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Abstract

Incremental learning plays a pivotal role in
the context of online knowledge discovery,
as it encourages large models (LM) to learn
and refresh knowledge continuously. Many
approaches have been proposed to simultane-
ously preserve knowledge from previous tasks
while learning new concepts in online NLP
applications. In this paper, we primarily fo-
cus on learning a more generalized embedding
space that could be better transferred to vari-
ous downstream sequence tasks. The key idea
is to learn from both task-agnostic and task-
specific embedding aspects so that the inher-
ent challenge of catastrophic forgetting that
arises in incremental learning scenarios can
be addressed with a more generalized solution.
We propose a dual contrastive learning (DCL)
based framework to foster the transferability
of representations across different tasks, it con-
sists of two key components: firstly, we utilize
global contrastive learning that intertwines a
task-agnostic strategy for promoting a general-
ized embedding space; secondly, considering
the domain shift from unseen distributions can
compromise the quality of learned embeddings.
We further incorporate a task-specific attention
mechanism to enhance the adaptability of task-
specific weight for various emerging tasks and
ultimately reduce errors in generic representa-
tions. Experiments over various text datasets
demonstrate that our work achieves superior
performance and outperforms the current state-
of-the-art methods.

1 Introduction

Fine-tuning a pre-trained large model (Devlin
et al., 2019; Dosovitskiy et al., 2021) on extensive
datasets has proven highly effective in addressing
a wide array of downstream NLP tasks. Despite
the significant development of such models in vari-
ous real-world applications, a prominent challenge
remains: adapting trained models to new tasks or
datasets while retaining knowledge from prior ones.

In large-scale content mining scenarios where the
landscape continually evolves, our objective is to
update the model perpetually from non-stationary
streams of the source data (e.g. the online news
summary/search (Geng et al., 2021), catalog from e-
commerce (Yang et al., 2019; Wang et al., 2021b)),
so that the model parameters/components will keep
refreshing with new data continuously involved,
which is called incremental, or continual learning.
This dynamic adaptation is essential to the web
applications that process the constant influx of new
tasks, for example, improve the performance of
online model tuning for State tracking system (Zhu
et al., 2022), sentiment analysis of lifelong user
intent in the conversation dialogue (Madotto et al.,
2021; Liu and Mazumder, 2021; Geng et al., 2021;
Chi et al., 2023).

When we typically fine-tune the pre-trained
large language model on the downstream tasks,
the model tends to adjust its learned parameters
according to the new knowledge or tasks, inad-
vertently causing the loss of previously acquired
concepts, which is called "catastrophic forget-
ting" (McCloskey and Cohen, 1989; Kirkpatrick
et al., 2017). Recent advancements have introduced
various strategies to address this challenge, which
enable the continual tuning from emerging data
while minimizing the rate of forgetting (Aljundi
et al., 2018; de Masson D’Autume et al., 2019; Han
et al., 2020; Sun et al., 2020; Huang et al., 2021).
In continual text mining, these approaches can be
broadly categorized into two categories. The first is
the experience-replay-based methods( (Sun et al.,
2020; Huang et al., 2021)), where the data from old
tasks are stored or generated to be accessed when
the model is training on new tasks. Another type of
solution is the regularized-based methods (Aljundi
et al., 2018; Han et al., 2020; Wang et al., 2021a),
in which constraints are imposed on model param-
eters or data embeddings to prevent excessive drift
while training on new tasks.
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To illustrate, consider a typical incremental learn-
ing scenario: suppose we train a model to under-
stand the sentiment of product reviews on an e-
commerce website. Later, we wish to analyze the
sentiment of movie reviews. We need to classify
the topic for a given news article even later. In such
situations, having a single model capable of han-
dling all these tasks is preferred over maintaining
separate models for each task.

In this work, different from existing solutions
that focus on preserving old knowledge from new
ones, we draw attention to the fundamental ques-
tions: How to learn a generalizable/transferable
global feature space that could achieve task-
agnosticism for future tasks? If having newly
emerged unknown tasks with domain shift, how
to select task-specific features to mitigate the dilu-
tion of essential information within the universal
embedding?

Building upon insights from recent works
(Prabhu et al., 2020), part of the features can hold
significant relevance for the current task (termed
"task-specific"), yet maybe less significant to the
following ones. Hence, relying solely on learning
task-specific features at each stage leads to contin-
ual overwriting of the universal embedding space,
which optimizes the current task but is sub-optimal
for future tasks. On the other hand, if we only
depend on task-agnostic embedding spaces for dif-
ferent data distributions from various tasks, the
model could not adequately handle the data distri-
bution of unknown, drifted tasks, potentially caus-
ing the model performance regression. Therefore,
it is amenable to refactor the process into a com-
prehensive embedding with a task-specific feature
selection mechanism, which lifts appropriate fea-
tures across the universal, transferable embedding
space, and maintains discrimination for different
emerged tasks on each step.

