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Abstract
Recent efforts have endeavored to employ the
sequence-to-sequence (Seq2Seq) model in In-
formation Extraction (IE) due to its potential
to tackle multiple IE tasks in a unified manner.
Under this formalization, multiple structured
objects are concatenated as the target sequence
in a predefined order. However, structured ob-
jects, by their nature, constitute an unordered
set. Consequently, this formalization intro-
duces a potential order bias, which can impair
model learning. Targeting this issue, this paper
proposes a set learning approach that consid-
ers multiple permutations of structured objects
to optimize set probability approximately. No-
tably, our approach does not require any modifi-
cations to model structures, making it easily in-
tegrated into existing generative IE frameworks.
Experiments show that our method consistently
improves existing frameworks on vast tasks and
datasets.

1 Introduction

Information Extraction (IE) aims to identify struc-
tured objects from unstructured text (Paolini et al.,
2021). Recently, many research efforts have been
devoted to using sequence-to-sequence (Seq2Seq)
models to solve IE tasks (Lu et al., 2021;
Huguet Cabot and Navigli, 2021; Yan et al.,
2021a,b; Josifoski et al., 2022). This generative
approach enables the development of a universal IE
architecture for different IE tasks (Lu et al., 2022;
Fei et al., 2022; Lou et al., 2023). Moreover, com-
bining the generative approach with Pre-trained
Language Models (PLMs) has shown promising
results in many IE tasks (Ma et al., 2022).

To formulate an IE task as a Seq2Seq problem,
two steps are involved: (1) transforming each struc-
tured object into a flat sub-sequence, and (2) sorting
and concatenating multiple sub-sequences accord-
ing to a predefined order.
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The drinks are always well made and wine selection is fairly priced.

(drinks, well made, positive) (wine selection, fairly priced, positive) 

(drinks, well made, positive) (wine selection, fairly priced, positive)

(a) Predicted triplets are sorted by the predefined order

(drinks, well made, positive) (wine selection, fairly priced, positive) 

(wine selection, fairly priced, positive) (drinks, well made, positive)

(b) Predicted triplets are not sorted by the predefined order

positive positive

aspect opinion aspect opinion

Figure 1: We use triplet extraction in aspect-based senti-
ment analysis as an example to illustrate the order bias.
As depicted in (b), the model incurs a significant loss
value despite correctly generating the triplets.

However, an essential aspect has been over-
looked in these works, namely, that multiple struc-
tured objects constitute a set. As illustrated in Fig-
ure 1, assigning a predefined order introduces a
harmful order bias, which violates the inherent
unordered nature and makes the model lose its gen-
eralizability between permutations. Previous works
have attempted to address this issue by modifying
the decoder to generate multiple objects in an or-
derless and parallel manner (Sui et al., 2021; Tan
et al., 2021; Ye et al., 2021; Mao et al., 2022), but
these methods reduce model universality and make
it difficult to combine with existing PLMs.

Our objective is to tackle order bias while pre-
serving the advantages of generative IE. Inspired
by Qin et al. (2019), we propose a novel approach
called set learning for generative IE. The key
idea of set learning is taking into account multiple
possible orders to approximate the probability of
structured objects set, thereby reducing order bias
caused by only considering the predefined order.

Our approach is task-agnostic and does not
necessitate any modification to model structures.
These strengths enable the seamless integration of
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set learning with existing off-the-shelf methods.
We conduct extensive experiments in vast tasks and
datasets. The results prove our approach can signif-
icantly and consistently improve current generative
IE frameworks.

Sampling 

Permutations

Learning Sampled 

Permutations

Raw Samples

Review: The drinks are always well made and wine selection is fairly priced.

Triplets: (drinks, well made, positive), (wine selection, fairly priced, positive)

Review: The drinks are always well made and wine selection is fairly priced.

Triplets: (drinks, well made, positive), (wine selection, fairly priced, positive)

Review: The drinks are always well made and wine selection is fairly priced.

