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Abstract

Deep learning approaches exhibit promising
performances on various text tasks. How-
ever, they are still struggling on medical
text classification since samples are often ex-
tremely imbalanced and scarce. Different
from existing mainstream approaches that fo-
cus on supplementary semantics with exter-
nal medical information, this paper aims to
rethink the data challenges in medical texts
and present a novel framework-agnostic algo-
rithm called Text2Tree that only utilizes in-
ternal label hierarchy in training deep learning
models. We embed the ICD code tree struc-
ture of labels into cascade attention modules
for learning hierarchy-aware label representa-
tions. Two new learning schemes, Similarity
Surrogate Learning (SSL) and Dissimilarity
Mixup Learning (DML), are devised to boost
text classification by reusing and distinguish-
ing samples of other labels following the la-
bel representation hierarchy, respectively. Ex-
periments on authoritative public datasets and
real-world medical records show that our ap-
proach stably achieves superior performances
over classical and advanced imbalanced clas-
sification methods. Our code is available at
https://github.com/jyansir/Text2Tree.

1 Introduction

Medical text classification is widely recognized as
an urgent yet challenging problem due to its ex-
tremely imbalanced data distribution, large variety
of rare labels (Johnson et al., 2016; Ziletti et al.,
2022), and complicated label relationship (Tsai
et al., 2021; Vu et al., 2021). Various downstream
clinical tasks have been derived from this problem,
including ICD coding (Mullenbach et al., 2018;
Yuan et al., 2022; Yang et al., 2022) and automated
diagnosis (Chen et al., 2020b), showcasing its po-
tential values in modern clinical practice with ma-
chine learning approaches (Berner, 2007).

∗Corresponding authors.

There have been various classical strategies for
general imbalanced classification and long-tailed
multi-label classification (Huang et al., 2021) in
machine learning studies. Such studies probably
overly focused on data in rare categories (e.g.,
by re-sampling (Chawla et al., 2002; Menardi
et al., 2014), re-weighting (Kumar et al., 2010;
Lin et al., 2017; Chang et al., 2017; Li et al., 2020;
Wang et al., 2022a), ensemble learning (Khosh-
goftaar et al., 2007; Liu et al., 2020), data aug-
mentation (Mariani et al., 2018; Chu et al., 2020;
Zada et al., 2022)) to alleviate distribution bias,
or employed sophisticated learning paradigms
such as contrastive learning (Wang et al., 2021),
transfer learning (Ke et al., 2022), and prompt-
tuning (Zhang et al., 2022)) to learn fine-grained
representations of hard cases. But, in medical text
classification, many rare diseases lack sufficient
data in representation learning and the incidence
rates vary greatly for different diseases, which can-
not be completely solved by the general imbalanced
classification approaches since they overlook the
underlying dependency of medical terminologies.

Although the current studies of medical text
classification either leveraged the label descrip-
tions (Chen and Ren, 2019; Zhou et al., 2021; Yang
et al., 2022) or label dependency (Xie et al., 2019;
Cao et al., 2020) for precise pairwise sample-label
matching (Mullenbach et al., 2018), or incorpo-
rated external knowledge sources (e.g., Wikipedia)
to enrich semantic information (Prakash et al.,
2017; Bai and Vucetic, 2019; Wang et al., 2022b),
they did not explicitly cope with the data imbalance
and scarcity issues. Therefore, imbalanced medical
text classification is still an open challenge.

Targeting this problem, this paper makes the
first effort on learning medical text representations
to resolve the data imbalance and scarcity issues
with the support of disease label dependency. As
shown in Fig. 1, the right part demonstrates an
example of ICD-10-CM codes (a clinical modi-
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fication of ICD-10 codes) about pneumonia and
hypertension-related disease dependency in a tree
structure. Among all the types of pneumonia, fun-
gal pneumonia stands out as an exceptionally rare
and life-threatening variant (Meersseman et al.,
2007) that poses significant challenges to early de-
tection (Morrell et al., 2005). Consequently, di-
agnosed cases of fungal pneumonia are notably
scarce, and we aim to supplement our analysis with
existing samples from the other diseases. An in-
tuitive assumption is that two diseases with some
common clinical presentations (e.g., symptom, dis-
ease course, treatment) can be used to compensate
for each other. Naturally, we can associate fungal
pneumonia (J16.8) with COVID-19 (J12.82), since
both of them are respiratory system diseases (J00-
J99) and pneumonia (J09-J18) while the diagnosed
cases of COVID-19 are plentiful. Similarly, chlamy-
dial pneumonia (J16.0) shares a closer parent node
(J16) and can be a better supplementary source,
while some more dissimilar ones (e.g., circulatory
system diseases, I00-I99) are not so beneficial. Uti-
lizing the tree hierarchy, we are able to access prior
knowledge of the similarity between disease types,
which is helpful in dealing with the data imbalance
and scarcity issues.