Taking inspiration from self-supervised learn-
ing (SSL) (Chen et al., 2020; Gao et al., 2021;
Sang et al., 2022), which can learn transferable
representations for down-stream tasks, we intro-
duce a dual contrastive learning framework that
aims to learn both task-agnostic and task-specific
representation in the generic embedding space con-
tinually. This framework comprises two integral
components: the global contrastive learning (GCL)
module and the task-specific contrastive attention
(TCA) module: GCL focuses on acquiring trans-
ferable embedding space as task-agnostic, with ad-

ditional TCA as a feature re-weighting strategy to
enhance different components in the generic rep-
resentation when the model learns from the newly
emerged tasks. Specifically, the GCL module lever-
ages the benefits of contrastive learning to discover
task-agnostic knowledge from inputs (instead of
the task-specific supervisions), so that the learned
feature embedding could suffer less from the knowl-
edge forgetting. The TCA part applies the atten-
tion mechanism (Kim et al., 2017) as a promising
feature selection/re-weighting strategy for various
task-specific components. It is used to assign a
suitable weight vector for each feature according
to its importance in the universal embedding space.
Therefore, the model can concentrate on critical
components for the task at hand, and also reduce
the drift on the major generic representations we
have acquired.

In conclusion, the main contributions of our
work could be summarized as:

• We propose an effective contrastive learning-
based method that focuses on learning more
generalizable and transferable features se-
quentially;

• We emphasize the task-specific contrastive-
based attention mechanism to better learn and
distinguish the task-specific knowledge in the
universal embedding space;

• Extensive experiments conducted on the text
classification datasets demonstrate the effec-
tiveness of our approach, which could achieve
better performance than the existing SOTA.

2 Background

2.1 Incremental Learning
Incremental learning aims to learn knowledge from
a sequence of new tasks, which is different from
multi-task learning which could observe all the
tasks during the training time. Under this scenario
that only trained on one task at each step (Li and
Hoiem, 2017; Aljundi et al., 2018; Wang et al.,
2021b; Wu et al., 2021), the models are required
to learn new information while retaining previous
skills or knowledge (from old tasks). One conven-
tional approach is to instantiate a model trained
on the old dataset and then fine-tune the model
on the new data (Girshick et al., 2014). How-
ever, this method may suffer from decayed per-
formance on the old data, which is called catas-
trophic forgetting (Li and Hoiem, 2017). Recent
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interests in continual learning have resulted in
many novel methods for continual learning. In
general, they can be grouped into two categories:
regularization-based and replay-based approaches.
Regularization-based methods would protect sig-
nificant parameters or data representations and
add more penalties to the changes on them as
regularization, like CIFDM (Wang et al., 2021a),
EWC (Kirkpatrick et al., 2017), SI (Zenke et al.,
2017) and MAS (Aljundi et al., 2018). On the
other hand, replay-based methods typically gen-
erate/store old samples from previous classes and
then apply them to training the new tasks. This
includes LAMOL (Sun et al., 2020), IDBR (Huang
et al., 2021) and MPBA++ (de Masson D’Autume
et al., 2019). Except for these two major categories,
there are some sub-category methods, including
representation alignment (Wang et al., 2019, 2020)
and knowledge distillation (Hinton et al., 2015; Re-
buffi et al., 2017). In this paper, we focus on learn-
ing transferable and generalized feature embedding
with corresponding feature re-weighting, which
maintains a more suitable universal task space and
utilizes task-specific knowledge simultaneously.

2.2 Contrastive Learning

Contrastive learning is a special case of self-
supervised learning, which typically learns with
self- supervision (Jing and Tian, 2020; Chen et al.,
2020; Gao et al., 2021; Xiang et al., 2022), and
has been demonstrated to be effective at learning
universal, generalized representations. To be more
specific, contrastive learning focuses on construct-
ing positive and negative pairs to concentrate pos-
itive samples and push apart negative ones. Ex-
cept for existing CV applications, in other areas
like the NLP, contrastive learning is also widely
used for learning better sentence embedding, Lo-
geswaran.et.al (Logeswaran and Lee, 2019) sam-
pled sentences from other documents as negative
pairs for better representation learning. Some re-
cent works (Wu et al., 2020; Fang et al., 2020; Yan
et al., 2021; Dong et al., 2022) also utilize con-
trastive learning for training Transformer models
with different negative sampling strategies, e.g.,
back-translation, or various dropout rates. In this
paper, except for achieving better transferable fea-
ture embedding for newly emerged tasks, we pro-
pose contrastive task-specific attention as the fea-
ture selection strategy, which aims to extend a
further weight constraint in the universal repre-

sentation for local/specific tasks. We call it dual-
contrastive learning. Our work could achieve better
task-agnostic and task-specific knowledge acquisi-
tion in the sequence learning process.

