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Abstract

Parameter-efficient fine-tuning (PEFT) meth-
ods have provided an effective way for adapting
large vision-language models to specific tasks
or scenarios. Typically, they learn a very small
scale of parameters for pre-trained models in a
white-box formulation, which assumes model
architectures to be known and parameters to
be accessible. However, large models are of-
ten not open-source due to considerations of
preventing abuse or commercial factors, hence
posing a barrier to the deployment of white-box
PEFT methods. To alleviate the dependence
on model accessibility, we introduce collabora-
tive black-box tuning (CBBT) for both textual
prompt optimization and output feature adap-
tation for black-box models. Specifically, con-
sidering that the backpropagation gradients are
blocked, we approximate the gradients of tex-
tual prompts by analyzing the predictions with
perturbed prompts. Secondly, a lightweight
adapter is deployed over the output feature of
the inaccessible model, further facilitating the
model adaptation process. Empowered with
these designs, our CBBT is extensively eval-
uated on eleven downstream benchmarks and
achieves remarkable improvements compared
to existing black-box VL adaptation methods.
Our code will be made publicly available.

1 Introduction

Large-scale vision-language (VL) models (Radford
et al., 2021; Jia et al., 2021; Li et al., 2021; Yao
etal., 2021; Alayrac et al., 2022; Yuan et al., 2021)
have demonstrated remarkable performance in a
wide range of applications. Various model fine-
tuning methods have been proposed to exploit the
potential of pre-trained VL models for downstream
vision (Zhou et al., 2022b; Lu et al., 2022b; Wang
et al., 2022; Sun et al., 2022c; Zhang et al., 2022;
Wortsman et al., 2022; Li et al., 2023) and nat-
ural language processing (Lu et al., 2022a; Yan
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et al., 2022) tasks. Most existing methods conduct
parameter-efficient fine-tuning (PEFT (Houlsby
et al., 2019)), which updates a tiny fraction of the
model parameters or introduces a small number
of extra parameters for tuning, in order to trans-
fer pre-trained knowledge in a computation- and
data-efficient manner.

Although impressive improvements have been
achieved, standard PEFT methods need to pass
signals forward and backward through the entire
pre-trained model to update the parameters, which
relies on the availability of the architecture, param-
eters, and even the inference source code of the
model. Nevertheless, the trend of building machine
learning models as a service leads to many propri-
etary services that only provide an API interface
for model inference, e.g., ChatGPT, Bard, and GPT-
4, where the parameters and inference code of the
models are not open-source due to commercial or
safety considerations. Under such black-box cir-
cumstances, existing PEFT methods can hardly be
adopted. Thus, it is worthwhile to develop methods
that can tune pre-trained VL models in a black-box
setting. Moreover, in the era of large foundation
models, running super large pre-trained models on
local devices can be very costly as the scale of the
pre-trained model has constantly increased. Al-
though existing PEFT methods restrict learnable
parameters to a fairly small scale, it is still a burden
to accommodate models with billions of parameters
in limited computing resources for most users.

To tackle these problem of tuning black-box VL
models, there exist a few very recent efforts. For
instance, BlackVIP (Oh et al., 2023) pioneered
black-box prompting for VL. models by learning an
asymmetric autoencoder-style coordinator with a
zeroth-order optimization to modify visual prompts
in the pixel space. However, modifying prompts
in the large pixel space causes inefficiency and the
method requires up to 9k parameters in the coordi-
nator to achieve the goal. Besides, the performance
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of their visual prompts is subject to the diverse
semantic features of a well-trained generative self-
supervised learning model. Even so, the method
demonstrates limited performance improvements
after prompting, showing that prompt tuning in the
black-box setting is very challenging.

In this paper, we propose a collaborative black-
box tuning method dubbed CBBT for tuning pre-
trained VL models and adapting them to down-
stream tasks. Unlike in BlackVIP (Oh et al., 2023),
we learn the prompt for the textual input instead of
images, and we adapt the visual features using an
adapter. The basic idea is illustrated in Fig. 1.

A query-efficient approximation method (Wier-
stra et al., 2014) is used to estimate the gradients
and optimize the textual prompt with the black-
box pre-trained VL model, from which true gradi-
ents are not accessible. Specifically, we query the
model with randomly perturbed prompts and then
summarize the change in model prediction loss to
estimate the gradient of learnable parameters (i.e.,
the prompts). We equip single-step gradient op-
timization with information from history updates
via a momentum strategy, which leads to faster
convergence and better results.

Under the circumstance where the output fea-
tures are available for the pre-trained VL models,
we further adapt the visual features by introducing
a lightweight adapter module. As demonstrated in
Fig. 1, the visual adapter can be learned effortlessly
by supervised learning, without having knowledge
of the pre-trained VL backbone.