Motivated by this, we present a new framework-
agnostic algorithm that aligns text representation
to label tree hierarchy (called Text2Tree), which
is tailored for better classification by incorporating
an ICD code embedding tree to guide medical text
representations. Text2Tree has three major com-
ponents: (i) a hierarchy-aware label representation
learning module (HLR), (ii) similarity surrogate
learning (SSL), and (iii) dissimilarity mixup learn-
ing (DML) approaches. Unlike general imbalanced
classification methods that compensate a sample
by reusing samples with the same disease labels or
itself, (ii) and (iii) are designed to reuse samples
from other labels under the specification of the la-
bel hierarchy learned by (i). In this paper, the used
“codes” refer to disease labels with underlying hi-
erarchy, and we do not distinguish “code”, “label”,
and “node”.

The Text2Tree training procedure proceeds as
follows. First, cascade attention modules are built
based on the prior structure of the medical ICD
code tree. Only embeddings of labels on adjacent
tree layers are interacted in each module, and label
representations are computed layer by layer. Hence,
a strict interaction fashion is kept to constrain in-

formation flow along tree edges. Next, pairwise
label similarity is calculated based on the label
representations. Based on the similarity, samples
from other labels will be treated as surrogate posi-
tive anchors to provide extra contrastive signal by
SSL, or apply mixup to give new samples by DML.
The SSL branch learns to gather more information
from more similar labels to explicitly reuse texts
in representation learning following the label hi-
erarchy, while DML generates and classifies hard
cases, adversarially preventing excessive manifold
distortion resulted from SSL.

Our main contributions are as follows:

• We first explore the medical text representa-
tion learning problem from the data imbalance
and scarcity perspective, and propose the new
Text2Tree algorithm that aligns text repre-
sentations to the label tree hierarchy.

• In contrast to previous methods that reused
samples with the same labels, we propose SSL
and DML to leverage samples from diverse la-
bels to facilitate representation learning based
on the underlying label hierarchy.

• Comprehensive experiments show that our
Text2Tree algorithm stably outperforms ad-
vanced framework-agnostic imbalanced clas-
sification algorithms, without any external
medical resource.

2 Related Work

2.1 General Imbalanced Classification

Imbalanced classification refers to a ubiquitous ma-
chine learning problem in practical applications
with long-tailed data distribution (Sun et al., 2009;
Zhang et al., 2023). A major category of classical
algorithms attempts to alleviate this problem from
the data perspective, such as re-sampling (Menardi
et al., 2014), re-weighting (Lin et al., 2017), ensem-
ble learning (Liu et al., 2020), and data augmenta-
tion (Chu et al., 2020; Zada et al., 2022). The core
essence of these methods is to fix the skewed distri-
bution or thoroughly harness the available data, and
thus they can be easily adopted in both statistical
machine learning and deep learning paradigms.

Another line of work seeks to address class im-
balance at the data representation level. A common
assumption is that better feature representations
make better classifiers (Wang et al., 2021), which
is intuitive for deep learning models. Among these
methods, prototype learning (Liu et al., 2019; Zhu
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Figure 1: Hierarchical ICD-10 codes on pneumonia related and hypertension related diseases (left) can be organized
into a tree structure (right). The code tree contains prior knowledge on disease label similarity that can guide data
reuse from other labels. Here “similarity” is a soft metric that can be computed according to the code tree.

and Yang, 2020) and contrastive learning (Wang
et al., 2021; Kang et al., 2021) select reasonable an-
chor samples for feature alignment; transfer learn-
ing (Cui et al., 2018; Kang et al., 2021; Ke et al.,
2022) acquires a better initial representation based
on pre-training or samples from other domains.
More recently, prompt-tuning (Zhang et al., 2022)
is also a trending technique to take advantage of
representation ability of large pre-trained models.

2.2 Hierarchical Text Classification

Hierarchical text classification (HTC) is a chal-
lenging sub-field of multi-label text classifica-
tion (Wehrmann et al., 2018; Chen et al., 2021;
Wang et al., 2022c,d; Jiang et al., 2022). The labels
of HTC fall under different levels in a label tree,
while medical text classification is a flat classifica-
tion problem (each label in ICD coding is a specific
disease at the lowest level) though in this paper,
an underlying label hierarchy exists based on the
medical code tree.

HTC methods can be categorized into local and
global approaches. The local ones (Wehrmann
et al., 2018; Shimura et al., 2018; Banerjee et al.,
2019) leveraged label hierarchical information to
separately build a classifier for each label level
in the label tree. Currently, the global series be-
come prevalent for their better performance (Chen
et al., 2021). Methods of this type treated HTC
as a multi-label text classification problem on all
the nodes in the label tree, and the main concern
is to propose effective frameworks for better hi-
erarchy encoders and label representation. (Zhou

et al., 2020) first introduced prior hierarchy knowl-
edge with structure encoders for modeling label
dependency in HTC, (Chen et al., 2021) further
performed label-text semantic matching in a joint
embedding space to distinguish target labels from
incorrect labels, (Wang et al., 2022d) incorporated
a contrastive learning framework by masking unim-
portant tokens to generate positive samples from
the original ones, and (Wang et al., 2022c) used
soft prompts to fuse label hierarchy into pre-trained
models for better adaption to HTC. Recent stud-
ies (Jiang et al., 2022) also used combination of
local and global views to take advantage of both
types of approaches.