3 Approach

3.1 Problem Setting

We focus on continual learning for a sequence of
text classification tasks, ST = {T1, T2, · · · , Tn},
each task Tk contains a dataset (xi, yi) ∈ Dk

and the collection of classes of this task is Ck =
{c1k, c2k, . . . , cmk } (m is the number of classes in
task Tk) (Biesialska et al., 2020). We aim to
train a discriminative model, Φ(·), continuously
on newly emerging tasks, and encourage the model
to achieve an optimal equilibrium for all classes
that have been seen, by optimizing Eq. 1.

argmin
(Φ)

n∑

k=1

E(x,y)∈Dk
[L(Φ(x), y)] (1)

where L(·, ·) is a customized loss function.
One common assumption is that there is no over-

lap between the class sets from different tasks,
Ci ∩ Cj = ∅ if i ̸= j. It is not true in general
cases, so we assume that the model treats over-
lapped classes identically. Therefore, the model
pays attention to novel classes and takes advantage
of previous experiences.

3.2 Overview

The transferable property refers to an embedding’s
ability to perform effectively not only on specific
tasks but also on others. A notable hindrance to
obtaining transferable embeddings lies in managing
task-specific information. For example, certain
aspects of the embeddings may have huge impacts
on task Ti, yet are less significant to the following
task, Ti+1. The conventional neural network tends
to shift its capacity to Ti+1, leading to catastrophic
forgetting in continuous learning. Nevertheless,
training the classifier with the raw embeddings is
also a sub-optimal solution, since only the task-
specific parts of the embeddings are crucial.

To address this problem, we integrate the atten-
tion mechanism and SSL into the proposed frame-
work, which we call the Dual Contrastive Learning
framework (DCL), to address the previously men-
tioned challenges. Figure 1 illustrates the archi-
tecture and workflow of our proposed DCL frame-
work, which comprises four key components: 1)
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Figure 1: Workflow of DCL. For the current task Ti, we take data from both the memory buffer and task-specific
dataset as inputs. We feed them into a pre-trained BERT encoder to obtain the raw embeddings, which will be
refined by two collaborative modules: 1) GCL and 2) TCA. GCL produces the refined general embeddings through
a sequence of global blocks and TCA progressively adjusts the attention scores based on the outputs of the previous
global block and attention block. Finally, we compute the element-wise dot-product of the outputs of these two
modules as the final outputs.

a pre-trained encoder (PTE); 2) the task-agnostic
global contrastive learning (GCL) module; 3) a
task-specific contrastive attention (TCA) module,
and 4) a linear classifier. We employ different vari-
ants of contrastive learning to train GCL and TCA.
The details of each component will be discussed in
the following subsections.

3.3 Dual Contrastive learning Mechanism
3.3.1 Contrastive learning
Contrastive learning (Saunshi et al., 2022) is
the core of our framework, which aims to learn
a discriminative embedding space by pulling
semantically-similar instances closer, and pushing
apart negative or dissimilar instances. Contrastive
learning generally is conducted in a batch-by-batch
fashion. Specifically, for a given instance xi in
a mini-batch, contrastive learning finds its most
semantically similar neighbor x+i , encourages the
output embeddings zi, z+i (of xi and x+i ) to have
maximized agreement, and considers the rest of the
sample pairs in the mini-batch as negative pairs.
The cosine similarity (Sim(a, b) = aTb

||a|| ||b|| ) is
used as the score between instance pairs. Formally,
the training objective for a given zi in a mini-batch
with N pairs could be defined as:

ℓi = − log
esim(zi,z

+
i )/τ

∑N
j=1 e

sim(zi,z
+
j )/τ

(2)

where the τ is a temperature parameter.

3.3.2 Global Contrastive Learning Module
Unsupervised contrastive learning has proved its
substantial potential to learn a robust and expres-

sive embedding, which helps the model compre-
hend task-agnostic knowledge. In the unsupervised
setting, data augmentation is the de facto technique
that generates similar instances, which can be easily
extended to the NLP domain, such as substitution
and re-ordering. Besides the text-level augmenta-
tion, we can apply this method in the embedding
space. For example, a recently proposed frame-
work (Gao et al., 2021) generates positive pairs
by feeding input into a pre-trained encoder twice,
each with a different dropout setting. Later, any
embedding of a distinct input is used to construct
negative pairs. As shown in Figure 2 a, we define
the global embedding by the equations below.

{
zi = GCL(PTE(xi; dp))

z+i = GCL(PTE(xi; dp
′))

(3)

where PTE(·) denotes the pretrained encoder, dp
and dp′ are different dropout settings. Then, we
substitute them into Eq. 2.

LGCL =
1

N

N∑

i=1

ℓi (4)

The GCL module is a sequence of GCL blocks
Bl

g. Each one is implemented by a simple MLP.