With the joint optimization of the textual prompt
and the visual adapter, our CBBT achieves signifi-
cant model adaptation performance. To evaluate its
effectiveness, we conduct extensive experiments on
eleven downstream benchmarks, showing superior
performance compared to existing black-box VL
adaptation methods.

The main contributions of this work can be sum-
marized as follows:

* We advocate textual prompting for adapting pre-
trained black-box VL models to downstream
tasks. Satisfactory prompt tuning results are ob-
tained with an effective gradient approximation
algorithm.

* We expedite the tuning process by utilizing his-
tory updates as beneficial information for each
optimization step, which brings about acceler-
ated convergence and better results.

* We adapt the visual features jointly with the tex-
tual prompt when output features are available.
The comprehensive comparison shows that our
method achieves state-of-the-art performance
compared to other black-box tuning approaches.

2 Related Work

Black-box Prompt Tuning for Large Language
Models. BBT (Sun et al., 2022b) adopts derivative-
free optimization using covariance matrix adapta-
tion evolution strategy (CMA-ES) (Hansen et al.,
2003) to optimize the prompt in a low-dimensional
intrinsic subspace. With this method, the adapta-
tion of large language models works well on natu-
ral language tasks, surpassing even the white-box
prompting performance. BBTv2 (Sun et al., 2022a)
further enhances the capacity of BBT by using deep
prompt tuning. BDPL (Diao et al., 2022) tunes a set
of discrete prompts for language models by model-
ing the choice of words in the prompt as a policy
of reinforcement learning, and a variance-reduced
policy gradient estimator (Williams, 1992; Dong
et al., 2020; Zhou et al., 2021) is used to optimize
the discrete prompt based on loss value.
Black-box Adaptation for VL. Models. To the
best of our knowledge, BlackVIP (Oh et al., 2023)
is the first work to tackle black-box tuning problem
of pre-trained VL models. It designs an asymmet-
ric autoencoder-style coordinator to generate input-
dependent image-shaped visual prompts and opti-
mize the coordinator by zeroth-order optimization
using simultaneous perturbation stochastic approx-
imation (SPSA) (Spall, 1992, 1998, 1997). How-
ever, the improvement brought by this method (af-
ter visual prompting) is relatively limited compared
to the baseline, i.e., the pre-trained CLIP (Radford
et al., 2021). LFA (Ouali et al., 2023) liberalizes
the regimes of black-box models by assuming pre-
computed features from pre-trained backbones are
accessible. They optimize a projection layer for
a better alignment between pre-computed image
features and class prototypes by a multi-stage pro-
cedure. They first solve the orthogonal procrustes
problem (Schonemann, 1966) by singular value
decomposition (SVD) and further refine the projec-
tion matrix using adaptive reranking loss. Albeit
superior adaptation performance is obtained, we ad-
vocate that the complex-phased optimization can be
substituted by end-to-end supervised learning with
a lightweight adapter, which effortlessly provides
comparable results given labeled image features.
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Figure 1: Overview of our proposed method. We collaboratively optimize the textual prompt and the image feature
adapter for the adaptation of black-box pre-trained VL models. The prompt is optimized by estimated gradients
since backpropagation cannot be applied to the black-box model. The visual adapter module is learned by direct
supervised learning given output features from the pre-trained model.

3 Method

3.1 PEFT in the Black-box Framework

Here we introduce the general form of prompt tun-
ing and adapter method and the dilemma when
applied to black-box VL models.

Prompt tuning for VL models. Given a pre-
trained VL model, e.g., CLIP (Radford et al., 2021),
existing soft prompt tuning approaches (Zhou et al.,
2022b,a; Sun et al., 2022c¢) for classification tasks
typically prepend learnable embeddings to the class
names of the target dataset:

d(c;) = [v', ..., v, ¢]] (1)

where i € {1,...,C} denotes the index of classes,
¢; denotes word embedding of the i-th class name
c;. Forj € {1,...,M}, v/ is a learnable word
embedding whose dimension is the same as the
dimension of normal word embeddings in the vo-
cabulary. The prediction of an input image x is
obtained by computing similarities between the im-
age feature f and prompted textual class features

{t:}is:

exp({t;, )/7)
S5 exp((ty, £)/7)

where the features of images are encoded by pre-
trained image encoder f = Ency(x), and textual
class embeddings are generated by text encoder
t; = Encr(¢(c;)). (-, ) calculates the cosine sim-
ilarity and 7 is a temperature parameter.

