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Abstract

Foundation models or pre-trained models have
substantially improved the performance of var-
ious language, vision, and vision-language un-
derstanding tasks. However, existing foun-
dation models can only perform the best in
one type of tasks, namely language, vision, or
vision-language. It is still an open question
whether it is possible to construct a general
foundation model performing the best for all
the understanding tasks. In this paper, we pro-
pose a new method for training the general
foundation model, X-FM (the X-Foundation
Model). X-FM has one language encoder, one
vision encoder, and one fusion encoder, as
well as a new training method. The training
method includes two new techniques for learn-
ing X-FM from text, image, and image-text
pair data. One is to stop gradients from the
vision-language training when learning the lan-
guage encoder. The other is to leverage the
vision-language training to guide the learning
of the vision encoder. Extensive experiments
on benchmark datasets show that X-FM can
significantly outperform existing general foun-
dation models and perform better than or com-
parable to existing foundation models specifi-
cally for language, vision, or vision-language
understanding. Code and pre-trained mod-
els are released at https://github.com/

zhangxinsong-nlp/XFM.

1 Introduction

With the enormous power of foundation models,
also known as pre-trained models, remarkable per-
formance gains have recently been achieved in a
variety of understanding tasks in natural language
processing (NLP), computer vision (CV), and other
fields (Devlin et al., 2019; Liu et al., 2019; Lewis
et al., 2020; Raffel et al., 2020; Brown et al., 2020;
Dosovitskiy et al., 2021; He et al., 2022; Bao et al.,
2021; Lu et al., 2019; Tan and Bansal, 2019; Chen

∗Correspondence to: <xszhang0320@gmail.com>.

et al., 2020; Li et al., 2020, 2021a; Zeng et al., 2021,
2022) . Foundation models are usually equipped
with Transformer (Vaswani et al., 2017) as the
backbone, pre-trained with a tremendous amount
of unlabeled data, and then fine-tuned with small
amounts of labeled data in downstream tasks. The
strong representation ability of the model, the mas-
sive amount of data, and the effective means of
training make the foundation models powerful for
successfully solving the tasks of vision, language,
and vision-language (Li et al., 2021b,c; Singh et al.,
2021; Wang et al., 2021b, 2022b; Diao et al., 2022;
Wang et al., 2022a).

The state-of-the-art foundation models usually
work the best for one type of tasks, namely lan-
guage, vision, and vision-language. For exam-
ple, RoBERTa (Liu et al., 2019), BEiTv2 (Peng
et al., 2022), and X-VLM (Zeng et al., 2021, 2022)
are language, vision, and vision-language founda-
tion models respectively, and can achieve state-
of-the-art performances for the specific type of
tasks. It is still very challenging, however, to
build a general foundation model that can perform
the best in all types of tasks. Existing models,
such as FLAVA (Singh et al., 2021), OFA (Wang
et al., 2022b), DaVinci (Diao et al., 2022) and
Uni-Perceiver-MoE (Zhu et al., 2022), are trying
to achieve the goal. Their performances are still
not satisfactory, however, when compared with the
best performing foundation models for the individ-
ual types of tasks, as shown in Table 1. Previous
work (Bingel and Søgaard, 2017; Wang et al., 2020)
also shows that it is difficult to train a general foun-
dation model in a multi-task learning setting that
can effectively learn and utilize representations for
all types of tasks. The reason is that language,
vision, and vision-language are very different in na-
ture, and a simple way of jointly training a model
from language, vision, and vision-language data
can easily create a suboptimal solution.

To address the challenge, we propose a new
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Methods
Text Tasks Vision Tasks Multi-modal Tasks (MSCOCO Retriveal & VQA & NLVR)

GLUE ImageNet Zero-Shot Fine-Tune

MNLI FT/LE TR IR TR IR VQA NLVR

Foundation models specifically for language, vision, or vision-language understanding
RoBERTa (Liu et al., 2019) 87.6 – – – – – – –
BEiTv2 (Peng et al., 2022) – 85.5/80.1 – – – – – –
X-VLM (Zeng et al., 2021) – – 70.8/92.1/96.5 55.6/82.7/90.0 80.4/95.5/98.2 63.1/85.7/91.6 78.1 84.8
X2-VLM (Zeng et al., 2022) – – – – 83.5/96.3/98.5 66.2/87.1/92.2 80.4 87.0

General foundation models
UNIMO-2 (Li et al., 2021c) 87.5 80.8/- – – – – 76.3 –
SimVLM (Wang et al., 2021c) 83.4 -/80.6 – – – – 77.9 81.8
FLAVA (Singh et al., 2021) 80.3 -/75.5 42.7/76.8/- 38.4/67.5/- 61.5/82.1/89.6 50.1/74.4/83.2 72.8 –
OFA (Wang et al., 2022b) 84.3 82.2/– – – – – 78.0 –
DaVinci (Diao et al., 2022) 83.1 83.9/78.8 – – – – 76.3 77.9
OmniVL (Wang et al., 2022a) – – – – 76.8/93.6/97.3 58.5/82.6/89.5 78.3 –
Uni-Perceiver-MoE (Zhu et al., 2022) 81.5 84.5/– 64.6/–/– 51.6/–/– 70.5/–/– 54.1/–/– – –
mPLUG-2base (Xu et al., 2023) 87.6 –/– –/–/– –/–/– 81.2/95.2/98.1 65.3/86.9/92.4 79.3 –
X-FMbase 87.7 85.5/81.2 77.6/94.8/97.7 61.1/84.5/90.6 84.2/96.4/98.4 67.0/87.2/92.4 80.5 88.4

Table 1: Performance comparisons between foundation models. All results are from base-size models. MSCOCO
is a cross-modal retrieval task, and IR and TR are image-retrieval and text-retrieval, respectively. MNLI results are
average accuracies of MNLI-m and MNLI-mm. For ImageNet1k classification, we report linear evaluation (LE)
performance and fine-tuning (FT) performance, respectively. We report R@1/R@5/R@10 for all retrieval tasks at
both zero-shot and fine-tune settings. We report the VQA test-dev result and the NLVR test-P result. bold denotes
the best number across general foundation models. underline denotes the best across all models.

method for training general foundation model, and
bring in X-FM (X-Foundation Model). X-FM con-
sists of three modular encoders for language (text)
encoding, vision (image) encoding, and fusion en-
coding, as shown in Fig 1. The language encoder,
the vision encoder, and the entire model can be
used in downstream tasks of language, vision, and
vision-language understanding, respectively. The
language encoder and the vision encoder follow the
implementations of BERT (Devlin et al., 2019) and
ViT (Dosovitskiy et al., 2021), respectively. Note
that X-FM do not include any extra parameters for
language and vision tasks. The fusion encoder has
the same architecture as BERT except that there is
a cross-attention sub-layer after the self-attention
sub-layer in each Transformer layer.

In learning of X-FM, the language encoder, vi-
sion encoder, and fusion encoder are jointly trained
with text data, image data, and image-text pair
data as input. Given the text data, we train the
language encoder by masked language modeling
(MLM). Given the image data, we train the vision
encoder by masked image modeling (MIM). Given
the image-text pair data, we train the fusion encoder
by image text matching (ITM), image-conditioned
masked language modeling (IMLM), bounding box
prediction (BBP), also train the vision encoder and
the language encoder by image-text contrastive
learning (ITC). (See Fig 1.)

