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Abstract

Multilingual Large Language Models (LLMs)
have recently shown great capabilities in a wide
range of tasks, exhibiting state-of-the-art perfor-
mance through zero-shot or few-shot prompt-
ing methods. While there have been extensive
studies on their abilities in monolingual tasks,
the investigation of their potential in the context
of code-switching (CSW), the practice of alter-
nating languages within an utterance, remains
relatively uncharted. In this paper, we provide
a comprehensive empirical analysis of various
multilingual LLMs, benchmarking their perfor-
mance across four tasks: sentiment analysis,
machine translation, summarization and word-
level language identification. Our results indi-
cate that despite multilingual LLMs exhibiting
promising outcomes in certain tasks using zero
or few-shot prompting, they still underperform
in comparison to fine-tuned models of much
smaller scales. We argue that current “multilin-
gualism" in LLMs does not inherently imply
proficiency with code-switching texts, calling
for future research to bridge this discrepancy.

1 Introduction

Large Language Models (LLMs) have shown their
potential in the context of zero-shot and few-shot
prompting (Brown et al., 2020; Kojima et al., 2022;
Wei et al., 2022; Longpre et al., 2023). The suc-
cesses of these LLMs have also been effective
in multilingual settings (Lin et al., 2021; Winata
et al., 2021b; Scao et al., 2022) where models
are specifically trained to learn individual lan-
guages, proven to be highly beneficial for mono-
lingual tasks. However, in multilingual communi-
ties, people do not confine themselves to speaking
only a single language; instead, they use two or
more languages interchangeably during a conver-
sation - a phenomenon known as code-switching
(CSW) (Poplack, 1980, 2001). It allows individu-
als to communicate cultural-specific concepts more
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effectively, signaling their group identity and re-
inforcing their social connection (Doğruöz et al.,
2021). Yet, existing multilingual LLMs are not
specifically trained with objectives for managing
CSW scenarios. Hence, assessing the capabilities
of the current multilingual LLMs in processing
CSW texts is essential to the development of multi-
lingual language models that are fully compatible
with code-switching.

The main challenge of developing multilingual
LLMs optimized for code-switching lies in data
scarcity. Given the highly colloquial characteris-
tic of code-switching (Winata et al., 2022b), ex-
isting resources dedicated to CSW are rare and
collection at large-scale requires considerable an-
notation efforts. To mitigate such deficiency, Yong
et al. (2023) investigate the possibility of employ-
ing multilingual LLMs to generate high-quality
synthetic CSW texts. The study revealed that,
hosted LLMs, such as InstructGPT (Ouyang et al.,
2022) and ChatGPT1 outperform public models
like BLOOMZ (Muennighoff et al., 2022) and Flan-
T5-XXL (Chung et al., 2022) in generating natural-
sounding CSW texts. However, the quality of the
generated text by these hosted LLMs is mostly con-
fined to Singlish and significantly declines when
prompted for other languages. Despite the pre-
liminary promising results, the generation of high-
quality CSW texts still remains challenging. This
observation motivates us to probe from a differ-
ent perspective - Can existing multilingual LLMs
effectively understand CSW?

There have been previous studies on evaluat-
ing multilingual LMs in CSW scenarios (Tan and
Joty, 2021; Adilazuarda et al., 2022), where code-
switched texts are simulated by replacing words
from parallel corpora. Winata et al. (2021a) also
assesses models’ effectiveness by experimenting
with word embeddings constructed from different
methods. These works are mainly built upon small

1https://chat.openai.com/
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Sentiment Analysis

Summarization

Positive

Qué mejor que pasar Valentine 's 
thirdwheeleando , ricura , wuu  => 
Sentiment:

Machine Translation

Sentiment Analysis

acha tho is movie kis baare me hein?

Translate the text above from Hinglish 
to English

Language Identification
For each token, identify its language 
(lang1: English, lang2: Hindi, other) using 
[ word | tag ]. Hello koi mere se frndship 
krlo mere se hor singel nai raha jata =>

Ivy: Chloene bataya tum humare saath nahi aa 
rahe! Carter: mera ek family reunion around 
that time...Ivy: why? ... Carter: plan toh 
yahi hai at least Ivy: take care!

Multilingual

LLMs

 Alright that is fine. 

What is the movie?

[Hello|lang1][koi|lang2][mere|
lang2][se|lang2][frndship|lang1]
[krlo|lang2][mere|lang2][se|lang2]
[hor|lang2][singel|lang1][nai|
lang2][raha|lang2][jata|lang2]

Carter is not joining Ivy and 
Chloe due to a family reunion. 
Carter's grandfather is very ill.

Summarization

Figure 1: Illustration of tasks included in our benchmark study.

BERT-based models and are restricted by either the
number of languages or tasks investigated. Given
the recent success of prompting methods on multi-
lingual LLMs and the effects of scaling, this paper
presents a more comprehensive empirical analysis
of models’ code-switching abilities, including a va-
riety of languages, task types, model architectures,
model sizes and prompting methods.