The objective of prompt module ¢ is maximiz-
ing the classification probability of the ground-truth

P(j = ilx; ) = 2

class of few-shot image samples:

¢* = argmin L(y, , )
o]

3
= arg min — log P(y = y|x; ¢) ®
¢

When given a while-box model, it is straightfor-
ward to calculate the gradient of with respect to
the prompt, and optimization of the prompt can be
performed via gradient descent:

¢t+1 = ¢, — 77tv¢£(3/7 Z, ¢) 4)

Unfortunately, in the black-box setting, the gradi-
ents are unable to be backpropagated through the
pre-trained black-box Ency and Encr via the chain
rule, and the term V 4 L(y, «, ¢) cannot be directly
obtained. Thus, current gradient-based prompt tun-
ing methods are not feasible in this situation.
Adapter learning for VL models. Adapter learn-
ing methods (Gao et al., 2021; Zhang et al., 2022)
for VL models usually manipulate the output fea-
tures of pre-trained models for adaptation to target
tasks. For instance, an adapter module can be intro-
duced to transfer the visual features to new domains
with f = 1 (f), and then the prediction is obtained
by:

exp((ti. f)/7)
S exp((t )/7)

Learning such an adapter module by minimiz-
ing L(y, f, ) does not require back-propagation
through the entire pre-trained VL model, which
provides convenience for adaptation without know-
ing the details of the backbone model. But access

P(y=ilz; p) = S)
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to the output features of the pre-trained model is
required to construct and optimize the adapter mod-
ule (Zhang et al., 2022; Ouali et al., 2023).

Further Analyses of the Black-box PEFT. Given
a black-box pre-trained model, the unavailability
of gradients set a barrier to prompt tuning. There-
fore, we intuitively have the idea of optimizing the
prompt by estimating gradients. Input gradient ap-
proximation has been explored in the application
of black-box model attacks (Ilyas et al., 2018b,a)
and black-box model reprogramming (Tsai et al.,
2020). We employ a perturbation-based gradient
approximation method to estimate the gradient of
learnable parameters in the prompt. The estimated
gradient serves as an effective guide for the tuning
of the prompt.

Although the gradient approximation technique
provides barely satisfactory optimizing guidance,
it is still suboptimal compared to the real gradi-
ents. Merely conducting single-step gradient de-
scent based on the results of the estimated gradient
leads to inefficient training. Inspired by the pre-
vious design of optimizers, we try to expedite the
optimization based on the estimated gradient with
a momentum. The basic idea is that information
from previous updates is useful for the current step,
and accumulated gradients possibly provide more
promising exploration directions. we empirically
find that equipping the momentum strategy for gra-
dient approximation brings expedited convergence
and remarkable adaptation performance gain.

Although we have no access to the internal vari-
ables of typical black-box models, under the cir-
cumstance where output features of the pre-trained
VL backbone are available, post-processing adapter
modules can be directly learned by labeled samples
for PEFT.

Motivated by the above analyses, we propose to
adapt black-box VL models with a collaborative
PEFT consisting of optimization from two perspec-
tives. Firstly, we tune a textual prompt under the
guidance of the estimated gradient. Perturbation-
based gradient approximation and effective opti-
mization strategy are used to facilitate the training.
Secondly, we learn a lightweight adapter to transfer
pre-trained visual features. Joint optimization of
the prompt and adapter brings superior adaptation
performance. The overview of the proposed model
is illustrated in Fig. 1.

In the following, we begin by presenting the
perturbation-based gradient approximation method

in Section 3.2. Then, we explain how to expedite
the tuning process by leveraging information from
previous updates to achieve a better optimization
in Section 3.3. Finally, we introduce the adapter
module and joint training schedule in Section 3.3.

3.2 Perturbation Based Gradient
Approximation

Suppose the prompt module ¢ has parameter 6
with dimension D. Let f(8) be the loss function
defined in Eq. (3). To approximate the gradient of
the loss function with respect to 8, one possible av-
enue is to add a small increment to each dimension
of 0 and sum up the slope of all dimensions:

D
gzzf(a‘i'ﬁei)—f(a)ei 6)
i=1

B

where e; is a one-hot vector and its ¢-th element
is equal to 1. Such an approximation may work
well for low-dimensional parameters but is not suit-
able for problems where D might be large. For
example, the dimension of each word embedding
of pre-trained CLIPis 512, i.e., 8 € RMx512 Thyg
M x 512 independent API calls for the black-box
model must be applied to obtain the complete esti-
mated gradient of parameter 6, which causes inef-
ficiency.

To alleviate the cost of the above gradient esti-
mation method, we adopt a stochastic perturbation-
based gradient estimation technique formulated as:

gy = L0405 = 1O

g; is the slope of the loss function along the direc-
tion of the perturbation. €; is a vector randomly
drawn from a unit sphere with an L2-norm of 1. 3
is a small value controlling the scale of perturba-
tions. b is a scaling factor balancing the bias and
variance trade-off of the estimator.

