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Abstract

When translating words referring to the speaker,
speech translation (ST) systems should not re-
sort to default masculine generics nor rely on
potentially misleading vocal traits. Rather, they
should assign gender according to the speak-
ers’ preference. The existing solutions to do so,
though effective, are hardly feasible in practice
as they involve dedicated model re-training on
gender-labeled ST data. To overcome these
limitations, we propose the first inference-
time solution to control speaker-related gen-
der inflections in ST. Our approach partially
replaces the (biased) internal language model
(LM) implicitly learned by the ST decoder with
gender-specific external LMs. Experiments on
en—es/fr/it show that our solution outperforms
the base models and the best training-time mit-
igation strategy by up to 31.0 and 1.6 points
in gender accuracy, respectively, for feminine
forms. The gains are even larger (up to 32.0 and
3.4) in the challenging condition where speak-
ers’ vocal traits conflict with their gender.!

1 Introduction

The problem of gender bias in automatic translation
particularly emerges when translating from gender-
less or notional gender languages (e.g., English)
— which feature limited gender-specific marking —
into grammatical gender languages (e.g., Spanish)
— which exhibit a rich lexical and morpho-syntactic
system of gender (Savoldi et al., 2021). In this
scenario, when gender-neutral words are translated
into gender-marked words (e.g. en: the nurse — es:
el/la enfermero/a), both machine translation (MT)
and speech translation (ST) systems are often bi-
ased towards masculine or stereotypical predictions
(Cho et al., 2019; Prates et al., 2020; Bentivogli
et al., 2020; Costa-jussa et al., 2022), especially

"Note that, throughout the paper, when using the terms
female, male, and gender we do not refer to speakers’ gender
identity but exclusively to their preferred linguistic expression
of gender (see §8 for an in-depth discussion of this issue).

in absence of explicit cues (en: the nurse and his
dog). A common instance is represented by words
that refer to the first-person subject (henceforth re-
ferred to as speaker-dependent words, such as I'm
a young nurse). In these cases, direct ST systems
(Bérard et al., 2018) have been shown to rely on
vocal traits to determine gender inflections (Ben-
tivogli et al., 2020). This, however, does not elim-
inate the bias toward masculine forms and is not
inclusive for those individuals whose vocal proper-
ties do not align with their gender, such as people
with vocal impairments, children, and transgenders
(Matar et al., 2016; Menezes et al., 2022). There-
fore, whenever the speaker’s gender! is known (e.g.
in talks or lectures), such information should be
exploited to control gender translation and avoid
relying on potentially misleading physical cues.

So far, this topic has been investigated only by
Gaido et al. (2020). Their best solution consists in
creating two gender-specific specialized models by
fine-tuning a generic direct ST system on sentences
uttered by female/male speakers. Though effec-
tive, this method has inherent limitations. First, it
requires parallel audio-text data labeled with speak-
ers’ gender, which are scarcely available and costly
to collect. Second, the fine-tunings are compu-
tationally demanding as they involve processing
audio data, which are much longer (~8x) than
their textual equivalents (Salesky et al., 2019).

To overcome these limitations, we propose the
first inference-time solution in direct ST to control
gender translation for speaker-dependent words
when the speaker’s gender is known.> Our ap-
proach guides gender translation by partially sub-
stituting the biased internal language model implic-
itly learned by the ST decoder of a base model with
a gender-specific external language model learned
on monolingual textual data. Through experiments
on three language pairs (en—es/fr/it), we demon-

2Code and models available at https://github.com/
hlt-mt/FBK-fairseq under Apache License 2.0.
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strate that, in terms of gender accuracy, our solution
outperforms the base system by up to 31.0 points
(for feminine forms) and is on par with the best
training-time approach (with up to 1.6 of gain for
feminine forms). Its effectiveness is also confirmed
when speakers’ vocal traits conflict with their gen-
der, with gains up to 32.0 and 3.4 over the base
system and the best training-time solution.