Triplets: (drinks, well made, positive), (wine selection, fairly priced, positive)

Permutation 1: (drinks, well made, positive), (wine selection, fairly priced, positive)

Permutation 2: (wine selection, fairly priced, positive), (drinks, well made, positive)

Review: The drinks are always well made and wine selection is fairly priced.

Permutation 1: (drinks, well made, positive), (wine selection, fairly priced, positive)

Permutation 2: (wine selection, fairly priced, positive), (drinks, well made, positive)

Review: The drinks are always well made and wine selection is fairly priced.

Permutation 1: (drinks, well made, positive), (wine selection, fairly priced, positive)

Permutation 2: (wine selection, fairly priced, positive), (drinks, well made, positive)

Review: The drinks are always well made and wine selection is fairly priced.

Seq2Seq Model with Set Learning

Training Samples

②

①

Figure 2: Overview of the proposed set learning ap-
proach. Our approach first samples permutations and
then conducts set learning using sampled permutations.

2 Methodology

2.1 Generative IE and Seq2Seq learning

This section describes the general form of both IE
tasks and generative IE.

Formally, an IE task generally takes a text X =
[x1, x2, · · · ] as input and outputs a set of structured
objects S = {s1, s2, · · · }. Each structured object
contains one or more spans from the input text,
along with their types and relations.

Generative IE It usually takes two steps to trans-
form an IE task into a generative paradigm: (1) flat-
ten all elements of S into sub-sequences Y, where
Y is a set with the same size as S; (2) concatenate
sub-sequences of Y according to the predefined
order π∗, resulting in permutation π∗(Y). Here,
π∗(Y) is a flat sequence composed with tokens
[y1, y2, ...]. With the above two steps, a raw sample
is converted into a sequence pair (X,π∗(Y)) that
can be used to train Seq2Seq models.

Remarkably, most of the existing frameworks
sort structured objects according to their positions
within the input text since it generally achieves
good performance (Yan et al., 2021a; Lu et al.,
2022). Therefore, throughout the subsequent sec-
tions of this paper, we adopt the symbol π∗ to de-
note this sorting method and refer to it as “the
reference permutation”.

Seq2Seq Learning (Sutskever et al., 2014) is the
default approach employed for training a genera-

tive IE framework. It decomposes the conditional
probability p(π∗(Y) | X) using the chain rule:

LSeq2Seq = − 1

L
log p(π∗(Y) | X), (1)

= − 1

L

L∑

t=1

log p(yt|Y<t, X),

where L = |π∗(Y)| denotes the number of target
tokens, and Y<t = [y1y2 · · · yt−1] denotes the se-
quence of target tokens up to the t-th position.

2.2 Proposed Set Learning Approach
The Seq2Seq learning paradigm optimizes gener-
ative models by maximizing p(π∗(Y) | X). How-
ever, both S and Y are inherently unordered sets.
Consequently, solely optimizing for a single per-
mutation introduces a bias, as indicated by the in-
equality expressed in Eq. 2:

p(S | X) = p(Y | X) ̸= p(π∗(Y) | X). (2)

To address this limitation, it is crucial to compute
the set probability by considering all possible per-
mutations, which can be formulated as follows:

p(S | X) = p(Y | X) =
∑

πz(Y)∈Π(Y)

p(πz(Y) | X), (3)

where Π(Y) represents all permutations of Y.

Loss Function Building upon Eq. 3, we define the
following loss function. By minimizing this loss
function, we can provide an unbiased optimization
for the generative model.

LSet = − log


 ∑

πz(Y)∈Π(Y)

p(πz(Y) | X)
1
L


 , (4)

where 1
L serves as a normalization term aimed at

mitigating the impact of sequence length. In Ap-
pendix B, we analyze other available loss functions.

