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Abstract
Establishing the characteristics of an effective
summary is a complicated and often subjective
endeavor. Consequently, the development of
metrics for the summarization task has become
a dynamic area of research within natural lan-
guage processing. In this paper, we reveal that
existing summarization metrics exhibit a bias
toward the length of generated summaries. Our
thorough experiments, conducted on a variety
of datasets, metrics, and models, substantiate
these findings. The results indicate that most
metrics tend to favor longer summaries, even
after accounting for other factors. To address
this issue, we introduce a Bayesian normaliza-
tion technique that effectively diminishes this
bias. We demonstrate that our approach sig-
nificantly improves the concordance between
human annotators and the majority of metrics
in terms of summary coherence1.

1 Introduction

Text summarization aims to condense lengthy doc-
uments into concise, coherent, and human-readable
texts while preserving essential ideas. Deep learn-
ing and large-scale datasets have substantially
advanced this field, as demonstrated by models
(Sutskever et al., 2014; Lewis et al., 2020; Raffel
et al., 2020) and datasets (Nallapati et al., 2016;
Narayan et al., 2018; Koupaee and Wang, 2018).

Progress in this field hinges on reliable metrics
for evaluating generated summary quality. While
human annotations are considered the gold stan-
dard, they can be costly, time-consuming, and
subjective. Automated evaluation metrics address
these challenges, but assessing summary quality
remains complex. Efforts to improve text sum-
marization metrics are ongoing (e.g., (Cohan and
Goharian, 2016; Koto et al., 2021; Pagnoni et al.,
2021)). However, biases concerning generated sum-
mary length remain underexplored. If certain met-
rics favor shorter or longer summaries, evaluations

1The code is available at SLDbias

may be flawed, as they should focus on quality, not
extraneous factors.

In this paper, we investigate the impact of gen-
erated summary length on 14 distinct metrics. Our
experiments reveal that: 1) the length of generated
summaries affects most metrics to varying extents;
2) although some discrepancies result from the cor-
relation between quality and summary length, they
persist even after controlling for quality; 3) these
effects are consistent across datasets, but the mag-
nitude of the effects may differ; 4) metrics based
on gram overlap (e.g., Rouge) are more inclined
to assign higher scores to longer summaries than
metrics based on word/sentence embeddings (e.g.,
BERTScore). In response to these findings, we
propose a Bayesian normalization strategy to di-
minish the influence of summary length on metrics.
We demonstrate that our approach significantly im-
proves alignment with human annotators in terms
of summary coherence for the majority of metrics.

2 Related Work

Numerous studies have explored the limitations
of automatic metrics for text summarization, ad-
dressing issues like weak correlation with human
judgment, poor adaptability to diverse corpora, and
failure to capture linguistic nuances. For instance,
Fabbri et al. (2021) found a modest correlation be-
tween human judgment and most metrics, while
Cohan and Goharian (2016) showed Rouge metrics
struggle with varied terminology and paraphrasing.
Cross-language studies (Koto et al., 2021) demon-
strated suboptimal performance for some metrics
on non-English corpora. Additionally, Maynez
et al. (2020) and Pagnoni et al. (2021) critiqued
automatic metrics for not detecting factual incon-
sistencies.

A fundamental characteristic of a robust metric
for this task is the capacity to consistently rate
summaries of equal quality, even when they differ
along other dimensions. Prior research, such as
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Yuan et al. (2021); Fabbri et al. (2021), highlighted
variable average scores for some metrics depending
on reference/generation lengths. However, they
neither proposed debiasing methods nor extended
their focus beyond ROUGE and BARTScore.

Sun et al. (2019) addressed length bias by com-
paring generated text with a randomly chosen,
length-controlled extractive summary. Although
this method can partially mitigate length bias, it
is limited in applicability to various summariza-
tion techniques and has only been tested on the
ROUGE family of metrics. Nonetheless, we bench-
mark our method against theirs, demonstrating con-
sistent superiority across multiple summarization
approaches and metrics.