The essential thinking of our learning method

is that language is more abstract than vision, and
there is an asymmetric relationship between lan-
guage and vision. Therefore, we separate the learn-
ing of the three encoders. The language encoder
is trained mainly from text data and is isolated
from the training of the fusion encoder. The vi-
sion encoder is simultaneously trained from image
data and image-text pair data, guided by the vision-
language training. The fusion encoder is trained
from image-text pair data.

Our learning method includes two new tech-
niques. One technique is to stop gradients from
the vision-language training when learning the lan-
guage encoder. The gradient flow is stopped from
the fusion encoder to the language encoder in train-
ing, while the activation flow from the language en-
coder to the fusion encoder is as usual. As a result,
the language encoder is not affected by training of
the fusion encoder with image-text pair data. More-
over, the training of the fusion encoder concentrates
on learning the alignments between language and
vision features.

The other technique is to leverage the vision-
language training to guide the learning of the vi-
sion encoder with masked image modeling (MIM).
In MIM, the masked image is compared with the
original image by the differences between the pre-
dicted representations and target representations
at the masked and [CLS] positions. The vision
encoder creates both the predicated and target rep-
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resentations, while there is gradient flow from the
predicted representations but no gradient flow from
the target representations. The vision encoder can
create the target representations because it is also
trained in the vision-language training.

We conduct experiments on a variety of twenty-
three tasks of language, vision, and vision-language
understanding. X-FM can outperform other general
foundation models by a large margin and can even
achieve better or comparable performance than
SOTA foundation models specifically designed for
language, vision, or vision-language understanding
tasks, as shown in Table 1.

Our contribution is as follows.
(1) We address the problem of how to build a

general foundation model that can perform the best
for all the understanding tasks of language, vision,
and vision-language.

(2) We propose a general foundation model, X-
FM, which can achieve better or competitive per-
formance on both unimodal understanding tasks
and multi-modal understanding tasks through two
training techniques.

(3) The stop gradient technique is useful in main-
taining text understanding capability and enhancing
multi-modal understanding capability at the same
time. We also propose a convenient method for
mask image modeling with multi-modal learning.
The technique can enhance both vision and multi-
modal understanding.

2 Related Work

Following the success of language model pre-
training (Devlin et al., 2019; Liu et al., 2019;
Sun et al., 2019; Joshi et al., 2020; Clark et al.,
2020; Lan et al., 2020; Zhang et al., 2020; He
et al., 2021), vision pre-training (Dosovitskiy et al.,
2021; He et al., 2022; Bao et al., 2021; Peng et al.,
2022; Wei et al., 2022a) and vision-language pre-
training (Radford et al., 2021; Jia et al., 2021; Li
et al., 2021a, 2022; Yuan et al., 2021; Wang et al.,
2021a; Bao et al., 2022; Zeng et al., 2021, 2022)
with Transformer as the backbone have also made
significant progress recently, pushing the state-of-
the-art of various understanding tasks of language,
vision, and vision-language.

Recently, the fact that Transformer can model
multi-modal data within a single architecture has
inspired research to develop general foundation
models that can solve language, vision, and vision-

language tasks at the same time. UNIMO (Li
et al., 2021b,c) jointly learns vision representations,
language representations, and vision-language
alignments in a shared space. FLAVA (Singh
et al., 2021) performs pre-training with masked
uni-modal and multi-modal modeling objectives.
OFA (Wang et al., 2022c) formulates vision-
language tasks as sequence-to-sequence (seq2seq)
problems and pre-trains a seq2seq model in multi-
task learning. SimVLM (Wang et al., 2021c) pre-
trains a seq2seq model with a single objective of
language generation (prefix language modeling).
DaVinci (Diao et al., 2022) combines prefix lan-
guage modeling and prefix image modeling to learn
a general foundation model for a wide range of
tasks. Uni-Perceiver (Zhu et al., 2021, 2022) builds
a unified perception architecture that processes var-
ious modalities and tasks with a single Transformer
and shared parameters.

Previous studies on general foundation models
have shown that different capabilities can be es-
tablished with only one model. Still, few stud-
ies demonstrate that the best performance can be
achieved in all tasks with one model. In this pa-
per, we propose a new method for training general
foundation model and show that it can perform the
best for all the understanding tasks of language, vi-
sion, and vision-language. We compare our model
extensively with recent general foundation models
on multiple dimensions, as shown in Appendix A.

Several super-large foundation models (over 1B
parameters) are proposed recently, most of which
are trained on super-large in-house datasets (over
900M image-text pairs). The authors do not re-
port results at the base (about 300M parameters)
scale on public datasets, which we consider in
this paper. CoCa (Yu et al., 2022) pre-trains an
image-text sequence-to-sequence model with con-
trastive loss and captioning loss. BEiT-3 (Wang
et al., 2022d) uses a multi-way Transformer and
a unified objective of masked “language” model-
ing for learning from image, text, and image-text
pair data. Flamingo (Alayrac et al., 2022) makes
use of a large language model in vision-language
pre-training to solve the “in-context learning” prob-
lem for vision-language tasks. PaLI (Chen et al.,
2022) jointly scales up the vision encoder and lan-
guage encoder to cover a variety of language, vi-
sion, vision-language, and multilingual tasks.
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Figure 1: The architecture and pre-training process of X-FM, a Transformer-based general foundation model.
Given a text, we learn the language encoder by MLM. Given an image, we learn the vision encoder by MIM. Given
an image-text pair, we learn the fusion encoder by BBP, ITM, IMLM and ITC, and further learn the vision encoder
by MIM. The gradients of BBP, ITM, and IMLM are stopped from the fusion encoder to the language encoder.
The vision encoder is trained by MIM with both the image-text pair data and the image data. M, N and L denote
numbers of encoder layers.

3 Method

3.1 Model Architecture and Training Process

We propose a new method for training general
foundation model and bring in X-FM, having a
language encoder, a vision encoder, and a fusion
encoder, shown as Fig 1. The architectures of lan-
guage encoder, vision encoder and fusion encoder
are following precious works (Devlin et al., 2019;
Dosovitskiy et al., 2021; Li et al., 2021a). We pro-
pose a new method for training general foundation
model. Text, image, and image-text pair data are
used as input to train X-FM. The language encoder
is trained by masked language modeling (MLM)
and image text contrastive learning (ITC). The vi-
sion encoder is trained by masked image model-
ing (MIM) and ITC. The fusion encoder is trained
by image text matching (ITM), image-conditioned
masked language modeling (IMLM), and bounding
box prediction (BBP). There are two new tech-
niques developed for the training.

Stop Gradient. We stop gradients from the
vision-language training when learning the lan-
guage encoder. Specifically, when the fusion en-
coder is trained with image-text pair data by ITM,
IMLM, and BBP, there are forward flows (activa-
tions) from the language encoder to the fusion en-
coder, but there are no backward flows (gradients)
from the fusion encoder to the language encoder. In

this way, the language encoder is only trained with
text data by MLM and with image-text pair data
by ITC. The former helps the language encoder to
learn text representations, and the latter helps to
make alignments between text representations and
image representations. Meanwhile, the training of
the fusion encoder is performed separately with the
focus of learning cross-modal alignments.