2 ILM/ELM for Gender Translation

The autoregressive decoder of an encoder-decoder
architecture is trained to predict the next target to-
ken given the previous ones and the encoder output.
Thereby, it implicitly learns to model the target
language from the training data, thus developing
an internal language model (ILM) (McDermott
et al., 2019; Variani et al., 2020). We assume that,
in a direct ST model trained on unbalanced data
where female speakers (and consequently feminine
speaker-dependent words) are under-represented
(Tatman, 2017), the ILM is biased toward mascu-
line forms. Therefore, we propose to guide the
generation of the ST model with respect to speaker-
dependent words by substituting the biased ILM
with a gender-specific external language model
(ELM). To this aim, we train two ELMs on mono-
lingual text corpora (easy to collect, unlike labelled
audio data) containing either feminine or mascu-
line speaker-dependent words (see §3). At infer-
ence time, when we have prior knowledge of the
speaker’s gender from the metadata, we i) integrate
the ELM specialized in either masculine or fem-
inine forms (depending on the speaker’s gender)
into the ST model, and ii) (partially) remove the
ILM contribution.

The integration of end-to-end models with ELMs
is a widespread solution to leverage text data
in speech recognition (Bahdanau et al., 2016;
Chorowski and Jaitly, 2017; Kannan et al., 2018;
Irie et al., 2019). Successful applications span from
recognizing rare words (Sainath et al., 2021; Huang
et al., 2022) to coping with out-of-vocabulary terms
(Hori et al., 2017), domain adaptation (Sriram et al.,
2018; Shan et al., 2019) and under-resourced con-
ditions (McDermott et al., 2019). However, to
the best of our knowledge, ELM integration has
not been explored in the field of direct ST, nor in
the context of gender translation, as we do here.
Among the various methods proposed for the ELM
integration (Giilcehre et al., 2015; Giilcehre et al.,
2017; Sriram et al., 2018; Stahlberg et al., 2018;

Shan et al., 2019; McDermott et al., 2019), we
avoid those that require training-time interventions,
and we resort to shallow fusion (Giilgehre et al.,
2015; Giilgehre et al., 2017), an effective technique
(Kannan et al., 2018; Inaguma et al., 2019) that
consists in the log-linear combination of the poste-
rior of the base model (pys,) and the prior of the
ELM (peLam)-

As regards the ILM removal, which previous
studies already shown to amplify the performance
gains yielded by ELM integration (Meng et al.,
2021a,b,c; Andrés-Ferrer et al., 2021; Liu et al.,
2022; Meng et al., 2023), the most critical aspect is
its estimation. In fact, since the ILM is implicitly
modeled in the decoder, disentangling its contribu-
tion from the rest of the network is a challenging
task (Variani et al., 2020; Meng et al., 2021a,b;
Zeineldeen et al., 2021). Among the estimation
methods demonstrated by Zeineldeen et al. (2021)
to yield the best results, we select the global en-
coder average, as it does not require training-time
interventions. This method computes the ILM prior

(prrm) as:
pILM (y) = pMBdecoder (y‘c)

namely, by feeding the ST decoder with the aver-
age c of the encoder outputs h,, ; over all the 7T},
timesteps of the IV training samples, where c is:

N T,

1
TS

n=1 t=1

Therefore, given an audio input z, the output y of
our solution is the translation y that maximizes the
log-linear combination of pys,, pELMm and prras:

y = argmax{log par, (y|z) — Broa log proa(y)
Y

+Brrmlogperyv (v)}

where 577 and Sgr s are positive scalar weights
calibrating ELM integration and ILM removal.
The three components (pps5, PELM, and prra)
convey different information: i) pys, embeds both
the acoustic and the linguistic information learned
from the ST data; ii) pry s represents the estimated
linguistic knowledge learned by Mp; iii) perym
embeds linguistic information (in our case gender-
specific forms) learned from external textual re-
sources. Therefore, 81y and Bgr s must be set
to values that effectively integrate the internal and
external linguistic knowledge, so that the gender
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es fr it
train dev train dev train dev
M F M F M F M F M F M F
Sent. [ 196.8K 111.9K | 1.6K 1.2K [[566.9K 2324K | 85K 3.3K [[370.7K 1719K | 53K 3.0K
Words | 4.1M 24M | 375K 26.7K || 13.7M 55M |2322K 87.1K || 8.9M 42M | 132.3K 754K

Table 1: Statistics for the monolingual text corpora collected.

bias affecting the ST decoder is mitigated by the
ELM. At the same time, the linguistic contribution
supplied by the ELM must not override the acous-
tic modelling capabilities of pys,, so as to avoid
translation quality drops. Accordingly, we estimate
Brrar and B s by optimizing the harmonic mean
of the two metrics (gender accuracy and BLEU —
see §3) used to measure gender bias and overall
translation quality, so as to equally weigh our two
objectives. In Appendix A, we discuss the computa-
tion of Brrar and Bgras values, also showing that
their precise estimation is not critical since final
results are rather robust to small weight variations.