3 Methodology

In this section, we separately describe the three key
components of our proposed Text2Tree algorithm:
hierarchy-aware label representation (HLR) learn-
ing module, similarity surrogate learning (SSL),
and dissimilarity mixup learning (DML).

3.1 Hierarchy-aware Label Representation
Given prior label dependency (e.g., an ICD code
tree as shown in Fig. 1), it is intuitive to encode
hierarchy information with a graph encoder. Dif-
ferent from the recent work on HTC (Wang et al.,
2022d) that used complicated neural architectures
(e.g., GraphFormer (Ying et al., 2021)), here we
propose a cascade tree attention module to intro-
duce dependency bias among labels. Given a code
tree of maximum level L (we define the ROOT
to be at level 0), we model a representation of
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Figure 2: The HLR module consists of cascade attention layers that derive attention masks from the code tree
hierarchy (left). The representation of a label contains information from itself, its parent and selected siblings (right).
“Used codes Y ” defines the disease label set (at the lowest level of an ICD tree) for classification.

code i from its parent code p and sibling codes
S ≡ {j | parent(j) = parent(i) = p, j ̸= i}. We
formulate the code i representation hi as follows:

qi = Wqei, ki = Wkei, vi = Wvei, (1)

kj = Wkej , vj = Wvej , ϵj = sigmoid(sj), (2)

kp = Wkhp, vp = Wvhp, (3)

Ki = [ki, kp,KJ ] , Vi = [vi, vp, VJ ] , (4)

hi = Attention(qi,Ki, Vi) + ei. (5)

In Eq. (4), J = S ∩ {j | ϵj > 0.5} is the selected
sibling subset, KJ and VJ are key and value ma-
trices composed of the corresponding vectors in
Eq. (2). Inspired by a recent Transformer architec-
ture with selective feature interactions (Yan et al.,
2023), we design a sibling selector ϵj in Eq. (2)
by performing activation on a learnable parameter
sj , indicating whether the sibling j should inter-
act with node i in the attention module to achieve
data-driven sibling aggregation. The core of the
whole process is to attentively fetch information
from the parent label and selected sibling labels to
express the representation of label i (see Fig. 2).
Here ei denotes the learnable embedding of label
i, and Wq, Wk, and Wv represent transformations
to the query, key, and value vectors in attention
mechanism. Note that in Eq. (3), we use the parent
node representation hp to generate its key and value
vectors. The reason for this is that we process la-
bel representations at different levels layer by layer
(see the left part of Fig. 2). The first attention layer
only contains level-1 (L1) labels and the ROOT,
where the interactions between L1 labels and the

ROOT are compulsory, and the ones between an L1
label and its siblings are selective. Similarly, the
second attention layer only includes level-2 (L2)
and L1 codes, and when we calculate the repre-
sentation of an L2 label, using its parent (an L1
label) representation hp rather than embedding ep
helps pass information from the higher levels (the
ROOT and the parent’s siblings). There are L cas-
cade attention layers in total. In Eq. (4), the key
and value matrices of label i are composed of the
corresponding vectors of itself, its parent p (com-
pulsorily included) and siblings in J (selectively
included by threshold clipping on sibling selectors
ϵj). In Eq. (5), the final label representation hi is
composed of attentively fetched information and
its own embedding ei.

We define the representation and embedding of
the ROOT as equal (hROOT = eROOT) since the
ROOT has no parent and siblings. The straight-
through trick (Bengio et al., 2013) is used to solve
the undifferentiable issue of selecting siblings in
Eq. (4). Before training, all label embeddings e can
be randomly initialized or assigned with average of
BERT token embeddings if label texts are given.

3.2 Similarity Surrogate Learning

Contrastive learning has been extensively validated
as an effective representation learning method in
the image (Chen et al., 2020c; He et al., 2020) and
text (Gunel et al., 2021) domains. Prevailing con-
trastive methods can be roughly categorized into
self-supervised and fully-supervised ones (Khosla
et al., 2020). The basic idea of both types is to
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slightly adjust the distance between samples and
anchors for a better data representation space. A
classical form of the supervised contrastive learn-
ing (SCL) loss is:

Lscl =
∑

i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i)

exp(zi · za/τ)
,

(6)
where i ∈ I ≡ {1, . . . , N} denotes the sample
index in a batch (or dataset), A(i) ≡ I \ {i},
P (i) ≡ {p | p ∈ A(i), yp = yi}, zi is the en-
coded features of sample i, and τ ∈ R+ is a scalar
temperature. In this paper, we use the hidden state
of the first token ([CLS]) after the BERT encoder
(i.e., zi = BERT(xi)[CLS]). Eq. (6) intuitively ex-
tends positive anchors from self-generated samples
in an unsupervised manner to samples with the
same label in a supervised manner, thus effectively
leveraging label information (Khosla et al., 2020).
But, rare labels are common in medical text clas-
sification. For example, in the top-100 frequent
labels of the PubMed dataset, the top-10 labels ac-
count for 40.2% of the total label amount, while
the rarest 50 labels occupy only 23.8% (see Fig. 5,
Appendix A). Among 8,692 unique ICD-9 codes of
the MIMIC-III dataset (Johnson et al., 2016), 4,115
codes occur less than 6 times (Yang et al., 2022). In
our real-world datasets, there is also a large amount
of rare diseases (see the figures in Appendix A).
Samples with rare labels are unlikely to match any
positive sample in a batch (the value |P (i)| tends to
be zero in Eq. (6)), making it intractable to acquire
contrastive signal for such samples.