Vision-Language Guided Masked Image Mod-
eling. The training of vision encoder by MIM
is carried out as follows. The image data is first
masked and then predicted by the vision encoder.
The differences between predicted representations
and ‘target’ representations at masked positions
and [CLS] position are then measured with MSE
(mean squared error) loss. The target representa-
tions are obtained from the same image data (with-
out masking) by the vision encoder. There are
no gradients from the target representations in the
learning of the vision encoder. The vision encoder
can create target representations because it is also
trained with image-text pair data. In this way, the
vision encoder is trained by both the cross-modal
objectives (ITC, ITM, BBP, IMLM) with image-
text pair data and the uni-modal objective (MIM)
with image data. The representations obtained from
the vision-language training are highly semantic,
which is necessary for MIM as demonstrated in
previous work (Bao et al., 2021; Peng et al., 2022;
Wei et al., 2022a,b).
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There are mainly two advantages by exploiting
the new MIM technique. First, it is convenient
to conduct MIM with the signals from the vision-
language training. Note that most previous work
for MIM uses an external image tokenizer such
as VQ-VAE (Bao et al., 2021; Singh et al., 2021),
CLIP (Wei et al., 2022b), and VQ-KL (Peng et al.,
2022). Second, the learning of the vision encoder
and that of the fusion encoder are mutually en-
hanced. Once the vision encoder is trained, it is
also utilized to train the fusion encoder. Fortu-
nately, image data for training the vision encoder
is relatively easy to obtain.

3.2 Pre-training Objectives

We explain six objectives in learning of X-FM.
Here, T represents the distribution of text data,
I represents the distribution of image data, and D
represents the distribution of image-text pair data.

Masked Language Modeling (MLM) We per-
form MLM on text data to learn the language en-
coder of X-FM. Specifically we recover the masked
tokens in a text by minimizing the cross entropy
loss below.

Lmlm = ET∼T H(y⃗(T̄ ), ˆ⃗p(T̄ )) (1)

where T denotes a text, T̄ denotes the masked
text of T , ˆ⃗p denotes the predicted probability vec-
tors of masked tokens of T̄ , y⃗ denotes the one-hot
vectors representing the original tokens of T̄ , and
H denotes cross-entropy.

Image-Text Contrastive Learning (ITC). We
use a contrastive loss as in CLIP (Radford et al.,
2021) to learn the alignments between images and
texts in ITC. Given a batch of images and texts,
we calculate the cosine similarities between all
image-text pairs. For each image, there is one
text matched and the rest is unmatched. For each
text, there is one image matched and the rest is
unmatched. The contrastive loss is defined as fol-
lows.
Litc =

1

2
E(I,T )∼D

[
H(y⃗i2t(I), p⃗i2t(I))

+ H(y⃗t2i(T ), p⃗t2i(T ))
]

(2)

where (I, T ) denotes an image-text pair, p⃗i2t(I)
denotes the in-batch image-to-text similarities,
p⃗t2i(T ) denotes the in-batch text-to-image similari-
ties, y⃗i2t(I) denotes the one-hot vectors represent-
ing the image-to-text matching relations, y⃗t2i(T )
denotes the one-hot vectors representing the text-to-
image matching relations, and H is cross-entropy.

Image-Text Matching (ITM). We also learn the
alignments between images and texts in ITM, us-
ing a loss indicating whether an image-text pair
is matched. For each image in a batch there is
a matched (positive) text, and we sample an un-
matched (negative) text in the batch. For each text
there is a matched (positive) image, and we sam-
ple an unmatched image in the batch. The loss is
defined as follows.

Litm = E(I,T )∼D
[
H(pmatch(I, T ))

+H(pmatch(Ĩ , T )) (3)

+H(pmatch(I, T̃ ))
]

where (I, T ) denotes a positive image-text pair,
(Ĩ , T ) and (I, T̃ ) denote negative image-text pairs,
pmatch(I, T ) denotes a predicted matching proba-
bility of (I, T ), and H denotes logistic loss.

Image-conditioned Masked Language Mod-
eling (IMLM) We conduct IMLM on image-text
pair data to learn the fusion encoder. We recover
the masked text tokens given for an image-text pair
by minimizing the cross entropy loss below.

Limlm = E(I,T )∼DH(y⃗(T̄ ), ˆ⃗p(I, T̄ )) (4)

where (I, T ) denotes an image-text pair, T̄ denotes
the masked text of T , ˆ⃗p(I, T̄ ) denotes the predicted
probability vectors of the masked tokens of T̄ based
on I , y⃗ denotes the one-hot vectors representing the
original tokens of T̄ , and H denotes cross-entropy.

Bounding Box Prediction (BBP) We adopt the
BBP in X-VLM (Zeng et al., 2021, 2022), which
locates the visual concept in the image by a bound-
ing box given the text. With BBP we learn the
alignments between the images and texts in multi-
granularity. In BBP, two losses are simultane-
ously minimized to measure the differences be-
tween the predicted bounding box and the ground-
truth bounding box. One is generalized intersection
over union GIoU (Rezatofighi et al., 2019) and the
other is ℓ1 distance.

Lbbp = E(I,T )∼D{GIoU (⃗b,
ˆ⃗
b) + ∥⃗b− ˆ⃗

b∥1} (5)

where b⃗ = (cx, cy, w, h) denotes the ground truth

bounding box, ˆ⃗b = (ĉx, ĉy, ŵ, ĥ) denotes the pre-
dicted bounding box. A bounding box is repre-
sented by two coordinates, width, and height.

Masked Image Modeling (MIM) We perform
MIM on image data and image-text pair data to
learn the vision encoder. Specifically, we recover
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RoBERTa BEiTv2 X2-VLM X2-VLM UNIMO-2 FLAVA SimVLM OFA DaVinci DaVinci Uni-Per. OmniVL mPLUG-2base X-FMbase X-FMbase

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Task Eval. – – 4M 1.3B 4M 70M 1.8B 21M 46M 648M 30M 14M 17M 4M 1.3B

MNLI FT 87.6 – – – 87.5 80.3 83.4 84.3 82.3 83.1 81.5 – 87.6 87.7 87.7
CoLA FT 63.6 – – – 62.1 50.7 46.7 52.3 52.1 54.8 52.2 – – 65.3 65.7
MRPC FT 90.2 – – – – 84.2 79.8 88.7 83.1 84.5 – – 87.3 91.7 91.2
QQP FT 91.9 – – – – 88.7 90.4 91.3 88.2 88.9 – – 91.3 91.8 91.7
SST-2 FT 94.8 – – – 94.7 90.9 90.9 92.7 90.5 91.4 90.9 – 93.5 95.0 94.6
QNLI FT 92.8 – – – – 87.3 88.6 91.1 87.2 87.9 88.2 – 93.2 92.9 92.8
RTE FT 78.70 – – – – 57.8 63.9 70.8 60.7 64.2 75.8 – 85.2 83.8 82.7
STS-B FT 91.2 – – – 91.2 85.7 87.2 – 86.3 87.1 – – – 90.8 90.7

