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Abstract

Large language models have revolutionized the
field of NLP by achieving state-of-the-art per-
formance on various tasks. However, there is a
concern that these models may disclose infor-
mation in the training data. In this study, we
focus on the summarization task and investigate
the membership inference (MI) attack: given a
sample and black-box access to a model’s API,
it is possible to determine if the sample was part
of the training data. We exploit text similarity
and the model’s resistance to document modi-
fications as potential MI signals and evaluate
their effectiveness on widely used datasets. Our
results demonstrate that summarization mod-
els are at risk of exposing data membership,
even in cases where the reference summary is
not available. Furthermore, we discuss several
safeguards for training summarization models
to protect against MI attacks and discuss the
inherent trade-off between privacy and utility.

1 Introduction

Text summarization seeks to condense input docu-
ment(s) into a shorter, more concise version while
preserving important information. The recent large
language models have significantly enhanced the
quality of the generated summaries (Rothe et al.,
2021; El-Kassas et al., 2021; Chung et al., 2022).
These models have been applied to many sensitive
data, such as clinical and finance reports (Zhang
et al., 2020b; Abacha et al., 2021). Given these
high-stakes applications, it is critical to guarantee
that such models do not inadvertently disclose any
information from the training data and that data
remains visible only to the client who owns it.

To evaluate the potential memorization of spe-
cific data by a model, membership inference (MI)
attack (Shokri et al., 2017) has become the de facto
standard, owing to its simplicity (Murakonda et al.,
2021). Given a model and sample (input label pair),
the membership inference attack wants to identify
whether this sample was in the model’s training

dataset. This problem can be formulated as an ad-
versarial scenario, with Bob acting as the attacker
and Alice as the defender. Bob proposes methods
to infer the membership, while Alice attempts to
make membership indistinguishable. In the past,
researchers proposed various attacking and defend-
ing techniques. However, most of them focus on
the computer vision classification problem with a
fixed set of labels. Little attention has been given
to comprehending MI attacks in Seq2Seq models.

This paper focuses on the summarization task
and investigates the privacy risk under membership
inference attacks. Inspired by previous research in
MI literature(Shokri et al., 2017; Hisamoto et al.,
2020), we pose the problem as follows: given black-
box access to a summarization model’s API, can
we identify whether a document-summary pair was
used to train the model?. Compared to membership
inference attacks on fixed-label classification tasks,
text generation tasks present two significant chal-
lenges: (1) The process of generating summaries in-
volves a sequence of classification predictions with
variable lengths, resulting in complex output space.
(2) Existing attacks heavily rely on the output prob-
abilities (Shokri et al., 2017; Mireshghallah et al.,
2022), which is impractical when utilizing APIs of
Seq2Seq models. Therefore, it remains uncertain
whether the methodologies and findings developed
for classification models can be applied to language
generation models.

A pertinent question emerging from the study is
the rationale behind the efficacy of MI attacks on
summarization models. The key insight lies in the
training objective of these models, which aims to
minimize the discrepancy between the generated
and reference summary (See et al., 2017). Conse-
quently, samples with significantly lower loss (in-
dicating a similarity between the generated and ref-
erence summaries) are more likely to be part of the
training dataset. Based on this concept, we propose
a baseline attack method that utilizes the similarity
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between the generated and reference summaries
to differentiate between training and non-training
samples. One limitation of the baseline attack is
that Bob requires access to both the documents and
reference summaries to launch the attack, rendering
the attack less practical for summarization tasks.

Building upon this, our study introduces a more
general document-only attack: Given only a doc-
ument and black-box access to the target model’s
APIs, can Bob infer the membership without ac-
cess to the reference summary? We tackle this
problem by examining the robustness of generated
summaries in response to perturbations in the input
documents. According to the max-margin princi-
ple, training data tends to reside further away from
the decision boundary, thus exhibiting greater re-
silience to perturbations, which aligns with observa-
tions from prior research in the adversarial domain
(Tanay and Griffin, 2016; Choquette-Choo et al.,
2021). Consequently, Bob can extract fine-grained
membership inference signals by evaluating data
robustness toward perturbations. Remarkably, we
show that Bob can estimate the robustness without
reference summaries, thereby enabling a document-
only attack. In summary, this work makes the fol-
lowing contributions to the language model pri-
vacy:
1. Defined the black-box MI attack for the
sequence-to-sequence model. Experiments on sum-
marization tasks show attackers can reliably infer
the membership for specific instances.
2. Explored data robustness for MI attacks and
found that the proposed approach enables attackers
to launch the attack solely with the input document.
3. Evaluate factors impacting MI attacks, such
as dataset size, model architectures, etc. We also
explore multiple defense techniques and discuss
the privacy-utility trade-off.