3 The Impact of Length on Metrics

Here, we investigate the effect of generated sum-
mary length on 14 summarization metrics, includ-
ing both lexical-based and embedding-based met-
rics (Sai et al., 2022). We conduct experiments
using three popular datasets: CNN/Daily Mail cor-
pus (CNN/DM) (Nallapati et al., 2016), WikiHow
(Koupaee and Wang, 2018), and webis-tldr-17-
corpus (Web-tldr) (Völske et al., 2017), with sum-
maries generated by three models: BART (Lewis
et al., 2020), Longformer (Beltagy et al., 2020),
and T5 (Raffel et al., 2020). More details can be
found in Appendix A.

To isolate the impact of generated summary
length, we control for the source article and ref-
erence summary lengths (Appendix B shows that
both factors also bias metrics). Using equal fre-
quency binning, we categorize samples based on
source-article and reference lengths (10 buckets
each, totaling 100 buckets). Within each bucket,
we compute the mean score for each five percentile
of the generated summary length distribution, then
average the scores across the 100 buckets to calcu-
late the mean score for that percentile. As our study
focuses on percentile rankings, the varying distribu-
tion of generated summary lengths is not a concern.
For clarity, we shift scores by the minimum score
for each metric in our figures.

Figure 1 shows the trend for BART (results
for other models in Appendix D). Even after ac-
counting for source article and reference lengths,
most metrics are influenced by generated summary
lengths to varying degrees. We also observe that
the trends are generally consistent across datasets,
with the exception of BERTScore, which exhibits

divergent behavior among different datasets.
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Figure 1: Average metric values for varying gener-
ated summary lengths, controlling for the length of the
source article and reference. Note that scores have been
shifted by the minimum value, resulting in the lowest
score being 0. For clarity, scores have been rescaled
from a 0-1 range to a 0-100 range.

Next, we control for summary quality to elimi-
nate any correlations between generated summary
length and quality by randomly shuffling gener-
ated summaries among samples, thus randomizing
reference-summary pairings. We repeat our exper-
iments with this modified dataset and display the
results for BART in Figure 2 (see Appendix D for
other models). While weaker, the trends persist for
several metrics, indicating that metric length pref-
erence primarily drives these trends. Interestingly,
BERTScore exhibits an opposite trend, potentially
due to its reliance on text semantics, which may
become diluted in longer text.
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Figure 2: Repeated experiments with randomly shuffled
generated summaries (using 3 different random seeds).

4 Modeling the Effect of Length

We quantitatively examine the impact of gen-
erated summary length on various metrics us-
ing a Bayesian network, considering four vari-
ables: source article length, reference summary
length, generated summary length, and score. The
Bayesian network structure is shown in Figure 3.

In our experiments, we manually design the
structure and provide the Bayesian network with
the joint distribution of all variables based on text
samples from our data. Once trained, the network
can be employed to calculate the expected score ŝ,
given the source article length (la), reference length
(lr), and generated summary length (lg), using the
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following equation:

ŝ =
∑

s∈S
P (s, la, lr, lg) ∗ s (1)

where S represents the set of all possible scores
and P (s, la, lr, lg) denotes the joint probability of
these four variables. We opt for a Bayesian network
over simpler linear models due to the non-linear
relationship between variables, as shown in Figures
1 and 2, and discussed in Section 5.

source article length

generated summary length

score

reference length

Figure 3: The structure of the Bayesian network for the
quantitative analysis.

We discretize variables using equal frequency
binning for source article length (10 buckets), ref-
erence length (10 buckets), generated summary
length (10 buckets), and equal width binning for
the score (1000 buckets, 0.1 each). A sample is rep-
resented as (la, lr, lg, s), where s is the discretized
score, and la, lr, and lg denote the source article,
reference, and generated summary percentile ranks,
respectively. We train 14 Bayesian networks, one
for each metric. Each network predicts the score
for a specific metric given the length of the source
article, reference, and generated summary based
on the joint probability of the four variables.

We use the trained networks to quantify the ef-
fect of generated summary length on each metric’s
score. For each sample, we keep la and lr constant,
increment lg by one (ten percentile)2, and input
the updated values into the Bayesian networks to
predict new scores for each metric. We average
the difference between these new scores and the
original corresponding scores across all samples,
yielding the mean score difference due to a ten-
percentile increase in generated summary length.