Language Avg. 86.4 – – – – 78.2 78.9 – 78.8 80.2 – – – 87.4 87.1

ImageNet FT – 85.5 – – 80.8 – – 82.2 – 83.9 84.5 – – 85.3 85.5
ImageNet LE – 80.1 – – – 75.5 80.6 71.4† 75.9 77.7 – – – 81.0 81.2
Food101 LE – 88.2† – – – 88.5 – 75.2† 89.3 90.1 – 87.4 – 88.7 90.5
CIFAR10 LE – 95.3† – – – 92.9 – 86.1† 93.0 94.0 – 96.2 – 97.2 97.4
CIFAR100 LE – 81.5† – – – 77.7 – 66.7† 79.0 80.1 – 83.2 – 86.7 86.2
Pets LE – 93.1† – – – 84.8 – 81.0† 85.5 88.2 – 87.1 – 90.8 90.2
DTD LE – 78.4† – – – 77.3 – 70.3† 77.1 78.3 – 76.2 – 78.4 80.0
Flowers102 LE – 95.7† – – – 96.4 – 86.3† 96.1 96.9 – 89.8 – 97.1 96.4

Vision Avg. – 88.7 – – – 86.3 – 79.2 86.7 87.9 – 86.7 – 89.8 90.1

VQAv2 FT – – 79.2 80.4 76.3 72.5 77.9 78.0 73.9 76.4 – 78.3 79.3 79.1 80.5
NLVR2 FT – – 86.1 87.0 – – 81.8 – 77.9 – – – – 86.7 88.4
Flickr30K TR R@1 ZS – – 85.1† 85.1† 84.6† 88.5 67.7 – – – 82.1 – – 90.1 93.4
Flickr30K IR R@1 ZS – – 77.3† 79.2† 72.7 65.2 – – – – 72.4 – – 79.1 84.1
Flickr30K TR R@1 FT – – 97.4 98.5 92.0 – – – – – 93.6 94.9 96.9 97.4 98.1
Flickr30K IR R@1 FT – – 90.0 90.4 80.1 – – – – – 79.8 83.4 88.2 88.6 89.9
COCO TR R@1 ZS – – 68.4† 71.7† – 42.7 – – – – 64.6 – – 73.8 77.6
COCO IR R@1 ZS – – 55.2† 58.3† – 38.4 – – – – 51.6 – – 59.4 61.1
COCO TR R@1 FT – – 80.5 83.5 – – – – – – 70.5 76.8 81.2 81.8 84.2
COCO IR R@1 FT – – 62.7 66.2 – – – – – – 52.6 58.5 65.3 64.7 67.0

Vision-Language Avg. – – 78.2 80.0 – – – – – – – – – 80.1 82.4

Table 2: Experimental results on vision, language and vision-language tasks. The multi-modal data size used for
pre-training are reported under the model name. MNLI results are average of MNLI-m and MNLI-mm. MRPC
results are average accuracies and F1 scores. Matthews correlation coefficient (MCC) is reported for CoLA, and
Pearson correlation coefficient (PCC) is reported for STS-B. We report accuracies for all the vision and multi-
modal tasks. FT is short for fine-tuning, LE for linear evaluation, ZS for zero-shot, TR for text retrieval, and IR
for image retrieval. Results for RoBERTa are from its corresponding paper (Liu et al., 2019), and they use the
mid-training (Phang et al., 2018) on MNLI for RTE, MRPC, and STS-B while other models (e.g., DaVinci, X-FM)
do not use this trick. Note that mPLUG-2 used more layers and parameters than RoBERTa and X-FM for the
language understanding tasks. Language Avg. is the average score of all the language tasks, while Vision Avg. is
the average score of six line evaluation tasks except ImageNet. Vision-Language Avg. is the average score of all
vision-language tasks. † are our reproduced results with the officially released models.

the masked image patches in an image by minimiz-
ing the loss below.

Lmim = E(I,T )∼D||v⃗(Ī)− ˆ⃗v(Ī)||2
+EI∼I ||v⃗(Ī)− ˆ⃗v(Ī)||2 (6)

where (I, T ) and I denote an image-text pair and
a single image respectively, Ī denotes the masked
image I , ˆ⃗v(Ī) denotes the predicted representa-
tions at the masked positions and [CLS] of Ī ,
and v⃗(Ī) denotes the target representations at the
masked positions and [CLS] of Ī . |||̇|2 is the MSE
loss. We employ block masking following previous
work (Bao et al., 2021; Peng et al., 2022). Note
that (I, T ) and I are independently sampled from
D and I, and the sample sizes are not necessarily
equal.

Finally, the pre-training objective of X-FM is
defined as the sum of the losses described above.

L = Lmlm+Litc+Litm+Limlm+Lbbp+Lmim

4 Experiments

4.1 Implementation Details

Pre-training Datasets. We mainly conduct our
experiments on several widely used public datasets,
consisting of two in-domain datasets, COCO (Lin
et al., 2014) and Visual Genome (VG) (Krishna
et al., 2017), and two out-of-domain datasets, SBU
Captions (Ordonez et al., 2011) and Conceptual
Captions (CC) (Sharma et al., 2018). Follow-
ing X-VLM (Zeng et al., 2021, 2022), we also
include annotations of objects and regions from
RefCOCO (Yu et al., 2016), Objects365 (Shao
et al., 2019) and OpenImages (Kuznetsova et al.,
2018). Since we assume also using uni-modal
data, we include RoBERTa corpus (Liu et al.,
2019), C4 datasets (Raffel et al., 2020) and Im-
agenet21K (Ridnik et al., 2021). In addition, we
also scale up the pre-training dataset with Concep-
tual 12M dataset (CC-12M) (Changpinyo et al.,
2021) and LAION (Schuhmann et al., 2022) as the
“more data" setting, which contains around 1.3B
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image-text pairs. Please refer to Appendix B for
statistics of the pre-training datasets.

Pre-training Settings. Our model is of base size,
and the detailed parameters are explained in Ap-
pendix D. The vision encoder is initialized with
BEiTv2. The language encoder is initialized with
RoBERTa. The fusion encoder is trained from
scratch. X-FM is pre-trained at image resolution of
224× 224 with patch size of 16× 16. We pre-train
X-FM for 200K steps with a batch size of 3072
image-text pairs, 3072 images, and 8192 sentences
on 32 A100, which takes about six days. The learn-
ing rate for both models is warmed-up to 1e−4 in
the first 2500 steps and decayed following a linear
schedule. We set the maximum number of text to-
kens to 30 for image-text pairs, while that of pure
text corpus is set to 128. For the “more data" set-
ting, we pre-train X-FM for 400k steps with 18k
batch size on 64 A100. Due to the consideration of
computational cost, we did not pre-train the large
or giant models. We apply mixed precision for pre-
training. We choose widely used downstream tasks
whose details are shown in Appendix C.

4.2 Comparison with Foundation Models

We extensively compare the performance of X-
FM with state-of-the-art foundation models on
vision, language, and multi-modal tasks. We
first compare our model with general foundation
models, including UNIMO-v2 (Li et al., 2021c),
FLAVA (Singh et al., 2021), SimVLM (Wang et al.,
2021c), OFA (Wang et al., 2022b), DaVinci (Diao
et al., 2022), Uni-Perceiver-MoE (Zhu et al., 2022),
OmniVL (Wang et al., 2022a), and mPLUG-2 (Xu
et al., 2023). We also include comparisons with
SOTA foundation models specifically designed
for language, vision, or vision-language tasks,
RoBERTa (Liu et al., 2019), BEiTv2 (Peng et al.,
2022), and X2-VLM (Zeng et al., 2022). There are
several observations in Table 2. First, X-FMbase

(column 15) outperforms all the previous general
foundation models (column 5-13) across almost
all tasks by a large margin, becoming a new and
stronger general foundation model. When we
use less pre-training data, X-FM can also achieve
competitive performance compared with previ-
ous general foundation models (column 5-13 vs
14). Second, we compare X-FM with state-of-
the-art foundation models specifically designed
for language, vision, and vision-language tasks,

RoBERTa, BEiTv2 and X2-VLM. We observe that
X-FM is also better than or comparable with the
foundation models (column 1,2,3,4 vs 15). We
further compare our model, X-FMbase, with three
previous foundation models on 18 image classi-
fication tasks on the linear evaluation setting to
evaluate generalization performance on vision un-
derstanding tasks. The results are shown in Table 4.
X-FMbase wins 11 of 18 tasks, 7 for CLIP, 2 for
FLAVA, and 2 for DaVinci.