Our results suggest that the scaling law is appli-
cable to multilingual LLMs across diverse CSW
tasks and model architectures. However, fine-tuned
smaller-scale models substantially outperform the
largest multilingual LLM with prompting meth-
ods. In addition, while hosted LLMs achieve scores
comparable to our fine-tuned models, such perfor-
mance remains uninterpretable due to their closed-
ness. We argue that existing multilingual LLMs
exhibit limited proficiency in code-switching con-
texts, highlighting future research opportunities to
transform them into true polyglots.

2 Experimental Setup

2.1 Datasets

We explore four code-switching task categories:
sentiment analysis (SA), machine translation (MT),
summarization (SUM), and word-level language
identification (LID). The description of each task
is as follows:

Sentiment Analysis We use sentiment analysis
datasets of three different language pairs: Sentimix
Spanish-English (Aguilar et al., 2020), MixSenti-

ment Malayalam (Chakravarthi et al., 2020a), and
MixSentiment Tamil (Chakravarthi et al., 2020b).
Besides the common positive and negative labels,
these datasets also contain extra labels like neutral
or other. However, occurrences of those labels are
very scarce. Hence, to normalize datasets from dif-
ferent sources, we simplify the data by filtering out
examples outside positive or negative labels. The
dataset sizes, broken down into train/validation/test,
are as follows: 8,831/8,831/1,342 pairs for the
Spanish-English subset, 2,541/275/703 for Malay-
alam, and 9,075/1,022/2,499 for the Tamil subset.

Machine Translation We use the code-switched
datasets from MixMT 2022 shared task (Srivastava
and Singh, 2022) that contains Hinglish-English
sentence pairs (8,060 pairs in the training split, 942
pairs in validation and 960 pairs in the test split).

Summarization We use code-switched summa-
rization dataset Gupshup (Mehnaz et al., 2021),
which is derived from SAMSum (Gliwa et al.,
2019) via crowdsourcing translation. In our ex-
periment, We focus on Hinglish to English, as eval-
uating code-switched summary systematically with
existing auto metrics has shown to be challenging
for multilingual LLMs (Zhang and Eickhoff, 2023).
The dataset contains 5,831 source-target pairs for
training, with 500 pairs each for validation and
testing.

Word-level LID We use English-Hindi and Mod-
ern Standard Arabic (MSA) - Egyptian Arabic (EA)
subsets from the Language Identification task in
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Model Model Type Model Sizes Datasets # Languages LLM Objectives
Enc-Only Dec-Only Enc-Dec

XLM-R (Conneau et al., 2020) ✓ 250M, 560M CommonCrawl 100 MLM
mBERT (Devlin et al., 2019) ✓ 178M Wikipedia 104 MLM
mDeBERTa v3 (He et al., 2021) ✓ 278M CC100 100 RTD w/ GDES
mBART-50 (Tang et al., 2020) ✓ 611M CC25, ML50 50 Denoising w/ CLM
M2M100 (Fan et al., 2020) ✓ 418M, 1.2B CCMatrix, CCAligned 100 CLM
XGLM (Lin et al., 2021) ✓ 564M, 1.7B, 2.9B, 4.5B, 7.5B CommonCrawl 30 CLM
BLOOMZ (Muennighoff et al., 2022) ✓ 560M, 1.1B, 1.7B, 3B, 7.1B ROOTS, xP3 46 Instruction Tuned
mT0 (Muennighoff et al., 2022) ✓ 300M, 580M, 1.2B, 3.7B, 13B mC4, xP3 ∼120 Instruction Tuned

ChatGPT (Bang et al., 2023) ✓ - - - RLHF

Table 1: Comparison of different model variants studied in this paper.

the LinCE benchmark (Aguilar et al., 2020). In
this task, the system is tasked with classifying the
language of each word in a sentence into one of
the three classes, lang1, lang2, or other. lang1
and lang2 are English and Hindi, or MSA and EA,
respectively. The English-Hindi subset contains
4,832 training examples and 744 validation exam-
ples. For the MSA-EA subset, it contains 8,464
examples for training and 1,116 for validation. Our
results are reported on the validation set as the test
set is unavailable publicly.

2.2 Models

Zero-shot and Few-shot Models For zero-shot
and few-shot prompting, we explore various mul-
tilingual generative LLMs of different pretraining
processes and architectures, including BLOOMZ,
mT0 (Muennighoff et al., 2022) and XGLM (Lin
et al., 2021). We explore all model sizes except
for BLOOMZ 175B due to resource limitations.
We also include ChatGPT into our analysis and
specifically GPT-3.5turbo is used. We explore 0, 1,
3, and 5-shot on each model with 5 diverse prompt
templates. Details for each prompt can be seen in
Appendix C.

For the SA task, we compute the probability of
the model to generate each label as the next im-
mediate continual generation, and then we pick
the label resulting in the highest probability for
the whole sequence. For MT, SUM and LID, we
perform standard text generation. However, for
LID, we expect the generated text to follow a pre-
defined format where each [token, language tag]
pair is represented as [ token | tag ]. We parse
the generation using a dynamic programming algo-
rithm introduced in Paolini et al. (2021) to extract
the valid [token, language tag] pairs for evaluation.