We experiment with all 14 metrics across three
datasets and three models, using both shuffled
and non-shuffled data. Table 1 shows most met-
rics exhibit consistent directionality of the effect

2We exclude data in the last 10th percentile, as its lg cannot
be increased further.

across multiple datasets, with varying effect sizes
depending on datasets and models. This aligns
with our earlier qualitative experiments. In shuffled
data experiments, all metrics except BERTScore
show increased predicted scores in at least one
dataset as generated summary length increases,
while BERTScore decreases.

Trends remain consistent across different mod-
els, with only one instance of disagreement
(ROUGE-3 for the Web-tldr dataset). Comparing
lexical-based and embedding-based metrics, we
find embedding-based metrics are generally less
prone to score increases with increasing generated
summary length. Non-shuffled experiments dis-
play higher sensitivity, on average, to generated
summary length, suggesting other unknown factors
may also influence scores. A limitation of our work
is the presence of such unaccounted-for factors.

Our experiments in Sections 3 and 4 conclude
that: 1) Controlling for source article length, refer-
ence summary length, generated summary quality,
model, and dataset, generated summary length ap-
pears to bias most metrics, with longer summaries
resulting in higher scores in a non-linear relation-
ship; 2) Trends are generally consistent across
datasets and models, but effect sizes vary; 3) The
relationship between generated summary length
and score can be partially attributed to metrics’
preference for longer text, but not all variance is
accounted for, indicating other unknown variables
contribute to the relationship.

5 Reducing Length Bias

Here, we explore strategies for mitigating the met-
rics’ bias concerning the length of generated sum-
maries and generating a length-adjusted score. In-
tuitively, if all generated summaries had the same
length as their corresponding reference summaries,
the length would no longer be a confounding fac-
tor. Since we do not want to control the length of
the generations, we adjust the scores for a gener-
ated summary post hoc. Each metric is adjusted
based on the corresponding Bayesian network’s
predicted score for a generated summary with the
same length as the sample’s reference length while
keeping every other variable assignment the same
as the sample. We employ a Bayesian network to
better capture the non-linear relationships between
our variables.

The Bayesian network used in this section
is identical to the previous network, except for
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Not-Shuffled Shuffled
CNN/DM WikiHow Web-tldr CNN/DM WikiHow Web-tldr

Embedding
BERTScore 0.27 0.26^ -1.10 -0.42 -1.05 -1.12
BLANC 0.91 0.45 0.34 0.04 0.03 0.04
MoverScore 0.18 0.70 0.00^ 0.04 0.15 0.01

Lexical

BLEU 0.39 0.75 0.01 0.01 0.19 0.01
chrF 1.33 1.23 0.77 0.95 0.63 0.82
METEOR 0.72 0.84 0.23 0.33 0.47 0.23
ROUGE-1 0.72 1.43 0.32 0.46 0.86 0.30
ROUGE-2 0.39 1.10 0.00^ 0.03 0.44 0.02
ROUGE-3 0.31 0.85 0.00 0.00 0.27 0.00^
ROUGE-4 0.25 0.77 0.00 0.00 0.27 0.00
ROUGE-L 0.39 1.17 0.14^ 0.18 0.61 0.16
ROUGE-su* 0.45 1.07 0.05 0.10 0.39 0.04
ROUGE-w 0.26 0.77 0.08 0.12 0.37 0.12
ROUGE-we-3 0.61 1.62 0.10 0.19 0.88 0.12

Table 1: The predicted difference in performance when increasing the generated summary length by 10% percentile
across the entire test samples using the Bayesian network. The performance is calculated as the mean of the results
from the three models. A ^ indicates that the trend of at least one model differs from the others. For clarity, the
scores have been rescaled from a 0-1 range to a 0-100 range.

model

generated summary length

score

source article length

reference length

Figure 4: The structure of the Bayesian network for the
score adjustment experiments.

one additional variable, the model (M ), which
is a categorical variable corresponding to the
type of model (Figure 4). For a given sam-
ple, we use m, la, lr, lg, to predict s twice:
once regularly (ŝg = Bayesian(m, la, lr, lg))
and the other where we set lg = lr (ŝr =
Bayesian(m, la, lr, lr)). We calculate the differ-
ence caused by the generated summary length as
s ∗ ŝg−ŝr