4.3 Comparison with multi-modal Models

In addition to general foundation models, we
also compare X-FM with state-of-the-art vision-
language models. The results are shown in Table 3
and Table 6. X-FM demonstrates its superiority
on five downstream vision-language tasks includ-
ing MSCOCO Retrieval, Flick Retrieval, VQA,
NLVR and RefCOCO+. Note that X-FMbase out-
performs CLIP, ALIGN and Florence on image-text
retrieval tasks with fewer parameters and much less
training data. Compared to the recently released
SOTA vision-language model, X2-VLM, X-FM is
much better on zero-shot image-text retrieval tasks.
When we scale up pre-training datasets, X-FMbase

is consistently better than previous vision-language
models for most cases.

4.4 Ablation Study

To verify the contributions of different modules
in our framework, we ablate them and evaluate
the performance of X-FM on all downstream tasks.
The results are shown in Table 5. We first explain
several abbreviations in the table. S-MLM means
that we only stop the gradient of language repre-
sentations in IMLM task, while S-ITM means stop-
ping the gradient of language representations for
computing ITM and BBP. wostop indicates without
stopping the gradients of all language representa-
tions. woMIM means that we do not learn by MIM,
while wBEiTv2 tokenizer means that we learn by
MIM with the image tokenizer used in BEiTv2.
Multi-task is a variation that uses straightforward
multi-task learning to optimize the three encoders
in X-FM. To make a fair comparison, we also train
RoBERTa, BEiTv2 and X2-VLM with the same
data noted as RoBERTa†, BEiTv2† and X2-VLM†.
Note that we also increase the fusion layers in X2-
VLM† to make the parameter sizes comparable to
our models. RoBERTa†, BEiTv2† and X2-VLM†

all have slightly better results on average than the
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Model # Params
MSCOCO (5K test set) Flickr30K (1K test set) MSCOCO (5K test set) Flickr30K (1K test set)

TR-Fine-Tune IR-Fine-Tune TR-Fine-Tune IR-Fine-Tune TR-Zero-Shot IR-Zero-Shot TR-Zero-Shot IR-Zero-Shot
R@1/R@5/R@10 R@1/R@5/R@10 R@1/R@5/R@10 R@1/R@5/R@10 R@1/R@5/R@10 R@1/R@5/R@10 R@1/R@5/R@10 R@1/R@5/R@10

ALBEF 210M 73.1/91.4/96.0 56.8/81.5/89.2 94.3/99.4/99.8 82.8/96.7/98.4 – – 90.5/98.8/99.7 76.8/93.7/96.7
VLMobase 175M 74.8/93.1/96.9 57.2/82.6/89.8 92.3/99.4/99.9 79.3/95.7/97.8 – – – –
VL-BEiT 175M 79.5/–/– 61.5/–/– 95.8/–/– 83.9/–/– – – – –
OmniVL 288M 76.8/93.6/97.3 58.5/82.6/89.5 94.9/9.6/99.9 83.4/97.0/98.6 – – – –
X-VLM 216M 80.4/95.5/98.2 63.1/85.7/91.6 96.8/99.8/100 86.1/97.4/98.7 70.8/92.1/96.5 55.6/82.7/90.0 85.3/97.8/99.6 71.9/93.3/96.4
X2-VLMbase 255M 80.5/95.5/97.8 62.7/84.7/90.7 97.4/99.9/100 90.0/98.6/99.3 68.4†/92.5†/96.8† 55.2†/82.2†/89.3† 85.1†/99.2†/100.0† 77.3†/95.3†/97.6†
X-FMbase 327M 81.8/96.0/98.3 64.7/86.1/91.6 97.4/100/100 88.6/97.9/98.9 73.8/93.9/97.2 59.4/83.6/90.0 90.1/99.2/99.9 79.1/95.2/97.3

More Data
CLIP 490M – – 88.7/98.0/99.2 76.7/93.6/96.4 58.4/81.5/88.1 37.8/62.4/72.2 88.0/98.7/99.4 68.7/90.6/95.2
ALIGN 490M 77.0/93.5/96.9 59.9/83.3/89.8 95.3/99.8/100 84.9/97.4/98.6 58.6/83.0/89.7 45.6/69.8/78.6 88.6/98.7/99.7 75.7/93.8/96.8
Florence 893M 81.8/95.2/– 63.2/85.7/– 97.2/99.9/– 87.9/98.1/– 64.7/85.9/– 47.2/71.4/– 90.9/99.1/– 76.7/93.6/–
X2-VLMbase 255M 83.5/96.3/98.5 66.2/87.1/92.2 98.5/100/100 90.4/98.2/99.3 71.7†/93.4†/97.5† 58.3†/84.7†/91.0† 84.6†/99.1†/99.9† 79.2†/96.4†/98.0†

X-FMbase 327M 84.2/96.4/98.4 67.0/87.2/92.4 98.1/100/100 89.9/98.6/99.4 77.6/94.8/97.7 61.1/84.5/90.6 93.4/99.8/99.9 84.1/96.5/98.1

Super-Large Models
CoCa 2.1B – – – – 66.3/86.2/91.8 51.2/74.2/82.0 92.5/99.5/99.9 80.4/95.7/97.7
BEiT-3 1.9B 84.8/96.5/98.3 67.2/87.7/92.8 98.0/100/100 90.3/98.7/99.5 – – 94.9/99.9/100.0 81.5/95.6/97.8

Table 3: Results of text-retrieval (TR) and image-retrieval (IR) on COCO and Flickr30K. † denotes our reproduced
results with the officially released models. In more data setting, we use Conceptual 12M dataset (CC-12M) (Chang-
pinyo et al., 2021) and LAION (Schuhmann et al., 2022) as additional datasets. More details are explained in
Appendix B. Giant models with over 1B parameters (e.g., BEiT-3) are in grey since they are not directly comparable
with other models.
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CLIP B/16-224px 80.2 92.8 96.2 83.1 86.7 59.5 79.2 93.1 97.1 99.0 99.0 30.1 78.4 75.5 94.7 86.6 83.5 69.5
FLAVA B/16-224px 75.5 88.5 92.9 77.7 70.9 47.3 77.3 84.8 98.1 99.0 98.9 28.9 82.1 57.1 95.7 79.5 85.3 61.1
DaVinci B/16-224px 77.7 90.1 94.0 80.1 74.6 49.6 78.3 88.2 96.9 99.0 99.2 29.9 – – – – – –
X-FMbase B/16-224px 81.2 90.5 97.4 86.2 88.3 47.4 80.0 90.2 96.4 99.0 99.2 24.9 93.9 60.6 97.1 90.9 82.4 72.6

Table 4: Linear evaluation performance of four foundation models over 18 datasets. B/16-224px means base
size model, 16*16 patches, and 224*224 resolution, respectively. The best performance is identified with bold.

official ones. From the results, we have the follow-
ing observations.