To tackle this problem, we propose Similarity
Surrogate Learning (SSL) based on the label simi-
larity, which treats any other sample in a batch as a
potentially positive surrogate anchor. Specifically,
we define the similarity score between samples i
and j based on their label representations:

Sim(i, j) =
hTyihyj

∥hyi∥2∥hyj∥2
, (7)

where hyi is the label representation of sample i.
For multi-label classification, we calculate the av-
erage representation hYi of all the codes, as:

hYi =
1

|Yi|
∑

y∈Yi

hy.

Here, we simply choose the cosine similarity. We

further extend Eq. (6) based on the similarity score:

f(i, j) = Sim(i, j) · log exp(zi · zj/τ)∑
a∈A(i)

exp(zi · za/τ)
,

Lssl =
∑

i∈I

−1∑
a∈A(i)

Sim(i, a)

∑

a∈A(i)

f(i, a), (8)

where f(i, j) is a soft contrastive term between
sample i and its surrogate anchor j, which encour-
ages the algorithm to contrastively reuse samples
with high label similarity Sim(i, j). Label repre-
sentations h are learnable in Sec. 3.1, and thus the
surrogate anchor selection is data-driven.

Actually, our SSL loss (Eq. (8)) can be viewed
as a combination of the SCL loss and an extra term:

Lssl =
∑

i∈I

−1∑
p∈P (i)

Sim(i, p)

∑

p∈P (i)

f(i, p)

+
∑

i∈I

−1∑
b∈B(i)

Sim(i, b)

∑

b∈B(i)

f(i, b)

≡ Lleft + Lright, (9)

∵ ∀p ∈ P (i), yp = yi,

∴ Sim(i, p) ≡ 1 ⇒
∑

p∈P (i)

Sim(i, p) ≡ |P (i)| ,

∴ Lleft ≡ Lscl ⇒ Lssl ≡ Lscl + Lright,

where B(i) ≡ A(i) \ P (i) denotes samples with
different labels from sample i. Obviously, our
SSL loss leverages samples with other labels to
contribute contrastive signal (since Lright > 0
(Eq. (9))), and such extra signal is likely to relief
the data scarcity issue on rare disease labels by alle-
viating the sparsity of optimization signal. Overall,
Eq. (9) indicates a progressive relationship that SSL
is a generalized form of SCL, with extra flexibility
of user-defined sample similarity function (Eq. (7))
based on the specific real-world application. SSL
is approximately equivalent to SCL for a sample in
common labels, while for a sample in the low re-
source scenario (e.g., rare disease, online learning,
small batch size for limited hardwares), SSL makes
contrastive signal tractable for such hard cases.

3.3 Dissimilarity Mixup Learning
As a typical interpolation-based augmentation tech-
nique, Mixup (Zhang et al., 2018) has been widely
adapted to NLP settings (Chen et al., 2020a; Sun
et al., 2020) and proved to be an effective data-
adaptive regularization to reduce overfitting (Zhang
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et al., 2021). We exploit this strategy to reuse in-
formation of samples with less similar labels by
introducing Dissimilarity Mixup Learning (DML).
Different from the ordinary Mixup strategy that
samples weights from the Beta distribution (λ ∼
Beta(α, α)), we directly assign the weights accord-
ing to the similarity score (Eq. (7)), as:

λ = 0.5(1 + Sim(i, j)), (10)

z̃ = λzi + (1− λ)zj ,

ỹ = λyi + (1− λ)yj ,

where zi is the same as that in Sec. 3.2, and yi is
in the one-hot representation. DML is driven by
label representations learned in Sec. 3.1, and tends
to mix a bigger portion of more dissimilar samples,
so as to generate hard samples. Notably, our DML
needs no hyperparameter compared to the ordinary
Mixup, and is more user-friendly.

3.4 The Overall Training

Prediction is made based on a BERT pooler and
a simple fully connected layer after mixing the
encoded features. The final loss function is the
combination of classification loss and the SSL loss:

ŷ = FC(BertPooler(z̃)),

L = (1− λ)Lce + λLssl, (11)

where Lce is cross entropy loss for multi-class clas-
sification and is binary cross entropy loss for multi-
label classification, and λ is a hyperparameter con-
trolling the loss weight. In backward propagation,
we detach the gradient in Eq. (10) and only op-
timize HLR through Eq. (8). We illustrate and
discuss backward gradient flow in Appendix D.

