7-319.5(0.6) 108.6-110.0 (0.5) 122.9-126.7 (1.2) 166.2-170.1 (1.3)
CEAE 316.0-317.5 (0.4) 107.2-108.4 (0.4) 118.5-122.3 (0.3) 162.2-164.7 (0.8)

Table 12: 5 to 95 percentile confidence intervals and standard deviations in brackets on Yahoo.

Model Rec GPT2-F L-F L-R
δ-VAE (0.1) 354.3-358.7(1.4) 93.2-97.0(1.2) 83.5-85.0(0.5) 106.7-113.5

BN-VAE (0.7) 345.2-347.6 (0.8) 89.0-91.2 (0.7) 79.4-81.2 (0.6) 107.2*-112.4* (1.7)
CEAE 340.9-343.5 (1.2) 87.2-88.6 (0.5) 76.8-79.7* (1.0) 108.4-112.9 (1.6)

Table 13: 5 to 95 percentile confidence intervals and standard deviations in brackets on Yelp. * indicates statistically
insignificant best result.
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