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Abstract

Novel intent discovery automates the process
of grouping similar messages (questions) to
identify previously unknown intents. However,
current research focuses on publicly available
datasets which have only the question field
and significantly differ from real-life datasets.
This paper proposes methods to improve the
intent discovery pipeline deployed in a large
e-commerce platform. We show the benefit
of pre-training language models on in-domain
data: both self-supervised and with weak su-
pervision. We also devise the best method to
utilize the conversational structure (i.e., ques-
tion and answer) of real-life datasets during
fine-tuning for clustering tasks, which we call
Conv. All our methods combined to fully uti-
lize real-life datasets give up to 33pp perfor-
mance boost over state-of-the-art Constrained
Deep Adaptive Clustering (CDAC) (Lin et al.,
2020) model for question only. By comparison
CDAC model for the question data only gives
only up to 13pp performance boost over the
naive baseline.

1 Introduction

Allegro is one of largest the e-commerce market-
place in Central Eastern Europe region that con-
nects buyers and merchants. It has millions of
active users. Therefore, the good functioning of
the Customer Experience (CX) department is cru-
cial as it provides the necessary support, resolves
emerging issues, and answers user questions.

Task-oriented chatbots relieve humans by auto-
matically resolving the most repetitive and triv-
ial issues. They usually have a pre-defined set of
user intents with matching template answers. Then,
when a user asks a question, the intent classifier
detects the question intent and returns the matching
response. Creating a reliable and comprehensive
chatbot requires massive work to discover, define,
and maintain a set of intents with training examples.
With the continuous development of marketplace

platforms, new intents constantly appear as new
features are introduced. Therefore, the automated
intent discovery system becomes a critical compo-
nent.

Novel intent discovery is performed offline on
historical data. In the context of personalized in-
telligence assistants existing approaches (Lin et al.,
2020; Gao et al., 2021; Vedula et al., 2022) focus
on learning transferable features with utterance en-
coders that guide the discovery on unlabeled data
with a handful of labeled examples belonging to
known intents. However, at Allegro our main com-
munication form is emails, and we have access to
much richer conversational data that can improve
discovery performance. A large body of historical
conversational data (user questions and consultants’
answers) can be leveraged in two ways. Firstly, to
better initialize message encoders and secondly by
performing intent discovery on conversational data
as an additional signal. Additionally, a form of
weak supervision is available: keywords (or tags)
added by the consultants that help them understand
past cases.

The paper’s main contribution is the demonstra-
tion that incorporating additional signals like con-
versational structure or weak labels into the existing
intent discovery method results in better overall per-
formance. We pre-trained for domain adaptation
three encoders using conversational data and weak
labels. We devised Conv, a method for fine-tuning
on conversational data (i.e., question and answer)
for the clustering task using a three-headed encoder.
To the best of our knowledge, this result was not
reported in the public literature.

2 Related Work

2.1 Discovering novel intents

The goal of novel intent discovery is to identify
groups of similar utterances in unlabeled data with
the assistance of limited labeled data. The Con-
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strained Deep Adaptive Clustering (Lin et al., 2020,
CDAC) uses dense intent representation on top of
the pre-trained BERT backbone to learn similarity
functions in a semi-supervised contrastive manner.
It is then utilized in the clustering algorithm. In
a real-world scenario of personal assistants (Gao
et al., 2021; Vedula et al., 2022) use a pre-trained
BERT model as a backbone encoder with super-
vised contrastive learning to transfer distance func-
tion to unlabeled data for clustering. Unlike this
work, the authors use only the question field and
English BERT-base uncased model for initializa-
tion. They do not use in-domain unlabeled data or
weak supervision for backbone pre-training.

2.2 Transfer learning

General-purpose pre-trained encoders like BERT
are not ideal. Tasks involving domain-specific
texts like, e.g., science corpus, clinical notes, or e-
commerce product descriptions benefit more from
additional pre-training on in-domain data due to
better suited vocabulary and word embeddings to
domain specific problems (Beltagy et al., 2019;
Huang et al., 2019; Tracz et al., 2020; Gururangan
et al., 2020). Similarly, for conversational tasks
ConveRT (Henderson et al., 2020a) substantially
outperforms BERT in neural response selection.
Additionally, industrial-scale training on weakly
supervised datasets leads to improvements in sev-
eral NLP tasks (Bach et al., 2018).

3 Method

3.1 Problem statement

Given unlabeled instances D, the goal is to auto-
matically cluster utterances into I classes, which
are not known a priori. We also assume that we
are given labeled instances Dk with Ik known set
of intents and I ∩ Ik ̸= ∅. Unlabeled instances
may belong to both known intents Ik and unknown
ones Iu = I \ Ik.

3.2 Framework overview

Our novel intent discovery framework consists of
representation learning (Bengio et al., 2013) and
subsequent clustering with K-means (Lloyd, 1982).
We propose the following to improve text represen-
tations for real-life novel intents discovery in the
communication domain:

• Efficient initialization with pre-trained en-
coders, adapted to the e-commerce domain

by optimization for weak training signals and
conversational structure of the data.

• Fine-tuning for the clustering task with
state-of-the-art training scheme (i.e., CDAC)
adapted to use all the conversational data (i.e.,
question and answer). Conv is our proposed
method to train a conversation structure-aware
encoder with three-headed architecture.

In the following sections, we describe each com-
ponent in more detail.

3.3 Initialization
An essential step in the deep learning process is ini-
tialization. Proper initialization is crucial in train-
ing representations for discovering new intents with
clustering. The effectiveness of the existing clus-
tering algorithms depends heavily on the quality
of the representation encoder. In this work, we
identified this dependency and proposed a generic
approach for an efficient encoder pre-training in
the conversational domain.