4 Experiments

4.1 Experimental Setup

Datasets and Evaluation Metrics. We experi-
ment on two authoritative medical text datasets:
MIMIC-III (Johnson et al., 2016) and PubMed1,
and three in-house real-world datasets: Dermatol-
ogy, Gastroenterology, and Inpatient. Here, the first
two public datasets are for multi-label classifica-
tion, and the three in-house ones are for multi-class
classification. In experiments, for MIMIC-III, we
use only 33 disease labels in the top-50 version,
and convert ICD-9 codes into ICD-10 codes. For

1https://www.kaggle.com/datasets/owaiskhan9654/pubmed-
multilabel-text-classification

PubMed, we use a recent Kaggle version since it
is well sorted and contains 50K research articles
from the PubMed repository, and we retain the top-
100 3-level MeSH labels (i.e., each level of MeSH
ID “C01.784” is “C”, “C01” and “C01.784”). Der-
matology and Gastroenterology are two datasets
cleaned from outpatient records of the two largest
departments in a top hospital during the last three
years, and Inpatient is cleaned from the inpatient
records from a famous healthcare institution. All
the three real-world datasets are annotated with
ICD-10 codes, and two clinical graduates cleaned
them according to the discipline in Appendix B.
For data splitting, we use 20% samples as test set,
16% as evaluation set, and the rest 64% as training
set. For each multi-class dataset, we further keep
the ratios of each label in the three sets the same.

The dataset statistics are given in Table 1. More
detailed dataset information is provided in Ap-
pendix A.

The metrics Macro-F1 and Micro-F1 are used
for measuring the classification results.

Dataset N |Y | Avg(li) Avg(|yi|)
MIMIC-III 11.4K 33 450.61 4.01
PubMed 50.0K 100 122.88 8.52
Dermatology 20.5K 59 44.97 -
Gastroenterology 35.0K 35 58.31 -
Inpatient 2.6K 98 69.22 -

Table 1: Dataset statistics. N is the number of samples,
|Y | is the number of classes, and Avg(li) and Avg(|yi|)
are the average token length and average label amount
per sample, respectively.

Baselines. For systematic and fair comparison,
we utilize various framework-agnostic imbalanced
classification algorithms and advanced hierarchi-
cal text classification (HTC) methods. 1) Fine-
tune: The ordinary finetune paradigm. 2) Re-
sampling: A classical method to alleviate distri-
bution bias; we use RandomOverSample (ROS)
implemented in the Imbalanced-learn Python pack-
age for multi-class tasks and distribution bal-
ance loss (DBLoss) designed by (Huang et al.,
2021) for multi-label tasks, because the ordinary
re-sampling methods are not effective. 3) Re-
weighting: We choose FocalLoss (Lin et al., 2017)
since it is a typical dynamically weighted loss for
hard cases. 4) Prevailing contrastive learning: In-
cluding self contrastive learning (SelfCon) and su-
pervised contrastive learning (SupCon) (Khosla
et al., 2020). 5) MixUp (Sun et al., 2020): A typi-
cal interpolation-based data augmentation method.
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6) HTC: We choose HGCLR (Wang et al., 2022d)
and HPT (Wang et al., 2022c) because they are
recent state-of-the-art methods in global HTC.
Note that some baselines are supplementary rather
than competitive counterparts because they can be
jointly deployed with Text2Tree in practice (e.g.,
re-sampling).

Implement Details. For all the algorithms, we
use bert-base-uncased for the English datasets and
bert-base-chinese for the Chinese ones. We imple-
ment the experiment code with PyTorch on Python
3.8. All the experiments are run on NVIDIA
RTX 3090. The optimizer is Adam for HG-
CLR according to (Wang et al., 2022d) and is
AdamW (Loshchilov and Hutter, 2018) for the oth-
ers with the default configuration except for the
learning rate. For hyperparameter tuning, we use
gird search for each method with detailed hyperpa-
rameter spaces in Appendix C. Here we define the
search space of HGCLR according to the recom-
mended settings in (Wang et al., 2022d), and use
default settings for HPT in (Wang et al., 2022c).
We select hyperparameters with respect to Macro-
F1 and Micro-F1 separately on the evaluation set.
Due to the differences of the HTC label system (i.e.,
if predict “C01.784” MeSH label with HTC meth-
ods, the training framework should predict “C”,
“C01” and “C01.784” simultaneously), we consider
extra higher level labels in HGCLR training loss
and ignore them during metric calculation. The
maximum token length is 512 for MIMIC-III and
is 128 for the rest datasets. We uniformly adopt
early stop with 10 epochs for fine-tuning based on
the evaluation metric.

4.2 Main Results and Analyses

The main results are presented in Table 2. Our
Text2Tree algorithm achieves the best Macro-F1
scores on four datasets, and stably ranks in the top
3 in both Micro-F1 and Macro-F1 across the five
datasets, while the performances of the other meth-
ods are highly unstable. This demonstrates that
incorporating label hierarchy to guide data reuse
from other labels helps medical text representations
essentially, especially for texts from samples of rare
diseases (it helps Macro-F1).

We find that MixUp performs well on PubMed,
which is probably attributed to the data scale, since
random interpolation is more likely to produce
more diverse data representations when the data
source is sufficient. Hence, we can also see that it

performs badly on the small-sized Inpatient. Fur-
ther, we see the best performance of SupCon on
Inpatient, which may be due to the small data size
with a large label space and detailed text seman-
tics. The Inpatient dataset has the smallest scale
but the most label amount and the longest average
token length among the three multi-class datasets,
and therefore is hard to directly learn ideal data
representations. SupCon is able to precisely use
label information to exploit fine-grained semantics
in long texts, while Text2Tree is highly dependent
on the quality of the learned label representations,
which is inferior on the datasets in which all the
labels are scarce (see Fig. 9, Appendix A).