Fine-tuning Models In addition to zero-shot
prompting models and few-shot in-context learning,
we also experiment with fine-tuning as a bench-

mark against prompting. For SA and word-level
LID tasks, we fine-tune four models, namely, base
and large variants of XLM-RoBERTa (Conneau
et al., 2020), mBERT (Devlin et al., 2019), and
mDeBERTa v3 (He et al., 2021).

For MT, we fine-tune eight models in total.
These include small, base, and large variants of
mT0 (Muennighoff et al., 2022); 418M and 1.2B
variants of M2M100 (Fan et al., 2020); and stan-
dard, one-to-many, and many-to-many variants of
mBART-50 (Liu et al., 2020; Tang et al., 2020)2

For SUM, we follow the same setup used in MT,
except we only fine-tune the three previously men-
tioned mT0 models and only the standard mBART-
50 as the one-to-many and many-to-many variants
are specifically for translation only.

Across all the tasks, we fine-tune the selected
models on all the available training instances. Ta-
ble 1 shows a full overview and comparison of
the models investigated in this study and details
for training setups for all tasks can be found in
Appendix A.

3 Results and Discussion

Overall Results Figure 2 presents the results
of various multilingual LLMs for the four CSW
tasks.3 In general, we observe a scaling pattern
when prompting multilingual LLMs across tasks.
Nevertheless, the performance of these models sig-
nificantly falls short when compared to that of sub-
stantially smaller fine-tuned models. Therefore,
adopting a fine-tuned model is a more practical
approach for dealing with CSW tasks, especially
in scenarios with constrained computational re-
sources. For ChatGPT, it demonstrates comparable
performance to fine-tuned models across all tasks

2Due to space constraint, we show a selection of all fine-
tuned models in Table 2. For the full results, please refer to
Appendix B.

3Note that the results for SA, MT, SUM are derived from
zero-shot prompting while LID results are based on 5-shot.
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Sentiment Analysis Machine Translation Summarization Language Identification

F1 BLEU RL F1
Model

Mal-Eng Spa-Eng Tam-Eng
Model

Hngβ→Eng Eng→Hngβ Model
Hngβ→Eng

Model
Hin-Eng MSA-EA

Finetuning Finetuning Finetuning Finetuning

XLMR278M 77.08 77.14 68.12 M2M100418M 28.53 12.40 mT0p, 300M
δ 29.83 XLMR278M 82.44 72.58

XLMR560M 79.94 78.81 68.28 mBART50610M
γ 29.53 13.38 mT0p, 580M

δ 37.44 XLMR560M 86.65 79.79
mBERT178M 78.21 70.02 65.19 mT0p, 580M

δ 25.47 12.28 mT0p, 1.2B
δ 40.12 mBERT178M 81.99 68.02

mDeBERTa278M 44.56 88.17 45.56 mT0p, 1.2B
δ 31.88 13.90 mBART50610M 39.03 mDeBERTa278M 85.41 68.02

0-shot Prompting 0-shot Prompting 0-shot Prompting 5-shot Prompting

mT0300M 36.79 48.44 42.26 mT0300M 2.74 1.60 mT0300M 16.00 mT0300M 2.13 0.90
mT0580M 44.60 56.01 47.62 mT0580M 6.42 2.37 mT0580M 20.16 mT0580M 0.30 0.00
mT01.2B 55.62 67.63 53.88 mT01.2B 10.64 1.88 mT01.2B 23.63 mT01.2B 0.22 0.27
mT03.7B 35.27 59.28 38.55 mT03.7B 12.78 2.08 mT03.7B 27.40 mT03.7B 0.19 1.49
mT013B 49.97 65.26 50.76 mT013B 19.28 1.66 mT013B 30.67 mT013B 7.51 5.07
BLOOMZ560M 59.64 72.79 55.30 BLOOMZ560M 2.24 1.37 BLOOMZ560M 14.22 BLOOMZ560M 5.38 2.08
BLOOMZ1.1B 50.64 70.89 53.27 BLOOMZ1.1B 2.79 1.73 BLOOMZ1.1B 16.45 BLOOMZ1.1B 16.31 10.56
BLOOMZ1.7B 47.83 73.20 50.15 BLOOMZ1.7B 2.62 2.62 BLOOMZ1.7B 16.85 BLOOMZ1.7B 13.04 3.37
BLOOMZ3B 56.84 72.85 53.41 BLOOMZ3B 3.13 2.86 BLOOMZ3B 20.97 BLOOMZ3B 19.61 17.47
BLOOMZ7B 64.21 74.61 59.43 BLOOMZ7B 3.67 1.88 BLOOMZ7B 17.01 BLOOMZ7B 19.58 9.26
XGLM564M 52.18 64.16 52.66 XGLM564M 0.45 0.28 XGLM564M 4.29 XGLM564M 6.65 1.61
XGLM1.7B 50.83 65.01 50.55 XGLM1.7B 0.79 0.43 XGLM1.7B 5.42 XGLM1.7B 5.90 6.27
XGLM2.9B 60.15 64.78 56.43 XGLM2.9B 1.34 0.69 XGLM2.9B 5.75 XGLM2.9B 17.64 10.75
XGLM4.5B 62.32 70.34 56.94 XGLM4.5B 2.13 0.47 XGLM4.5B 4.73 XGLM4.5B 19.35 20.51
XGLM7.5B 60.93 68.52 56.04 XGLM7.5B 1.43 0.39 XGLM7.5B 5.92 XGLM7.5B 16.91 18.91
GPT-3.5turbo 65.92 75.64 63.15 GPT-3.5turbo 27.64 4.32 GPT-3.5turbo 25.07 GPT-3.5turbo