To mitigate noise in the estimated gradients, we
sample random perturbation €; for ¢ times, and
the gradient of 0 is approximated by averaging the
slope of ¢ directions (Wierstra et al., 2014; Ilyas
et al., 2018a; Tu et al., 2019):

q
> g ®)
i=1

The upper bound of the estimation g w.r.t. the true
gradient V f(0) is analyzed in Tu et al. (2019)’s

C€j (N

g:

Q|
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Figure 2: Trend of loss during training on EuroSAT. We
adopt ADAM optimizer for expedited convergence and
superior adaptation performance.
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Setting a smaller 3 can reduce the last error term
in Eq. (9) but may cause an increase in noise due
to numerical precision. Increasing the number of
samples g reduces the first error term but consumes
more queries for the model APIL.

3.3 Effective Optimization Based on
Estimated Gradient

To expedite the optimization based on the estimated
gradient, we facilitate the tuning process by lever-
aging the momentum strategy. Specifically, we
estimate the first-order moments of the parameters’
gradient by m; = 1 - my_1 + (1 — 31) - g;. The
first-order moments accelerate the optimization and
reduce the noise in the gradient of each step. And
we obtain the adaptive estimation of the second-
order moment by v; = B2 - v;_1 + (1 — 32) - g2,
which is used to adjust the learning rate of each
dimension adaptively.

In our experiments, we use optimizers that inte-
grate the momentum as a practical implementation.
To analyze the optimization results of different op-
timizers, we illustrate the trend of normalized loss
value |£(0%) — L(0)|/ |L(0") — L(6p)| in Fig. 2.
Adam (Kingma and Ba, 2014) shows a fast and
steady convergence and satisfied final results. We
have also tried more advanced techniques, e.g.,
LAMB (You et al., 2019), but no significant im-
provement in performance is observed. Empirical
results show that optimizing the prompt with Adam
optimizer based on the estimated gradient provides

expedited convergence and superior adaptation per-
formance.

3.4 Visual Adapter Module

The pre-trained VL models can be effectively
adapted to downstream tasks through the black-box
prompt tuning method mentioned above. Mean-
while, under the assumption that having access to
the output features of the black-box model (Ouali
et al., 2023), a lightweight adapter module can be
directly learned from labeled few-shot samples.

Adapter modules (Houlsby et al., 2019; Gao
etal., 2021; Zhang et al., 2022) have been proven to
be effective in the adaptation of VL models. During
the training process of the adapter, the gradients do
not need to be back-propagated through the entire
pre-trained model, making it possible to equip the
adapter module with black box models of which
only the output features are available.

The text features have been adapted in our
method by tuning the learnable prompt. Thus, we
introduce an adapter module only for the visual fea-
tures to achieve a collaborative adaptation. Specifi-
cally, we add an adapter module to the output of the
visual encoder of the pre-trained VL. model. Access
to computed image features and labels allows the
adapter to be learned at ease through direct super-
vised learning. During training, the visual adapter
module and text prompts are optimized in turn to
achieve a joint adaptation.

In our experiment, we attempt two simple but
effective adapter designs, CLIP-Adapter (Gao et al.,
2021) and Tip-Adapter (Zhang et al., 2022). Both
of which can be well suited for the manipulation of
image features for better adaptation.

4 Experiments

4.1 Implementation Details

Datasets. We perform the few-shot adaptation
on black-box pre-trained CLIP (Radford et al.,
2021) for image classification tasks following the
general protocol in existing methods (Zhou et al.,
2022b; Ouali et al., 2023; Oh et al., 2023). In par-
ticular, we adopt 11 commonly used datasets to
evaluate our method, including ImageNet (Deng
et al., 2009), Caltech101 (Li et al., 2004), Oxford-
Pets (Parkhi et al., 2012), StanfordCars (Krause
et al., 2013), Flowers102 (Nilsback and Zisser-
man, 2008), Food101 (Bossard et al., 2014), FGV-
CAircraft (Maji et al., 2013), SUN397 (Xiao et al.,
2010), UCF101 (Soomro et al., 2012), DTD (Cim-
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Table 1: Few-shot adaptation performance on 11 image classification tasks. Black-box methods are indicated with

gray shadows.