3.3.3 Task-specific Contrastive Attention
Module

The objective of the TCA module is to produce an
attention vector. Recall that the important features
are not exactly the same across tasks, we, therefore,
adopt this attention vector to help the classifier to
focus on the informative parts.
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Figure 2: a. Unsupervised contrastive learning. If two instances xi and xj , each instance goes through the model
twice with different dropout settings. The embedding pair of the same instance is positive, otherwise negative. b.
Task-wise contrastive learning. We assume instances xi and xk are from the same task, and xj is from another
task. We similarly generate embeddings, but embedding pairs whose instances are from the same task is positive,
otherwise negative. Blue arrows indicate positive pairs. Red arrows indicate negative pairs.

We further assume that the distance between two
attention vectors should be small if they are from
the same task and be large otherwise, shown in
Figure 2 b. We guarantee this property through a
supervised contrastive learning framework (Khosla
et al., 2020).

Compared to the class-wise methods, task-wise
supervised contrastive learning is more suitable
in this scenario since it captures the differences
among multiple tasks. The loss function can be
formulated as:

LTCA =
−1

N

N∑

i=1


log

∑

ti=tk

esim(ai,a
+
k )/τ

∑
j e

sim(ai,a
+
j )/τ




(5)
where ai is the attention vector and a+i is its posi-
tive partner. Similar to the GCL module, the atten-
tion vectors are defined as:

{
ai = TCA(PTE(xi; dp), [z

l
i])

a+i = TCA(PTE(xi; dp
′), [zli])

(6)

where [zli] is a list of intermediate outputs of GCL
blocks.

The TCA module also is a sequence of blocks,
which generates the attention vector in multiple
steps. Furthermore, the TCA plays the role of fea-
ture selection, so it is valuable for knowing what
information the GCL has to adjust itself. The num-
ber of blocks of the TCA is identical to the GCL.
The [zli] contains information on how the GCL pro-
duces the feature embedding. We use Bl

g to be the
lth block from GCL and Bl

a to be the lth block of
TCA.To have better attention vector, each Bl

a uti-
lizes the outputs from both Bl−1

g and Bl−1
a to gen-

erate output, which means ali = Bl
a(a

l−1
i ⊙ zl−1

i ).

3.3.4 Final Embedding and Classifier
Once we have the global embedding zi and the
task attention vector ai for a given input (xi, yi),
we use the fully connected layer to get the final
embedding for classification and use Softmax to get
the probability vector: y′i = Softmax(FC(ai⊙zi))
where ⊙ denotes the hadamard product operator.
Finally, we train the classification component with
the conventional cross-entropy loss:

LCLS = − 1

N

N∑

i=1

yi log(y
′
i) (7)

3.4 Regularization and Replay Policy

To further prevent forgetting, we use regularization
(Li and Hoiem, 2017). For task Tt where t > 2,
we use the model trained by Tt−1 to produce both
GCL embeddings and TCA attention vectors of
Tt’s data. We use z′i and a′i to denote the GCL and
TCA outputs of xi from the current task Tt. The
λg and λt are weights. The loss functions are:

Lreg = − 1

N

N∑

i=1

(
λg

∥∥zi − z′i
∥∥+ λt

∥∥ai − a′i
∥∥)

(8)
The regularization loss forces the model to learn

the new task without changing data representations
much, which may result in catastrophic forgetting.

We also use a replay policy to overcome the
forgetting problem. Preserving a small quantity
of data is necessary. Not only for replaying, but
task-wise contrastive learning also needs data from
previous tasks. We select the ratio κ of the whole
dataset and update the memory buffer. During
the training, for every η step, the model is trained
with batches sampled from both current Tt and the
buffer. During the replay step, the weight of the
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Table 1: Different task sequences for continual text
classification.

Order # Task Sequence
1 ag → yelp → yahoo
2 yelp → yahoo → ag
3 yahoo → ag → yelp
4 ag → yelp → amazon → yahoo → dbpedia
5 yelp → yahoo → amazon → dbpedia → ag
6 dbpedia → yahoo → ag → amazon → yelp
7 yelp → ag → dbpedia → amazon → yahoo

regularization loss will be larger, because the pri-
mary goal of replaying is to enhance the knowledge
of historical tasks.

3.5 Final Loss Function
Now, we have described every component of DCL.
The final loss function is the weighted sum of each
loss function mentioned in Eq. 4 5 7 8.

L = LCLS + LGCL + LTCA + Lreg (9)

Note, during the replay phase, λg and λt are larger
than the non-replay step. Moreover, LTCA will not
be applied in the non-replay step.

4 Experiment

In this section, we follow the same protocol from
IDBR (Huang et al., 2021) to evaluate the model
performance in the continual learning scenario.