ŝr
. As discussed earlier, the quality of the

summaries (and other factors) is partially responsi-
ble for this difference. Thus, we use an adjustment
scale α to control the portion of the difference that
must be adjusted. Therefore, the difference that
needs to be removed is α ∗ s ∗ ŝg−ŝr

ŝr
. Our length-

adjusted score is:

sadj = s− α ∗ s ∗ ŝg − ŝr
ŝg

(2)

5.1 Evaluation
We conduct experiments on 14 models using gen-
erated summaries from original papers (see Ap-
pendix E.1). Our evaluation utilizes system-level
analysis (Louis and Nenkova, 2013), correlating
quality rankings of summaries based on human
judgment and automatic metrics. We leverage hu-
man judgment results from Fabbri et al. (2021),

encompassing 100 samples. For each model, we
consider the mean human scores of all 100 samples
as the human-annotated score and the mean score
of each automatic metric as that metric’s score for
the model. Models are ranked using human and
automatic metric scores, and Kendall’s τ calcu-
lates rank correlation. We adopt human annotation
“coherence” scores as a holistic summary quality
measure Fabbri et al. (2021).

Our experiments employ two baselines: Ran-
dom extractive summaries Normalization (RN)
(Sun et al., 2019) and Linear Regression (LR). RN
mitigates generation length influence by compar-
ing performance against randomly chosen length-
controlled extractive summaries. It generates sum-
maries with the same mean length, calculating per-
formance based on the ground truth and normal-
izing the mean performance of the tested model.
LR estimate scores ŝg and ŝr, incorporating model,
source article length, reference length, and gener-
ated summary length to compute sadj using Eq. 2.
Figure 5 presents adjustment experiments’ results
for varying αs.

Figure 5 illustrates the improvement of the ad-
justed score using the Bayesian network and linear
regression for each metric, as well as the mean im-
provement (“MEAN of All”) across 14 metrics at
each given α. The score is measured by Kendall’s
τ between the human- and metric-ranked models.

Figure 5 illustrates the improvement in adjusted
scores using the Bayesian network and linear re-
gression for each metric and the mean improvement
across 14 metrics at each given α. Kendall’s τ mea-
sures the score between human- and metric-ranked
models. Key observations include: 1) The “MEAN
of All” shows the Bayesian network-based adjusted
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Figure 5: The improvement of metrics adjusted using a Bayesian network (BN), linear regression (LR) with different
adjustment scales, α, and the Random Extractive Summaries Normalization (RN) (Sun et al., 2019). “MEAN of
All” represents the mean improvement of all 14 metrics at a given α. “+” indicates better performance than the
unadjusted score, while “-” signifies worse performance than the unadjusted score.

score outperforms LR and RN baselines for all
αs, with a mean improvement of 0.1 at α = 2−2.
2) Overall, our Bayesian-network-based adjusted
score is better or equally correlated with human
judgment for the majority (106 out of 126) of met-
rics, except for BLANC and certain αs of ROUGE.
3) Smaller αs result in more stable adjustments,
with α = 2−4 showing no decrease in Kendall’s τ .

Table F1 in the Appendix shows the best per-
formance for all methods from Figure 5. Opti-
mal performance is achieved at α = 2−2 for our
Bayesian network (BN) and α = 2−1 for linear re-
gression (LR). Unadjusted score (Ori) and random
extractive summaries normalization (RN) are not
α-dependent. Our method outperforms baselines,
achieving the best performance in 11 out of 14 met-
rics and demonstrating the highest stability, with
a decrease for only one metric. In contrast, RN
decreases in 5 metrics and LR in 2 metrics.

These results suggest that adjusting automatic
metrics’ scores to minimize generated summary
length influence improves correlation with human
assessments of summary coherence. However, not

all metrics consistently improve. The Bayesian net-
work’s superior performance compared to the linear
model supports the hypothesis that a probabilistic
model is better suited to capture the relationship
between generated summary length and metrics.

6 Conclusions & Future Work

This paper investigates the relationship between
generated summary length and 14 summarization
metrics. Our findings reveal a correlation between
generated summary length and metric scores, even
after accounting for generation quality, source arti-
cle length, reference summary length, model, and
dataset. We propose a Bayesian-network-based ap-
proach to adjust metric scores based on generated
summary length, resulting in an improved agree-
ment between model-generated and coherence-
based human rankings for most metrics.