2 Background and Related Works

Membership Inference Attacks. In a typical
black-box MI attack scenario, as per the literature
(Shokri et al., 2017; Hisamoto et al., 2020), it is
posited that the attacker, Bob, can access a data
distribution identical to Alice’s training data. This
access allows Bob to train a shadow model, us-
ing the known data membership of this model as
ground truth labels to train an attack classifier. Bob
can then initiate the attack by sending queries to Al-
ice’s model APIs. Most previous studies leverage
disparities in prediction distributions to distinguish

between training and non-training samples. How-
ever, this approach is not feasible for Seq2Seq mod-
els. For each generated token in these models, the
output probability over the word vocabulary often
comprises tens of thousands of elements—for in-
stance, e.g., the vocabulary size for BART is 50,265
(Lewis et al., 2020). As such, most public APIs
do not offer probability vectors for each token but
rather furnish an overall confidence score for the
sequence, calculated based on the product of the
predicted tokens’ probabilities.
Natural Language Privacy. An increasing body
of work has been conducted on understanding pri-
vacy risk in NLP domain,(Hayes et al., 2017; Mee-
han et al., 2022; Chen et al., 2022; Ponomareva
et al., 2022). Pioneering research has been dedi-
cated to studying MI attacks in NLP models. The
study by (Hisamoto et al., 2020) examines the
black-box membership inference problem of ma-
chine translation models. They assume Bob can
access both the input document and translated text
and use BLEU scores as the membership signal,
which is similar to our baseline attack. (Song and
Shmatikov, 2019) investigate a white-box MI at-
tack for language models, which assume Bob can
obtain the probability distribution of the generated
token. Different from previous work, our attack is
under the black-box setting and considers a more
general document-only attack in which Bob only
needs input documents for membership inference.

3 Preliminaries

3.1 Problem Definition
We introduce two characters, Alice and Bob, in the
membership inference attack problem.
Alice (Defender) trains a summarization model on
a private dataset. We denote a document as f and
its corresponding reference summary as s. Alice
provides an API to users, which takes a document
f as input and returns a generated summary ŝ.
Bob (Attacker) has access to data similar to Al-
ice’s data distribution and wants to build a binary
classifier g(·) to identify whether a sample is in Al-
ice’s training data, Atrain. The sample comprises a
document f and its reference summary s. Together
with the API’s output ŝ, Bob uses g(·) to infer the
membership, whose goal is to predict:

g(f, s, ŝ) =

{
1 If (f, s) ∈ Atrain

0 Otherwise
. (1)
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Figure 1: Data Splitting.

3.2 Shadow Models and Data Splitting
In this work, we follow the typical settings in the
MI attack (Shokri et al., 2017; Hisamoto et al.,
2020; Jagannatha et al., 2021; Shejwalkar et al.,
2021) and assume Bob has access to the data from
the same distribution as Alice to train their shadow
models. Subsequently, Bob utilizes the known data
membership of the shadow models as training la-
bels to train an attack classifier g(·), whose goal
is to predict the data membership of the shadow
model. If the attack on the shadow model proves
successful, Bob can employ the trained attack clas-
sifier to attempt an attack on Alice’s model.

As depicted in Figure 1, we follow the previous
work setting (Hisamoto et al., 2020) and split the
whole dataset as Aall and Ball, with Alice only
having access to Aall and Bob only has access to
Ball. For Alice, Aall is further split into two parts:
Atrain and Aout, where Atrain is utilized for train-
ing a summarization model and Aout serves as a
hold-out dataset that is not used. (Note that Atrain

includes the data used for validation and testing,
and we use Atrain to specify the data used to train
the model). In the case of Bob, Ball is further
split into Bin and Bout, where Bob employs Bin to
train shadow models and Bout serves as a hold-out
dataset. To construct the attack classifier g(·), Bob
can train g(·) with the objective of differentiating
samples in Bin and Bout.

3.3 Evaluation Protocols
We adopt the following evaluation protocols to
evaluate g(·) attack performance on Alice’s model.
Given a document and its corresponding reference
summary (f, s), selected from Atrain or Aout, Bob
sends f to Alice’s API and gets the output sum-
mary ŝ. Then Bob employs the trained classifier
g(·) to infer whether the pair (f, s) is present in Al-
ice’s training data. Since Atrain is much larger than
Aout, we make the binary classification task more
balanced by sampling a subset Ain from the Atrain

with the same size as Aout. Given a set F of test
samples (f, s, ŝ,m), where (f, s) ∈ Ain ∪ Aout,

m is the ground truth membership, the Attack Ac-
curacy (ACC) is defined as:

ACC(g, F ) =
1

|F |
F∑

[g(f, s, ŝ) = m], (2)

where an accuracy above 50% can be interpreted
as a potential compromise of privacy. Following a
similar definition, we can define other commonly
used metrics, such as Recall, Precision, AUC, etc.