Permutation Sampling The factorial complexity
of the size of Π(Y) makes direct optimization of
Eq. 4 computationally expensive. To overcome this
challenge, we employ a sampling strategy to select
a subset from Π(Y). Specifically, we select the
top-k permutations that are most similar to π∗(Y)
among all possible permutations. The similarity be-
tween permutations is computed using token-level
edit distance. During model training, we substitute
the full set of permutations in Eq. 4 with the sam-
pled subset, effectively reducing the computational
burden.
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Baseline Unified ABSA REBEL Text2Event Unified NER

AVG ∆
Backbone BART-Base (Lewis et al., 2020) BART-Large T5-Base BART-Large

Task ABSA Triplet Extraction RE Triplet Extraction End-to-End EE NER

Dataset D20a D20b CoNLL NYT DocRED ADE ACE05 CADEC
14res 14lap 15res 16res 14res 14lap 15res 16res T-C A-C

Seq2Seq 72.4 57.5 60.1 69.9 65.2 58.6 59.2 67.6 75.4 92.0 47.1 82.2 69.2 49.8 70.6 -
Uniform 73.0 57.8 62.6 72.5 71.1 58.0 61.9 69.1 74.2 91.7 45.9 81.9 68.0 47.9 70.0 +0.59
SetRNN 71.1 56.6 59.2 68.9 63.2 57.8 59.2 67.1 76.6 92.2 47.8 82.4 68.7 48.7 69.7 -0.51
Set (Ours) 73.4 60.8 63.5 74.4 71.7 58.7 62.2 70.6 76.8 92.2 48.2 82.9 69.6 51.5 72.2 +2.10
Baseline UIE-SEL (T5-Large Backbone (Raffel et al., 2020))

AVG ∆Task ABSA Triplet Extraction RE Triplet Extraction
Dataset 14res 14lap 15res 16res CoNLL NYT SciERC ACE05

Seq2Seq 73.8 63.2 66.1 73.9 73.1 93.5 33.4 64.7 -
Uniform 73.9 63.0 66.2 73.4 73.4 93.2 32.7 64.1 -0.23
SetRNN 73.5 62.6 65.3 73.1 73.0 92.8 33.1 63.7 -0.58
Set (Ours) 74.9 63.5 67.5 74.7 73.7 93.5 35.9 65.9 +0.99

Table 1: Experimental results. Our approach achieves improvements under different tasks and baselines.

3 Experiments

3.1 Experimental Setup
Datasets We conduct experiments on 9 widely
used datasets across four 4 well-representative
tasks of IE: Aspect-Based Sentiment Analysis
(ABSA), Event Extraction (EE), Relation Extrac-
tion (RE), and Named Entity Recognition (NER).
The used datasets include Semeval (Pontiki et al.,
2014) D20a version (Peng et al., 2020) and Se-
meval D20b version (Xu et al., 2020) for ABSA;
CoNLL04 (Roth and Yih, 2004), NYT (Riedel
et al., 2010), ADE (Gurulingappa et al., 2012),
DocRED (Yao et al., 2019), and SciERC (Luan
et al., 2018) for RE; ACE2005 (Christopher et al.,
2006) for EE and RE; CADEC (Karimi et al., 2015)
for NER. We provide detailed statistics of these
datasets in Appendix A.

Baselines We apply the proposed set learn-
ing approach to five representative frameworks.
These frameworks include Unified ABSA (Yan
et al., 2021b) for Aspect-Based Sentiment Anal-
ysis (ABSA), REBEL (Huguet Cabot and Navigli,
2021) for Relation Extraction (RE), Text2Event
(Lu et al., 2021) for Event Extraction (EE), Unified
NER (Yan et al., 2021b) for Named Entity Recog-
nition (NER), and UIE-SEL (Lu et al., 2022) for
ABSA and EE. For REBEL, we reproduce its pre-
training using set learning. Since there is no avail-
able pre-training corpus for UIE-SEL, we compare
its performance without pre-training.

Implementation Details To ensure a fair com-
parison, we introduce minimal modifications to
the original frameworks when applying the pro-
posed set learning approach to the baselines. Our
modifications primarily focus on two aspects: (1)

sampling permutations of the training data, and (2)
adapting the existing Seq2Seq learning loss func-
tion of the frameworks to the proposed set learning
loss function. Additionally, we utilize the micro
F1 score as the evaluation metric for assessing the
performance of the models.