Future work could examine new metrics for sum-
marization tasks, such as conditioning on target
length or measuring “information density” rather
than absolute information.
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7 Ethical Considerations & Limitations

We do not anticipate any significant ethical con-
cerns arising from our work. However, we utilize
a publicly available dataset of Reddit posts, which
may contain offensive or sensitive content. Cau-
tion should be exercised when working with this
dataset.

When implementing the findings and the pro-
posed method from our paper in summarization
tasks, several potential limitations should be con-
sidered:

First, we view effective summarization as strik-
ing a balance between brevity and completeness.
In most instances, an ideal summary is concise yet
comprehensive, and our proposed approach aims to
address this balance by mitigating the influence of
length bias on summary quality assessments. How-
ever, in specific domains such as legal and medical
fields, longer summaries may be more acceptable
if they provide a higher level of completeness.

Second, our paper presents a method that can be
applied to the majority of metrics to reduce length
bias instead of proposing a new metric. We pursued
this approach for two reasons: 1) Our experiments
demonstrated that numerous metrics are affected
by summary length, and our goal was to minimize
this influence while maintaining the usability of
these metrics. 2) Creating a new metric to sup-
plant the majority of existing metrics is difficult,
as they each address different facets of summariza-
tion quality. Nonetheless, our proposed adjustment
method implies that all adjusted metrics might still
be influenced by other factors that affect the un-
adjusted metrics. As a result, researchers should
weigh the benefits and limitations of the unadjusted
metrics when employing the adjusted metrics.
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Çağlar Gulçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of the 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290, Berlin, Germany.
Association for Computational Linguistics.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018. Ranking sentences for extractive summariza-
tion with reinforcement learning. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1747–1759.

Jun Ping Ng and Viktoria Abrecht. 2015. Better summa-
rization evaluation with word embeddings for rouge.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1925–1930.

Artidoro Pagnoni, Vidhisha Balachandran, and Yulia
Tsvetkov. 2021. Understanding factuality in abstrac-
tive summarization with frank: A benchmark for
factuality metrics. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 4812–4829.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Ramakanth Pasunuru and Mohit Bansal. 2018. Multi-
reward reinforced summarization with saliency and
entailment. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 646–
653.
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A Datasets, Metrics, and Models

A.1 Datasets

We conducted experiments on widely-used sum-
marization datasets: CNN/Daily Mail (CNN/DM)
(Nallapati et al., 2016), WikiHow (Koupaee and
Wang, 2018), and Webis-tldr-17-corpus (Web-tldr)
(Völske et al., 2017). vbnet

CNN/DM comprises articles from CNN and
DailyMail, with human-generated abstractive sum-
maries from their respective websites. The
dataset contains 286,817 training, 13,368 valida-
tion, and 11,487 testing samples. We use the non-
anonymized version, released under an MIT Li-
cense.

WikiHow is sourced from the online WikiHow
knowledge base, with summary sentences extracted
from bold lines in each paragraph. The dataset
includes 168,128 training, 6,000 validation, and
6,000 testing samples, and is under a CC-BY-NC-
SA license.

Web-tldr contains approximately 4 million
content-summary pairs extracted from Reddit
between 2006-2016. We apply a 70/10/20
train/validation/test split. The dataset is under a
CC BY 4.0 license.

A.2 Metrics

We describe the metrics used in our experiments.

A.2.1 Embedding-based Metrics
• BERTScore (Zhang et al., 2019) computes

similarity scores between tokens in reference
and generated summaries, aligning tokens
greedily based on the cosine similarity be-
tween BERT embeddings.

• BLANC (Vasilyev et al., 2020) is a reference-
less metric assessing improvements in lan-
guage comprehension tasks when a pre-
trained language model has access to a docu-
ment summary.

• MoverScore (Zhao et al., 2019) calculates
semantic distance between a summary and
reference text using Word Mover’s Distance.

A.2.2 Lexical-based Metrics
• BLEU (Papineni et al., 2002) measures n-

gram overlap between a generated summary
and reference text with a shortness penalty.

• chrF (Popović, 2015) calculates character n-
gram F-score overlap between generated and
reference texts.