4.1 Datasets
We choose five web text classification bench-
marks (Zhang et al., 2015) (AGNews, Yelp, Ama-
zon, DBPedia and Yahoo) that cover various do-
mains, such as news classification, sentiment anal-
ysis, and Q&A classification. In summary, these
datasets have 33 classes (Amazon and Yelp have
similar labels) in the continual learning experi-
ments. We use the same dataset setting from our
baselines (Sun et al., 2020; Huang et al., 2021), in
which each task contains 115,000 training exam-
ples and 7,600 test examples. We download the
data and preprocessing code from (Huang et al.,
2021) for fair comparisons. The original data has
been split into training and test sets, so the compari-
son is on the exact same splits. We utilize Google’s
pre-trained BERT1 model to compute the raw em-
beddings, with the maximum text length as 256
words. Table 1 illustrates all the task sequences

1https://github.com/google-research/bert

that we adopted during the experiments. We exam-
ine both length-3 task sequences and length-5 task
sequences in various orders, and then execute the
task classification on the test set.

Following previous papers setting (Huang et al.,
2021), we try two different settings for datasets. (1)
We tune all the parameters on a sampled dataset
(named Sampled) by randomly sampling 2000
training, 2000 validation instances per class, and
the full test dataset containing 7600 instances for
every task. We use it to evaluate the performances
quickly, because of resource limitations. (2) We
conduct experiments on the full datasets (called
Full), which is the same as existing work such as
MBPA++ (de Masson D’Autume et al., 2019). We
use this setting to compare with SOTA to evalu-
ate our model comprehensively. It uses the same
test data mentioned above, which contains 7600
instances for each task.

4.2 Baseline and Evaluation

In our experiments, we compare our method
with many popular approaches, including Fine-
Tuning (Yogatama et al., 2019), Replay (de Mas-
son D’Autume et al., 2019; Wang et al., 2019),
Regularization (Li and Hoiem, 2017). We also
compare with some recent SOTA approaches:
MBPA++ (de Masson D’Autume et al., 2019),
LAMOL (Sun et al., 2020), IDBR (Huang et al.,
2021).

During the evaluation, we assess the model per-
formance among all observed classes. For exam-
ple, at time step k (Tk), the evaluation metrics are
computed on

⋃
0<i≤k Ci. We report the average

incremental accuracy (de Masson D’Autume et al.,
2019) that averages all accuracy obtained after each
learning step. It’s worth noting that researchers usu-
ally adopt task squences in different orders rather
than conventional K-fold validation, since tasks
are not trained independently but in a sequence
manner (Huang et al., 2021; Sun et al., 2020).

We also calculate the average forgetting mea-
sure (Chaudhry et al., 2019) to estimate the forget-
ting on old tasks. Specifically, for the j-th task, we
can calculate the corresponding maximum current
forgetting at the time t = k by the formula:

Γk
j = max

i∈[j,...,k−1]
(Acci,j −Acck,j), j < k (10)

where Acci,j indicates the accuracy of the j-th task
when the model is trained after task i. The average
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Table 2: Performance of classification on sampled datasets using averaged accuracy over 3 runs, when the model
finish training on the last task. All results are average accuracy scores. We make paired t-tests and p-values are less
than 0.01, which shows significant differences.

Methods Length-3 Task Sequences Length-5 Task Sequences
Order-1 Order-2 Order-3 Length-3 Order-4 Order-5 Order-6 Order-7 Length-5

Fine-Tuning 27.58±1.8 38.67±2.11 38.1±2.91 34.79±5.6 31.77±0.6 31.16±1.05 26.36±0.08 20.64±3.53 27.48±4.85
Replay 69.56±0.24 69.06±1.19 71.56±0.25 70.06±1.3 69.42±1.17 70.75±0.23 70.82±0.58 69.7±0.35 70.17±0.92

Regularization 71.43±0.15 71.19±0.55 72.16±0.5 71.59±0.6 72.89±0.34 72.92±0.44 73.17±0.32 72.69±0.09 72.92±0.37
IDBR 71.36±0.31 72.22±0.36 73.08±0.14 72.22±0.76 72.77±0.1 73.82±0.19 73.19±0.33 73.5±0.12 73.32±0.44
Ours 71.95±0.21 73.07±0.16 73.31±0.08 72.78±0.61 73.25±0.18 74.34±0.25 74.18±0.4 73.94±0.09 73.93±0.47

Multi-Task 74.27±0.69 75.16±0.64

(a) (b)

Figure 3: After finishing one task training, the forgetting measure is calculated. (a) Forgetting measure order 4-6.
(b) Compare our method with IDBR on averaged forgetting measure of order 4-6.

forgetting measure is written as the following:

Γk =
1

k − 1

k−1∑

j=1

(Γk
j ) (11)

which means the average forgetting measures of
previous k − 1 tasks after the kth task has been
trained.