Previous literature mainly uses accuracy or AUC
to evaluate the privacy risk (Song and Shmatikov,
2019; Hisamoto et al., 2020; Mahloujifar et al.,
2021; Jagannatha et al., 2021). However, these
metrics only consider an average case and are not
enough for security analysis (Carlini et al., 2022).
Consider comparing two attackers: Bob1 perfectly
infers membership of 1% of the dataset but suc-
ceeds with a random 50% chance on the rest. Bob2
succeeds with 50.5% on all dataset. On average,
two attackers have the same attack accuracy or
AUC. However, Bob1 demonstrates exceptional
potency, while Bob2 is practically ineffective. In
order to know if Bob can reliably infer the mem-
bership in the dataset (even just a few documents),
we need to consider the low False-Positive Rate
regime (FPR), and report an attack model’s True-
Positive Rate (TPR) at a low false-positive rate. In
this work, we adopt the metric TPR0.1%, which is
the TPR when FPR = 0.1%.

4 MI Attacks for Summarization Tasks

4.1 A Naive Baseline
The baseline attack is based on the observation that
the generated summaries of training data often ex-
hibit higher similarity to the reference summary,
i.e., lower loss value (Varis and Bojar, 2021). In
an extreme case, the model memorizes all training
document-reference summary pairs and thus can
generate perfect summaries for training samples
(s = ŝ). Hence, it is natural for Bob to exploit the
similarity between ŝ and s as a signal for member-
ship inference.

There are multiple approaches to quantify-
ing text similarity. Firstly, Bob utilizes the
human-design metrics ROUGE-1, ROUGE-2, and
ROUGE-L scores to calculate how many semantic
content units from reference texts are covered by
the generated summaries (Lin, 2004; Lin and Och,
2004). Additionally, Bob can adopt neural-based
language quality scores, e.g., sentence transformer
score(Reimers and Gurevych, 2019), to capture the
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semantic textual similarity. Finally, we follow stud-
ies in the computer vision domain and also leverage
the confidence score, such as the perplexity score,
as the MI attack feature. Bob then concatenates all
features to one vector, i.e., [ROUGE-1, ROUGE-2,
ROUGE-L, Transformer Score, Confidence Score],
and employs classifiers, such as random forest and
multi-layer perceptron, to differentiate training and
non-training samples. The baseline attack can be
written as follows:

g(·)Base = g(sim(ŝ, s)), (3)

where sim represents the function that takes two
summaries as input and returns a vector of selected
similarity evaluation scores.

4.2 Document Augmentation for MI

The baseline attack is limited to relying solely on
text similarity information from a single query.
However, if Bob has the capability to send mul-
tiple queries to Alice’s API, can Bob potentially
explore more nuanced membership signals? Build-
ing upon this concept, we propose utilizing the
robustness of output summaries when subjected to
perturbations in input documents as the attack fea-
ture. Following a max-margin perspective, samples
that exhibit high robustness are training data points
(Tanay and Griffin, 2016; Hu et al., 2019; Deniz
et al., 2020; Choquette-Choo et al., 2021). For our
task, the assumption is that documents in the train-
ing dataset are more robust to perturbations and
will have less change in the output summaries. Bob
can consider various augmentation methods, such
as word synonym replacement and sentence swap-
ping. We use D to denote the set of augmentation
methods. Given a document f , Bob chooses one
augmentation method d ∈ D and generates n new
documents, i.e., fd

1 , ...f
d
n . Bob then queries the API

using the augmented documents and obtains the
output summaries (f, fd

1 , ..., f
d
n) → (ŝ, ŝd1, ..., ŝ

d
n).

To train the classifier, Bob uses similarity scores
between all summaries with the reference summary
as the feature, which can be written as follows:

g(·)Aug = g([sim(ŝ, s), sim(ŝd1, s), ..., sim(ŝdn, s)]).
(4)

Compared to eq. 3, the proposed g(·)Aug can ad-
ditionally use the summaries’ robustness informa-
tion for MI, e.g., the variance of similarity scores
var((ŝ, s), ..., sim(ŝd1, s)).

4.2.1 Document-only MI Attack
Existing attack methods need Bob to access both
the document f and its corresponding reference
summary s to perform membership inference.
However, it is challenging for Bob to obtain both of
these for summarization tasks. Here, we propose a
low-resource attack scenario: Bob only has a docu-
ment and aims to determine whether the document
is used to train the model. Under this scenario, the
previously proposed attacks cannot be applied as
there is no reference summary available.

However, the concept of evaluating sample ro-
bustness offers a potential solution as we can ap-
proximate the robustness without relying on ref-
erence summaries. To address this, we modify
the g(·)aug: Instead of calculating the similarity
scores between generated summaries (ŝ, ŝd1, ..., ŝ

d
n)

and reference summaries s, Bob replaces the ref-
erence summary s with the generated summary ŝ,
and estimate the document robustness by calculat-
ing the similarity scores between ŝ and perturbed
documents’ summaries (ŝd1, ..., ŝ

d
n). The proposed

document only MI attack can be written as follows:

g(·)D_only = g([sim(ŝd1, ŝ), ..., sim(ŝdn, ŝ)])). (5)

Compared to g(·)aug, the proposed g(·)D_only ob-
tains robustness information for the document only
with the generated summary ŝ. Our experiments
show that this approximate robustness contains
valuable membership signals, and g(·)Donly can
effectively infer the membership of specific sam-
ples using only the documents as input.