α 80.19 71.41
α Due to budget limitations, the results presented in GPT-3.5turbo are based on 1-shot prompting instead of 5-shot.
β,γ, δ Hng refers to Hinglish, a mix of Hindi and English. mBART50 refers to the many-to-many variant. mT0p refers to the fine-tuned mT0 with

prompt templates.

Table 2: Code-switching benchmark results for finetuned and prompting models. We report the 0-shot performance
for the sentiment analysis, machine translation and summarization tasks; and 5-shot performance for the word-level
language identification task.

and datasets, except for the English to Hinglish MT
task. This exception may stem from the challenges
in generating code-switched texts as outlined in
previous research (Yong et al., 2023; Zhang and
Eickhoff, 2023). For the remaining tasks, ChatGPT
notably outperforms publicly available multilin-
gual LLMs. Such discrepancy may be attributed
to the RLHF objective in its pretraining process,
although a comprehensive analysis is hindered by
its proprietary nature.

3.1 Sentiment Analysis Results

Figure 5 shows a detailed breakdown for each of
the three language datasets in the SA task. The
results from fine-tuned models mainly reside in the
top-left corner across all three datasets, highlight-
ing their superior performance with considerably
smaller sizes. Scaling BLOOMZ and XGLM yield
small improvements, however, scores from mT0
fluctuate around 50 F1 when varying sizes. It’s
worth noting that the majority-class baseline of
these three datasets has an average F1 score of
46. Considering the instability observed during the
scaling-up process, mT0 struggles to understand
the sentiment when presented in CSW texts.

3.2 Machine Translation Results
As shown in Figure 2 and Table 2, when the source
is Hinglish and target English, the performance
gap between prompting and fine-tuning in MT
is much more apparent, with the best prompted
LLM mT0-XXL achieving no more than 20 BLEU
while all the fine-tuned models achieved between
25-32 BLEU score. In contrast to SA, we no-
tice especially visible improvement during scal-
ing up encoder-decoder style models such as mT0,
while decoder-only models such as BLOOMZ and
XGLM have minimal improvements given their
overall poor performance.

We then compare the difference in LLM scal-
ing between translation tasks with code-switched
sources and monolingual ones4. Figure 3 shows
the scaling trajectory of LLMs for both Hindi →
English and Hinglish → English translation direc-
tion; Table 3 presents the regression coefficient (β)
in these two scenarios. A large coefficient indicates
scaling has more noticeable impacts. We can ob-
serve that the influence of scaling is more apparent
in monolingual sources than in the code-switched

4Monolingual experiments are conducted on WMT 2014
Hindi-English dataset (Bojar et al., 2014).
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Figure 2: Evaluation results of fine-tuning and prompting LLMs of different scales on various CSW tasks. (top left)
F1-score on the sentiment analysis task, (top right) BLEU score on the machine translation task, (bottom left)
ROUGE-L on the summarization task, and (bottom right) F1-score on the word-level language identification task.
(FT) means results are from fine-tuned models.

setup. This pattern could potentially result from
the limited pretraining samples for Hinglish code-
switched data, leading to a sub-optimal scaling
performance.

When models are tasked with translating the
source into CSW text, a substantial performance de-
cline is observed for both fine-tuned and prompted
models. We notice that while the larger mT0 mod-
els are capable of producing English translations in
a zero-shot manner, they struggle to generate CSW
texts as seen in previous work (Yong et al., 2023).
Upon looking at the output, mT0 simply outputs in
English, even in few-shot settings in which it has
seen some other Hinglish examples.

3.3 Summarization Results

Figure 2 shows the fine-tuning and zero-shot
prompting result on the summarization task. Sim-
ilarly, we see that fine-tuned models outperform
the zero-shot approach. Similar to MT, mT0 yields
the overall best performance and shows positive
scaling law.

To disentangle CSW from the equation, we eval-
uate the LLM’s performance on the same Gupshup
dataset, but with English input rather than Hinglish
input. The evaluation set is parallel to each other.
Interestingly, from Figure 3 and Table 3, we see a

similar scaling impact whether the input is mono-
lingual or in code-switch. However, the models are
consistently better if the input is in English.