3 Data and Metrics

Our en—es/fr/it ST systems are trained on the
TED-based MuST-C corpus (Cattoni et al., 2021).
This resource includes a manual annotation of the
speakers’ gender (Gaido et al., 2020), which is
used to determine the gender translation of speaker-
dependent words. To train the ELMs, we collected
GenderCrawl,? a set of monolingual corpora for
each target language and gender. Each corpus is
made of sentences with speaker-dependent words
that clarify the speaker’s gender (e.g., es: Soy
nueva <F> en esta zona [en: I am new to this areal],
es: Debia ser fiel a mi mismo <M> [en: I had to
be true to myself]). These sentences were auto-
matically selected from ParaCrawl (Bafién et al.,
2020) through regular expressions representative
of morpho-syntactic patterns matching references
to the first-person singular. Additionally, we have
also collected a validation set by applying the same
regular expressions to the MuST-C training sets.
The statistics of all these datasets are presented in
Table 1.

We evaluate our systems on the TED-derived
and gender-sensitive MuST-SHE benchmark (Ben-
tivogli et al., 2020). In particular, we focus on
its “Category 17, which contains from 560 to 607
sentences (depending on the target language) with
speaker-dependent words annotated in the refer-

3 Available at https://mt. fbk.eu/gendercrawl/ under

the Creative Commons Attribution 4.0 International license
(CCBY 4.0).

ence. To assess gender translation, we use the offi-
cial MuST-SHE evaluation script*, which produces
two measures: i) term coverage, i.e. the percentage
of annotated words that are generated by the system
(disregarding their gender marking), and on which
gender translation is hence automatically measur-
able, and ii) gender accuracy, i.e. the percentage
of words generated in the correct gender among the
measurable ones. Lastly, overall translation quality
is calculated with SacreBLEU (Post, 2018).

4 Results

For each language pair, we evaluate our approach
by training: i) an ST baseline model (Mp) that
is not aware of the speaker’s gender; ii) the spe-
cialized models (Mgp) presented in (Gaido et al.,
2020), re-implemented as upper bound to compare
our inference-time solution with the best training-
time approach; iii) the combination of Mg with
the gender-specific ELMs and the ILM removal
(Mg.1iLm+ELM); iv) a variant of the approach, where
the ILM is not removed (Mg+gLM), S€rving as an
ablation study to disentangle the ILM and ELM
contributions. Detailed experimental settings and
model description are provided in Appendix B.

4.1 Main Results

Table 2 presents BLEU, term coverage, and gender
accuracy scores for all language pairs, divided into
feminine/masculine (F/M) forms.

Gender Accuracy. The results indicate that our
approach, both with and without the ILM removal,
significantly outperforms Mp on all language pairs.
Specifically, Mp.jpm+erLM is always better than
Ms.gLM, demonstrating that the ILM removal in
combination with ELM integration improves de-
biasing. The accuracy gains of Mgp.j m+ELM OVer
Mg are particularly high on feminine forms, rang-
ing from 25.4 to 31.0. In addition, the accuracy of
MB.nm+ELM 18 comparable to that of the training-
time approach Mgp. While Mgp is significantly
superior only for M in en-it and en-fr, Mp_ M+ELM

*https://mt.fbk.eu/must-she/.
3case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
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en-es en-fr en-it
Models Coverage Gender Acc. Coverage | Gender Acc. Coverage |Gender Acc.
BLEU| gF Vi e |BLEU| % " ||BLEU| Fg R
Ms 348 | 65.1 679 | 71.6 457 || 29.8 | 51.5 559 725 520 26.8 [51.6 50.6 | 77.3 495
Mgp 352 | 648 668 | 85.6 76.8 || 299 | 529 55.2| 924 785 | 27.3 |52.8 494 | 92.5 733
Ma+ELM 33.7% 167.5"  68.1 |77.94% 69.2°%|| 29.3 |54.9* 57.1|81.9%" 75.8"%| 27.2 |51.8 54.4B|81.2%" 72.8*
Miimseim || 34.4° | 65.8 71.228| 8237 7674 || 29.8 [54.4% 56.1|84.5%° 79.27 || 27.2 [52.3 54.1°B|84.9"" 74,94

Table 2: BLEU (1), (term) coverage (1), and M/F gender accuracy (Gender Acc., 1) scores. ~# and B” indicate
that the improvement (uppercase) or the degradation (lowercase) of our technique over the baseline (Mp) and the
fine-tuning approach (Mgp), respectively, is statistically significant (bootstrap resampling with 95% CI, Koehn

2004).

is the best on average for F, the most misgendered
category.