Model Method Pets Flowers FGVCA DTD EuroSAT Cars Foodl01 SUN397 Caltech UCF ImageNet Avg.
CoOp (I ctx) 899 854 257 615 802 608 796 669 919 720 629 706
RNS50 CLIP-Adapter 879 947 330 674 859 694 770 680 925 778 604 740
Tip-Adapter 897 952 375 676 844 747 789 706 931 783 639 758
ZSCLIP 858  66.1 173 423 376 556 713 585 83 615 582 588
LFA 86.8 946 359 664 84l 736 763 713 927 710 637 748
Ours (w/o Adapter)  89.2 838 238 609 773 594 1796 65.1 91.6  69.6 623 693
Ours (CLIP-Adapter) 88.0 949 356 674 851 738 773 685 931 786 638 751
Ours (Tip-adapter) 89.9 952 373 684 853 745 785 7.0 926 794 646  176.1
CoOp (I ctx) 935 916 331 661 853 714 813 720 957 798 710 710
CoCoOp (lctx) 928 867 314 617 738 689 871 7.6 948 774 705 742
VIT/BI6 ~ CoCoOp (4ctx) 929 858 314 619 725 683 873 722 949 711 710 741
CLIP-Adapter ~ 92.1 972 433 727 8.0 790 858 743 963 842 700 804
Tip-Adapter 933 975 468 737 883 839 875 76.1 958 843 718 817
ZSCLIP 892 713 247 444 476 653  86.1 625 929 668 667 652
BlackVIP 89.7 706 250 452 731 656 866 647 937 691 671 682
LFA 924 968 460 719 873 82 87l 767 962 840 726 812
Ours (w/o adapter) 937 886 307 640 810 689 872 71.1 958 788 706 755
Ours (CLIP-Adapter) 922 972 453 733 888 812 86 748 958 846 719 810
Ours (Tip-Adapter) 938  97.8 466 741 833 835 873 759 959 849 724 819
poi et al., 2014), and EuroSAT (Helber et al., 2019). 780 * 1o
77.5 :
For each dataset, labeled few-shot samples from s
L. 77.0
each class are used as training data. £
9 76.5 60.0}9
Learnable Prompts. The learnable prompts are & 76.0 2
. e 59.5
shared across all classes in the target dataset. By de- © 755 g
] <
fault, the length of the prompt is settobe M =1, <70 0
which reduces the number of parameters in the 745 e EurosaT |
learnable prompt. A small parameter optimization 7401 4 T |sso
64 128 256 512

space helps maintain the quality of the estimated
gradients with limited resource for exploration, re-
sulting in effective tuning results. The effect of
different prompt sizes is analyzed in Sec. 4.4. To
initialize the prompt with different length, we use
"a", "a photo", "a photo of a", and "a photo of a a
photo of a" for M = 1, 2,4, 8, respectively.
Adapter Module. Following CLIP-Adapter (Gao
etal., 2021), our adaptor module adopts a two-layer
MLP that follows the pre-trained visual encoder.
The input and output dimensions are the same as
the dimension of the CLIP image feature, and the
number of hidden units is a quarter. Following
Tip-Adapter (Zhang et al., 2022), we use the aver-
aged feature of random augmented training images
from 10 epochs as the initialization of the cache to
construct the projection layer.

Training Details. We employ the official CLIP
model to evaluate our proposed method. For a com-
prehensive comparison, we conduct experiments
with different visual backbones, i.e., ResNet50 and
ViT/B16. The query number ¢ is set as ¢ = 256
by default, and its effect is discussed in Sec. 4.4.
The hyperparameters b and [ in Eq. (7) are set as
D and 1/D, respectively. D is the dimension of
the parameter in the prompt.

Number of querys used for gradient approximation

Figure 3: Ablation results of “Ours (w/o Adapter)” with
different q.

4.2 Few-shot Adaptation Performance on
Image Classification

We conduct extensive experiments on 11 datasets to
evaluate our proposed method. Table 1 reports the
16-shot adaptation performance of competing meth-
ods. For a comprehensive comparison, we include
both white-box PEFT methods (i.e., CoOp (Zhou
et al., 2022b), CoCoOp (Zhou et al., 2022a), CLIP-
Adapter (Gao et al., 2021), and Tip-Adapter (Zhang
et al., 2022)) and black-box methods (i.e., Black-
VIP (Oh et al., 2023) and LFA (Ouali et al., 2023)).
"ZSCLIP" denotes the outcomes obtained using
manually designed hard prompts.

From Table 1, our black-box prompt tuning
method (ViT/B16 backbone) surpasses previous
work Oh et al. (2023) with an average accuracy mar-
gin of 7.3% across 11 datasets, demonstrating the
effectiveness of our black-box textual prompting
for the adaptation of the VL model. Furthermore,
when the context length of the prompt is fixed as
M =1, our black-box prompt tuning method per-
forms comparably to the white-box prompt method,
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Table 2: Comparison of different black-box optimizers.

Method API calls /iter ~ EuroSAT Acc.
CMA-ES 10 61.9
SPSA-GC 10 60.1
Ours (w/o adapter) 10 62.6

i.e., CoOp (1 ctx), with a slight difference of less
than 2%.