5 Experiment Setup

5.1 Dataset
We perform our summarization experiments on
three datasets: SAMsum, CNN/DailyMail (CN-
NDM), and MIMIC-cxr (MIMIC).
SAMsum (Gliwa et al., 2019) is a dialogue
summarization dataset, which is created by ask-
ing linguists to create messenger-like conversa-
tions. Another group of linguists annotates the
reference summary. The original split includes
14,732/818/819 dialogue-summary pairs for train-
ing/validation/test.
CNNDM (Hermann et al., 2015) is a news article
summarization dataset. The dataset collects news
articles from CNN and DailyMail. The summaries
are created by human annotators. The original
split includes 287,227/13,368/11,490 news article-
summary pairs for training/validation/test.
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Figure 2: Distribution of similarity scores of Ain and Aout of SAMsum dataset.

SAMsum CNNDM MIMIC
ACC AUC TPR0.1% ACC AUC TPR0.1% ACC AUC TPR0.1%

RF 61.10 64.72 1.31 53.48 55.38 0.83 65.41 66.37 2.58
LR 61.15 65.88 1.05 51.24 53.88 0.05 66.73 68.64 2.20
SVM 61.67 65.45 2.03 50.30 52.72 0.03 65.90 69.24 2.34
MLP 61.73 65.84 2.15 52.33 55.84 1.17 67.11 70.71 3.05
RoBERTa 60.10 63.27 1.26 50.01 51.71 0.05 66.08 68.01 2.05

Table 1: Baseline Attack Results. Bob tried different classifiers, including Random Forest (RF), Logistic Regression
(LR), Support Vector Machine (SVM), and Multi-layer Perceptron (MLP). Following the evaluation protocol in
Section 3.3, we show membership attack performance on Ain and Aout.

MIMIC is a public radiology report summariza-
tion dataset. We adopt task 3 in MEDIQA 2021
(Abacha et al., 2021), which aims to generate
the impression section based on the findings and
background sections of the radiology report. We
choose the MIMIC-cxr as the data source, and the
original split includes 91544/2000 medical report-
impression pairs for training/validation.

As we discussed in Sec. 3.2, we reorganized
the datasets into three disjoint sets: Atrain, Aout,
and Ball. We assume Bob can access around 20%
of the dataset to train shadow models and g(·). In
Table 2, we show the details number for each split.

Atrain Ain Aout Ball

SAMsum 13,369 1,000 1,000 2,000
CNNDM 252,085 20,000 20,000 40,000
MIMIC 78,544 10,000 10,000 20,000

Table 2: Each dataset is divided in to three disjoint sets:
Atrain, Aout and Ball. Ain is sampled from Atrain

with a same size as Aout.

5.2 Models and Training Details

In our experiments, we adopted two widely used
summarization models: BART-base (Lewis et al.,
2020) and FLAN-T5 base (Chung et al., 2022) (Re-
sults of FLAN-T5 are detailed in the Appendix).

We adopt Adam (Kingma and Ba, 2014) as the
optimizer. For SAMsum, CNNDM, and MIMIC,
the batch size is set as 10/4/4, and the learning
rate is set as 2e−5, 2e−5, 1e−5. During inference,
we set the length penalty as 2.0, the beam search
width as 5, and the max/min generation length as
60/10, 140/30, and 50/10. Alice chooses the best
model based on the validation ROUGE-L score.
Bob randomly splits Ball into two equal parts: Bin

and Bout. Bob employs Bin to train shadow mod-
els and chooses the best model based on the vali-
dation ROUGE-L performance. We only trained
one shadow model in the experiment. Our imple-
mentation is based on the open-source PyTorch-
transformer repository. 1 All experiments are re-
peated 5 times and report the average results.

5.3 Augmentation Methods

We consider three augmentation methods: word
synonym (WS), sentence swapping (SW), and
back translation (BT)2: word synonyms randomly
choose 10% of words in a document and change to
their synonym from WordNet(Miller, 1995), sen-
tence swapping randomly chooses a sentence and
swap it with another sentence, back translation first
translates the document to French, Spanish, and

1https://github.com/huggingface/transformers
2Our implementation is based on Data Augmentation by

Back-translation (DAB). Github: https://github.com/vietai/dab
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SAMsum CNNDM MIMIC
ACC AUC TPR0.1% ACC AUC TPR0.1% ACC AUC TPR0.1%