As expected, we find that HGCLR and HPT usu-
ally perform inferiorly. As advanced hierarchical
text classification (HTC) methods, they need to
make prediction from all the levels in framework
training, and thus would incur more redundancy to
classify extra labels in flat text classification. Both
of them perform relatively better on the multi-class
datasets (i.e., the three real-world datasets) than on
the multi-label ones (i.e., MIMIC-III and PubMed),
since samples in multi-classification contain less
higher level labels and thus the impact is weakened.
Compared to HTC methods, our Text2Tree has
more diverse contrastive signal because we treat
any other sample as a potentially positive anchor.
Besides, they takes more computational resource
and training time, because HGCLR calculates clas-
sification signal on both the original samples and
masked ones, doubling the training batch size, and
HPT adopts the graph neural network for hierachy
injection, which is computationally inefficient com-
pared to attention-based HLR.

Although in this paper we experiment with
Text2Tree on flat text classification in the medical
domain, it can be easily extended to HTC settings
or other general domains once the hierarchical label
dependency is given (e.g., a code tree or a graph).

4.3 Ablation Study

To further validate the effectiveness of each key
component in Text2Tree, we perform ablation
study by separately removing one of 1) Similar-
ity Surrogate Learning (SSL), 2) Dissimilarity
Mixup Learning (DML), and 3) the Hierarchy-
aware Label Representation Learning (HLR) mod-
ule. Table 3 presents the ablation study results
on two datasets (see Appendix E for the full re-
sults). Note that we detach the gradient in Eq. (10)
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Method MIMIC-III PubMed Dermato. Gastro. Inpatient
Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro

Finetune 42.22 51.65 57.17 65.30 53.93 56.31 47.64 50.52 71.22 71.12
ROS (Menardi et al., 2014) - - - - 53.40 53.76 44.52 45.08 72.44 72.28
DBLoss (Huang et al., 2021) 44.27 53.69 56.97 64.65 - - - - - -
FocalLoss (Lin et al., 2017) 43.39 51.95 57.04 65.08 53.49 55.46 47.02 49.35 72.77 72.28
SelfCon (Khosla et al., 2020) 41.28 50.47 57.71 65.58 54.04 57.07 47.68 49.94 70.69 68.65
SupCon (Khosla et al., 2020) 42.21 52.02 57.53 65.43 54.69 56.83 47.66 50.90 73.44 73.43
MixUp (Sun et al., 2020) 42.11 51.72 58.29 65.82 54.58 56.16 48.40 49.64 70.98 70.79
HGCLR (Wang et al., 2022d) 41.59 51.53 55.77 64.50 53.34 56.50 48.53 51.70 71.07 71.29
HPT (Wang et al., 2022c) 41.32 51.11 57.64 65.73 53.82 56.02 47.58 49.51 73.08 72.96
Text2Tree (ours) 44.75 53.60 58.70 66.10 55.23 57.27 48.88 51.26 73.01 72.77

Table 2: Medical text classification results. The best results are marked in bold while the second best ones are
underlined. “Marco” and “Micro” are for Macro-F1 and Micro-F1, respectively.

Ablation MIMIC-III PubMed
Text2Tree 44.75/53.60 58.70/66.10
w/o SSL 43.63/52.90 57.15/65.27
w/o DML 43.64/51.99 57.25/65.53
w/o HLR 43.07/52.47 57.90/65.57

Table 3: Ablation study results on the MIMIC-III and
PubMed datasets. We report macro-F1/micro-F1 re-
sults when separately removing an individual compo-
nent of Text2Tree. Ablation study results on all the
five datasets are given in Appendix E.

(see Sec. 3.4), and thus HLR optimization is solely
based on Eq. (8) in SSL. In the “w/o SSL” group,
we retain the gradient in Eq. (10) to allow the HLR
module to be optimizable. In the group “w/o HLR”,
there is no label representation, and thus we choose
the combination of supervised contrastive learn-
ing (SupCon) and the ordinary mixup (MixUp) as
substitution.

It can be seen that when keeping HLR, dropping
either SSL or DML will harm the performances. It
is hard to judge which of SSL and DML is more sig-
nificant since they exhibit different levels of Macro-
F1 or Micro-F1 decline across the five datasets.

When we deploy SupCon and MixUp jointly (the
w/o HLR group), it is interesting to observe that
this combination usually does not exceed the bet-
ter single-method performance (the combination is
worse than the better method across four datasets,
see Appendix E and Table 2), which may be at-
tributed to the incompatibility between MixUp and
SupCon. The ordinary mixup randomly interpo-
lates samples and may distort the fine-grained data
representation space learned by SupCon, while our
SSL and DML are respectively designed to pre-
fer samples with more and less similar labels to
alleviate this incompatibility, thus making HLR a
necessary part of Text2Tree.