3.4 Language Identification Results

Our observation of fine-tuned models in the LID
task is similar to the MT task: they outperform
prompting methods on multilingual LLMs by a
significant margin. In Table 2, we report 5-shots
instead of 0-shot prompting results for LID tasks as
0-shot results are all 0 for both language datasets
and across all models. The multilingual LLMs
are not able to understand the natural language
instruction that requires them to generate outputs
in a specific format like [ token | tag ] word by
word. When prepending more in-context examples
in the instruction, we observe slight performance
improvements across different models. For results
on few-shot experiments for LID, please refer to
Section 3.5.

3.5 Few-Shot Results

Compared to zero-shot inference, few-shot learning
has been shown to boost performance as discussed
in previous works(Brown et al., 2020; Liu et al.,
2021). However, in CSW settings, we observe dif-
ferent effects of adding more in-context examples
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between tasks. In Figure 4, we notice a decrease in
metrics from 0-shot to 1-shot for SA and SUM, sug-
gesting that in-context examples do not contribute
to or even degrade models’ performance. We sus-
pect that models have seen these tasks in a monolin-
gual fashion during pretraining, and thus are able
to understand instructions well in a zero-shot set-
ting. Instead, models may consider CSW examples
as low-quality texts, thus confusing the generation
process. For MT, we observe negligible change in
the models’ performances with an increasing num-
ber of examples. Notably, instead of translating
sentences to Hinglish as instructed, models could
only repeat the original English sentences. For in-
stance, when provided with 5 in-context examples,
mT013B is instructed to “Translate the following
text from English to Hinglish. Text: hello there,
I have not seen this movie so im going to take a
minute to look it over :) Translation:”. It gener-
ates “hello there, I have not seen this movie so I
going to take time to look it over:).” instead of the
expected “hello yar, mein is movie ko nahi dekha
hoon tho, tho mein thode der ke liye isko dekh
loonga”. Similar issues are also observed with
BLOOMZ. We hypothesize that models may not
fully comprehend the nuances of ’Hinglish’ within
the given instruction, which could account for their
relatively uniform performance across varying shot
numbers.

On the contrary, more in-context examples bene-
fit the LID task. As no models are pre-trained on
the sequence tagging task, the natural instruction
entailing the specific generation format is new to
the LLMs. Therefore, in our experiments, most
models perform best when given 5 learning exam-
ples. Additionally, though we observe scaling law
patterns in 5-shot settings as shown in Figure 6, for
the best-performing billion-parameter models, we
still consistently observe their inability to adhere to
the format laid out in the instructions. They often
fail to replicate the exact words required for sen-
tence tagging or predict multiple tokens within a
single bracket pair. For example, in a 5-shot setting,
when asked to label the sentence "we the fans luv
you , sirji”, BLOOMZ7b wrongly generates “[ we
the fans | lang1 ] [ you | lang1 ] [ sirji | lang1 ] [
, | other ]”, unable to put individual words in the
brackets and omitting some words from the origi-
nal sentence. Given the constraint of limited input
length, which restricts the number of in-context ex-
amples models can learn from, their uncontrollable
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Figure 3: Performance comparison on (top)
Hindi→English vs Hinglish→English translation and
(bottom) Hinglish→English vs English→English
summarization.

generation still results in a significant performance
gap when compared to fine-tuning smaller models
(∼20 F1 vs. ∼80 F1).

3.6 Benchmarking ChatGPT

Given recent developments in general-purpose,
instruction-following LLMs like ChatGPT, with
impressive zero-shot abilities across tasks, we also
benchmark ChatGPT’s performance in our CSW
task. Limited by the budget, we only explore zero-
shot performance for SA, MT and SUM given their
easy scopes, and 1-shot performance for LID due
to the specific output format requirements. Since
we can’t access ChatGPT’s output probability dis-
tribution, we instruct ChatGPT to return only the
exact string label and calculate F1 scores using
exact string matching for SA.

ChatGPT achieves somewhat comparable perfor-
mance to finetuning models and significantly out-
performs other public multilingual LLMs in most
of the tasks. Especially for LID, it shows strong
capabilities in following difficult instructions with
only one example. The only exception is on the
English→Hinglish MT tasks, where its zero-shot
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Model Code-Switched Monolingual

β α β α

Machine Translation

mT0 1.057 6.403 1.626 6.075
BLOOMZ 0.192 2.373 0.824 6.240

Summarization

mT0 0.712 5.471 0.738 9.228
BLOOMZ 0.312 3.507 0.644 8.637

XGLM 0.029 0.444 0.012 0.883

Table 3: Regression slope (β) and intercept (α) of scal-
ing mT0 and BLOOMZ on monolingual/code-switched
machine translation and summarization task.

performance is only slightly better than other pub-
lic LLMs. We hypothesize mainly two reasons
behind the difficulty in generating CSW texts: 1)
as alluded to in the previous section, CSW texts can
be perceived as noises given tasks and pretraining
processes are designed in a monolingual fashion;
2) LLMs may have a lack of sufficient representa-
tion for CSW text structure. In our analysis, LLMs
perform much better in SA tasks as they could pick
up cues from individual works instead of paying
attention to language “structure” when tasked with
text generation.

