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Abstract

Large-scale natural language processing mod-
els have been developed and integrated into
numerous applications, given the advantage
of their remarkable performance. Nonethe-
less, the security concerns associated with these
models prevent the widespread adoption of
these black-box machine learning models. In
this tutorial, we will dive into three emerging
security issues in NLP research, i.e., backdoor
attacks, private data leakage, and imitation at-
tacks. These threats will be introduced in accor-
dance with their threatening usage scenarios,
attack methodologies, and defense technolo-
gies.

1 Tutorial Content

1.1 Introduction

Large-scale natural language processing models
have recently garnered substantial attention due
to their exceptional performance. This promotes
a significant proliferation in the development and
deployment of black-box NLP APIs across a wide
range of applications. Simultaneously, an expand-
ing body of research has revealed profound secu-
rity vulnerabilities associated with these black-box
APIs, encompassing issues such as dysfunctional
failures (Gu et al., 2017; Dai et al., 2019; Huang
et al., 2023), concerns related to privacy and data
leakage (Coavoux et al., 2018; Carlini et al., 2021),
and infringements on intellectual property (Wal-
lace et al., 2020; Xu et al., 2022). Those security
challenges can lead to issues like data misuse, fi-
nancial loss, reputation damage, legal disputes, and
more. It is worth noting that these security vul-
nerabilities are not mere theoretical assumptions.
Previous research has demonstrated that both com-
mercial APIs and publicly available models can be
easily compromised (Wallace et al., 2020; Carlini
et al., 2021; Xu et al., 2022). This tutorial aims
to provide a comprehensive overview of the latest

research concerning security challenges in NLP
models.

1.2 Security Challenges in NLP
This section will delineate three prevalent security
challenges encountered in NLP research and appli-
cations. These include (1) backdoor attacks, (2) pri-
vacy concerns and data leakage, and (3) imitation
attacks. For each of these challenges, we will first
commence by introducing their threat model in real-
world applications. Subsequently, we will delve
into the techniques used to execute these attacks,
illustrating their impact on vulnerable applications.
Finally, we will discuss the countermeasures and
defense technologies available to mitigate these
attacks.

Adversarial and Backdoor Attacks. Our dis-
cussion commences with adversarial attacks in the
context of NLP tasks. These attacks involve the
manipulation of inputs to compromise the perfor-
mance of a target model (Alzantot et al., 2018;
Ebrahimi et al., 2018; Li et al., 2018). More specif-
ically, by altering specific characters or words, it
becomes possible to deceive a text classifier into
assigning an incorrect label. This research under-
scores the inherent vulnerability of trained NLP
models. A notable subset of these attacks is the
backdoor attack, where the victim model is induced
to associate misbehavior with specific triggers (Dai
et al., 2019). During the inference stage, poisoned
models exhibit normal behavior on clean inputs,
but their misbehavior is triggered when malicious
patterns are presented. Those malevolent actions
can range from deceiving text classifiers (Dai et al.,
2019; Kurita et al., 2020) to mistranslating neutral
phrases into controversial ones (Xu et al., 2021).

In the literature, there exist two primary strate-
gies for embedding backdoor triggers: (1) data
poisoning and (2) weight poisoning. Data poison-
ing seeks to infiltrate triggers into a victim model
by poisoning a small fraction of the training data,
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as demonstrated in various studies (Dai et al., 2019;
Chen et al., 2021; Qi et al., 2021b; Wang et al.,
2021; Xu et al., 2021). Regarding weight poison-
ing, attackers surreptitiously integrate the triggers
into the victim model’s weights (Kurita et al., 2020;
Li et al., 2021; Yang et al., 2021a) or their embed-
ding dictionary (Huang et al., 2023). It is note-
worthy that the majority of backdoor attacks have
centered on supervised learning. However, with the
growing prominence of instruction tuning (Ouyang
et al., 2022; Wei et al., 2022), we will delve into
the manipulation of large language models through
instruction tuning poisoning in subsequent discus-
sions (Wan et al., 2023; Xu et al., 2023; Shu et al.,
2023).