3.3.1 Domain specific data structure
We operate in the e-commerce domain with a two-
sided marketplace. Customers can seek support
by exchanging messages via email or chat. The
former are typically longer and include a more
formal boilerplate. A dialog may be held between
merchants and CX support, buyers and CX support,
and directly between buyers and merchants. All
messages are written in Polish.

3.3.2 Domain adaptation
We prepared two self-supervised models based
on BERT-base (Devlin et al., 2019) architecture.
We started from a general domain encoder Her-
BERT (Mroczkowski et al., 2021). We used a train-
ing corpus of 68M conversation threads with 184M
messages and 8314M words. We included both
emails and chats exchanged between all parties
(merchants, CX support, and buyers).

• AlleBERT is HerBERTfine-tuned with
Masked Language Model (MLM) objective.

• AlleConveRT is AlleBERT further fine-tuned
on the same dataset but with the mixture of
MLM and Conversational Contrastive Loss
(CCL) (Henderson et al., 2020b).

The details of the training procedure for each of the
pre-trained encoders can be found in Appendix E.
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3.3.3 Weak supervision
In the case of email communication exchanged
with CX support, every message includes at least
one of 512 tags. These labels roughly identify the
problem solved. They are assigned by CX consul-
tants often in a noisy manner. We utilized this weak
signal and prepared TagBERT encoder in a two-
stage process. Firstly, we finetuned HerBERT with
MLM and Message Threads Structural Objective
(MTSO) (Wang et al., 2020) on all internal com-
munication data (emails and chats). Secondly, we
finetuned it on a multi-label classification task on
CX weakly supervised dataset that includes 2.5M
messages in the email domain exchanged between
merchants or buyers and CX support. Details of
the training procedure can be found in Appendix E.

3.4 Conv, conversation structure aware
encoder
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Figure 1: Representation model based on BERT-base en-
coder used in the discovery pipeline. On the left version
with one head. On the right Conv, our conversational
model with three separate trainable heads for the ques-
tion, answer, and question-answer concatenation. The
parameters of the encoder are frozen except for the last
transformer block.

As depicted in Fig. 1, we used an encoder with
BERT-base architecture (Devlin et al., 2019) fol-
lowed by an average pooling1 and three projection
heads with two linear layers and Tanh non-linearity
in between (Lin et al., 2020).

The three-headed model works with conversa-
tional input containing a pair of texts: the user’s
question and the consultant’s answer2. Two heads
project each input separately, and the third one han-
dles additional signals from the question-answer
concatenation into one string of text. Each of the
inputs is fed into encoder separately. A common
underneath encoder is updated jointly with a gradi-
ent from all heads from the total loss given by the

1Unlike many implementations, the hidden states for
padding tokens are not averaged.

2While encoding question and answer, are preceded with
special tokens for question and answer.

weighted average of losses for each head:

LConv(X,Y, θ) =λQ · L(XQ, Y, θQ)

+ λA · L(XA, Y, θA)

+ λQA · L(XQA, Y, θQA).

(1)

Here X = (XQ, XA, XQA) is the array of inputs
(all examples), i.e. all questions, all answers, all
question-answer concatenations respectively. Y
are the input labels3. θ = (θQ, θA, θQA) is the
array of parameter sets for individual inputs BERT-
baseparameters are shared as depicted in Figure 1.
The hyperparameters λ = (λQ, λA, λQA) govern
how conversational structure is utilized for any
choice of the training scheme, whereas the pre-
cise form of the loss terms L depends on the choice
of the training scheme described in Sec. 3.5. For
example if we choose λ = (1, 0, 0), and compute
L according to CDAC training scheme, we follow
the original CDAC setup with the question field
only. By using λ = (0, 0, 1) and computing L ac-
cording to CDAC training scheme, we effectively
only concatenate question and answer strings and
feed it into the model instead of the question string.

In our method Conv for training conversation
structure-aware encoder, we trained the represen-
tation encoder with uniform heads contribution
λ = (13 ,

1
3 ,

1
3) staring from initializations described

in Section 3.3. The final representation used for
clustering is an embedding from the head for
question-answer concatenation.

To speed up training with large batches, we kept
the weights of the encoder frozen except for the last
transformer layer. The first linear layer keeps the
BERT-base dimension of the representations (i.e.,
768). The second linear block output dimension is
a representation size hyperparameter.

3.5 Training scheme
Up to this point, we are able to use any framework
for finetuning the representation encoder for intent
discovery with clustering. With that said, we pro-
pose to use two potential approaches for real-world
CX communication data.

Static. In a setup where we do not have any la-
beled data available, we extract text representation
from the pre-trained encoder by average pooling
without additional training.

3Since we deal with unsupervised/semi-supervised algo-
rithms, some examples are unlabelled.
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Constrained DAC (CDAC) (Lin et al., 2020).
The method generalizes the Deep Adaptive Cluster-
ing (DAC) (Chang et al., 2017) scheme for partially
labeled data and trains with a contrastive loss on
both distance-based pseudo-pairs and exact pairs
given by intent labels. It is semi-supervised since it
utilizes both labeled and unlabeled examples from
the train set. We adapted CDAC training scheme
to Conv, our three-headed, conversation structure-
aware encoder (see Sec. 3.4). Details of the DAC
method are in Appendix B.1, and details of the
CDAC method are in Appendix B.2.

4 Evaluation

We describe our experimental setup for novel intent
discovery. We prove the efficiency of the proposed
method on real-world communication datasets. To
verify gains from different framework components,
we present more results in the ablation section (Sec.
5).