Lastly, while ChatGPT delivers promising re-
sults without any fine-tuning, the lack of complete
transparency on its pretraining datasets, model ar-
chitecture, and training details obstructs a better un-
derstanding of its performance. This presents road-
blocks to future improvements in code-switching
proficiency for public multilingual LLMs.

4 Implications for Future LLMs

In this section, we walk through various implica-
tions of our work and provide recommendations
for enabling better CSW ability in LLMs. By high-
lighting this limitation, we compel researchers to
consider CSW as a core feature of many people’s
multilingual repertoire across the world.

Fairer Data Representation for Code-Switching
Our results in Section 3 show that existing LLMs
have similar scaling patterns between monolingual
and CSW. However, despite all the models under
study having seen each of the languages during pre-
training, there is still a performance gap between
monolingual and CSW. This suggests that the abil-
ity to code-switch is not acquired by LLMs after

pretraining and/or instruction-tuning with multilin-
gual data (Xue et al., 2021; Scao et al., 2022; Muen-
nighoff et al., 2022), indicating the need for adding
better data representation for code-switching in the
multilingual pretraining and/or instruction-tuning
process. Such an approach can be done through
manual CSW data collection and/or various data
augmentation methods (Tan and Joty, 2021; Adi-
lazuarda et al., 2022; Dhole et al., 2023). Aside
from adding more CSW data, one potential solu-
tion is to identify and include the code-switching
language pairs into consideration of multilingual
pretraining and/or instruction-tuning. This allows
better resampling strategy (Lample and Conneau,
2019; Aharoni et al., 2019; Conneau et al., 2020;
Xue et al., 2021; Tang et al., 2021; Cahyawijaya
et al., 2021) for CSW data during the multilingual
pretraining and/or instruction-tuning.

Adaptation and Extension of Code-Switching
Optimization Objectives Existing LLMs are op-
timized solely with language modeling objectives
either for sentence denoising or sentence comple-
tion. However, alternative optimization objectives„
such as meta transfer learning (Winata et al., 2020)
and additional token/span-level language identifi-
cation objective (Li et al., 2019), have been demon-
strated to effectively enhance CSW performance
with minimal performance loss on monolingual
tasks in CSW speech processing. By adapting and
extending these approaches to NLP, we may be able
to equip LLMs with better CSW capability without
requiring expensive data collection and annotation.
This would be particularly advantageous for LLMs,
especially in applications where CSW is prevalent
within the multilingual community.

Towards More Inclusive Language Technology
In light of the fact that LLMs are the driving
force behind the progress of various NLP technolo-
gies (Thoppilan et al., 2022; SambaNova Systems,
2023; Pratap et al., 2023), we emphasize the impor-
tance of incorporating code-switched capabilities
in LLMs to promote inclusivity and diversity in
language technology, particularly for multilingual
speakers who frequently engage in code-switching
in their daily lives. By enabling NLP technology
to reflect the language-mixing patterns of users,
people can communicate in ways that are more
comfortable and authentic to their linguistic identi-
ties, eliminating the need for people to adjust their
speech patterns to become legible to machines. It
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Figure 4: Few-shot evaluation performance for (top left) sentiment analysis task, (top right) machine translation
task, (bottom left) summarization task and (bottom right) word-level LID task.

would not only mitigate the effects of linguistic pro-
filing (Baugh, 2005; Dingemanse and Liesenfeld,
2022) and hegemonic, Western-centric technologi-
cal designs but also foster greater trust among users
in language technology through naturalistic dia-
logue interactions. Therefore, we urge the integra-
tion of code-switched recognition and generation
capabilities in future LLMs.

5 Related Work

Code-Switching Code-switching is a common
practice observed in multilingual communities
where people mix multiple languages within an
utterance (Poplack, 2001). While more than half
of the world population speaks more than one lan-
guage, the availability of resources and assessments
for code-switching is much more limited compared
to the extensive literature on monolingual cases.
The key challenges of collecting high-quality code-
switching data lie in the colloquial nature of the
practice and the language proficiency required for
accurate annotation (Winata et al., 2022b). The
recent advances of “multilingual” large language
models compel one to explore whether these mod-
els are proficient in code-switching contexts like
a true polyglot. Previous research (Winata et al.,
2021a) has studied the code-switching capabilities
of language models in NER and POS-tagging tasks,
however, the work is limited to using only differ-

ent word embeddings and encoder-only models. In
this paper, we expand on previous works and pro-
vide a detailed analysis of more model variations,
task objectives and downstream applications of di-
verse language pairs adopted from existing CSW
benchmarks like LinCE (Aguilar et al., 2020) and
GlueCOS (Khanuja et al., 2020).