In conjunction with the literature on backdoor at-
tacks, we will cover multiple defensive approaches
that aim at mitigating the vulnerabilities caused by
these attacks. Depending on the level of access
to the training data, these defensive measures can
be categorized into two types: (1) training-stage
defense and (2) test-stage defense. The former
method aims at identifying poisoned data by ana-
lyzing the anomalous characteristics of the training
data (Sun et al., 2021; He et al., 2023b). The latter
approach leverages external tools (Qi et al., 2021a)
or the victim language models themselves (Yang
et al., 2021b; Chen et al., 2022; He et al., 2023a)
to either remove the triggers or entirely discard the
poisoned data samples during the inference.

Privacy and Data Leakage. Another challenge
in NLP models is the potential risk of disclosing
data, particularly sensitive content, to untrustwor-
thy parties. A recent widely recognized example
is the capability of pre-trained language models,
e.g., GPT-2, to generate sentences containing sen-
sitive information when provided with carefully
designed prompts (Carlini et al., 2021). Another
concern revolves around the possibility that cer-
tain information from the training data is inferred
through the model’s parameters or the gradient up-
dates, such as membership inference and text data
recovery (Melis et al., 2019; Gupta et al., 2022).
These types of attacks pose significant challenges
to collaborative learning of language models (Yang
et al., 2019).

Privacy and data leakage present a contentious
challenge in NLP models. In this discussion, we
will introduce technologies aimed at addressing
these concerns, including (1) unlearning specific
private training data, known as machine unlearn-

ing (Bourtoule et al., 2021), (2) methods for identi-
fying the generated outputs that may contain sensi-
tive attributes (Xu et al., 2020) and (3) techniques
that obscure the intermediate representation of NLP
models, such as the application of differential pri-
vacy (Lyu et al., 2020; Shi et al., 2022).

Imitation Attack. The final security challenge
within our scope will be the imitation attack on
NLP models. With the advancement of NLP mod-
els, particularly large pre-trained language models,
companies have encapsulated exceptional models
into commercial APIs, serving millions of end-
users. In order to foster a profitable market, ser-
vice providers commonly implement pay-as-you-
use policies for those APIs. To circumvent service
charges, a seminal work (Tramèr et al., 2016) pro-
posed the imitation of the functionality of commer-
cial APIs by relying on predictions from those APIs.
Subsequent research has revealed vulnerabilities as-
sociated with imitation attacks that extend beyond
the violation of intellectual property, e.g., one can
employ the imitation model to craft transferable
adversarial examples capable of deceiving the vic-
tim model as well (Wallace et al., 2020; He et al.,
2021). Moreover, the interaction between the vic-
tim model and the imitator can lead to significant
privacy breaches (He et al., 2022a). Furthermore,
Xu et al. (2022) demonstrate that imitation models
can outperform the imitated victim models, particu-
larly in the context of domain adaptation and model
ensemble.

Several studies have devised a range of defensive
strategies to mitigate those security threats. Given
that imitation attacks depend on the predictions
made by victim models, one straightforward solu-
tion involves manipulating these predictions such
that the imitation models are trained with partial or
potentially deceptive information. We will delve
into the details of how this has been achieved in
text classification and generation problems, includ-
ing techniques such as customizing and perturbing
predicted label distributions (Xu et al., 2022; He
et al., 2022a). Additionally, we will explore recent
advancements in watermarking technologies for in-
tellectual property protection (Krishna et al., 2020;
He et al., 2022b,c; Zhao et al., 2023)

2 Relevance and Importance to
Computational Linguistic Community

Large-scale language models have achieved signifi-
cant performance in many NLP tasks, with many
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applications now reliant on those advanced NLP
models. However, any uncontrolled misconduct,
the inadvertent disclosure of private training data,
or potential leaks of model intellectual property
could result in substantial financial and social con-
sequences. The imperative to guide the future de-
velopment of NLP models is shifting from mere
task performance to a growing emphasis on the
security and ethical concerns of these models. Ma-
chine learning models, especially large-scale deep
learning models, remain somewhat inscrutable to
human comprehension. This opacity raises the
challenges in identifying and addressing potential
risks associated with these models without compre-
hensive explanations and a deep understanding of
their inner workings. In order to inspire broader
discussion and foster research efforts in the domain
of security in NLP, this tutorial is dedicated to pre-
senting the principle security challenges in mod-
ern natural language processing models. This will
include exploration of their threat models, attack
methodologies, and defense technologies.