• METEOR (Agarwal and Lavie, 2007) aligns
generated summaries and reference sentences
using unigram mapping based on surface and
stemmed forms, computing precision and re-
call as a harmonic mean.

• Rouge (Lin, 2004) estimates summary quality
based on overlapping textual units (n-grams,
word sequences) between generated and refer-
ence summaries.

• ROUGE-WE (Ng and Abrecht, 2015) ex-
tends ROUGE with soft lexical matching us-
ing Word2Vec embedding cosine similarity.

A.3 Details of the Models
Currently, encoder-decoder and decoder-only mod-
els with attention mechanisms dominate summa-
rization tasks. Thus, we employ two encoder-
decoder attention models, BART (Lewis et al.,
2020) and Longformer (Beltagy et al., 2020), and
one decoder-only attention model, T5 (Raffel et al.,
2020), across all datasets.

B Impact of Source Article and Reference
Length

We investigate the influence of source articles and
reference lengths on generated summary length,
as reported in the main paper. Our procedure is
similar but only controls for the length of generated
summaries. Findings are displayed in Figures B1
and B2, for source article and reference lengths,
respectively.

Comparing model trends on the same dataset
reveals that the impact of source article length
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is mostly consistent across models (except for
BLANC on Web-tldr). While correlations be-
tween source article length and metrics exist,
no uniform trends are observed across datasets.
For example, all metrics decrease as source arti-
cle length increases for CNN/DM dataset. Con-
versely, WikiHow dataset trends vary by metric, ex-
hibiting increases (e.g., BLANC), decreases (e.g.,
BERTScore), or no clear patterns. Web-tldr ex-
hibits trends similar to WikiHow. The effect of
reference length on metrics yields comparable con-
clusions.
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Figure B1: The relation between source article length
and different metrics when controlling for the length of
generated summaries.

These results emphasize the significance of ac-
counting for source article and reference lengths in
our primary analysis presented in the main paper.

C Experiment Settings

C.1 Computing Infrastructure
In our experiments, we utilized 2 Lambda machines
with 250 GB of memory, 4 RTX 6000 GPUs, and
64 CPU cores. The operating system of the ma-
chine is Ubuntu 20.04. Our experiments are con-
ducted with Python 3.8.10. The CUDA version is
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Figure B2: The relation between reference length and
different metrics when controlling for the length of gen-
erated summaries.

11.2 and the GPU Driver Version is 460.73. The
details about the packages can be seen in the ’re-
quirements.txt’ file in the supplementary material.

C.2 Hyperparameters and Random Seed

In our experiments, all random seeds are set to 0.
We utilize the “Hugging Face” implementation for
fine-tuning the language models. During the fine-
tuning, because of the limits of the GPU memory,
we set the batch size to 16. The training epoch is
set to be 10 with early stopping settings. All the
other hyperparameters for the training process are
set to be the default value of the package.

For the summarization metrics, we utilize the
package SummEval by Fabbri et al. (2021), and
follow all the instructions from that paper.

C.3 Steps for Reproducing our Results

As part of the supplementary material, we have in-
cluded the code for reproducing our results. Please
follow the “readme.md” file to reproduce the re-
sults.
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D Results of Experiments in Section 3 for
Other Models

Figure D1, shows the results of the experiments
in Section 3 for all three models. We observe that
the trends of a single metric on one dataset are
consistent across models.
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Figure D1: The average values reported by different met-
rics for different generated summary lengths with differ-
ent models, when controlling the length of source article
and reference. Note that scores have been minimum-
shifted so that the lowest score will be 0. For clarity, the
scores have been rescaled from 0-1 to 0-100.

Figure D2, shows the same results for the shuf-
fled experiments. Similarly, we observe that the
patterns are consistent across models.

E Additional Details for the Score
Adjustment Experiments

E.1 Model Details
For the experiments on reducing length bias in Sec-
tion 5 of the main paper, we utilize 14 models
which are tested on the CNN/DM dataset in their
corresponding original papers. These models are:

• Pointer Generator (See et al., 2017) pro-
posed an encoder-decoder network variant in
which the decoder may either replicate words
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Figure D2: The average values reported by different met-
rics for different generated summary lengths with differ-
ent models, when controlling the length of source article,
reference and the summarization quality by shuffling
the summaries. Note that scores have been minimum-
shifted so that the lowest score will be 0. For clarity, the
scores have been rescaled from 0-1 to 0-100.

from the source articles or generate words de-
pending on the embeddings. In addition, it
employs a mechanism that can track the sum-
mary material to avoid duplication.