Multilingual Large Language Models Mod-
els like mBERT (Devlin et al., 2019) and XLM-
R (Conneau et al., 2020) have become the go-
to multilingual options for supervised fine-tuning,
given their impressive abilities and adaptability
to many languages. With the success of large-
scale generative models, their capabilities have
been enriched with multilingual objectives (Lin
et al., 2021; Scao et al., 2022; Muennighoff et al.,
2022) through pretraining on large multilingual
corpora such ROOTS (Laurençon et al., 2022),
mC4 (Raffel et al., 2019) and xP3 (Muennighoff
et al., 2022). In addition to excelling in differ-
ent monolingual and multilingual benchmarks via
zero-shot prompting (Sanh et al., 2021; Wei et al.,
2021; Kojima et al., 2022; Muennighoff et al., 2022;
Bang et al., 2023), research has shown that scaling
up model sizes (Cahyawijaya et al., 2023; Kaplan
et al., 2020; Fernandes et al., 2023) and incorpo-
rating in-context learning examples (Winata et al.,
2022a; Tanwar et al., 2023) could help further boost
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their performance. Yet, given the scarcity of CSW
evaluation resources, how these multilingual LLMs
perform in code-switching scenarios still remains
questionable. In this paper, we evaluate these mod-
els under various settings including fine-tuning,
zero-shot prompting, and in-context learning, and
provide recommendations for future improvements
in code-switching proficiency.

6 Conclusion

In this paper, we systematically study multilin-
gual LLMs’ capabilities in code-switching tasks
along various dimensions, including but not lim-
ited to finetuning vs. prompting, task objectives,
scaling laws and model architecture. We observe
that, despite improvements with larger sizes, ex-
isting multilingual LLMs still yield inferior per-
formance compared to fine-tuning smaller models.
We argue that multilingual LLMs are not necessar-
ily code-switching compatible. Given that multi-
lingual LLMs are not explicitly trained for code-
switching data, we recommend future development
should incorporate a more comprehensive evalua-
tion framework that encompasses code-switching
texts. Finally, our study is limited to models’ per-
formance in sentiment analysis, machine transla-
tion, summarization and language identification.
We suggest that benchmarking across a broader
set of tasks is required. However, the scarcity of
high-quality open-source code-switching datasets
and the challenges associated with their collection
process imply future work should also include con-
structing code-switching data with more complex-
ity, such as commonsense reasoning.

Limitations

The scope of code-switching languages in this work
is limited to Hindi-English, Standard-Egyptian
Arabic, Spanish-English, Tamil-English, and
Malayalam-English. It is beneficial to include more
languages to demonstrate the generality of our
claim. However, a challenge in doing so arises from
the lack of available code-switched text datasets.
We explore four different NLP downstream tasks.
However, similar to the previous point, it would
be interesting to cover more tasks. Similarly, the
main challenge of expanding into different tasks
is the lack of available datasets. We anticipate
that future studies will broaden the exploration of
code-switching languages and tasks beyond those
examined in this research to showcase the gener-

alizability of the findings to other code-switching
languages and tasks.

In addition, in this study, we choose multilingual
LLMs based on two criteria: 1) they present or
advertise themselves as multilingual and 2) their
pretraining data contain all the languages featured
in our benchmark dataset. Although some recently
released LLMs like Llama-2 (Touvron et al., 2023)
and Falcon (Penedo et al., 2023) have demonstrated
state-of-the-art performance across various other
benchmarks, we defer the evaluation of their code-
switching capabilities to future research.

Finally, our observations are based on the model
sizes allowed by our local compute resources. A
more comprehensive analysis can be obtained by
experimenting with a wider range of variations,
including larger model sizes and more in-context
examples given a more generous compute budget.

Ethical Considerations

Our paper highlights the evaluation of LLMs on
code-switching, a common phenomenon in the mul-
tilingual community. The research was carried out
in compliance with the principles of academic in-
tegrity, including honesty, transparency, and rigor.
The data used in this study was collected in accor-
dance with ethical guidelines, and all participants
provided informed consent. Within our study, we
are aware of the potential impact that comes with
our work and our experiments replicate prior work
under comparable experimental conditions. We
also ensured that the study did not cause harm or
distress to any individuals or communities. The
findings of this study have important implications
for the development of multilingual LLMs and
their potential applications in code-switching tasks.
However, we acknowledge that further research is
needed to address the limitations and gaps identi-
fied in this study. We believe that responsible and
ethical use of language technology is crucial for
creating just and equitable systems that benefit all
individuals and communities.
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A Fine-tuning Model Setup

We use a standard training setup for SA tasks: we
fine-tune the models for a maximum of 15 epochs
using the Adafactor (Shazeer and Stern, 2018) op-
timizer with a learning rate of 2e-5. All sequences
are limited to a maximum sequence length of 256
tokens, truncating all sequences longer than this
length, and dynamically padding the shorter se-
quences to the longest sequence length in their
batch. All setups use a batch size of 128. We
also use a linear warmup schedule, warming up for
the first 10% of training steps before linearly decay-
ing to 0. We measure Accuracy and Macro F1 as
metrics for all setups, loading the best checkpoint
based on the F1 score at the end for evaluation.