First, both designs (stop gradient and vision-
language guided MIM) bring improvements, and
the combination can make further improvements
on all three downstream tasks (column 10 vs. oth-
ers). Second, without separated language represen-
tations, models always perform worse on language
understanding tasks (column 10 vs. 2,3,4). Be-
sides, the separate language representations in the
IMLM task on image-text data are helpful for multi-
modal tasks (column 2 vs. 4). As we point out in
section 1, the fusion encoder can concentrate on
learning the alignments between language and vi-
sion features instead of predicting masked tokens
with clues from other visible text tokens. Although
S-ITM shows slight side effects (column 4 vs. 3),
stopping the gradients of language representation
in the fusion encoder is necessary to simultane-
ously achieve strong language understanding and
vision-language understanding capability. Third,
the vision-language guided MIM task is useful for
both vision-language and vision learning (column
10 vs. 6). Meanwhile, the targets in our MIM task

are better than the BEiTv2 tokenizer (column 10
vs. 7). Four, X-FM is much better than a naive
multi-task learning strategy for a foundation model,
compared with which, X-FMbase improves an aver-
age of 0.9%, 1.7% and 1.6% on language, vision,
and vision-language tasks, respectively (column 10
vs. 9). Five, X-FM is also better than foundation
models specifically designed for language, vision,
and vision-language tasks with the same training
corpus (column 10 vs. 1,5,8).

5 Limitations and Potential Risks

Limitations. Like most existing work on foun-
dation models, the entire project consumed over
5 A100 GPU years on a computing cluster with
high electricity costs, although we only tested base
models. There is still potential for efficiency im-
provement through sparse attention (Zaheer et al.,
2020) or the lottery ticket hypothesis (Frankle and
Carbin, 2018). We will explore the techniques to
improve the training efficiency and reduce the car-
bon footprint so that we can adhere to the proposals
on “green” deep learning (Schwartz et al., 2020;
Xu et al., 2021).

558



X-FMbase

RoBERTa† S-MLM S-ITM wostop BEiTv2† woMIM wBEiTv2 Tokenizer X2-VLM† Multi-task ALL
Task Eval. 1 2 3 4 5 6 7 8 9 10

MNLI FT 87.7 87.4 87.3 87.7 – – – – 87.4 87.6
CoLA FT 63.2 61.6 63.6 64.2 – – – – 62.2 65.2
MRPC FT 90.7 92.2 91.1 90.7 – – – – 92.0 92.5
QQP FT 91.5 91.6 91.6 91.6 – – – – 91.6 91.6
SST-2 FT 95.0 95.1 94.2 94.6 – – – – 94.4 95.3
QNLI FT 93.1 93.0 93.2 92.5 – – – – 92.8 92.9
RTE FT 80.9 79.1 81.6 81.2 – – – – 79.8 81.9
STS-B FT 90.9 90.7 90.7 90.4 – – – – 90.1 90.8

Language Avg. 86.6 86.4 86.7 86.6 – – – – 86.3 87.2

ImageNet FT – – – – 85.5 84.8 85.0 – 85.0 85.3
ImageNet LE – – – – 80.5 79.1 79.4 – 79.3 81.1
Food101 LE – – – – 88.2 86.9 87.2 – 86.9 88.7
CIFAR10 LE – – – – 95.3 96.6 96.5 – 96.6 97.5
CIFAR100 LE – – – – 81.5 83.3 83.9 – 84.1 86.9
Pets LE – – – – 93.1 88.1 88.5 – 88.2 90.7
DTD LE – – – – 78.4 77.7 76.9 – 78.0 78.7
Flowers102 LE – – – – 95.7 94.1 94.5 – 94.2 97.1

Vision Avg. – – – – 87.3 86.3 86.5 – 86.5 88.2

VQAv2 FT – 78.8 78.5 78.7 – 78.3 78.2 78.0 78.2 78.6
NLVR2 FT – 86.3 86.0 86.4 – 85.9 85.5 86.2 86.1 86.7
Flickr30K TR R@1 ZS – 88.3 87.2 87.1 – 87.1 87.2 87.7 85.0 89.3
Flickr30K IR R@1 ZS – 76.6 74.9 75.8 – 76.1 75.3 75.1 75.6 77.4
Flickr30K TR R@1 FT – 97.5 97.0 97.2 – 96.4 96.7 97.0 97.0 97.7
Flickr30K IR R@1 FT – 87.4 86.9 87.3 – 86.2 86.6 86.2 86.4 87.4
COCO TR R@1 ZS – 72.0 72.1 70.5 – 73.0 72.1 73.2 69.9 72.8
COCO IR R@1 ZS – 58.4 57.1 57.7 – 58.2 57.7 57.7 56.5 59.0
COCO TR R@1 FT – 81.2 80.2 80.9 – 80.6 80.1 80.3 80.0 81.2
COCO IR R@1 FT – 64.2 63.4 63.6 – 63.7 63.0 63.1 63.0 64.0

Vision-Language Avg. – 79.1 78.3 78.5 – 78.6 78.2 78.5 77.8 79.4

Table 5: Ablation studies on vision, language, and vision-language tasks. We use the same settings as Table 2.
“ALL” means we use both of our proposed techniques. To compare fairly, we pre-train all variants with the same
data at the same settings for both pre-training and fine-tuning. Avg. means the average score.

Method # Params
VQA NLVR2 RefCOCO+

test-dev test-std dev test-P val testAd testBd

ALBEF 210M 74.5 74.7 80.2 80.5 – – –
VLMobase 175M 76.6 76.9 82.8 83.3 – – –
METER 341M 77.7 77.6 82.3 83.1 – – –
VL-BEiT 175M 77.5 77.8 81.9 82.7 – – –
BLIPbase 240M 78.2 78.2 82.5 83.1 – – –
X-VLM 216M 78.1 78.1 84.2 84.2 80.2 86.4 71.0
OFAbase 182M 78.0 78.1 – – 81.4 87.2 74.3
OmniVL 288M 78.3 78.4 – – – – –
X2-VLMbase 255M 79.2 79.3 85.9 86.1 85.4 89.2 77.3
X-FMbase 327M 79.1 79.2 86.3 86.5 84.8 89.7 79.1

More Data
SimVLMbase 273M 77.9 78.1 81.7 81.8 – – –
X2-VLMbase 255M 80.4 80.2 86.2 87.0 85.2 90.3 78.4
X-FMbase 327M 80.5 80.4 87.6 88.4 86.1 90.4 79.8

Super-Large Models
CoCa 2.1B 82.3 82.3 86.1 87.0 – – –
BEiT-3 1.9B 84.2 84.0 91.5 92.6 – – –

Table 6: Results on VQA, visual reasoning and visual
grounding. Giant models with over 1B parameters (e.g.,
CoCa and BEiT-3) are in grey because they are not
directly comparable with other models.

Due to considerations of fair comparisons and
computational resources, we did not try super-large
models which use at least 1.9B or more parameters
like BEITv3 (Wang et al., 2022d), CoCa (Yu et al.,
2022) and PaLI (Chen et al., 2022). We also did not
pre-train large size model on large-scale datasets.
However, scalability is also an important factor for

foundation models. We leave the investigations to
future work.