4.1 Real-world internal datasets

We used three internal datasets: Purchase, Delivery
and Retail from real traffic to CX support at Allegro
in Polish language. CX consultants manually anno-
tated the datasets with intent labels. Categories of
email queries to the CX team are more fine-grained
than the widely used Banking77 (Casanueva et al.,
2020) dataset. Moreover, such real-world datasets
are highly imbalanced, with some intents overlap-
ping. Basic dataset statistics are shown in the Ta-
ble 1. The user emails vary in length and style and
may contain irrelevant parts. Each dataset includes
messages of different quality and specificity rang-
ing from uninformative chit-chat to well-written
ones. In datasets, only the first question and direct
answer are included, and all further messages from
the correspondence thread are omitted. The Pur-
chase and Delivery cover conversations between
buyers and CX consultants. Retail is communica-
tion between buyers and merchants, so conversa-
tion topics and structure are different. We use a
stratified 80/10/10 train/val/test split.

We use two public benchmark English
datasets from task-oriented dialog systems:
CLINC150 (Larson et al., 2019) and Bank-
ing77 (Casanueva et al., 2020) in Dataset splits
follow exactly the experimental setup used
in (Zhang et al., 2020) in ablation study in
Section 5.2 to increase the reproducibilty of our
work. In other ablations it is impossible due to

missing conversational and weak label signal.
Basic statistics of the datasets are in the Table 1.

Further details are in Appendix A.

4.2 Experimental setting
We build a controlled open-world intent discovery
setup, following the setup proposed in (Lin et al.,
2020; Zhang et al., 2020). We prepared novel in-
tents by randomly masking all examples from 50%
of intents in the training set. The remaining intents
serve as known intents and are additionally par-
tially masked. We masked 50% of all remaining
examples. We apply the representation learning
framework: we take in-domain encoders described
in Section 3.3.2 and 3.3.3 and do the fine-tuning
step (described in Section 3.4 and 3.5). After the
training phase, we cluster the whole test dataset
with K-means. We performed clustering with the
ground truth number of clusters (i.e., the number
of intents in the dataset).

We run experiments with hyperparameters (i.e.,
representation size, batch size, and learning rate)
fixed. We have described the method of their selec-
tion in Appendix D.

We use five random seeds, which govern intent
masking and weight initialization. We train the
model for 100 epochs on a single machine with
NVIDIA V100 GPU. It takes a few hours to run
a single fine-tuning experiment for all seeds for a
single setting (dataset, training scheme etc.).

4.3 Metric4.
We compute metrics based on cluster ids from K-
means algorithm and ground truth labels. The dis-
covery quality is probed with three standard clus-
tering metrics, i.e., Accuracy (ACC) using the Hun-
garian algorithm, Normalized Mutual Information
(NMI), and Adjusted Rand Index (ARI). We also
introduce two additional metrics. First, the binary
F1-score i.e., macro F1-score with a majority vote
on cluster label calculated on the whole dataset
where all known intents are one class, and all novel
intents are the second class. Second, the macro
F1-score with a majority vote on the cluster label.
It turns the clustering quality problem into a multi-
label classification. In the main part of the paper,
we report AVG i.e., the average of five metrics over
all seeds. AVG increases with clustering quality
up to 100%. AVG is the primary metric used for

4We publish the code for our metrics: https:
//github.com/allegro/ml/tree/main/publications/
intent-discovery-metrics/
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# # # examples per intent mean length (characters)
Dataset intents examples mean min max entropy question answer

Banking77 77 13.1k 170±33 75 227 0.992 60±40 -
CLINC150 150 22.5k 150±0 150 150 0.999 40±20 -

Purchase 22 2.7k 121±50 29 240 0.972 320±280 1060±400
Delivery 23 3.0k 130±55 57 221 0.973 330±360 860±410
Retail 105 13.8k 133±124 22 664 0.930 160±190 740±830

Table 1: Downstream tasks datasets characteristic. Class imbalance is measured by the average number of examples
per intent and the normalized Shannon’s entropy of the intent distribution (which is 1 for for the perfectly balanced
case and lower in case of class imbalance). Further details are in Appendix A

Method Purchase Delivery Retail

Static 37.0±4.1 31.1±1.3 28.8±0.7
CDAC 50.2±6.6 40.9±4.5 36.5±1.7

Our 83.2±3.2 64.2±6.3 45.4±4.0

Table 2: Static baseline and CDAC representations com-
pared with our framework on novel intent discovery
task for real-world data. Our framework combines Tag-
BERTpre-trained encoder, CDAC training scheme, and
Conv method for using the conversation structure. AVG
metric averaged over five seeds.

model selection. Additionally, to facilitate com-
parison with other research, the five metrics are
listed separately in Appendix F for all experiments.
In Appendix F we give more details on how we
compute metrics or test for statistical significance.

4.4 Results

Table 2 shows the AVG metric for our best-
performing model. Five individual metrics are
listed in Table 8. We significantly improve intent
discovery compared with baselines. Our model
uses TagBERT (see Section 3.3.3) as initializa-
tion and is trained with the CDAC scheme. While
training, we used both question and answer fields
and utilized conversational structure-aware encoder
Conv introduced in Sec. 3.4. The baselines (Static
and CDAC) are based on the general domain Her-
BERT encoder and use the question field only. We
improved over the second-best CDAC, depend-
ing on the dataset, by 8.9pp to 33pp. The per-
formance gap of our framework to the CDAC base-
line is greater then the superiority of CDAC over
the naive baseline, static embeddings, which is be-
tween 7.7pp and 13.2pp.