Word-Level LID setups use the same one as with
NLU tasks, except we only train for 3 epochs and
use a weight decay of 0.01. Given that one word
may be split into multiple tokens during tokeniza-
tion, we first realign the labels by setting the word
label as the label of its first token, then setting
the labels of all succeeding tokens as -100. This
“dummy” label is then ignored during loss computa-
tion. We also load the best checkpoint and use the
same metrics as with NLU, in addition to Precision
and Recall.

For MT, we fine-tune for a maximum of 10
epochs using the Adafactor optimizer with a learn-
ing rate of 5e-5, loading the best checkpoint at
the end. As the MT0 models are trained with
instruction prompts, we also prepend a “prompt”
to all sequences during fine-tuning in the form of
Translate [src] to [tgt]: [sequence]. For
the M2M100 and mBART models, we force the
decoder’s first token to be the language token of the
target language. All setups use a batch size of 512
sequences. We also use a similar linear warmup
schedule as with the SA and LID task setups. For
MT, we use spBLEU as our performance metric
and load the best model for evaluation based on it.

SUM follows most of the same setup that MT
uses, except we only fine-tune for 3 epochs. For
MT0, we use Summarize: [sequence] as our
“prompt” that is prepended to all samples. We
use ROUGE (ROUGE1, ROUGE2, ROUGEL, and
ROUGEL-SUM) as our performance metric, load-
ing the best model for evaluation based on it.

B Fine-tuning Model Results

Machine Translation

Model Size BLEU

Hng→Eng Eng→Hng

Finetuning

M2M100 418M 28.53 12.40
M2M100 1.2B 28.55 13.81

mBART-50 611M 25.50 12.10
mBART-50O2M 611M 23.40 13.34
mBART-50M2M 611M 29.53 13.38

mT0 300M 15.73 7.03
mT0 580M 24.97 11.88
mT0 1.2B 31.03 12.87

mT0prompted 300M 16.66 7.24
mT0prompted 580M 25.47 12.28
mT0prompted 1.2B 31.88 13.90

Table 4: Results for all finetuned models for machine
translation task.
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C Prompt Templates

This section lists all prompts used for our experiment.

Sentiment Analysis

• [INPUT] => Sentiment:

• Text: [INPUT] => Sentiment:

• [INPUT]
What would be the sentiment of the text above?

• What is the sentiment of this text
Text: [INPUT]
Answer:

• Text: [INPUT]
Please classify the sentiment of above text. Sentiment:

Machine Translation

• Translate the following text from [SOURCE] to [TARGET].
Text: [INPUT]
Translation:

• [INPUT]
Translate the text above from [SOURCE] to [TARGET].

• Text in [SOURCE]: [INPUT]
How would you translate that in [TARGET]?

• Translate the following [SOURCE] text from to [TARGET].
Text: [INPUT]
Translation:

• Text in [SOURCE]: [INPUT]
Text in [TARGET]:

[SOURCE] and [TARGET] are Hinglish and English.

Summarization

• Summarize the following conversation in English.
Conversation: [INPUT]
Summary:

• [INPUT]
Summarize the above conversation in English:

• Conversation in [SOURCE]: [INPUT]
How would you summarize that in English?

• Summarize the following [SOURCE] conversation.
Text: [INPUT]
English summary:

• Conversation in [SOURCE]: [INPUT]
Summary in English:

[SOURCE] is either Hinglish or English.
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Word-level LID
• Determine the language for each token in the text below with [ word | tag ].
Use lang1 for [LANG1], lang2 for [LANG2], and other for others.
[INPUT]

• For each token, identify its language (lang1: [LANG1], lang2: [LANG2], other) using [ word | tag ].
[INPUT] =>

• Assign language tags to words: lang1 for [LANG1], lang2 for [LANG2], other otherwise.
Format: [ word | tag ].
[INPUT] =>

• [INPUT]
Can you tag the language of each word in the sentence above: lang1 ([LANG1]), lang2 ([LANG2]), or
other using format: [ word | tag ]?

• [INPUT]
Label each word in the text above with its language: lang1 for [LANG1], lang2 for [LANG2], or other.
Format: [ word | tag ].

[LANG1] and [LANG2] are English and Hindi for LID-Hindi-English data, and Modern Standard
Arabic and Egyptian Arabic for LID Standard-Egyptian Arabic data.

D Detailed Results

Breakdown results of SA and LID across different languages can be seen in Figure 5 and Figure 6.
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Figure 5: LLMs’ sentiment analysis evaluation on (left) Sentimix Spanish-English, (center) MixSentiment
Malayaman-English, and (right) MixSentiment Tamil-English.
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Figure 6: LLMs’ word-level LID evaluation result on (left) Hindi-English word-level LID and (right) Standard-
Egyptian Arabic word-level LID.
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