RF

Base 61.10 64.72 1.31 53.48 55.38 0.83 65.41 66.37 2.58
WS 62.11 65.23 1.45 54.69 56.21 0.95 65.53 66.53 2.61
SW 62.51 65.81 1.61 54.51 56.83 1.01 66.44 66.48 2.65
BT 61.07 64.41 1.31 53.30 54.96 0.78 65.22 65.98 2.49

LR

Base 61.15 65.88 1.05 51.24 53.88 0.05 66.73 68.64 2.20
WS 61.23 65.90 1.05 52.25 53.94 0.13 67.01 68.74 2.25
SW 62.03 66.70 1.20 52.58 54.92 0.21 67.59 69.15 2.86
BT 60.14 65.13 1.01 52.13 53.95 0.06 66.78 68.99 2.21

SVM

Base 61.67 65.45 2.03 50.30 52.72 0.03 65.90 69.24 2.34
WS 62.26 66.03 2.20 50.45 52.87 0.11 66.93 70.41 2.43
SW 62.75 66.55 2.41 51.67 53.89 0.13 66.87 70.59 2.52
BT 61.70 65.51 2.05 50.41 52.81 0.05 65.85 68.94 2.27

MLP

Base 61.73 65.84 2.15 52.33 55.84 1.17 67.11 70.71 3.05
WS 62.13 66.21 2.51 53.11 56.21 1.25 68.24 71.12 3.15
SW 62.85 67.00 2.49 53.53 56.26 1.36 68.18 71.33 3.57
BT 62.01 66.81 2.17 52.40 55.91 1.19 67.01 70.69 3.02

Table 3: Document Augmentation Attack Results. Base shows the baseline attack results in Table 1.

SAMsum CNNDM MIMIC
ACC AUC TPR0.1% ACC AUC TPR0.1% ACC AUC TPR0.1%

RF 57.11 58.24 1.27 51.07 53.09 0.52 60.17 61.25 2.13
LR 57.03 57.85 1.10 50.89 52.83 0.11 57.72 59.44 2.13
SVM 57.05 57.11 1.89 50.41 52.63 0.09 59.15 61.22 1.91
MLP 57.21 57.05 1.97 51.30 53.11 1.07 60.07 60.21 2.67

Table 4: Document only Attack Results based on sentence swapping augmentation.

German, and then back translates to English. In
our main experiments, we generate 6 augmented
samples for WS, SW, and 3 for BT.

6 Experiment Results

Baseline Attack. We present the results of the
baseline attack in Table 1. Our analysis reveals
that the attack is successful in predicting mem-
bership, as the accuracy and AUC results on the
three datasets are above 50%. Furthermore, the
attack AUC on the MIMIC and SAMsum datasets
is above 65%, which highlights a significant pri-
vacy risk to Alice’s model. In Figure 2, we exam-
ine the feature distribution of Ain and Aout. Our
key observation is that Ain exhibits notably higher
ROUGE-1, ROUGE-2, and Transformer Scores
than Aout, indicating that the model’s behavior is
distinct on training and non-training samples. Ad-
ditionally, our study discovered that the confidence
score, which has been found to be useful in pre-

vious classification models (Shokri et al., 2017),
is useless for the summarization model. Further-
more, we fine-tune a RoBERTa model and use the
raw texts to differentiate generated summaries of
Bin and Bout, referred to as RoBERTa in the table.
However, the results indicate that raw text is infe-
rior to the similarity score features, with the MLP
model using similarity scores as features achieving
the best performance.

In addition to the AUC and ACC scores, we also
evaluate the performance of the attacks in the high-
confidence regime. Specifically, we report the true
positive rate under a low false positive rate of 0.1%,
referred to as TPR0.1% in the table. Our results
demonstrate that the model can reliably identify
samples with high confidence. For example, the
MLP model achieves a TPRFPR0.1% of 3.05% on
the MIMIC dataset, which means that the model
successfully detects 305 samples in Ain with only
10 false positives in Aout.
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Document Augmentation MI Attack. In this sec-
tion, we investigate the effectiveness of evaluating
the model’s robustness against document modifica-
tions as the MI feature. The results of the attack
are presented in Table 3. We observe a consis-
tent improvement in attack performance across all
datasets compared to g(·)Base. Specifically, the
improvement in TPR0.1% indicates that the robust
signal allows the attacker to detect more samples
with high confidence. We find that sentence swap-
ping achieves the best attack performance across all
datasets. In Figure, we show the standard deviation
distribution of ROUGE-L F1 scores, 3, calculated
as SD(R-L(ŝ, s),R-L(ŝd1, s), ...,R-L(ŝdn, s)). We
find that the variance of training data is notably
lower than non-training data, indicating that train-
ing samples are more robust against perturbations.

Figure 3: ROUGE-L Standard deviation of g(·)D_aug .