By assuming pre-computed features are avail-
able, LFA (Ouali et al., 2023) optimizes a projec-
tion layer in a multi-stage procedure as introduced
in Section 2. We advocate that end-to-end learning
of adapter methods (Gao et al., 2021; Zhang et al.,
2022) provides a much more brief avenue mean-
while gives satisfactory performance. As shown
in Table 1, optimizing the adapter module from
CLIP-Adapter and Tip-Adapter can achieve com-
parable performance with LFA. Thus, we integrate
our black-box prompt tuning method with these
more flexible adapter modules. From Table 1, the
collaborative adaptation of black-box prompting
and adapter module brings remarkable performance
and achieves a new state-of-the-art result.

4.3 Comparison with Black-Box Optimizers

Existing black-box prompt tuning methods have
explored various effective optimization techniques
when the gradient is unavailable. Here we compare

our method with two other different optimization al-
gorithms based on our implementation. In particu-
lar, CMA-ES algorithm (Hansen et al., 2003) is con-
sidered as state-of-the-art in evolutionary computa-
tion and is previously used to optimize the prompt
for large language models (Sun et al., 2022b,a).
SPSA-GC was proposed by BlackVIP (Oh et al.,
2023) to learn a visual prompt for adaptation of
pre-trained CLIP.

For a fair comparison, we unify the number of
API calls per iteration for all competitors to 10.
This is achieved by: setting the population size of
CMA-ES as 10; setting the number of repeated
two-side estimations of SPSA-GC as 5; setting the
number of samplings of our perturbation-based gra-
dient approximation as ¢ = 10. The experiments
are conducted on CLIP ResNet50 model, and the
prompt length was set to 1. All optimizers are
trained for 750 iterations until convergence, and
the results are listed in Table 2. From the Table,
our method outperforms the SPSA-GC algorithm,
which is also based on gradient estimation. Al-
though CMA-ES exhibits faster convergence, no-
ticeable fluctuations are observed even in the later
stages of training. Our perturbation-based gradi-
ent approximation method is more suitable for the
adaption of the VL model.

5362



4.4 Ablation Study

Ablation studies are performed to evaluate the ef-
fect of various factors, including the number of
queries, the prompt length, the number of few-shot
samples, and the collaborative training schedule.
The experiments are mainly on the CLIP ResNet50
model.

Effect of the number of queries q. The number
of samplings ¢ controls the times of querying the
black-box model in each iteration. It has a signif-
icant impact on the number of API calls required
for learning the prompt. Fig. 3 illustrates the adap-
tation performance with different ¢ values. Gener-
ally, larger values of ¢ yield more reliable gradients
but also require more time and API calls for the
black-box model. To trade-off the performance and
computational cost, we use ¢ = 256 for the results
presented in Section 4.2.

Effect of prompt length. We further investigate
the effect of Prompt length M. For comparison,
all the experiments are conducted under 16-shot
training data, with the same number of sampling
(g = 256) and iterations. The results are illustrated
in Fig. 4. One can see that the trend of performance
on different tasks varies as the context length of
the prompt changes. For white-box prompt tuning,
longer prompts usually can lead to better adapta-
tion to downstream datasets, e.g., DTD and Eu-
roSAT. However, blindly lengthening the context
(e.g. M = 16) will not result in continuously ris-
ing performance. Increasing the length of context
brings little improvement for OxfordPets. We at-
tribute these results to the varying degrees of data
diversity among different tasks.

But in the case of black-box models, the experi-
mental phenomenon changes due to the influence of
gradient approximation. Lengthening the context
of the prompt brings trivial benefits and may even
result in noticeable performance degradation. The
expanded parameter space of a long context leads
to practical difficulties in gradient estimation thus
the optimization may lead to a suboptimal result.
Increasing the number of sampling ¢ may improve
the reliability of estimated gradients, but scaling up
q in proportion to the size of the prompt leads to
severe inefficiency. Thus, we use the prompt length
of 1 as a trade-off.

Effect of the number of few-shot samples. The
number of few-shot samples determines the amount
of training data used to adapt the pre-trained VL
model. To demonstrate its effect, we keep the de-

fault configuration and vary the number of sam-
ples used for prompt tuning. Both black box and
white box models undergo the same number of iter-
ations. As shown in Fig. 5, increasing the number
of samples clearly leads to better adaptation results.
Moreover, we observe that in extremely data-scarce
scenarios with only 1-shot sample per class, tuning
the prompt based on the estimated gradient outper-
forms white-box tuning on all three datasets. One
possible explanation is that optimizing with true
gradients can lead to overfitting when the amount of
data is too small. In contrast, gradient approxima-
tion provides a more robust optimization direction.
As the amount of data increases, the advantages of
direct white-box learning become more obvious.
Table 3: Ablation study on the training schedule.