Figure 3: 3D t-SNE visualization of the label represen-
tations on the PubMed dataset, before (left) and after
(right) the Text2Tree training. Labels with the same
first-level codes are in the same color.

4.4 Visualization of Label Representations

To further illustrate the effectiveness of our HLR
module, we visualize the label representations on
the PubMed dataset (see Fig. 3). Here we choose
four largest first level groups in 100 labels (MeSH
codes starting with “A”, “D”, “E”, “N”) and sim-
ply assign the same color to labels of the same
group. Starting with code (label) representations
calculated from randomly initialized code (label)
embeddings (the left figure), the HLR module in-
deed captures hierarchical bias with simple cascade
attention modules in Sec. 3.1, and learns to cluster
similar medical labels (the ones under the same first
level). The SSL and DML processes are guided
with reasonable label representations (the right fig-
ure) to reuse information from the other labels.

4.5 Effect on Rare Labels

To analyze the effect of Text2Tree on rare medi-
cal labels, we present Macro-F1 differences com-
pared to the ordinary finetune on PubMed label
groups when deploying different baselines (see
Fig. 4). Overall, all the validated algorithms can
boost performance on the rarest label group (labels
1~10), while DBLoss and FocalLoss are prone to
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Figure 4: Macro-F1 changes on label groups (grouped
by increasing-frequency ordered label IDs) on PubMed
when adopting different algorithms to the ordinary fine-
tune paradigm. Full results are given in Appendix E.

sacrificing generalization ability on more frequent
labels (see their F1 changes on labels 11~100).
SupCon is likely to attain conservative improve-
ment on rare labels (labels 1~50) but fail to excel
in common cases (labels 51~100). MixUp and
Text2Tree show strong generalization on all the
cases, while Text2Tree provides more stable and
better F1 gains in most cases and is the best choice
for the rarest labels.

5 Conclusions

In this paper, we proposed Text2Tree, a new
framework-agnostic learning algorithm that aligns
text representations to disease label hierarchy with
two novel learning methods of contrastively reusing
data, so as to resolve the data imbalance and
scarcity issues in medical text classification. Com-
pared with various state-of-the-art general imbal-
anced text classification methods, the superiority of
Text2Tree was verified on 5 real-world datasets.
We believe that Text2Tree will serve as a strong
baseline in imbalanced medical text classification
and could be extended to other domains when cor-
responding prior label dependency is provided.

Limitations

While Text2Tree is able to exploit the label hi-
erarchy to align medical text representations and
achieve stable improvement among various classi-
cal and advanced imbalanced classification meth-
ods on the validated medical text classification
datasets, one limitation is that Text2Tree explic-
itly needs prior label dependency to work, com-
pared to the other general algorithms. Also, the

designed SSL and DML text representation learn-
ing methods require precise label representations.
To provide such precision, we tailor the HLR mod-
ule with lightweight cascade attention to introduce
label hierarchy bias according to the code tree.
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A Detailed Dataset Information

Details of used datasets are shown in Table 4. We
present label distributions of PubMed (Fig. 5),
MIMIC-III (Fig. 6), Dermatology (Fig. 7), Gas-
troenterology (Fig. 8) and Inpatient (Fig. 9). In-
patient simulates extreme scarcity of medical data,
where the most diseases have less than 30 records.

B Data Clean Instructions

We introduce three real-world electronic medical
record (EMR) datasets, including two outpatient
record datasets and an inpatient record dataset.
The outpatient records consist of 786,923 records
from the Gastroenterology department and 635,302
records from the Dermatology department of a top
hospital. The inpatient records are sourced from a
healthcare institution, with a total of 9,032 records.
To ensure the quality of the textual data, the follow-
ing records are excluded:

• Duplicated records: Records with repetitive
content are removed to avoid redundancy in
the dataset.

• Trivial records: Records that contain simple
follow-up visits or medication prescriptions,
which provide no valuable information, such
as “no change in medical history”, “stable
condition” or “continuing treatment” are elim-
inated.

• Label leakage: Records with descriptions
that inadvertently reveal the diagnostic labels,
such as “gastritis discovered during routine
check-up”, are excluded to prevent potential
label leakage.

• Length-filtering: Records with a text length
less than 15 characters are discarded as they
lack enough information.

The main diagnosis in each medical record is ex-
tracted as the label and mapped to the ICD-10
coding system. Descriptions related to COVID-
19, which were requested during the pandemic but
lack relevant diagnostic information, are removed.
Due to the evident long-tail distribution observed
in the Gastroenterology and Dermatology records,
only diseases with frequency greater than 50 in
outpatient records and 20 in inpatient records are
included in datasets.

C Baseline Settings

C.1 Implementation
For ROS we use the version implemented in
Imbalanced-learn python package. For DBLoss,
MixUp and HGCLR we reuse the implementation
in the original paper (Huang et al., 2021; Sun et al.,
2020; Wang et al., 2022d). For FocalLoss we ex-
tend the multi-class version in (Lin et al., 2017) to
the multi-label version for MIMIC-III and PubMed.
For SelfCon and SupCon, we reuse the implemen-
tation in (Khosla et al., 2020) and adapt the code
from image classification task to text classification
scenario.