Document-only Attack. In this section, we
present the results of our document-only attack.
As previously discussed in Section 4.2.1, the at-
tack classifier g(·)D_only does not have access
to reference summaries. Instead, Bob estimates
the model’s robustness by using generated sum-
maries. In Figure 4, we show the standard de-
viation distribution of ROUGE-L scores, calcu-
lated as SD(R-L(ŝd1, ŝ),R-L(ŝd2, ŝ), ...,R-L(ŝdn, ŝ)).
Similar to the results in Figure 3, the variance of
training data is lower than that of non-training data
but with smaller differences. Reflecting on the
results, we observe a lower attack performance
for document-only attacks (Table 4) compared to
g(·)Base in Table 1. However, attack accuracy and
AUC are above 50%, indicating a privacy risk even
under this low-resource attack. More importantly,
the TPR0.1% results show that Bob can still infer
certain samples’ membership with high confidence.

7 Ablation Studies

In this section, we will investigate several impact
factors in MI attacks. All experiments were con-
ducted using the baseline attack with the MLP clas-
sifier. A more detailed analysis is in the Appendix.

Figure 4: ROUGE-L Standard deviation of g(·)D_only.

Impact of Overfitting. In Figure 5, we show the at-
tack AUC and validation ROUGE-L F1 score under
varying training steps on the SAMsum dataset. We
find that the attack AUC increases steadily as the
number of Alice’s training steps increases, which
is consistent with previous research (Shokri et al.,
2017). Moreover, early stopping by ROUGE score
(5 epochs) cannot alleviate the attack. The AUC
curve indicates that the model gets a high attack
AUC at this checkpoint. A better early stop point
is 3 epochs, which significantly reduces the MI at-
tack AUC without a substantial performance drop.
However, in practice, it is hard to select a proper
point without relying on an attack model.

Figure 5: Attack AUC under different epochs.

Impact of Dataset Size. In this study, we assess
the impact of dataset size on MI attacks. To do this,
we train our model with 10% to 100% of the total
dataset. Our results, as depicted in Figure 6, indi-
cates that as the size of the training set increases,
the AUC of MI attacks decreases monotonically for
both SAMsum and CNNDM dataset. This suggests
that increasing the number of samples in the train-
ing set can help to alleviate overfitting and reduce
the MI attack AUC. Some recent studies have high-
lighted the issue of duplicate training samples in
large datasets (Lee et al., 2022). This duplication
can escalate the privacy risks associated with these
samples and should be taken into consideration
when employing large datasets.
Impact of the Model Architecture. In previous
experiments, we assumed that Bob uses the same
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Figure 6: Attack AUC across different dataset sizes.

architecture as Alice to train shadow models. In
this section, we further explore the attack transfer-
ability attack across different model architectures.
As shown in Figure 7, Bob and Alice can choose
different model architectures, we evaluate the trans-
ferability metrics for various models on SAMsum
Dataset, including BART, BertAbs (Liu and Lap-
ata, 2019), PEGASUS (Zhang et al., 2020a), and
FLAN-T5 (Chung et al., 2022). The results in-
dicate that the attack AUC is highest when both
Bob and Alice employ the same model. However,
even when Bob and Alice utilize different models,
the MI attack exhibits considerable transferability
across the selected model architectures. These find-
ings suggest that the membership signal exploited
by the attack classifier demonstrates generalizabil-
ity and effectiveness across various architectures.

Figure 7: Architecture Transferability.

8 Defense Methods

We now investigate some approaches that aim to
limit the model’s ability to memorize its training
data. Specifically, we try two approaches: differ-
ential privacy SGD (DP-SGD) 3 (Dwork, 2008;
Machanavajjhala et al., 2017; Li et al., 2021) and

3Our implementation is based on dp-transformers. Github:
https://github.com/microsoft/dp-transformers

L2 regularization (Song et al., 2019). For DP-SGD,
ϵ is the privacy budget, where a lower ϵ indicates
higher privacy. We conduct experiments on the
SAMsum dataset. As shown in Table 5, we find
that as the λ increase and ϵ decrease, the attack
AUC stably drops. Particularly, when ϵ = 8.0 and
λ = 12.0, the AUC drops to about 50%. However,
we find defense methods cause a notable perfor-
mance drop on the ROUGE-L F1 score. Indicating
that there is a privacy-utility trade-off.

DP-SGD
ϵ 200.0 100.0 8.0
AUC 64.12 54.51 50.46
ROUGE-L 37.21 32.32 27.31

L2 Regularization
λ 0.0 6.0 12.0
AUC 65.84 59.34 52.64
ROUGE-L 37.35 34.32 29.11

Table 5: Defense Performance on DP-SGD and L2 Reg-
ularization with different privacy strengths.

9 Limitations

In this work, we demonstrate that the MI attack is
effective. However, it remains unclear what proper-
ties make samples more susceptible to MI attack.
In other words, given a model and a dataset, we
cannot predict which samples are more likely to be
memorized by the model. We find that the detected
samples under TPR0.1% have an average shorter
reference length, but further research is needed to
fully answer this question. Additionally, it is impor-
tant to note that while the MI attack is a commonly
used attack, its privacy leakage is limited. Other
attacks pose a more significant threat in terms of
information leakage (Carlini et al., 2021). The
evaluation of these attacks in summarization tasks
should be prioritized in future studies.