Other Available Loss Functions In addition to
the proposed set learning loss function, we explore
two alternative loss functions, which are originally
designed for multi-label classification tasks.

(1) SetRNN (Qin et al., 2019) directly optimizes
Eq. 3:

LSetRNN = − log


 ∑

πz(Y)∈Π(Y)

p(πz(Y) | X)


 . (5)

(2) Uniform (Vinyals et al., 2016) calculates the
total negative log-likelihood of permutations:

LUniform = −
∑

πz(Y)∈Π(Y)

1

L
log p(πz(Y) | X). (6)

3.2 Main Results
According to the result in Table 1, the proposed
set learning approach consistently achieves im-
provements over five baselines across nine datasets,
demonstrating its effectiveness and broad applica-
bility. Moreover, the experimental findings reveal
that the Uniform and SetRNN loss functions exhibit
significant instability and, in many cases, lead to
detrimental effects. In contrast, our proposed loss
function consistently and significantly improves
performance, highlighting its superiority over these
alternative loss functions. A more detailed analysis
and discussion of different loss functions can be
found in Appendix B.
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Figure 3: Comparisons of different sampling strategies.
Vertical axes represent F1 scores.
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Figure 4: Effect of increasing permutations.

3.3 Further Analysis

Sampling Strategy We analyze the effective-
ness of the proposed sampling strategy by com-
paring it with four other strategies: random (rand),
fixed-random (f-rand), random* (rand*), and fixed-
random* (f-rand*). The random strategy randomly
samples permutations for each epoch. The fixed-
random strategy randomly samples a permutation
for each training sample in the first epoch and fixes
it for subsequent iterations. The random* and fixed-
random* strategies are similar to random and fixed-
random, respectively, but they always include the
reference permutation.

As shown in Figure 3, the random strategy per-
forms the worst, while the fixed-random strategy
shows some improvement. Introducing the refer-
ence permutation enhances their performance, but
they still lag significantly behind our sampling strat-
egy. These results indicate the effectiveness of our
sampling strategy.

Number of Permutations We conduct experi-
ments to investigate the impact of the number of
permutations on the model performance. The re-
sults in Figure 4 indicate that the model perfor-
mance improves as the number of permutations in-
creases. This correlation implies that an increased
number of permutations lead to a more accurate ap-
proximation of the set probability. Besides, we also
find that once the number of permutations exceeds

Case 1:

Review: This place is classy,  chic, the service is warm and 

hospitable,  and the food is outstanding.

Seq2Seq: (food, outstanding, POS), (place, classy, POS), 

(service, warm, POS), (service, hospitable, POS).

Set Learning: (food, outstanding, POS), (place, classy, POS), 

(service, warm, POS), (service, hospitable, POS).

(place, chic, POS)

Case 2:

Review: Our waiter was helpful and charming, the food was 

perfect, and the wine was good, too.

Seq2Seq: (food, perfect, POS) , (wine, good, POS),

(waiter, helpful, POS).

Set Learning: (waiter, charming, POS), (food, perfect, POS),

(waiter, helpful, POS), (wine, good, POS).

Figure 5: Case study. The triplets in grey represent the
correct triplets that Seq2Seq learning failed to generate.
During the training phase, reference order sort objects
according to their position in review (aspect term first).

Method 14res 14lap 15res 16res
Seq2Seq 65.2 58.6 59.2 67.6
Seq2Set 64.5 55.2 57.8 64.3
Seq2Set (RS) 68.8 57.4 59.6 68.1
Set (Ours) 71.7 58.7 62.2 70.6

Table 2: Comparison with Seq2Set on Semeval D20b

version. RS indicates reward shaping.

6, the incremental improvement in performance
becomes slight, indicating that 6 is a good trade-off
between computational cost and performance.