• NEUSUM (Zhou et al., 2018) offered an end-
to-end neural network system for document
summarization extraction by simultaneously
learning to score and pick phrases.

• RNES (Wu and Hu, 2018) proposed a neu-
ral coherence model to capture semantic and
syntactic coherence patterns across sentences.
This is a reinforcement learning model with
the neural coherence model and ROUGE pack-
age output merged as the reward.

• Abs-rl (Chen and Bansal, 2018) presented
a methodology that first chooses salient sen-
tences and then abstractly rewrites them to
generate a compact overall summary. Non-
differentiable computations between these
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two phases are bridged hierarchically us-
ing sentence-level policy-based reinforcement
learning based on ROUGE-L reward.

• Bottom-Up (Gehrmann et al., 2018) estab-
lished a bottom-up strategy that inhibits ab-
stractive summarizers’ capacity to replicate
terms from the source articles.

• Improved-abs (Kryściński et al., 2018) en-
hanced the encoder-decoder model by comple-
menting the decoder with an external LSTM
language model and by including a reinforce-
ment learning object during training.

• Unified-ext-abs (Hsu et al., 2018) suggested
utilizing the sentence-level probability output
of an extractive model to adjust the word-level
attention scores of an abstractive model. An
inconsistency loss is created to promote con-
sistency between these two levels of attention.

• ROUGESal-Entail (Pasunuru and Bansal,
2018) proposed a keyphrase-based salience
reward in addition to the ROUGE metric and
an entailment-based reward in reinforcement
learning.

• Multi-task with Ent and QG (Guo et al.,
2018) increased the performance of abstrac-
tive approaches by adding the additional tasks
of question generation and entailment gener-
ation. The former teaches the summarization
model how to explore question-worthy fea-
tures, while the latter teaches it how to write a
summary.

• Closed book decoder (Jiang and Bansal,
2018) built upon a Pointer Generator Network
by adding an extra decoder without attention
and pointer mechanisms to enhance the mem-
orizing capabilities of the encoder in the origi-
nal network.

• GPT-2 (Ziegler et al., 2019) utilized human
reward learning to natural language tasks
throughout the reinforcement learning pro-
cess.

• T5 (Raffel et al., 2020) performed a thorough
analysis of transfer learning approaches and
applied their findings to a collection of text-
to-text generation tasks, including summariza-
tion.

• BART (Lewis et al., 2020) introduced a de-
noising autoencoder for sequence-to-sequence
model pretraining. This model is based on the
standard Tranformer-based neural machine
translation architecture and combines many
denoising techniques.

• Pegasus (Zhang et al., 2020) provided a novel
objective intended for summarization dur-
ing the pretraining phase. This objective re-
moves/masks significant sentences from the
input material and generates them from the
remaining sentences.

F Comparison of the Best Performance of
the Models

Table F1 shows the best-performing versions of
each model from Figure 5.

Ori RN LR BN
ROUGE-1 0.36 0.25 0.41 0.30
ROUGE-2 0.19 0.23 0.45 0.36
ROUGE-3 0.3 0.41 0.43 0.47
ROUGE-4 0.36 0.41 0.36 0.43
ROUGE-L 0.12 0.12 0.12 0.12
ROUGE-su* 0.32 0.45 0.38 0.36
ROUGE-w 0.03 0.08 0.16 0.23
ROUGE-we-3 0.05 0.12 0.16 0.19
BERTScore 0.27 0.12 0.25 0.27
MoverScore 0.32 0.32 0.32 0.32
BLANC 0.08 0.30 0.08 0.08
BLEU 0.27 0.25 0.27 0.41
chrF 0.34 0.25 0.43 0.62
METEOR 0.30 0.19 0.45 0.61

Table F1: Comparison of the best performance averaged
across all 14 metrics, with adjustment scale α = 2−2 for
the Bayesian Network (BN) method and α = 2−1 for
Linear Regression (LR). The original unadjusted scores
(Ori) and other methods do not depend on α.
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