10 Conclusion

In this paper, we investigated the membership in-
ference attack for the summarization task and ex-
plored two attack features: text similarity and data
robustness. Experiments show that both features
contain fine-grained MI signals. These results re-
veal the potential privacy risk for the summariza-
tion model. In the future, we would like to explore
advanced defense methods and alleviate the trade-
off between privacy and utility.
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A Experiments on More Models

In our primary experiments, our focus is on the
BART model; however, we are also interested in
exploring other commonly used models. Among
these models, we consider the Fan-T5 base (Chung
et al., 2022), where we maintain the same experi-
mental setup but replace the Alice and Bob model
with Flan-T5. Table 7 presents the baseline attack
results, which are consistent with our findings in
the BART model. Our analysis demonstrates the
successful prediction of membership to the Flan-
T5 model, as evidenced by the accuracy and AUC
results across all three datasets exceeding 50%.
Furthermore, the attack AUC for the MIMIC and
SAMsum datasets exceeds 66%, highlighting a sig-
nificant privacy risk to Alice’s model.

Additionally, Table 8 showcases the results of
the Document augmentation attack, revealing a con-
sistent improvement in attack performance across
all datasets compared to g(·)Base. Notably, the
enhancement in TPR0.1% indicates that the robust
signal enables the attacker to detect more samples
with high confidence. Our findings indicate that
sentence swapping yields the most effective attack
performance across all datasets and metrics.

Moreover, in Table 9, we observe a lower at-
tack performance for document-only attacks com-
pared to g(·)Base in Table 7. Nevertheless, the
attack accuracy and AUC remain above 50%, signi-
fying a privacy risk even in the context of this low-
resource attack. Most importantly, the TPR0.1%

results demonstrate that Bob can still infer the mem-
bership of certain samples with high confidence.

To conclude, our findings are consistent across
both the Flan-T5 and BART models, indicating
that these summarization models have the ability
to memorize training data and pose a valid threat
of leaking membership information.

B Feature Importance

In this section, we delve into the feature impor-
tance of the baseline MI attack, specifically target-
ing the SAMsum dataset. Figure 8 and 9 displays
the feature importance scores4 as determined by
the Random Forest classifier for the baseline attack.
The ROUGE-2 F1 score emerges as the most valu-
able feature. On the contrary, the confidence score,

4The importance score is based on the scikit-learn package:
https://scikit-learn.org/stable/auto_examples/
ensemble/plot_forest_importances.html

despite its crucial role in MI attacks within the com-
puter vision domain, proves to be insignificant in
the sequence-to-sequence model. This could be
attributed to the beam search process, which in-
variably samples sentences with high confidence,
thereby rendering this feature redundant.

Figure 8: Feature Importance in MI attack on BART
model.

Figure 9: Feature Importance in MI attack on FLAN-T5
model.

C More on Ablation Studies

In this section, we will add more ablation studies.
Firstly, we will study the impact of overfitting, and
dataset size on the FLAN-T5 dataset. Then we will
introduce the impact of query numbers. All ex-
periments were conducted with the baseline attack
method, employing the MLP classifier.
Impact of Overfitting. We study the impact of
overfitting in MI attacks on the FLAN-T5 model.
Figure 10 shows the attack AUC and validation
ROUGE-L F1 score under varying training steps
on the SAMsum dataset. We observe that the attack
AUC increases steadily as the number of Alice’s
training steps increases. Early stopping by ROUGE
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score (4 epochs) cannot alleviate the attack.

Figure 10: Attack AUC under different epoches.

Impact of Dataset Size. In this study, we assess
the impact of dataset size on MI attacks on the
FLAN-T5 model. Specifically, we train the model
with 10% to 100% of the total dataset. As de-
picted in Figure 11, we found that as the size of
the training set increases, the AUC of MI attacks
decreases monotonically for both SAMsum and
CNNDM datasets. This outcome aligns with our
observations from the BART model and suggests
that increasing the number of samples in the train-
ing set can help to alleviate overfitting.

Figure 11: Attack AUC across various dataset sizes.

Impact of Augmentation Numbers. In our pri-
mary experiments involving document augmenta-
tion for MI attacks, we generated 6 augmentations
for word synonym (WS) and sentence swapping
(SW), and 3 for back translation (BT). In this sec-
tion, we extend our investigation to the impact of
augmentation quantity, focusing on WS and SW, as
they exhibit a significant increase over the baseline
attack. Table 6 presents the attack AUC for aug-
mentations of 6, 12, and 24 on the SAMsum dataset.
Notably, we observe a slight improvement in attack
performance with an increased number of augmen-
tation samples, which aligns with the notion that
more augmented data can help the classifier better
evaluate the sample’s robustness. However, it’s im-
portant to acknowledge that a higher augmentation

number necessitates more queries to the API, con-
sequently escalating the attack cost. Additionally,
we attempted to combine data from the two aug-
mentation methods, with the results documented
in the ’Comb’ row. Interestingly, merging data
from the two augmentation methods did not further
enhance the attack performance.