3.4 Case Study

We present illustrative examples in Figure 5 to fa-
cilitate a better understanding of the proposed ap-
proach. When confronted with examples that con-
tain multiple structured objects, Seq2Seq learning
may deviate from the reference permutation and
omit some objects. This deviation occurs because
decoding is based on likelihood rather than posi-
tion. Thus solely learning a single permutation can
easily result in sub-optimal predictions. In contrast,
set learning has a stronger generalization across
permutations, enabling the generation of objects in
a more flexible order and recalling more objects.

3.5 Comparison with Order-Invariant
Method

Another view for solving the order bias issue uses
order-invariant loss, which is deeply explored in
label generation tasks. A representative method is
Seq2Set (Yang et al., 2019). To address the order
bias in the label generation model, Seq2Set em-
ploys a reinforcement learning approach that uti-
lizes the F1 score of the generated label sequence

13046



as a reward for reinforcement fine-tuning. Since
the F1 score is an order-invariant metric, Seq2Set
reduces the impact of order bias in the label gener-
ation model.

We apply Seq2Set for generative information
extraction to compare with our method. As illus-
trated in Table 2, the performance of Seq2Set is
notably inferior. We speculate that the reason is
that rewards in generative information extraction
are more sparse and exhibit more significant vari-
ance. Furthermore, even after applying reward-
shaping (Ng et al., 1999) techniques to enhance
Seq2Set, the improvements in performance are still
marginal compared to our approach.

Overall, our experiments show that order-
invariant loss does not fit for generative information
extraction, where task form is more complex than
label generation tasks.

4 Related Work

Many studies have been conducted to explore how
neural networks should be designed when deal-
ing with sets as inputs or outputs. Vinyals et al.
(2016) and Zaheer et al. (2017) proposed that neu-
ral networks should be permutations invariant to in-
puts when the inputs are sets. Vinyals et al. (2016)
demonstrated that the permutation of outputs signif-
icantly influences the performance of RNN models
when generating sets.

Tasks in NLP, such as multi-label classification
and keyword generation, can be formulated as set
generation tasks. Madaan et al. (2022) proposed a
permutation sampling strategy for multi-label clas-
sification tasks, which uses the dependencies be-
tween labels to generate informative permutations.
Mao et al. (2022) uses beam search to generate
all triplets corresponding to an input simultane-
ously for sentiment triplet extraction tasks. Ye et al.
(2021) proposed the One2Set model for keyword
generation, which simultaneously generates all key-
words corresponding to input through a parallel
decoder.

In contrast, we propose a more sample and uni-
versal approach to optimize various existing gener-
ative IE frameworks. Our approach can easily com-
bine with the off-the-shelf methods and achieve
promising improvements.

5 Conclusion

In this paper, we reveal the order bias issue in
generative Information Extraction (IE) and pro-

pose the set learning approach for generative IE
to address this issue. The proposed set learning
approach defines and optimizes set probability in
Seq2Seq models and reduces the computational
cost by permutation sampling. Notably, the pro-
posed approach can be easily integrated with ex-
isting generative IE frameworks as a plugin to en-
hance performance. Experiments demonstrate that
the proposed approach significantly improves exist-
ing frameworks in various tasks and datasets. We
believe our work can inspire further research on the
potential of set learning in other natural language
processing tasks.

Limitations

One important limitation of our approach is that
users need to perform a trade-off between per-
formance and computational time consumption.
When the size of training data is relatively small,
the time consumption will concentrate on the infer-
ence phase; an increase in the time consumption
of the training phase is negligible compared to a
notable increase in performance. However, when
the training data is relatively large, sampling a large
number of permutations for each sample may only
result in a marginal improvement but will signifi-
cantly lengthen training time.

Additionally, an important research challenge
lies in accurately estimating set probability during
the inference phase of Seq2Seq models. Seq2Seq
models use greedy decoding or beam search for
inference, which is based on sequence probabilities
rather than set probabilities. However, the sequence
with maximum probability does not necessarily cor-
respond to the set with maximum probability (Qin
et al., 2019). Therefore, investigating novel ap-
proaches that provide more accurate estimations
of set probability is a valuable direction for future
research.
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A Dataset Statistics and Reproducibility

The hyperparameters used in all experiments are
provided in Table 3. For the experiments conducted
on the UIE-SEL framework (Lu et al., 2022), we
were constrained by computational resources and
did not perform hyperparameter tuning. Instead,
we used the original hyperparameters and set the
number of permutations to 2.