3 Tutorial Information

Tutorial Outline The tutorial is expected to be
3.5 hours, including a half-hour coffee break.

1. Introduction (15 mins)

2. Backdoor Attack (50 min, by Xuanli He)

(a) Problem definition and motivation;
(b) Adversarial and Backdoor Attacks on

NLP models;
(c) Defense techniques against backdoor at-

tacks.

3. Privacy and Data Leakage (50 min, by
Qiongkai Xu)

(a) Problem definition and motivation;
(b) Privacy Leakage in NLP models;
(c) Data Leakage in NLP models;
(d) Defense techniques against privacy and

data Leakage.

4. Imitation Attack (50 min, by Qiongkai Xu
and/or Xuanli He)

(a) Problem motivation and definition;
(b) Imitation attack and subsequent attacks;
(c) Defense techniques against imitation at-

tack.

5. Conclusion and Future Trends (15 mins)

Topic Breadth. Our expectation is that approxi-
mately 30% of the content will be drawn from the
work of the instructors, while the remaining 70%
will be sourced from contributions made by various
other researchers. The materials we intend to cover
include papers from both academia and industry.

Ethical Considerations. In this tutorial, we shed
light on various vulnerabilities found in contempo-
rary NLP models. Our intention in discussing these
vulnerabilities is not to endorse any form of attack.
Rather, our objective is to emphasize the impor-
tance of responsible AI practices in both academic
and industrial contexts. Through this approach, we
can harness the progress made in AI while con-
currently upholding security, privacy, and ethical
considerations.

Open Accessibility. We intend to ensure that all
instructional materials are available online.1 More-
over, we grant permission to include slides and
video recordings in the ACL anthology.

4 Prerequisites for the Attendees

This tutorial is designed to cater to the needs of
both NLP researchers and students in academia, as
well as industrial practitioners with an interest in
security & privacy in NLP, model explanation, and
related areas. While a basic understanding of Ma-
chine Learning is beneficial, it is not an obligatory
prerequisite.

5 Reading List

• Backdoor Attack (Gu et al., 2017; Dai et al.,
2019; Kurita et al., 2020)

• Privacy and Data Leakage (Melis et al., 2019;
Carlini et al., 2021; He et al., 2022a)

• Imitation Attack (Wallace et al., 2020; Xu
et al., 2022)

• Defense using differential privacy (Lyu et al.,
2020; Shi et al., 2022), machine unlearn-
ing (Bourtoule et al., 2021), and watermark-
ing (He et al., 2022b)

6 Presenters

Dr. Qiongkai Xu, Research Fellow on Secu-
rity in NLP, School of Computing and Infor-

1The resources pertaining to this tutorial are available
at https://emnlp2023-nlp-security.github.
io/.
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mation System, the University of Melbourne,
Australia.2
https://xuqiongkai.github.io
https://scholar.google.com/
citations?user=wCer2WUAAAAJ

His recent research interest lies in auditing ma-
chine learning models, namely 1) privacy and se-
curity issues in ML/NLP models and 2) new eval-
uation paradigms for ML/NLP models. He has
published more than 30 papers, with more than 10
of them on the topic of privacy and security in NLP.
Dr. Xuanli He, Research Fellow, Department of
Computer Science, University College London,
UK.
https://xlhex.github.io/
https://scholar.google.com/
citations?user=TU8t0iAAAAAJ&hl

His recent research lies in an intersection be-
tween deep learning and natural language process-
ing, with an emphasis on robustness and security
in NLP models. He has published more than 10
top-tier conference papers about security in NLP
models.
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