Datasets P-A A-P ALT
EuroSAT 84.0 82.7 85.1
DTD 66.4 65.7 67.4
Caltech101 91.9 92.7 93.1
OxfordPets 87.9 87.5 88.0

Effect of the collaborative training schedule. In
our experiment, the prompt and the adapter module
are optimized jointly to maximize their collabora-
tive performance. During training, we alternately
update the prompt and the adapter module at differ-
ent epochs. To assess the effectiveness of this joint
optimization schedule, we conducted experiments
using three different ways of training: (i) tuning
the prompt until convergence and then optimizing
the adapter module (P-A); (ii) tuning the adapter
module until convergence and then optimizing the
prompt (A-P); (iii) our collaborative training sched-
ule (ALT). We train “Ours (CLIP-Adapter)” under
the above three schedules, and the results are shown
in Table 3. As shown in the table, recurrently up-
dating the prompt and the adapter alternately (ALT)
achieves superior collaborative adaptation perfor-
mance, demonstrating its effectiveness.

5 Conclusion

In this paper, we present CBBT, a black-box adapta-
tion approach for VL models. We effectively tune a
soft prompt for the text encoder by gradient approx-
imation and jointly learn a lightweight adapter mod-
ule to transfer the visual features of the pre-trained
backbone. Equipped with the textual prompt and
the visual adapter, our method achieves a collabo-
rative adaptation for both modalities. Experiments
on various datasets show that our CBBT performs
favorably against the state-of-the-art methods.
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Limitations

We optimize the prompt in the original high-
dimensional prompt embedding space, which
leads to unsatisfactory optimization results for the
prompt with a long context, as shown in Section 4.4.
The high-dimensional parameter in the prompt also
makes the gradient approximation more difficult.
We have tried to optimize the prompt in a smaller
subspace following the approach in BBT (Sun et al.,
2022b). But the adaptation performance decreased
a lot even though we only released a small pro-
portion of the original dimensions. The intrinsic
dimensionality property (Aghajanyan et al., 2020;
Qin et al., 2021) for vision-language pre-trained
models needs further investigation.

Besides, we optimize a continuous prompt with
the need for the token embedding layer of pre-
trained models. Learning a discrete prompt for
the adaptation of VL models is worthy of explo-
ration, considering that the discrete text prompt
provides an explicit explanation, and discrete text
inputs are more suitable for the invocation of the
latest pre-trained model APIs with natural language
inputs and/or outputs.
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A Generalization Ability of Black-Box
Prompt

To evaluate the generalization ability of our method,
we conducted experiments on the extensively eval-
vated domain shift benchmarks and base-to-new
setting (training on samples from base classes, test-
ing on samples from new classes) commonly used
in studies for adaptation of CLIP.

Generalization to other domains. Following
CoOp (Zhou et al., 2022b) and CoCoOp (Zhou
et al., 2022a), we evaluate the transferability of the
prompt learned from ImageNet to the three spe-
cially designed datasets. The results are shown in
Table 4. Given the high variance inherent in these
trials, the results are averaged over three random
re-runs to ensure reliable comparisons.

Our prompt learned by black-box optimization
performs better than CoOp with a clear margin.
Moreover, compared to CoCoOp, which relies on
input-conditioned prompts generated by a meta-
network, our vanilla prompt demonstrates superior
performance on two of the three benchmarks.
Generalization from base to new classes. Fol-
lowing CoCoOp (Zhou et al., 2022a), we split the
classes of the target dataset into two sets. In the
base-to-new setting, the methods are trained us-
ing data from base classes and tested separately on
base and new classes to evaluate the generalization
ability to unseen classes in training. The results are
shown in Table 5.

While CoOp improves pre-trained CLIP on base
classes, it fails grievously on novel classes. Co-
CoOp optimizes for each instance to gain more
generalization over an entire task. Our method
achieves comparable results to CoCoOp by tuning
a single prompt with the black-box optimizer. Opti-
mizing the prompt by estimated gradient avoids the
trend of overfitting to training samples, thus mak-
ing up the superior of our method on generalization
ability to white-box prompt tuning.

B More Results with Longer Prompt

In Fig. 4 of our paper, we optimize prompts with
different lengths under a fixed training time budget
by setting the same number of samplings ¢ as 256
for gradient approximation. Such a setting ensures
training efficiency but may lead to suboptimal re-
sults for longer prompts, resulting in a performance
drop of longer prompts. To demonstrate this, we
have conducted experiments in which the value is

scaled proportionately according to the size of the
prompt, and the results are reported in Table 6.

From the table, with sufficient training time avail-
able, proportionately scaling the samplings for tun-
ing of the longer prompts achieves stable conver-
gence and clear improvements (especially on Eu-
roSAT). Nonetheless, our optimized prompts con-
sistently outperform hand-crafted hard prompts of
any length.