4.3 Result and Analysis on Sampled Datasets

In this section, we show the performance of our
model that was trained on all tasks, with their aver-
age accuracy on test data under the sampled setting.
The results are in Table 2. We run each method
three times for all orders. We could see that only
1% of stored instances for experience could achieve
promising results and help reduce severe knowl-
edge forgetting when fine-tuning. Furthermore,
compared with existing works that also work based
on experience replay, it is obvious that our pro-
posed approach shows consistent improvements
in all orders. The results indicate that contrastive
learning under task-agnostic as well as specific fea-
ture embedding could further improve performance
consistently, under all circumstances. Our model

surpasses most of the baselines substantially. For
IDBR, we get better results in every task sequence,
especially for longer ones. That shows our mecha-
nism could produce more transferable embeddings
across different tasks, because of integrating task-
agnostic and task-specific information effectively,
which is better than others. For further clarifica-
tion, we use the paired t-test method following the
(Sun et al., 2020; Huang et al., 2021). We compare
our approach to every baseline for length-3 and
length-5, respectively. Each length-3 order exper-
iment involves nine numbers of our method and
one baseline, and twelve for each length-5 order.
All the p-values are less than 0.01. These results
demonstrate that there are significant differences.

4.4 Result and Analysis on Full Datasets

We compare our performance with the previous
SOTA methods such as IDBR, MBPA++, and
LAMOL (de Masson D’Autume et al., 2019; Sun
et al., 2020; Huang et al., 2021), by conducting
experiments on the same training and testing sets
under the full setting. Table 3 shows the results.
Specifically, for MBPA++, there are two different
implementation (de Masson D’Autume et al., 2019;
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Table 3: Performance of classification on the full datasets using averaged accuracy over 2 runs, when the model
finished training all tasks. TT: whether task-id is available during training. TI: whether task-id is available during
inference. LA: whether need local adaptation during inference. PM: pretrained models used for continual learning.

Methods TT TI LA PM Length-5 Task Sequences
Order-4 Order-5 Order-6 Order-7 Length-5

MBPA++ v1 ◦ ◦ • BERT 70.7 70.2 70.9 70.8 70.7
MBPA++ v2 ◦ ◦ • BERT 74.9 73.1 74.9 74.1 74.3

LAMOL • • ◦ GPT-2 76.1 76.1 77.2 76.7 76.5
IDBR • ◦ ◦ BERT 75.9 76.2 76.4 76.7 76.3
Ours • ◦ ◦ BERT 77.3 77.1 77.5 77.4 77.3

Sun et al., 2020). Our model significantly outper-
forms it, although it applies local adaptation during
the testing phase. For LAMOL, the model applies
the additional task identifier for inference, which is
invisible in our experiment setting and makes the
prediction much easier because of the extra infor-
mation. The IDBR adapts specific knowledge to
streams of tasks by disentangling the hidden repre-
sentation via different induction biases. Our model
still exceeds the performance of both IDBR and
LAMOL with a clear margin. Additionally, com-
pared with the Sampled setting, our method gains
more improvement versus IDBR in the Full set-
ting. That shows that contrastive learning is highly
capable when dealing with large datasets.

The forgetting measures are shown in Figure 3.
The results show that our model significantly re-
lieves catastrophic forgetting. Even though longer
sequences of tasks generally have a more severe
forgetting problem, the absolute value is still rea-
sonable. Here, we shows the forgetting measure
over length-5 sequences average score of both ours
and IDBR. It reveals that our method alleviates
catastrophic forgetting better.

4.5 Ablation Study and Parameter Analysis

4.5.1 Influence of GCL and TCA
We analyze the significance of different compo-
nents in our approach: the global contrastive learn-
ing component (GCL) and the task-specific atten-
tion mechanism (TCA). If we entirely remove one
of the components, the model will degenerate into
a stack of GCL/TCA blocks, because the GCL and
TCA work dependently. When we analyze one
component, we enable the contrastive loss of the
target component and disable the contrastive loss
of another one. When all of them are applied to-
gether, our approach is conducted. We use a model
that is a stack of GCL/TCA blocks without con-
trastive learning, as the plain model without any
components. Here, we provide the results to ana-

lyze the effectiveness of each part on both length-3
and length-5 orders for our classification bench-
mark, with the average accuracy on all the order
sequences as the evaluation metrics.

From the results in Table 4, we can observe how
each component contributes to the effectiveness
of the whole performance. (1). When only con-
sidering the global contrastive learning component
(GCL), we could observe a remarkable increase
compared with the MLP stack model with replay,
which shows that contrastive learning could help
the model learn more transferable features to re-
duce the relative knowledge forgetting. (2) When
considering re-weighting the different features in
the universal embedding space (using attention
strategy TCA), it is apparent that the accuracy also
increases. The result shows that the attention mech-
anism for feature selection in different tasks could
help to enhance task-specific knowledge. (3) Also,
the final combination of all the components demon-
strates that the complete model contributes the most
to the final experiment result.