Translation Quality. Looking at BLEU scores, we
notice that, with the only exception of en-it, the
simple integration of the ELM (Mp,grm) degrades
the quality with respect to both Mg and Mgp,° es-
pecially in en-es where the drops are statistically
significant. The ILM removal mostly solves the
problem, as Mp_ M+eLM achieves scores that are
comparable to Msp on en-fr and en-it, and partly
closes the gap on en-es, where the drop with respect
to Mp (-0.4) is not statistically significant. Interest-
ingly, looking at term coverage, both Mgp_j1 m+ELM
and Mg, g1 M consistently outperform My and Mgp,
with the only exception of masculine words in en-it.
In particular, the gains are high for feminine words,
where Mp_pMm+ELM Significantly outperforms both
Mg and Mgp. This shows that the integration of tex-
tual data can increase the ability to model feminine
vocabulary, less represented in training data.

In conclusion, our inference-time solution ef-
fectively improves gender translation in direct ST,
especially for feminine forms (see Appendix C for
output examples). Moreover, it achieves compa-
rable results with the best training-time approach,
while overcoming its limitations. Such improve-
ments do not come at the detriment of the overall
translation quality (as shown by BLEU scores) nor
of the accuracy in assigning gender to words that
pertain to human referents other than the speaker
(as shown in Appendix D).

4.2 Robustness to Vocal Traits

We also evaluate the inclusivity of our solution for
speakers whose vocal traits are stereotypically as-
sociated with a gender opposite to their own. As
MuST-SHE solely contains utterances from speak-
ers whose gender aligns with their vocal prop-

®In Gaido et al. (2020), the specialized systems achieve

higher results as their base models are built using large ST,
ASR, and MT corpora, while we train only on MuST-C.

erties, we simulate this condition using the pro-
vided “wrong references”, in which the speaker-
dependent words are swapped to the opposite gen-
der. We treat them as correct references, so as to
have female voices with masculine targets and vice
versa, and we require the systems to produce the
output with the gender of the target. Table 3 shows
BLEU, term coverage, and gender accuracy for Mg,
Mgp, and our best-performing model Mp_i1 M+ELMS
averaged over the three language pairs.

Gender Accuracy. Regarding gender realization,
Msp.m+eLMm performs noticeably better than Mg,
as we observe a substantial improvement of 19.7
points in producing masculine forms (Voice F-Gdr
M) and 32.0 in producing feminine forms (Voice
M-Gdr F). This suggests that our approach is capa-
ble of partially overriding the vocal information, on
which the base model unduly relies to translate the
speaker-dependent words. In comparison with Mgp,
our approach is inferior in Voice F-Gdr M, while it
is superior in generating the less-represented femi-
nine translation (Voice M—Gdr F), confirming the
trends observed in the previous scenario (see §4.1).

Translation Quality. In terms of BLEU, our ap-
proach (Mp.iLm+ELM) 1S on par with the training-
time strategy (Msp), but they both suffer a ~2.5
BLEU drop with respect to the base system (Mp).
The reason for this drop may lay on the fact that
gender-specific models learned patterns that dif-
ferentiate male and female language (Mulac et al.,
2001; Boulis and Ostendorf, 2005), which are dis-
regarded when only swapping the gendered words
in the references. However, Mp_pM+ELM OUtper-
forms Mp and Mgp in terms of coverage, with a
marginal gain (0.5-0.6) for male speakers (Voice
M-Gdr F) and a larger gain (2.3-3.7) for female
speakers (Voice F-Gdr M), confirming that our ap-
proach increases the coverage of the vocabulary
used by females (even when expressed in the mas-
culine form).
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Average
Models Coverage Gender Acc.
BLEU | Voice F Voice M | Voice F Voice M
GdrM GdrF |GdrM GdrF
Mg 30.5 58.0 56.2 50.9 26.1
Msp 282 | 56.6 56.1 83.0 54.7
Mg.mseim || 28.0 | 60.3 56.7 70.6 58.1

Table 3: BLEU, term coverage, and gender accuracy for
the conflicting scenario averaged over en—es/ft/it.