Detailed statistics of the datasets used in our
experiments are presented in Table 4. We have
ensured that our use of the datasets falls within their
intended scope and aligns with existing works.
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Dataset learning_rate adam_epsilon batch_size accumulated_steps max_epochs seeds lr_scheduler #sampled permutations
D20a 1e-4 1e-8 16 1 100 0, 1, 2, 3 linear 6
D20b 1e-4 1e-8 16 1 100 0, 1, 2, 3 linear 6

CADEC 2e-5 1e-8 8 1 30 0, 1, 2, 3 linear 4
ACE 2005 EE 1e-4 1e-8 16 1 30 41, 42, 43, 44 linear 4

ConLL04 1e-4 1e-8 8 4 35 41, 42, 43, 44 linear 4
NYT 5e-5 1e-8 8 3 40 41, 42, 43, 44 linear 2

DocRED 2e-5 1e-8 2 16 20 41, 42, 43, 44 linear 4
ADE 5e-5 1e-8 8 4 25 42 (10 fold) linear 4

Table 3: Hyperparameters used for all the experiments.

B Discussion of Loss Functions

In this section, our primary focus is to analyze
the probability distributions generated by different
loss functions among permutations. This analysis
is essential for comprehending the performance
variations observed with these loss functions.

Uniform Loss A possible solution for opti-
mising Eq. 3 is to optimize all permutations
equally (Vinyals et al., 2016). This can be achieved
by Uniform loss function:

LUniform = −
∑

πz(Y)∈Π(Y)

1

L
log p(πz(Y) | X). (7)

Since the Uniform loss calculates the negative
log-likelihood of each permutation, it imposes a sig-
nificant penalty on permutations with low probabil-
ity. Consequently, Uniform results in a uniform
distribution over permutations. It can also be
demonstrated that the minimum value of Uniform
is attained when the probabilities of all permuta-
tions are equal.

When optimizing Uniform, a crucial insight is
that the total probability of Y across all permuta-
tions should be less than or equal to 1. Thus, our
optimization problem aims to minimize Eq. 7 while
satisfying the following constraint:

∑

πz(Y)∈Π(Y)

p(πz(Y) | X) = 1. (8)

Under the constraint mentioned above, we can
formulate the optimization of Uniform as an un-
constrained problem using the Lagrange multiplier
method in the following manner:

L = −
∑

πz(Y)∈Π(Y)

1

|πz(Y)|
log p(πz(Y) | X)

+ λ


 ∑

πz(Y)∈Π(Y)

p(πz(Y) | X)− 1


 .

(9)

where λ is a Lagrange multiplier, and L is a func-
tion that depends on both λ and each p(πz(Y)) for

πz(Y) ∈ Π(Y). Solving Equation 9 involves find-
ing the minimum point, which requires that each
πz(Y) ∈ Π(Y) has the same probability.

However, in Seq2Seq models, the probability
of permutations can be influenced by various fac-
tors (Vinyals et al., 2016; Madaan et al., 2022),
leading to an inherent imbalance in the distribution
of permutations. This indicates that fitting a uni-
form distribution may be challenging. Therefore,
imposing a strict penalty on non-uniformity, such
as the rigorous penalty of Uniform, may result in
subpar performance (Qin et al., 2019).

SetRNN Loss The SetRNN loss, proposed by
Qin et al. (2019), offers an alternative approach
by directly optimizing the set probability (Eq. 3).
Instead of computing the negative log-likelihood
of each permutation, SetRNN loss calculates the
total probability of all permutations and utilizes it
to compute the loss:

LSetRNN = − log


 ∑

πz(Y)∈Π(Y)

p(πz(Y) | X)


 .

(10)

Unlike the Uniform loss, the SetRNN loss does
not assume uniformity among permutations since
the distribution is not explicitly considered in the
total probability.