Initialization Purchase Delivery Retail

HerBERT 65.9±6.2 44.7±3.7 37.2±2.0
AlleBERT 66.4±6.6 49.2±6.4 44.2±2.2
AlleConveRT 73.1±8.8 57.9±5.9 49.3±2.1
TagBERT 83.2±3.2 64.2±6.3 45.4±4.0

Table 3: Impact of initialization for novel intent discov-
ery task. Conv conversation structure-aware encoder
was trained with the CDAC scheme from different ini-
tialization. AVG metric averaged over five seeds with
standard deviation.

5 Ablation

We attribute the improvement in performance to all
three method components: domain adaptation dur-
ing pre-training with conversational and weak label
signal, state-of-the-art training scheme CDAC, and
leveraging of conversation structure with our Conv
method introduced in Section 3.4.

5.1 Initialization

In this section, we show the effect of initialization
on the novel intent discovery task. We trained a
conversation structure-aware encoder with a CDAC
scheme using four different initializations.

AVG metric is reported in Table 3 and individual
metrics are shown Table 9. Comparing AlleBERT
with HerBERT, we can see that domain-adapted
initialization improves 1 to 7pp for discovering new
intents. Further adaptation of the starting encoder
with the loss of ConveRT improves at least 5pp.
Summarizing AlleBERT and AlleConveRT initial-
izations bring gains for all internal datasets. For
the CX domain (Purchase or Delivery), the best ini-
tialization was provided by TagBERT. Pre-training
with weak labels introduced additional training in-
formation that turned out to be transferable for the
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Training scheme Banking77 CLINC150 Purchase Delivery Retail

Static 41.7±1.0 55.9±1.4 35.5±4.1 31.0±2.4 29.6±0.8
DAC 51.8±1.8 64.6±1.3 24.1±0.7 24.0±0.9 27.3±4.4
Supervised 65.2±2.1 73.2±0.6 38.2±2.1 33.5±2.2 30.1±0.5
CDAC 61.8±2.8 70.4±1.4 52.9±7.3 42.3±3.6 39.2±1.2

Table 4: Evaluation of training schemes for novel intent discovery. We report AVG metric averaged over five seed
with standard deviation. Models use BERT-base (English datasets) or AlleBERT (Polish datasets) encoder and
question input only. The best results are in bold.

downstream task. The simultaneous drop in quality
on the Retail dataset originating from the domain
for which we did not have noisy labels confirms
this phenomenon.

5.2 Training schemes

We compare two training schemes Static, and
CDAC from Sec. 3.5 with two additional base-
line methods DAC and Supervised. For Supervised
training scheme, we use Large Margin Cosine Loss
(LMCL) (Wang et al., 2018) to learn representation
from labels. We discard unlabeled data from the
train set. We train the models for all four schemes
with question input only and BERT-base (Devlin
et al., 2019) for English and AlleBERT for Polish
datasets.

This ablation study is the only case when we can
use two public benchmark English datasets from
task-oriented dialog systems: CLINC150 (Larson
et al., 2019) and Banking77 (Casanueva et al.,
2020). Unfortunately, public benchmark datasets
lack the answer data, a large amount of unlabeled
data, and weak labels. However, including them in
this ablation study increases the reproducibility of
our work and brings interesting insights.

AVG metric is reported in Table 4 and individual
metrics can be found in Table 10. For all datasets,
there is a gain from using intent labels (Supervised
and CDAC). For public datasets among unsuper-
vised methods, DAC outperforms static representa-
tions. However, supervised training is better than
semi-supervised CDAC. The results are the oppo-
site for the internal datasets. DAC is better than
static representations, and semi-supervised CDAC
is better than supervised training. We hypothesize
that different real-world and benchmark datasets
results might be due to dataset quality and size dif-
ferences. In general, benchmark datasets are larger
and more balanced. Moreover, mail messages from
real-world e-commerce are longer and noisier on
average. It is an open question how this trend holds

for other real-life datasets.
To sum up, there is a gain from intent labels

for all datasets. Optimal solutions for public
benchmarks and real-world internal datasets dif-
fer. CDAC is the best training scheme that uses
intent labels for internal datasets.

5.3 Conversational structure

We examine if any further gains in performance can
be obtained from incorporating the answer field sig-
nal. We conduct experiments only on the internal
datasets. We use only the best training scheme,
i.e., CDAC. We examine four training configura-
tions: only question representation Q trained with
λ = (1, 0, 0), only answer representation A trained
with λ = (0, 1, 0), question-answer concatenation
QA concatenation trained with λ3 = (0, 0, 1), us-
ing question and answer in a simpler two-headed
model QA two heads trained with λ = (12 ,

1
2 , 0)

and full three-headed conversational model Conv
trained with λ = (13 ,

1
3 ,

1
3) described in detail in

section Sec. 3.4.5

AVG metric is reported in Table 5 and individ-
ual metrics can be found in Table 11. The answer
alone performs worse than the question alone. We
hypothesize that it is due to many non-informative
generic answers6. Perhaps for other real-world
datasets consultant’s answer may be superior to the
user’s questions. Passing only the question signal
is a strong baseline. Let us check if it is possible to
incorporate signals from both question and answer
fields in a way that improves performance over Q,
question field only baseline. The most straightfor-
ward extension, QA concatenation, which requires
only inputting different inputs to the same model
is slightly better but does not pass the statistical

5For multi-headed encoders, we chose the best of all possi-
ble final representations (output from any head, or concatena-
tions of outputs from multiple heads).