BART
6 12 24

WS 66.21 66.34 66.39
SW 67.00 67.14 67.31
Comb 66.65 66.94 67.13

FLAN-T5
6 12 24

WS 67.01 67.19 67.35
SW 68.22 68.29 68.37
Comb 67.27 67.33 67.84

Table 6: Different Augmentation Number.

Figure 12: Architecture Transferability.

D More on Architecture Transferability

As discussed in Section 7, when Alice and Bob em-
ploy different architectures, the MI attack exhibits
robust architecture transferability. This implies
that even when the attacker’s classifier is trained on
a shadow model distinct from Alice’s model, the
learned attack signal is generalizable across differ-
ent architectures. In this section, we aim to explain
this transferability. Our key observation is that
the MI signal remains remarkably consistent, even
across different architectures. As demonstrated
in Figure 12, we exhibit the distribution of the
ROUGE-L F1 score in Alice’s model, using both
the BART and FLAN-T5 architectures. The ob-
servation reveals a consistent pattern: the ROUGE
score for the training data is notably higher than
that for non-training data. This trend persists across
both architectures, which lends insight into the at-
tack’s transferability.
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SAMsum CNNDM MIMIC
ACC AUC TPR0.1% ACC AUC TPR0.1% ACC AUC TPR0.1%

RF 61.87 65.01 1.22 53.01 56.99 0.81 66.23 67.11 2.63
LR 62.43 66.15 1.11 52.13 55.01 0.11 67.32 69.51 2.30
SVM 63.14 67.00 1.95 52.21 54.41 0.06 66.41 68.71 2.13
MLP 63.10 67.01 2.13 53.14 56.32 1.17 67.91 72.05 3.18
RoBERTa 60.45 64.33 1.27 50.48 53.28 0.75 65.71 69.83 2.37

Table 7: FLAN-T5 Baseline Attack Results. Following the evaluation protocol in Section 3.3, we show g(·)Base

performance on Ain and Aout.

SAMsum CNNDM MIMIC
ACC AUC TPR0.1% ACC AUC TPR0.1% ACC AUC TPR0.1%

RF

Base 61.87 65.01 1.22 53.01 56.99 0.81 66.23 67.11 2.63
WS 62.43 66.55 1.24 55.21 56.52 0.77 68.03 68.03 2.71
SW 63.00 66.84 1.66 55.11 56.25 1.13 67.91 68.17 3.31
BT 61.22 65.18 1.20 55.13 56.77 0.95 66.37 67.00 2.43

LR

Base 62.43 66.15 1.11 52.13 55.01 0.11 67.32 69.51 2.30
WS 61.53 66.21 1.18 53.45 55.31 0.20 68.13 69.07 2.43
SW 63.35 67.99 1.28 54.00 55.27 0.33 68.55 71.35 2.83
BT 61.43 66.01 1.13 53.01 54.22 0.19 68.13 70.59 3.05

SVM

Base 63.14 67.00 1.95 52.21 54.41 0.06 66.41 68.71 2.13
WS 63.54 66.35 2.24 52.77 55.45 0.19 67.10 69.58 2.33
SW 63.17 67.12 2.12 52.59 55.32 0.27 68.15 70.83 3.01
BT 62.15 67.08 2.14 50.75 54.55 0.13 65.85 68.11 1.99

MLP

Base 63.10 67.01 2.13 53.14 56.32 1.17 67.91 72.05 3.18
WS 62.22 67.01 2.77 54.34 57.12 1.21 68.56 71.22 4.01
SW 63.15 68.22 3.71 54.99 58.18 2.04 68.33 73.55 3.88
BT 62.22 67.21 2.20 53.74 57.73 1.56 67.13 72.14 3.40

Table 8: Document Augmentation Attack Results on FLAN-T5. Base shows the baseline attack results in Table 6.

SAMsum CNNDM MIMIC
ACC AUC TPR0.1% ACC AUC TPR0.1% ACC AUC TPR0.1%

RF 56.30 57.74 1.17 50.99 54.08 0.57 60.55 61.65 2.22
LR 57.31 59.88 1.05 51.22 53.76 0.39 55.01 58.83 2.26
SVM 57.15 58.86 1.85 51.03 54.07 0.12 59.33 62.25 1.91
MLP 57.60 57.35 2.08 52.73 54.49 1.21 61.15 62.77 2.77

Table 9: Document only Attack Results based on sentence swapping augmentation on FLAN-T5. Base shows the
best baseline attack results in Table 6 with full knowledge.
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