All in all, the experiments in this challenging
testing condition prove that our solution effectively
overrides the reliance of base ST systems on speak-
ers’ vocal traits. Also, they confirm its superiority
in translating the less-represented feminine forms.

5 Conclusions

We proposed the first inference-time solution to
control gender translation of speaker-dependent
words in direct ST. Our approach partially replaces
the biased ILM of the ST decoder with a gender-
specific ELM. As such, it can be applied to existing
models without the need for labeled ST data or
computationally expensive re-trainings, overcom-
ing the limitations of existing training-time meth-
ods. Experiments on three language pairs proved
the effectiveness of our technique in controlling
gender inflections of words referring to the first-
person subject, regardless of whether the speakers’
vocal traits are aligned with their gender or not.
In addition to significantly increasing the gender
accuracy of base ST models, it achieves substan-
tial parity with the best training-time method while
consistently increasing the correct generation of
feminine forms.
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7 Limitations

In our experiments, we exclusively evaluated our
approach on English to Romance language trans-
lations. Conducting experiments on different lan-
guage pairs would be valuable. However, it is im-
portant to note that such endeavors would demand

substantial efforts in annotating data, as bench-
marks akin to MuST-SHE are currently unavailable
for other target languages.

Our inference-time solution, as described in the
paper, significantly reduces the computational costs
of current approaches by eliminating the need for
ST retraining. However, there is an increase in in-
ference costs, due to the additional forward passes
on the ELM and ILM (which is the same as the ST
decoder, but fed with a different encoder output). In
particular, since our implementation has not been
optimized and performs the operations sequentially,
our solution reduces the inference speed (computed
as the number of generated tokens per second) by
~40% (from 165 to 100).” Such slowdown can
be reduced by: i) parallelizing the forward passes
of the ST model, ELM, and ILM; ii) caching com-
puted states in the ILM to avoid recomputation at
each generation step. Optimizing our implementa-
tion, although necessary for production usage, is
outside the scope of our work.

Lastly, our ELM implementation uses the same
BPE (Sennrich et al., 2016) vocabulary of the ST
models, trained on the textual target of MuST-C.
Due to the under-representation of feminine forms
in this corpus, statistical segmentation methods
like BPE split the less frequent feminine forms into
less compact sequences of tokens (for example, in
our experiments, we observed the split maes_tra
vs maestro for Spanish). This tokenization pro-
cess can penalize generalization on morphology
and, consequently, gender translation when com-
pared to character-level representations (Belinkov
et al.,, 2020). As such, an interesting future di-
rection is represented by training the ELMs with a
character-based vocabulary, which has the potential
to enhance gender accuracy and further increase
the significant gains already achieved.

8 Ethics Statement

In this paper we presented a new methodology to
improve ST systems in their ability to correctly
generate masculine and feminine forms for first-
person-singular referents. Hereafter, we contextu-
alize the impact of our research and discuss the
ethical principles at the basis of our work.

We define gender bias in MT/ST as the ten-
dency of systems to systematically favor mascu-
line forms to the detriment of the feminine ones

"Statistics computed on a p3.2xlarge instance on AWS
(featuring one NVIDIA V100 GPU).
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when related to human entities (Crawford, 2017).
This bias not only hampers the performance of
the system by producing erroneous translations of
gender-marked words, but also has significant so-
cietal implications. For example, incorrect gender
translations can impact self-perception, as linguis-
tic expressions of gender play a crucial role in ne-
gotiating and communicating personal representa-
tion (Stahlberg et al., 2007; Corbett, 2013; Gygax
et al., 2019). According to Blodgett et al. (2021)
and Savoldi et al. (2021), gender bias in transla-
tion technologies leads to both representational
harms, such as under-representation of women and
diminished visibility of their linguistic repertoire,
and allocational harms, characterized by unequal
quality of service due to performance disparities
between male and female users.

In light of the above, we believe that our solution
positively impacts single individuals and society
at large, by improving not only the experience of
using such technologies but also feminine visibil-
ity. Furthermore, by relying on explicit gender
information, our mitigation solution goes beyond a
mere and potentially misleading exploitation of the
speech signal. Indeed, using speaker’s vocal prop-
erties would foster the stereotypical expectations
about how masculine or feminine voices should
sound, which is not inclusive for certain users, such
as transgender individuals or people with laryngeal
diseases (Matar et al., 2016; Pereira et al., 2018;
Villas-Boas et al., 2021; Menezes et al., 2022).