6e.g., Thank you for your message. Let me check some
details and reply later.
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Purchase Delivery Retail

Q 52.9±7.3 42.3±3.6 39.2±1.2
A 51.7±5.5 37.6±4.5 30.5±1.5

QA concat. 55.1±3.8 47.3±3.4 43.4±3.1
QA two head. 56.4±5.9 46.9±5.4 40.2±1.7
Conv 66.4±6.6 49.2±6.4 44.2±2.2

Table 5: Evaluation of conversational structure for novel
intent discovery. We report AVG metric averaged over
five seed runs with standard deviation. Models use
AlleBERT initialization, CDAC training scheme, and
various inputs, i.e., question Q, answer A, or both fields
(QA) in three model variants; QA concatenation, QA
two heads, and Conv. The best results are in bold.

significance test. The same goes for the more so-
phisticated QA two heads variant. Only our method
Conv, a three-headed encoder is better than Q with
statistical significance. Incorporating both question
and answer signal leads to further improvements.

To sum up, after examining multiple ways to
include the conversational signal, we conclude that
our method Conv with a three-headed encoder im-
proves the performance by 5 to 13.5pp.

6 Commercial deployment

6.1 Production pipeline overview

Figure 2: Intent discovery pipeline deployed at Allegro
with human-in-the-loop carrying out the novel intent
selection and data annotation. Representation learning
components are subject to experiments in this paper.
The main outcome of the pipeline is an updated intent
detection dataset, which can be used to train a better
intent classification model.

The method we described and verified exper-
imentally is a part of a larger multi-component
system for continuous intent discovery deployed
commercially, shown in Fig. 2. Here we briefly list
the major components of our production pipeline
to give the bigger picture:

1. Representation learning. Representation
learning plays a core role in our pipeline. This
component is subject to experiments in this
paper and consists of two subcomponents:

(a) In-domain pre-training of encoders. En-
coders with BERT-base architecture are
pre-trained on large chunks of historical
data. We include additional signals such
as conversational structure (i.e. question
and answer) and weak label signal (Sec-
tion 3.3.2 and 3.3.3). The encoders are
reused for the intent classification model.

(b) Fine-tuning for the clustering task. We
further train in-domain encoders. If
there exists annotated data, we use
semi-supervised CDAC with Conv (Sec-
tion 3.4). Otherwise, we use static em-
beddings.

2. (Over)clustering with K-Means. We cluster
representations to discover intent groups in the
data. The number of novel intents is required
by K-Means. We overestimate this value as
it is less time-consuming to manually merge
clusters with the same intent.

3. Cluster postprocessing. Various postprocess-
ing steps make analyzing the clusters by the
human annotators more efficient:

(a) Multi-document summarization. The
summarization module, provides human-
readable candidates for the intent name
instead of cluster ids. First, we train
a logistic regression classifier with bag-
of-words features to predict cluster ids.
Then, we identify the most informative
sentence in each message using the clas-
sifier coefficients (Angelidis and Lap-
ata, 2018). Finally, we select the five
most central sentences across all mes-
sages (Zheng and Lapata, 2019).

(b) Known intent prediction. We need to dis-
tinguish clusters with known intents from
clusters with potentially novel intents.
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Since the labeled messages are typically
a small subset of the training dataset, we
infill intents for the unlabeled examples
with an intent classifier and present this
information to human annotators.

4. Novel intent selection and data annotation.
Human annotators manually analyze all dis-
covered clusters and choose which novel in-
tents to include in the taxonomy. They anno-
tate all messages from clusters to be included
in the labeled dataset to ensure the high coher-
ence of newly discovered intents.

CX intent dataset updated with new intent is the
end product of our intent discovery pipeline. Its
primary purpose is to train an intent classifier to
be served in real-time to CX consultants. It is a
complex pipeline of its own. It has similar archi-
tecture to the representation learning model in the
intent discovery pipeline and it reuses pre-trained
encoders. Even though the consultant’s answer
and the consultant’s weak label are not known at
the serving time of the intent classification model,
we leverage these signals to build a better intent
dataset and directly train a better intent classifica-
tion model.

6.2 Commercial benefits case study
Thanks to the deployed pipeline, we doubled the
number of defined intents for customer support
within one year. Initially, the taxonomy consisted
of 100 classes manually defined by the CX consul-
tants. The commercial deployment of the intent
discovery pipeline happened at the moment when
the domain experts failed to find any new intents
manually. Roughly 50 new intents were discov-
ered thanks to our intent discovery pipeline. The
selected clusters were reasonably pure: over 90%
(mean and median) of examples from the selected
clusters were labeled as the given intent. Addi-
tional examples for the new intents were further
added (active learning etc.) and at the moment, the
examples from the clustering process are at least
40% of all examples for 50 automatically discov-
ered intents. Currently, after extending our taxon-
omy from other sources as well, our taxonomy has
roughly 180 intents.

In addition, the pipeline decreased the time re-
quired to define novel intents from weeks to days
with the additional benefit of analyzing several-fold
more messages. The more comprehensive taxon-
omy significantly impacts the total benefit from the

automation process, improves user experience by
providing faster responses, and saves the cost of
hiring additional CX consultants.

7 Conclusions

This paper describes an intent discovery pipeline
deployed on a large e-commerce platform. The
access to real-life datasets allows extending the es-
tablished intent discovery models to better leverage
vast amounts of unlabelled data, its conversational
structure, and additional signals like weak labels.
In particular, we learn the following lessons:

1. Among multiple ways to handle conversa-
tional data, Conv, our generalization of the
CDAC model to a three-headed encoder to use
all available conversational data (i.e., question
and answer) increases the performance of the
intent discovery pipeline the most. See Sec-
tion 5.3.

2. The significant gains also come from pre-
training the encoder on an unlabelled in-
domain dataset with conversational structure
and weak labels (TagBERT). See Section 5.1.
Therefore, we recommend a system architec-
ture that enables weak labeling by the consul-
tants by design.