4.5.2 Influence of Connecting GCL and TCA

We also evaluate the effectiveness of the connec-
tion between GCL and TCA blocks. We take an
ablation study that enables and disables the con-
nection between GCL and TCA modules. Figure 4
shows how the connection influences performances.
We assume that the TCA produces an attention
vector to let the model know which parts of the
GCL embeddings are informative for the current
task. Based on this assumption, the TCA should
get information from the GCL before it produces
the final attention vector. Continually getting in-
formation from the GCL side helps the TCA ad-
just its output. Hence, the TCA can generate a
more suitable attention vector for both the GCL em-
bedding and the current task. Therefore, we have
ali = Bl

a(a
l−1
i ⊙ zl−1

i ) rather than ali = Bl
a(a

l−1
i ).
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Table 4: Ablation study on different modules on Sampled dataset, with results on various task lengths.

Order-1 Order-2 Order-3 Order-4 Order-5 Order-6 Order-7
No Module 70.26 71.45 71.61 72.08 72.13 72.11 71.84

GCL 71.72 72.52 72.02 72.68 73.88 72.36 72.12
TCA 70.47 71.52 72.1 72.15 72.22 72.76 71.99

Apply All 71.95 73.07 73.31 73.25 74.34 74.18 73.94

Figure 4: Analyzing GCL and TCA connection.

5 Conclusion

This paper proposes a contrastive learning scheme
for incrementally learning embedding under the se-
quence task scenarios. Our approach leverages the
contrastive learning approach (GCL) in the embed-
ding space to obtain better task-agnostic features,
further, we propose a contrastive-attention mecha-
nism (TCA) for task-specific feature re-weighting,
which could constrain task-specific knowledge in
the universal embedding space more appropriate.
Extensive experiments demonstrate that our ap-
proach could achieve clearly better results on dif-
ferent benchmarks, compared with existing state-
of-the-art continual learning approaches. In future
work, we hope to further reduce the cost of training
on new tasks through the Coreset/active learning
(Yoon et al., 2021; Li et al., 2022) optimization.

6 Limitations

The DCL framework uses contrastive learning to
learn both task-agnostic and task-specific knowl-
edge, in order to reduce catastrophic forgetting, our
framework still needs to store a small part of the
historical data as a replay mechanism during the
learning period, which is a limitation in some ap-
plication that need preserve data privacy. We will
solve this limitation in future work to replace the
original data with the prompt represent.
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A Algorithm Pseudocode

The final pseudo-code is in Algorithm 1. The
model is initialized with an empty memory buffer
and uses Eq. 4 to warm up. For the first task, the
training process only contains classification and
unsupervised learning. For the remaining tasks,
the model is warmed up by Eq. 9. During the
warming-up process, the GCL has more samples to
learn test-agnostic knowledge, and the TCA learns
the differences among tasks, especially for novel
tasks. After warming up, the training process has
two stages, replay or non-replay. In the non-replay
stage, the model is trained by Eq. 9 without LTCA.
In the replay stage, one batch of historical data is
fetched from the memory buffer. The training batch
consists of both historical and novel data. The loss
function is Eq. 9. Once the current training process
finishes, the data selection mechanism selects data
from the current dataset and stores it in the memory
buffer. Then, the model waits for the next novel
task.

B More Experiment Details

Table 5: The description of the Sampled training dataset
we used for incremental classification. Type means the
domain of task classification. Each task has a validation
set that has same size with the training set. It is the same
setting with (Huang et al., 2021).

Raw Dataset # Type # classes # Train # Test

Text

AGNews News 4 8,000 7600
Yelp Sentiment 5 10,000 7600

Amazon Sentiment 5 10,000 7600
DBPedia Wikipedia 14 28,000 7600

Yahoo Q&A 10 20,000 7600

B.1 Implementation

Our model uses the Pytorch framework that is
trained on an A100 GPU and sequentially fine-
tuned on different (3 or 5-length) tasks. We utilize
an AdamW optimizer to train the model and set
the output dimension of the BERT encoder as 768.
For both GCL and TCA blocks, we adopt MLP fol-
lowed by a Tanh layer. Because of the information
exchange between GCL and TCA, we need at least
two blocks for both GCL and TCA. The classifier
is simply one linear layer followed by a softmax
layer.

We set the mini-batch size as 8 for the sample
datasets and 32 for the full. Our approach has
different learning rates for different components:
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Algorithm 1 DCL
Require: ST - Data Stream; n - number of tasks;
Ensure: Optimal Models PTE, GCL, TCA, FC;

1: B = {} - Initialize the memory buffer;
2: Use T1 with Eq. 4 to warmup;
3: for Tt ∈ ST , t ∈ {1, 2 · · ·n} do
4: if t == 1 then
5: for batch ⊂ Tt do
6: Data augmentation and getting model

outputs;
7: Optimize L = LCLS + LGCL;
8: end for
9: else

10: Store zi and ai, ∀xin ∈ Tt ∪ B
11: Warmup with Eq. 9 with {Tt batch }∪B
12: for batch ⊂ Tt do
13: if Replay Step then
14: Sample one batch from B to be

batchpast
15: batch = batchpast ∪ batch
16: Data augmentation and getting

model outputs;
17: Optimize Eq. 9
18: else
19: Data augmentation and getting

model outputs;
20: Optimize Eq. 9 without LTCA

21: end if
22: end for
23: end if
24: B′ = {Data selection} ⊂ Tt

25: B = B ∪ B′ - Update memory buffer
26: end for

an initial learning rate ∈ {5e-5, 6e-5, 8e-5} for
parts including GCL, TCA and classifier, and {1e-
5, 2e-5, 3e-5} for encoder (BERT). The weight
decay for all parameters is 0.01. λreg

gcl is 0.25 and
λreg
tca is 0.15 in non-replay step, and 2.5 and 1.5 in

replay step respectively.