C Computational Time Budget

The added computation burden of our method com-
pared to white-box prompting methods lies within
the multiple samplings required by the gradient
approximation. We provide the training duration
linked to the tuning methods presented in Table 1
on the EuroSAT dataset in Table 7. All training pro-
cedures are conducted on a single 3090 GPU. We
record the minutes used for complete training and
divide the time by the number of trained epochs to
ascertain the time per epoch. While the sampling
process inevitably elongates the training period, the
overall consumed time is acceptable.

D Analysis of the Error in Gradient
Estimation

The upper bound of the error of gradient approx-
imation is 4 ||V f(8)|3 according to Eq. (9). It
is a theoretical value obtained through multiple
bounding steps in the proof. The actual estima-
tion error of the gradient during training is much
lower than the theoretical upper bound since the ex-
periments are conducted on reasonably annotated
datasets with pre-trained CLIP and properly initial-
ized prompts. As the training proceeds, the value
of the true gradient becomes small, making the er-
ror of the estimated gradient, bounded by the true
gradient, become small simultaneously. Thus, the
results of "Ours (w/o adapter)" are closely compa-
rable to "CoOp (1 ctx)" in Table 1.

E Applying to Larger Black-Box Models

It is promising to apply our method to larger black-
box models. In fact, there exist closed-sourced
model APIs, e.g., GPT-3, that provide the fea-
ture extraction function. It is possible to adapt
pre-trained models of this kind by transferring the
extracted features. Additionally, inspired by re-
cent discrete prompt tuning approaches in Maus
et al. (2023); Wen et al. (2023), it is practically
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Table 4: Comparison of manual and learned prompt in domain generalization. The prompts are learned on 16-shot
data from ImageNet.

Methods Source Target
ImageNet ImageNet-Sketch ImageNet-A ImageNet-R
Zero-Shot CLIP 66.7 46.2 47.8 74.0
CoOp (4 ctx) 71.5 48.0 49.7 75.2
CoCoOp (4 ctx) 71.0 48.8 50.6 76.2
Ours (w/o adapter) 70.7 48.7 50.7 76.6

Table 5: Comparison of manual and learned prompt in the base-to-new generalization setting. The prompts are
learned from 16 images per base class.

OxfordPets EuroSAT DTD
Base New H Base New H Base New H
Zero-Shot CLIP  91.2 97.3 94.1 565 641 60 532 599 564
CoOp (4 ctx) 9377 953 945 922 547 68.9 794 412 542
CoCoOp (I ctx) 946 956 95.1 842 553 66.8 751 53.6 62.6
CoCoOp (4ctx) 952 97.0 96.1 86.0 599 70.6 732 554 63.1
Ours (w/o adapter) 95.8 95.8 958 90.8 71.1 79.8 77.9 51.1 61.7

Methods

Table 6: More results with longer prompt and varying samplings ¢. "ctx" denotes the length of the prompt.

Methods ctx q OxfordPets DTD EuroSAT
Zero-Shot CLIP 1 - 80.7 38.2 31.1
Ours (w/o Adapter) 1 256 89.2 60.9 77.3
Ours (CLIP-Adapter) 1 256 88.0 67.4 85.1
Ours (TIP-Adapter) 1 256 89.9 68.4 85.3
Ours (w/o Adapter) 2 256 89.0 60.2 77.5
Ours (w/o Adapter) 2 512 90.0 62.4 71.7
Ours (CLIP-Adapter) 2 512 87.5 67.2 85.4
Ours (TIP-Adapter) 2 512 89.6 68.8 85.0
Zero-Shot CLIP 4 - 83.6 40.0 24.2
Ours (w/o Adapter) 4 256 89.4 58.8 70.0
Ours (w/o Adapter) 4 1024 89.5 62.2 79.6
Ours (CLIP-Adapter) 4 1024 88.6 66.9 85.3
Ours (TIP-Adapter) 4 1024 89.8 69.3 85.2
Zero-Shot CLIP 8 - 84.2 39.3 31.0
Ours (w/o Adapter) 8 256 89.4 55.6 75.3
Ours (w/o Adapter) 8 2048 89.7 61.6 81.7
Ours (CLIP-Adapter) 8 2048 88.4 66.8 85.5
Ours (TIP-Adapter) 8 2048 90.0 68.4 85.4
feasible to discretize the learned prompts by pro- Table 7: Comparison of training time budget.
jecting the continuous embedding to discrete token
space to support a broader range of black-box mod- Methods min/epoch min/ train
els that only allows discrete input, e.g., ChatGPT, CoOp 0.017 3.3
Bard. Our research will persist in exploring more CoCoOp 0.120 1.2
practical adaptation techniques for vision-language Ours (w/o Adapter) 0.095 14.2
models. Ours (CLIP-Adapter) 0.051 7.7

Ours (Tip-Adapter) 0.054 8.1
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