3. Even though the consultant’s answer and weak
labels are not available at the serving time of
the intent classification model, they can be
used offline for novel intent discovery to build
a better dataset and directly improve the intent
classification. It happened for our comercially
deployed pipeline. See Section 6.

4. Gains from incorporating additional signals
(Conv method, TagBERT) are larger than
gains from using state-of-the-art methods
(CDAC) on datasets without additional sig-
nals. See Section 4.4. We advocate for a shift
both in construction and research on intent
detection datasets.

8 Limitations

We are aware of two major factors that may affect
the generality of our research: shortcomings of
the simulated novel intent discovery setup and the
assumption that intent detection is a classification
problem.
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Simulated experiments. In the experimental sec-
tion, we use small, entirely annotated datasets to
analyze different design choices of the representa-
tion learning component. We naturally include only
already discovered intents (does not mean these are
all possible). Our masking procedure that follows
research papers (Lin et al., 2020; Zhang et al., 2020)
has three drawbacks. Firstly, when we mask most
of the dataset, we effectively do few-shot learning,
whereas, in reality, the amount of annotated data
is much larger. The observed differences between
design choices may be mitigated once more data
is available. Secondly, real class imbalance may
not be reflected in the experimental dataset due
to the annotation procedure. Lastly, the ratio be-
tween batch size and dataset size is much smaller
for real datasets since, in general, we are training
with a large amount of unannotated data. It directly
affects batch-based pair statistics when using a ran-
dom sampler in CDAC algorithm. The chance that
annotated examples will be present in the batch is
low, and effectively we are almost entirely learn-
ing from pseudo-pairs during the semi-supervised
stage.

Intent detection as classification. We treat the
intent discovery as classification i.e. each utterance
has only one intent. In reality, users may have
more than one goal that transforms the problem into
a multi-label scenario. Naturally, we could treat
multi-label examples as yet another class, but we do
not explore their influence on pipeline performance
since they were in a significant minority.
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A Dataset details

We further describe real-world internal datasets in-
troduced in 4.1 and compare them to public bench-
mark datasets. Table 6 exemplifies the domain
diversity of the datasets: it contains three sample
intent names per dataset.

We visualize the datasets. We use publicly
available pre-trained models to enable simple vi-
sual comparisons between our real-world inter-
nal datasets and any other datasets. Sentence-
BERT produces English sentence embeddings by
fine-tuning on semantic textual similarity STS
pairs (Reimers and Gurevych, 2019). We use
a variation of Sentence-BERT trained from MP-
Net (Song et al., 2020). Polish version has been
obtained following knowledge distillation proce-
dure (Reimers and Gurevych, 2020; Dadas, 2019).
7 We compute sentence embeddings for the ques-
tion field or if the answer field is present, for
question-answer concatenation. For each exam-
ple, we compute a partial Silhouette score (using
ground truth intents as cluster labels) and average
it per intent. Silhouette score, designed originally
for evaluating the clustering quality, takes into ac-
count the mean intra-cluster distance and the mean
nearest-cluster distance for each example. We plot
2D t-SNE mappings of the embeddings, Silhouette
score per intent 8, and intent sizes in Figures 3 and 4
to visualize the datasets and the initial difficulty of
the clustering task on general domain pre-trained
models.

B Training schemes

B.1 Deep Adaptive Clustering (DAC)
It was introduced in (Chang et al., 2017) for the
Computer Vision domain but is easily extended
to text. Originally, output representation was in-
terpreted as a probability distribution over unique
classes, i.e., they used L2 normalized features with
positive elements. We relaxed this condition and
trained real-valued representation for any cluster-
ing algorithm. The representation size doesn’t have
to match a unique number of classes in the dataset
(unknown in real scenarios). For a pair of examples
i, j the loss function Lij is

Lij = −Rij logSij − (1−Rij) log(1−Sij), (2)
7Package sentence-transformers, available at https:

//sbert.net, is used with models all-mpnet-base-v2 or
sdadas/st-polish-paraphrase-from-mpnet for English
and Polish respectively.

8https://scikit-learn.org/

Dataset Three sample intent labels

Banking77
1. Cash withdrawal charge

2. Getting spare card
3. Request refund

CLINC150
1. Transactions

2. Next song
3. International fees

Purchase
1. I have a technical problem.

2. When will my Smart!
be active?

3. How to withdraw from
the auction?

Delivery

1. I didn’t pick up my parcel
and I’m asking for a refund.

2. How to withdraw
from the contract?

3. I want to use Buyers
Protection Program.

Retail

1. When will the sale of
the offer start?

2. I have a problem with the cust-
omer service for my purchase.
3. Is the product prepackaged?

Table 6: Domain diversity of labeled datasets used for
novel intent discovery experiments. Three sample intent
names per datasetare given.

Dataset B
an

ki
ng

77

C
LI

N
C

15
0

Pu
rc

ha
se

D
el

iv
er

y

R
et

ai
l

Representation size 256 256 32 32 64
Batch size 128 128 16 32 16
# intents 77 150 22 23 105

Table 7: Optimal representation size and batch size vs.
a number of annotated intents in the datasets.
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where (Rij = 1) for positive pairs and (Rij = 0)
for negative pairs and Sij is cosine similarity of rep-
resentations. The pseudo-label matrix R is defined
in an online fashion for every pair of examples in a
batch using current model predictions i.e.

Rij =





1, if Sij ≥ u(λ),

0, if Sij < l(λ),

None, otherwise,

(3)

where u(λ) and l(λ) are upper and lower thresh-
olds. Pairs between the thresholds do not take part
in the training. This is compensated by adding
penalty term u(λ) − l(λ) to the final loss. The
thresholds are updated every epoch according to
the formula

u(λ) = 0.95− λ,

l(λ) = 0.455 + 0.1 · λ,

where update rule for λ every epoch is λ = λ+1.1·
0.009 (Chang et al., 2017). We start with λ = 0.
The training ends when u(λ) = l(λ). The train-
ing resembles curriculum learning: we start with
confident examples with very large or low cosine
similarity and then introduce more uncertainty. The
penalty term also reflects our confidence since it
controls the strength of gradient updates.