Potential Risks. The image-text pairs use for
training our model are mostly derived from lexical
databases and image queries in English, resulting in
source material with a North American or Western
European bias.

6 Conclusion

In this work, we address the problem of how to
build a general foundation model that can perform
the best for all the understanding tasks of language,
vision, and vision-language. We propose a new
method for training general foundation model with
two new and effective techniques, bringing in X-
FM, to learn rich language, vision, and vision-
language representations at the same time. Experi-
mental results demonstrate that X-FM outperforms
other general foundation models by a large margin.
Moreover, X-FM can even be better than or compa-
rable to the SOTA foundation models specifically
designed for language, vision, or vision-language
understanding tasks.
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A Comparison of Foundation Models

Table 7 shows an extensive comparison of recent
foundation models and X-FM on multiple axes.
Previous work either (i) perform best on uni-modal
tasks (Liu et al., 2019; Peng et al., 2022) or vision-
language tasks (Zeng et al., 2021, 2022); (2) tar-
get a specific uni-modal domain along with part
of vision-and-language tasks (Wang et al., 2021a;
Radford et al., 2021; Jia et al., 2021; Wang et al.,
2021c; Yu et al., 2022; Wang et al., 2022b; Diao
et al., 2022); or (3) target all domains but cannot
perform best on all the tasks (Li et al., 2021c; Singh
et al., 2021; Zhu et al., 2022). Our model, X-FM,
is a general foundation model that can perform the
best for all the understanding tasks of language,
vision, and vision language.

B Details of Pre-training Datasets

We conduct our experiments on several widely
used public datasets, consisting of two in-domain
datasets, COCO (Lin et al., 2014) and Visual
Genome (VG) (Krishna et al., 2017), and two out-
of-domain datasets, SBU Captions (Ordonez et al.,
2011) and Conceptual Captions (CC) (Sharma
et al., 2018). Following X-VLM (Zeng et al., 2021,
2022), we use annotations of objects and regions
from RefCOCO (Yu et al., 2016), Objects365 (Shao
et al., 2019) and OpenImages (Kuznetsova et al.,
2018). We also include uni-modal data, RoBERTa
corpus (Liu et al., 2019), C4 datasets (Raffel et al.,
2020) and Imagenet21K (Ridnik et al., 2021).

For our “more data" setting, we scale up the
pre-training dataset by including image-text pairs
from Conceptual 12M dataset (CC-12M) (Chang-
pinyo et al., 2021) and LAION (Schuhmann et al.,
2022). Thanks to LAION, we can use a large-scale
public corpus of image-text pairs. However, we
note that there are amounts of “low-quality" im-
age text pairs, as it is only filtered by the CLIP
score. The clip score is deceptive when an image
contains word tokens in its caption. Therefore, we
apply three filters, OCR filter, text filter, and image
filter, to capture “high-quality" image-text pairs
from LAION. Note that we only use English data
in LAION. The OCR filter will remove an image
(image-text pair) when its OCR text contains more
than four words or any token in the caption. The
text filter will remove a text image (image-text pair)
if it is an address or contains only digits or symbols.
The image filter will remove an image (image-text

pair) if the shorter edge is smaller than 224 pixels,
and also remove an image (image-text pair) if the
height/width or width/height ratio is greater than
3. Finally, we have 1.3B paired data after all three
filters. Statistics of the pre-training datasets are
shown in Table 8.

C Details of Downstream Tasks

We report overall performance on eight language
tasks from GLUE (Wang et al., 2019), eight vi-
sion tasks following OmniVL (Wang et al., 2022a)
(More image classification tasks can be found in
Appendix ??.), four multi-modal tasks, which are
text-image retrieval on MSCOCO and Flickr, visual
question answering (VQA (Goyal et al., 2017)), vi-
sual reasoning (NLVR2 (Suhr et al., 2019a)) and vi-
sual grounding (RefCOCO+ (Yu et al., 2016)). For
image-text retrieval task, we report both zero-shot
results and fine-tuned results. For the ImageNet
classification task, we report both linear evaluation
results and fine-tuning results. The other vision
tasks are evaluated in the linear evaluation setting.
All the other tasks are evaluated in the fine-tuning
setting. Because the image resolution differs be-
tween pre-training and fine-tuning, the position
parameters are adapted using linear interpolation.
For all downstream tasks, we apply random re-
size crops and horizontal flips augmentation for the
images during training. More details of network ar-
chitectures and hyper-parameters setups are given
in Appendix D.

Language Understanding.
We conduct experiments on GLUE bench-
mark including MNLI (Williams et al., 2018),
CoLA (Warstadt et al., 2019), MRPC (Dolan and
Brockett, 2005), QQP (Iyer et al., 2017), SST-
2 (Socher et al., 2013), QNLI (Rajpurkar et al.,
2016), RTE (Dagan et al., 2005; Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al., 2009),
and STS-B (Agirre et al., 2007). We follow the
practice of BERT (Devlin et al., 2019; Liu et al.,
2019) and feed the input into the language encoder,
and the hidden state of the [CLS] is fed into a new
multi-class linear classifier or regression head.

Vision Understanding.
We conduct vision experiments on both fine-tuning
and linear evaluation (linear eval). The linear eval-
uation follows a common practice (Caron et al.,
2021; He et al., 2020; Singh et al., 2021) in self-
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Methods
Multimodal data Pretraining Objectives Fusion Arch. Target Modalities

public dataset(s) size Contr. ITM BBP (M/P)LM Unimodal ST CT MT V CV&L MV&L L

RoBERTa (Liu et al., 2019) – – – – – – – MLM – – – – – – !

BEiTv2 (Peng et al., 2022) – – – – – – – MIM – – – ! – – –
X-VLM (Zeng et al., 2021, 2022) ! Combination 5M ! ! ! MLM – – ! – – ! ! –
VLMo (Wang et al., 2021a) ! Combination 5M ! ! – MLM MLM+MIM – – ! – ! ! –
CLIP (Radford et al., 2021) % WebImageText 400M ! – – – – – – – ! ! – –
ALIGN (Jia et al., 2021) % JFT 1.8B ! – – – – – – – ! ! – –
SimVLM (Wang et al., 2021c) % JFT 1.8B – – – PrefixLM PrefixLM ! – – ∗ – ! !

CoCa (Yu et al., 2022) % JFT 4.8B ! – – LM – ! – – ! ! ! –
UNIMO-2 (Li et al., 2021c) ! Combination 5M – ! – MLM VCL ! – – ! ! ! !

OFA (Wang et al., 2022b) ! Combination 15M – – – LM LM ! – – ∗ – ! !

DaVinci (Diao et al., 2022) ! Combination 46M – – – PrefixLM + PrefixIM PrefixLM ! – – ! – ! !

FLAVA (Singh et al., 2021) ! Combination 70M ! ! – MLM MLM+MIM ! – – ! ! ! !

Uni-Perceiver-MoE (Zhu et al., 2022) ! Combination 116M – ! – LM+MLM LM+MLM+Classify. ! – – ! ! ! !

X-FM ! Combination 5M ! ! ! MLM+MIM MLM+MIM – ! – ! ! ! !