C.2 Hyperparameter Tuning
For DBLoss we use recommended setting
in (Huang et al., 2021), we select hyperparame-
ters of all baselines with grid search on the hyper-
parameter spaces provided in the following tables
(Table 5~Table 9). We set learning rate space for all
baselines to {5e− 6, 1e− 5, 3e− 5, 5e− 5}. We
use batch size of 16 for MIMIC-III and 64 for the
rest datasets.

D Data and Gradient Flow in Text2Tree

Fig. 10 illustrates data flow and gradient flow of our
used Text2Tree. Detaching gradient from DML is
an empirical choice, for both DML and SSL can
impact HLR, we concerned gradients from both
will destabilize the learning process and select the
best gradient strategy by macro-F1. We provide
results on different graident policies in Table 10.

E Additional Results

Table 11 reports results of ablation study on the five
datasets. Fig. 11 presents Macro-F1 changes in all
the label groups of PubMed for different baselines.
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Dataset N |Y | Avg(li) Avg(|yi|) # train # dev # test task C.S. Lang.
MIMIC-III 11368 33 450.61 4.01 8066 1573 1729 multi-label ICD10 English
PubMed 50000 100 122.88 8.52 32000 8000 10000 multi-label MeSH English
Dermatology 20522 59 44.97 - 13103 3256 4163 multi-class ICD10 Chinese
Gastroenterology 34952 35 58.31 - 22351 5574 7027 multi-class ICD10 Chinese
Inpatient 2603 98 69.22 - 1627 370 606 multi-class ICD10 Chinese

Table 4: Detailed dataset statistics. “C.S.” means code system.

Figure 5: Data distribution of PubMed. The occurrence frequency of top-10 labels counts for 40.2 % in total top-100
labels, while the rarest 50 labels only account for 23.9 %.

Parameter Search space
α {0.25, 0.5, 0.75}
γ {0.5, 1.0, 2.0, 3.0}
# iterations 4 × 3 × 4 = 48

Table 5: Hyperparameter space for FocalLoss.

Parameter Search space
temperature {0.5, 1.0, 2.0, 3.0}
λ {0.001, 0.005, 0.01, 0.05}
# iterations 4 × 4 × 4 = 64

Table 6: Hyperparameter space for SelfCon and SupCon.
λ is a hyperparameter in controlling the loss weight
(similar to Eq. (11)).

Parameter Search space
α {0.1, 0.5, 1.0, 2.0, 4.0, 8.0}
# iterations 4 × 6 = 24

Table 7: Hyperparameter space for MixUp. α is the
hyperparameter in Beta distribution.

Parameter Search space
γ {0.005, 0.01, 0.02, 0.05}
λ {0.1, 0.3, 0.5, 1.0}
temperature 1.0
# iterations 4 × 4 × 4 = 64

Table 8: Hyperparameter space for HGCLR. γ and λ
are threshold and contrastive loss weight.

Parameter Search space
temperature {0.5, 1.0, 2.0, 3.0}
λ {0.001, 0.005, 0.01, 0.05}
# iterations 4 × 4 × 4 = 64

Table 9: Hyperparameter space for Text2Tree.
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Figure 6: Data distribution of MIMIC-III. We only use top-50 labels and retain 33 disease labels in them.

Figure 7: Data distribution of Dermatology. We cleaned 59 common diseases in dermatology department.

Figure 8: Data distribution of Gastroenterology. We cleaned 35 common diseases in gastroenterology department.

Ablation MIMIC-III PubMed Dermato. Gastro. Inpatient
det DML (baseline) 44.75/53.60 58.70/66.10 55.23/57.27 48.88/51.26 73.01/72.77
det SSL 44.36/53.72 58.32/66.23 54.31/56.55 48.62/51.25 72.18/72.77
no det 44.13/53.38 57.87/66.13 54.12/57.84 47.92/51.00 72.83/72.28

Table 10: Results of different gradient policies on all the five datasets. det indicates gradient detach.
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Figure 9: Data distribution of Inpatient. There are 98 diseases in the dataset of inpatient records, and the most
diseases only have less than 30 records, leading to scarcity issue in each label.

Figure 10: Forward data and backward gradient illustration of Text2Tree. We empirically detach the gradient from
DML for stable learning.

Ablation MIMIC-III PubMed Dermato. Gastro. Inpatient
Text2Tree (baseline) 44.75/53.60 58.70/66.10 55.23/57.27 48.88/51.26 73.01/72.77
w/o SSL 43.63/52.90 57.15/65.27 54.53/56.55 48.34/50.80 71.24/71.45
w/o DML 43.64/51.99 57.25/65.53 54.31/57.89 47.51/51.00 72.35/72.61
w/o HLR 43.07/52.47 57.90/65.57 53.95/55.22 47.19/50.29 71.50/71.78

Table 11: Ablation results on all the five datasets.
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Figure 11: Full version of Macro-F1 changes on grouped labels (labels are ordered by their frequency and evaluation
is performed on each label group, each group contains 10 labels) on PubMed when adopting different algorithms to
the ordinary fine-tuning paradigm.

7720