However, a drawback of the SetRNN loss is that
it does not penalize non-uniformity, which can lead
the model to take shortcuts and assign almost all of
the probability density to a single permutation. Our
experiments have shown that such shortcuts are
prevalent when using the SetRNN loss, which may
explain its poor performance compared to other
loss functions..

Set Loss We propose the Set loss, which is derived
from the Uniform loss but relaxes the penalty for
low-probability permutations to support set learn-
ing better.

We start by transforming the Uniform loss into
the following form:
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LUniform = −
∑

πz(Y)∈Π(Y)

log p(πz(Y) | X)
1
L . (11)

By moving the log outside the summation, we can
relax the penalty and obtain the Set loss:

LSet = − log


 ∑

πz(Y)∈Π(Y)

p(πz(Y) | X)
1
L


 , (12)

The Set loss reduces the penalty while maintain-
ing a looser uniformity restriction. Therefore, it
does not suffer from the “rigorous penalty” or “tak-
ing shortcuts” issues observed in other loss func-
tions. The probability distribution produced by the
Set loss falls in a middle state between the proba-
bility distributions produced by the Uniform and
SetRNN losses.

Validation Experiment We design and imple-
ment an experiment to corroborate the arguments
in the above discussions. Specifically, we use the
D20b version of the 14lap dataset and set the num-
ber of permutations to 2, optimize the model to
convergence using different losses, and then record
and analyze the probability distributions generated
by the different losses. Our main findings are as
follows: (1) SetRNN loss assigns more than 0.7
probability mass to a single permutation with a
97% probability, while the other two losses have a
probability of 0%. (2) Uniform loss assigns a prob-
ability mass of 0.48 to 0.52 to both permutations
with a probability of 26%. (3) Set loss assigns a
probability mass of 0.48 to 0.52 to both permuta-
tions with a probability of 21%.

The results are consistent with our claims:
SetRNN loss assigns much more probability density
to a single permutation, and Uniform loss produces
a more uniform distribution. In contrast, Set loss
relaxes the uniformity of Uniform loss.
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Dataset #Samples #Structured Objects #Object Types
D20a 14res train 1,300 2,145 3
D20a 14res dev 323 524 3
D20a 14res test 496 862 3
D20a 14lap train 920 1,265 3
D20a 14lap dev 228 337 3
D20a 14lap test 339 490 3
D20a 15res train 593 923 3
D20a 15res dev 148 238 3
D20a 15res test 318 455 3
D20a 16res train 842 1,289 3
D20a 16res dev 210 316 3
D20a 16res test 320 465 3
D20b 14res train 1,266 2,338 3
D20b 14res dev 310 577 3
D20b 14res test 492 994 3
D20b 14lap train 906 1,460 3
D20b 14lap dev 219 346 3
D20b 14lap test 328 543 3
D20b 15res train 605 1,013 3
D20b 15res dev 148 249 3
D20b 15res test 322 485 3
D20b 16res train 857 1,394 3
D20b 16res dev 210 339 3
D20b 16res test 326 514 3
ACE 2005 train (EE) 17,172 4,202 33
ACE 2005 dev (EE) 923 450 33
ACE 2005 test (EE) 832 403 33
ACE 2005 train (RE) 10,051 4,788 6
ACE 2005 dev (RE) 2,420 1,131 6
ACE 2005 test (RE) 2,050 1,151 6
CADEC 7,597 6,318 1
CoNLL04 train 922 1,290 5
CoNLL04 dev 231 343 5
CoNLL04 test 288 422 5
NYT train 56,196 94,222 24
NYT dev 5,000 8,489 24
NYT test 5,000 8,616 24
DocRED train 3,008 37,486 96
DocRED dev 300 3,678 96
DocRED test 700 8,787 96
SciERC train 1,861 3,219 7
SciERC dev 275 455 7
SciERC test 551 974 7
ADE (10 fold) 4,272 6,821 1

Table 4: Datasets statistics.
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