As regards possible concerns about the gender
information considered in our experiments, we re-
lied on the annotations of the two datasets used,
MuST-C/MuST-Speakers and MuST-SHE. Both
these resources have been manually annotated with
speakers’ gender information based on the personal
pronouns found in their public TED profile (Gaido
et al., 2020; Bentivogli et al., 2020). We follow
the statement of the curators of these resources,
thus bearing in mind that the gender tag accounts
only for the linguistic gender by which the speak-
ers accept to be referred to in English and to which
they would like the translation to conform. We
acknowledge that this information does not neces-
sarily correspond to the speakers’ self-determined
gender identity (Cao and Daumé 111, 2020). We are
also aware that we cannot consider their preference
as static in time (Lauscher et al., 2022).

Last but not least, in this work we only consider
binary linguistic forms as they are the only ones rep-

resented in the currently available ST data. In fact,
to the best of our knowledge, ST corpora also rep-
resenting non-binary speakers are not yet available.
However, we encourage a vision of gender going
beyond binarism and we believe that extending the
application of our method to non-binary forms (e.g.
by integrating a third, non-binary ELM) can be an
interesting extension of this work.
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A Contributions of 5;7/-0rrm

As stated in §2, our method relies on two hyper-
parameters (6grys and Brrar). In this section,
we report their optimal values (§A.1), and discuss
the impact of varying these values on the results
(§8A.2).

A.1 Optimal 8;73/-60 Combinations

In the lack of a validation set with the same charac-
teristics of MuST-SHE, we used this same bench-
mark for a 10-fold cross validation. At each iter-
ation, we translate the held-out data with the pair
(Broa, Bernm) € {0.00,0.05,...0.95,1.00}2
that maximizes the harmonic mean between gen-
der accuracy and BLEU (see §2) on the validation
folds. At the end of this process, the whole MuST-
SHE was fairly translated and ready for evaluation,
and Brrar and Sprar were robustly estimated.

However, in a real use case, we need a unique
combination of Sgras and By for each gender.
Therefore, in Table 4 we report the mean values
of B and By over the 10 folds for each lan-
guage pair. We can notice that the optimal values
are closely aligned across the three language direc-
tions. In general, for Mg it m+ELM BELAM 1S always
higher than ;7). Moreover, another clear and
consistent trend emerging in all language pairs is
the necessity for higher Spras and Brpas values
when the speaker is female. In this condition, a
higher contribution of the ELM is required to coun-
terbalance the inherent bias of the base ST model
towards masculine forms.

A.2 TImpactof 5;7a and Brras

In addition to empirically estimating Sjrs and
Brru through cross-validation, we also investi-
gated the importance of optimizing the balance
between the ILM and the ELM for mitigating
bias without compromising translation quality. To
this end, for each language direction we com-
puted the performance variations by adjusting

Broyv and SBpras in increments of 0.05. Fig-
ure 1 shows BLEU and gender accuracy (cal-
culated globally for F and M) scores for each
(BrLa, Bera) combination. Each heatmap de-
fines a space bounded by the base ST model (bot-
tom left corner: (87, Berym) = (0.0,0.0)) and
by the ST model with the ILM totally replaced
by the gender-specific ELMs (top right corner:
(Browm, BeLm) = (1.0,1.0)).

The trends are similar for all the three language
directions. As for gender accuracy, ELM integra-
tion appears to be more critical than ILM removal.
Specifically, we observe that the accuracy improves
as the value of S ) increases. Looking at BLEU,
we observe a diagonal ellipse-shaped trend with
higher scores around the bottom left corner. This
indicates that, to preserve translation quality, 871 s
and Bgras should be similar and not too high.
Overall, although the trends for translation qual-
ity and gender accuracy differ, the two objectives
share high results in the middle area.

Most importantly, we can notice that the results
are not significantly affected by small variations in
the weights, with wide smooth areas with similar
scores and no isolated peaks. This demonstrates
the robustness of our solution with respect to a
suboptimal estimation of Srr s and Sgras.