For the memory volume for experience replay,
we store 1% of seen examples in the episodic mem-
ory module during the experiment. Besides, we set
the replay frequency as 10, which indicates that we
execute the experience replay once every ten steps.

B.2 More Baseline Details

Fine-Tuning (Yogatama et al., 2019) simply trains
the existing model with tasks that appear sequen-
tially. Replay (de Masson D’Autume et al., 2019;
Wang et al., 2019) is a popular method to overcome
forgetting by using episodic memory. Regulariza-
tion (Li and Hoiem, 2017) uses L2 to avoid forget-
ting. Except for only replay, we run replay + regu-
larization to be one baseline. We also compare with
some recent SOTA approaches: MBPA++ (de Mas-
son D’Autume et al., 2019), a lifelong language
learning setup with an episodic memory module
that learns from a stream of text examples, with-
out any dataset identifier. It mitigates catastrophic
forgetting through sparse experience replay and
local adaptation. Here we set the number of neigh-
bors K = 32, and the local adaptation steps L = 30.
LAMOL (Sun et al., 2020) is a language model
for lifelong language learning that simultaneously
learns to solve tasks and generate training samples
– it prevents catastrophic forgetting by replaying
pseudo-samples of previous tasks, with GPT-2 as
the generator. Here we choose the GEN token and
pseudo sample ratio as 0.2 for old classification
tasks. IDBR (Huang et al., 2021) uses the idea of
information disentanglement to generate the fea-
tures independently, and it also recombines the
disentanglement features for classifying. Table 5
shows information about Sample data.

Table 6: Ablation study on different selection methods
on sampled dataset, with results on various task lengths.

Sample Method Order 1 Order 2 Order 3 Order 4
Kmeans 72.16 72.91 73.36 73.12
Random 71.95 73.07 73.28 73.25
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Figure 5: Analyzing the influence of the storage ratio
for old data.

Table 7: Supplement results for ablation study analyz-
ing the influences of regularization loss and contrastive
learning.

No Any Contrastive L_reg Both
Order 1 69.42 69.89 70.26 71.95
Order 2 68.98 70.48 71.45 73.07
Order 3 71.24 71.82 71.61 73.31
Order 4 68.83 70.09 72.08 73.25
Order 5 70.81 72.21 72.13 74.34
Order 6 71.12 72.17 72.11 74.18
Order 7 70.38 71.07 71.84 73.94

C Extra Ablation Study

C.1 Influence of Data Selection Method

Because of the limited memory space for the stor-
age of historical data, it is preferable to select the
more informative data points. We consider two
methods: random selection, and KMeans (Mac-
Queen, 1967), to sample data and update the buffer.
We use scikit-learn (Pedregosa et al., 2011) to im-
plement KMeans. According to our experiments in
Table 6, KMeans does not show a significant com-
petitive advantage for performance over the random
selection, especially for large datasets. More impor-
tantly, the running time of KMeans is much longer
than random selection when the model stores thou-
sands of instances. In many scenarios, the systems
that need continual learning are time sensitive, so it
is valuable to update the model quickly. Therefore,
we decided to adopt the random selection.

C.2 Influence of Storage Ratio

We perform further analysis of the storage ratio (for
older data) for both our approach and the current
SOTA approach IDBR and show the result on the

3-length tasks in Figure 5. We could see that when
the store ratio is low (fewer previous experiences
are permitted to access), the difference between our
approach and IDBR is not obvious. As we store
relatively more instances, our approach could im-
prove the performance better and more stably than
IDBR, until our previous setting (1%). Moreover,
Our approach grows steadily, but IDBR is not sta-
ble. It shows that contrastive learning can learn
more generalized embeddings compared with the
regular cross-entropy function when there is more
previous data.

C.3 Influence of Contrastive learning and
regularization loss

We provide more ablation study results to clarify
the effectiveness of our framework. Table 7 shows
the impacts of regularization loss and contrastive
learning. We simply disable the regularization loss
when we test contrastive learning in our model.
We use the structure of GCL module without con-
trastive learning loss to test regularization loss. We
demonstrate the results of all seven orders for 3-
length and 5-length tasks. It is clear that we cannot
achieve the best performance if we only apply one
technique. Thus, our framework has the best result.
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