B.2 Constrained DAC (CDAC)
This extension of DAC to a semi-supervised sce-
nario was introduced in (Lin et al., 2020). In un-
supervised case, we only use contrastive objective
with pseudo-labels. Once we have annotated exam-
ples, we define true positive and negative pairs with
labels. The label matrix R has now pseudo-label
part (3) and exact part

Rij =

{
1, if yi = yj ,

0, if yi ̸= yj ,
(4)

where yi denotes encoded label for i-th example.
Since our batch now includes annotated and unan-
notated examples, we need to redefine pseudo-
labels. We consider three cases. Firstly, pseudo-
labels can be defined only among unannotated ex-
amples. Secondly, we can allow pseudo-labels be-
tween pairs of annotated and unannotated examples.
Lastly, we can define pseudo-labels for all possi-
ble pairs, including a scenario where pseudo-labels
are defined among annotated pairs. We chose the
second scenario.

Additional modification is alternating training.
Even epochs use only annotated data and no thresh-
old penalty. Odd epochs use the whole dataset and
pseudo-label matrix as well as exact. The loss in
the supervised phase is additionally scaled by the
δ ≥ 1 hyperparameter to control the weight put on
annotated data.

C Metrics9.

We choose metrics for our experiments. Three
clustering metrics measure the separation of novel
intents from each other:

• Accuracy (ACC) measures clusters purity.
Cluster and ground-truth labels are matched
with the Hungarian algorithm.

• Normalized Mutual Information (NMI)
specifies the amount of uncertainty about class
labels given cluster labels.

• Adjusted Rand Index (ARI) checks for
all sample pairs whether their assigned and
ground truth labels are the same.

ACC, NMI, and ARI are calculated only on exam-
ples with a novel intent as a ground truth label.

The separation of the novel from the known in-
tents is measured by:

• Binary F1-score. It is a macro F1-score with
a majority vote on the cluster label calculated
on the whole dataset where all known intents
are one class and all novel intents are the sec-
ond class.

Last but not least, there is a metric that measures
both the separation between novel intents and the
separation of the novel from the known:

• Macro F1-score with majority vote on cluster
label. It turns the clustering quality problem
into multi-label classification.

The macro average is calculated only for novel
intents. Examples with any ground truth label may
be included10.

All metrics increase with clustering quality up
to 100%. We use five random seeds, which gov-
ern intent masking and weight initialization. In

9We publish the code for our metrics: https:
//github.com/allegro/ml/tree/main/publications/
intent-discovery-metrics/

10See: https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.f1_score.html
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the main part of the paper, we report AVG i.e.,
the average of five metrics listed above (which are
correlated variables) overall seeds. AVG is the pri-
mary metric used for model selection. Whenever in
doubt, we confirm that the difference between AVG
metrics is statistically significant with correlated
T-Test with a p-value=5% threshold. Additionally,
to facilitate comparison with other research, for all
experiments, the five metrics are listed separately
in Appendix.

D Initial fine-tuning

We start our experiments with fine-tuning repre-
sentation size, batch size, and learning rate hyper-
parameters for the CDAC training scheme11. For
every dataset, we optimize the hyperparameters
in two steps: selecting optimal representation size
via grid search over the representation sizes {16,
32, 64, 128, 256} and learning rates {1e-05, 5e-
05, 1e-04} and then selecting the optimal learning
rate and batch size via grid search over batch sizes
{16, 32, 64, 128, 256, 512} and the same learning
rates as step 1. Tab. 7 shows the relation of the
selected hyperparameters to the number of intents.
The selected hyperparameters are later fixed in the
experiments. Additionally, to improve training sta-
bility, we perform an additional learning rate search
again within values {1e-05, 5e-05, 1e-04} for every
setup which uses Conv method separately.

E Pre-trained encoders (details)

To leverage large amounts of historical data, we
compare four self-supervised encoders, and one
supervised trained on conversational data. The
training procedure for each encoder is described in
detail below for reproducibility. The encoders are
used for experiments in Sec. 4.4.

HerBERT State-of-the-art BERT-base language
model for Polish (Mroczkowski et al., 2021) trained
with Masked Language Model (MLM) objective.

AlleBERT The model is a result of further fine-
tuning HerBERT on internal unsupervised conver-
sational data. The single training example contains
a conversation thread clipped to 512 tokens. We
always clip threads to a random subsequence of
whole consecutive utterances to persist in a con-
versational context. AlleBERT is trained with the

11We focus on CDAC encouraged by initial good results
for CDAC and high cost of fine-tuning each training scheme
separately.

MLM objective for 100k steps with the linearly
decaying learning rate schedule (peak value 1e-05)
and the batch size of 224. The training on four
NVIDIA A100 GPUs lasted 2 days.

AlleConveRT The model is a result of further
fine-tuning of the AlleBERT on the same data but
with the mixture of two objectives, MLM loss with
the ratio of 0.2 and Conversational Contrastive
Loss (CCL). Following ConveRT (Henderson et al.,
2020b) we leverage the structure of the conversa-
tions with alternately exchanged utterances in a
metric learning setup. Positive examples are con-
secutive messages from a single conversation, and
negatives come from answers within the training
batch. To reduce the overfitting to specific utter-
ances, we use label smoothing with the value of
0.2 (same as (Henderson et al., 2020b)). To utilize
conversational data structure, we add two projec-
tion heads on top of the AlleBERT encoder, one
for the question and answer representations12. Al-
leConveRT is trained for the 280k steps with the
peak learning rate 1e-05 and the batch size of 448.
The training on four NVIDIA A100 GPUs lasted 4
days.