Super-Large Models
Flamingo (Alayrac et al., 2022) % Combination 2.2B – – – LM – ! – – – ! ! –
BEiT-v3 (Wang et al., 2022d) ! Combination 21M – – – MLM MLM+MIM – – ! ∗ ! ! –
PaLI (Chen et al., 2022) % WebImageText 41B – – – LM – ! – – ! ! ! !

Table 7: Comparison of recent foundation models in different modalities. Contr. indicates contrastive learning.
ITM is short for image-text matching. BBP represents boundary box prediction. (M/P)LM means image-conditioned
(masked/prefix) language modeling. V, CV&L, MV&L and L stand for vision tasks, cross-modal retrieval tasks,
multi-modal fusion tasks and language tasks respectively. ST, CT and MT are abbreviations for single Transformer,
cross-attention Transformer and multiway Transformer. VCL stands for visual contrastive learning. ∗ means the
modality is partially targeted (SimVLM and OFA include ImageNet.). Giant models with over 1B parameters (e.g.
BEiT-3) are in grey since they are not directly comparable with other models.

Dataset # Images # Texts # Objects # Regions

COCO 0.11M 0.55M 0.45M -
VG 0.10M - 2.0M 3.7M
SBU 0.86M 0.86M - -
CC-3M 2.9M 2.9M - -
Objects365 0.58M - 2.0M -
OpenImages 1.7M - 4.2M -
C4 - 800GB - -
RoBERTa Corpus - 160GB - -
ImageNet-21k 14M - - -

More Data
CC-12M 11.1M 11.1M - -
LAION 1.3B 1.3B - -

Table 8: Statistics of the pre-training datasets.

supervised learning to evaluate the representation
quality, where the pre-trained backbone model
is frozen, and an MLP head is appended on top
of it. We choose 7 popular datasets following
OmnVL (Wang et al., 2022a): ImageNet (Rus-
sakovsky et al., 2015), Food101 (Bossard et al.,
2014), CIFAR10 (Krizhevsky et al., 2009), CI-
FAR100 (Krizhevsky et al., 2009), DTD (Cimpoi
et al., 2014), Pets (Parkhi et al., 2012) and Flow-
ers102 (Nilsback and Zisserman, 2008).

Vision-Language Understanding.
Image-Text Retrieval We evaluate X-FM on both
MSCOCO and Flickr30K datasets. We adopt the
widely used Karpathy split (Karpathy and Li, 2015)
for both datasets. Following the previous work (Li
et al., 2021a; Zeng et al., 2021, 2022), we first
encode images and texts separately and calculate

s(I, T ) to obtain the top-k candidates, and then use
the fusion encoder to re-rank the candidates.
Visual Question Answering The task requires the
model to predict an answer given an image and
a question. We evaluate X-FM on the VQA v2.0
dataset (Goyal et al., 2017). Following the previous
work (Zeng et al., 2021), we use a Transformer
decoder to generate answers based on the outputs of
the fusion module. The decoder network shares the
same network architecture with the fusion encoder.
Note that we use an image resolution of 768*768
for the final result of X-FMbase, and use an image
resolution of 480*480 for X-FMbase in ablation
studies for efficient fine-tuning.
Visual Reasoning We evaluate X-FM on a widely
used benchmark NLVR2 (Suhr et al., 2019b). The
task allows the model to determine whether a text
describes the relations between two images. Fol-
lowing previous work (Wang et al., 2021a; Bao
et al., 2022), we formulate the triplet input into two
image-text pairs, each containing the text descrip-
tion and an image. We then concatenate the final
output [CLS] features of the fusion module of the
two pairs to predict the label.
Visual Grounding We evaluate X-FM on Ref-
COCO+ (Yu et al., 2016). Given an image and
a text description as input, the final output [CLS]
features of the fusion module is utilized to predict
the bounding box (cx, cy, w, h), i.e. the normal-
ized center coordinates, width, and height.
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Model Param Hidden Layers
Total Trans. Vision Text Fusion

X-FMbase 327M 284M 768 12 12 12

Table 9: Size variants of X-FM. All modules consist of
transformer layers. Param indicates the parameter. Total
means the total parameter number, and Trans. indicates
the parameter number for Transformer layers.

D Details of hyper parameters

Pre-training X-FMbase is implemented with a
12-layer language encoder, a 12-layer vision en-
coder, and a 12-layer fusion encoder, 768 dimen-
sions for hidden states, 3072 for intermediate size,
and 128 for maximum input length. We initialize
the language encoder with RoBERTa and the vision
encoder with BEiTv2. The weight decay is set to
0.01 with β1 = 0.9, β2 = 0.98. The learning rate
is 1e-4 with a warm-up period for the first 2500
steps and then linearly decayed to 0. In each batch,
there are 3072 image-text pairs, 3072 images, and
8192 text-only sentences. We use center-crop to
resize each image to the size of 224×224. The
model sizes and default hyper-parameter settings
are shown in Table 9 and Table 10, respectively.

config value
optimizer AdamW

learning rate 1e-4
weight decay 0.01

optimizer momentum β1, β2=0.9, 0.999
language batch size 8192

vision batch size 3072
vision-language batch size 3072

learning rate schedule linear decay
warmup steps 2500
training steps 200k
augmentation RandomResizedCrop

image res 224*224
patch size 16

text length for MLM 128
text length for IMLM 30

Table 10: Pre-training setting.

Fine-tuning The learning rate is ∈ {1e-5, 2e-
5, 5e-5} and our model is optimized by AdamW.
Because the image resolution differs between pre-
training and fine-tuning, the position parameters
are adapted using linear interpolation. For all down-
stream tasks, we apply random resize crops and
horizontal flips augmentation during training. The
default settings for text classification, image clas-
sification and vision-language understanding are

shown in Tables 11, 12, 13 and 14, respectively.
Note that the resolution for VQA is different as
described in Section C.

config value
optimizer AdamW

learning rate {1e-5, 2e-5, 5e-5}
weight decay 0.0

optimizer momentum β1, β2=0.9, 0.999
batch size {16, 32, 64}

learning rate schedule linear decay
warmup ratio 0.0

training epochs {5, 10, 20}

Table 11: Text classification: GLUE setting.

config value
optimizer AdamW

learning rate [2e-5, 4e-5]
weight decay 0.01

optimizer momentum β1, β2=0.9, 0.999
batch size [256, 2048]

learning rate schedule linear decay
warmup rate 0.1

training epochs 100
augmentation RandomResizedCrop

image res 224*224
patch size 16

Table 12: Image classification: Linear probing setting.
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config value
optimizer AdamW

learning rate 4e-5
minimal learning rate 1e-7

weight decay 0.01
optimizer momentum β1, β2=0.9, 0.999

batch size 1024
learning rate schedule linear decay

warmup rate 0.1
training epochs 100
augmentation RandomResizedCrop

image res 224*224
patch size 16

label smoothing 0.1
mixup prob. 1.0
cutmix prob. 1.0

Table 13: ImageNet classification: Fine-tuning setting.

config value
optimizer AdamW

learning rate {1e-5, 2e-5, 5e-5}
weight decay 0.01

optimizer momentum β1, β2=0.9, 0.999
batch size {64, 192, 512}

learning rate schedule linear decay
warmup rate 0.1

training epochs {10, 15, 20}
augmentation RandomResizedCrop

image res 384*384
patch size 16

Table 14: Vision-Language understanding: fine-tuning
setting.
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