TagBERT The model is trained in two-stage fine-
tuning of the first version of HerBERT (Rybak
et al., 2020). In the first stage, we fine-tune the
model on internal unsupervised conversational data.
We use MLM objective and Message Threads Struc-
tural Objective (MTSO). MTSO is Sentence Struc-
tural Objective (Wang et al., 2020) tailored to the
conversation domain. During training, we swap
messages with respect to threads instead of swap-
ping sentences with respect to documents. Tag-
BERT is trained for 100k steps with a batch size of
640 and a peak learning rate 8e-05.

In the second stage, we fine-tune the model on
the multi-label classification task. The model pre-
dicts several of the 512 classes for each thread. The
noisy and highly imbalanced labels come from tags
that CX consultants add to the conversation threads,
roughly identifying the problem solved. The train-
ing dataset contains 2.5M messages. TagBERT is
trained for 38k steps with a peak learning rate of
1.6e-04 and a batch size of 512. The training on
sixteen NVIDIA P100 GPUs lasted 8 hours.

F Results (details)

12Answers in our data come from two sources: CX consul-
tants and sellers.
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Static 23 39 45 17 62 19 28 37 8 64 10 20 47 5 62
CDAC 33 50 61 30 77 27 39 50 16 72 15 32 57 10 67
Our 75 83 88 78 92 49 64 72 56 81 19 42 65 31 70

Table 8: Static baseline and CDAC representations compared with our framework on novel intent discovery task for
real-world data. Our framework combines TagBERTpre-trained encoder, CDAC training scheme, and Conv method
for using the conversation structure. Individual metrics averaged over five seeds.

Dataset Purchase Delivery Retail

Initialization m
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HerBERT 53 66 73 53 84 27 44 49 25 78 18 33 57 10 68
AlleBERT 54 67 74 52 86 33 46 58 32 77 17 42 65 27 70
AlleConveRT 60 74 83 67 83 46 57 64 41 81 20 48 71 36 72
TagBERT 75 83 88 78 92 49 64 72 56 81 19 42 65 31 70

Table 9: Impact of initialization for novel intent discovery. Conv conversation structure-aware encoder was trained
with the CDAC scheme from different initialization. Individual metrics averaged over five seeds.
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Figure 3: Internal dataset visualization. On the left we visualize t-SNE mapping of sentence representations to
2 dimensions. Different colors indicate different intent labels, each point corresponds to a single example in the
dataset. On the right there is a scatter plot of intent sizes and Silhouette score per intent. Each point corresponds to
one intent in the dataset. Silhouette score values are in the range from -1 to 1. 1 indicates perfect clustering, and 0
indicates overlapping clusters. The visualizations show the initial difficulty of the clustering task on general domain
pre-trained models.
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Figure 4: Public dataset visualization. On the left we visualize t-SNE mapping of sentence representations to 2
dimensions. Different colors indicate different intent labels, each point corresponds to a single example in the
dataset. On the right there is a scatter plot of intent sizes and Silhouette score per intent. Each point corresponds to
one intent in the dataset. Silhouette score values are in the range from -1 to 1. 1 indicates perfect clustering, and 0
indicates overlapping clusters. The visualizations show the initial difficulty of the clustering task on general domain
pre-trained models.
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Dataset B
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77

C
LI

N
C

15
0
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rc
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R
et

ai
l

St
at

ic

macro F1 30 44 21 17 11
ACC 33 49 36 30 22
NMI 55 75 41 36 48
ARI 23 36 14 9 6
binary F1 68 75 65 63 62

D
A

C

macro F1 42 55 13 12 10
ACC 45 58 22 20 17
NMI 64 81 30 28 46
ARI 35 49 0 1 3
binary F1 73 80 55 59 61

Su
pe

rv
is

ed

macro F1 55 64 22 19 11
ACC 60 68 36 32 26
NMI 76 86 46 38 45
ARI 51 61 12 9 4
binary F1 83 87 75 70 64

C
D

A
C

macro F1 51 58 34 30 18
ACC 54 66 54 42 35
NMI 74 86 67 51 61
ARI 47 59 36 17 14
binary F1 82 83 74 72 68

Table 10: Impact of training schemes for novel intent
discovery. Models use BERT-base (English datasets) or
AlleBERT (Polish datasets) encoder and question input
only. Individual metrics averaged over five seeds.

Dataset Pu
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R
et

ai
l

Q

macro F1 30 34 18
ACC 54 42 35
NMI 67 51 61
ARI 36 17 14
binary F1 74 72 68

A

macro F1 27 23 12
ACC 55 35 24
NMI 64 44 49
ARI 42 15 6
binary F1 70 71 61

QA concat.

macro F1 27 31 17
ACC 59 45 41
NMI 71 55 64
ARI 48 26 26
binary F1 71 80 69

QA two head.

macro F1 38 32 19
ACC 56 44 36
NMI 68 54 62
ARI 44 28 16
binary F1 75 76 69

Conv

macro F1 54 33 17
ACC 67 46 42
NMI 74 58 65
ARI 52 32 27
binary F1 86 77 70

Table 11: Impact of conversational structure for novel
intent discovery. Models use AlleBERT initialization,
CDAC training scheme, and various inputs, i.e., ques-
tion Q, answer A, or both fields (QA) in three model
variants; QA concatenation, QA two heads, and Conv.
Individual metrics averaged over five seeds
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