B ST Model and Language Models

ST Models Our direct ST models are made of a
12-layer Conformer (Gulati et al., 2020) encoder, in
light of its favorable results in ST (Inaguma et al.,
2021), and a 6-layer Transformer (Vaswani et al.,
2017) decoder. The architecture is also preceded
by two 1D convolutional layers with 5 as kernel
size and stride 2, as per (Wang et al., 2020). We
use 512 embedding features, 2,048 hidden features
in the FFN, and a kernel size of 31 for Conformer
convolutions. In total, the ST models have 116M
parameters. We trained them with an auxiliary CTC
loss on the 8th encoder layer (Gaido et al., 2022)
and we leveraged the CTC module to compress
the sequence length (Liu et al., 2020; Gaido et al.,
2021). We encoded text into BPE (Sennrich et al.,
2016) using SentencePiece (Kudo and Richardson,
2018) with a vocabulary size of 8,000 (Di Gangi
etal., 2020), and we used Adam optimizer (Kingma
and Ba, 2015) (61 = 0.9, B3 = 0.98) and Noam
learning rate (Ir) scheduler (Vaswani et al., 2017)
(inverse square-root) starting from 0 and reaching
the 0.002 peak in 25, 000 warm-up steps. The ST
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en-es en-fr en-it
Models M F M F M F
Brov Berm | Brov Berwm || Brom Berm | Brom Berm || Briom Berm | Briom  BeELMm
MsgamseiMm || 0.200  0.250 | 0.285 0.390 || 0.155 0.245| 0.215 0.355 0.125 0.310| 0.195 0.305
MgeLMm - 0.145 - 0310 - 0.235 - 0.300 - 0.195 - 0275

Table 4: Mean of the optimal values for Sy s and Sgr s found using 10-fold cross-validation.
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Figure 1: BLEU and gender accuracy heatmaps with different combinations of 81 and Sg s for all language

pairs.

models for each language direction were trained
for 50k steps on 4 NVIDIA A100 GPUs (40GB
of RAM) with 40k tokens per mini-batch and 2 as
update frequency, and we averaged the last 7 check-
points. To implement the specialized models (Msp),
we fine-tuned Mp on the masculine/feminine par-
titions of the MuST-C data, with a constant Ir of
0.001 for 7 epochs, and we averaged the last 4
checkpoints. All our models are implemented on
fairseq (Ott et al., 2019).

Language Models The gender-specific ELMs
are Transformer decoders with 6 layers (23M
weights) trained with the same vocabularies and
hyper-parameters of Mg, except for the learning
rate warm-up updates that we set to 200. We early
stopped the training after 5 epochs without im-

provements on the validation loss, and we average
the 5 checkpoints around the best on the validation
set.

C Examples

In Table 5 we report output samples that well exem-
plify the behavior of our models and the baseline.
First, the examples in en-fr and en-it confirm
the gender-accuracy improvements of our meth-
ods discussed in §4.1. The outputs of the baseline
(Mp) contain speaker-dependent words with the
wrong gender, as a masculine form (fr: fatigué,
en: tired) is used with a female speaker in en-fr,
and a feminine form (it: assunta, en: hired) with a
male speaker in en-it. Our solution (Mg.1.M+ELM)>
instead, consistently generates the correct gender
inflection in both cases (fr: fatiguée and it: as-
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Lang. Gender Example
SRC I felt alienated, intimidated and judged by many.
REF Me senti alienada, intimidada y juzgada por muchos.
en-es F Mg Me senti alienada, intimidante (EN. intimidating) y juzgada por muchos.
Mspamieim  Me senti alienada, intimidada y juzgada por muchos.
MBiELM Me senti aislada (EN. isolated), intimidada y juzgada por muchos.
SRC I was tired of faking normal.
REF J*étais fatiguée de simuler la normalité.
en-fr F Mg J’étais fatigué d’avoir 1’air normal.
Mpmsem  J étais fatiguée d’avoir 1’air normal.
T étais fatigué d’avoir I'impression d’étre normal (EN. of having the impression of
Mg+ELM bein )
g normal).
SRC In 2007, I was hired as a curator at the Denver Museum of Nature and Science.
REF Nel 2007, fui assunto come curatore al Denver Museum of Nature and Science.
M Nel 2007 sono stata assunta come curatore al Museo d’ Arte Moderna di Science
endit M B (EN. Modern Art of).
M Nel 2007 sono stato assunto come curatore al Museo d’ Arte Moderna di Science
BILMYELM (EN. Modern Art of).
M. m Nel 2007 sono stato assunto come curatore al Museo d’ Arte Moderna di Scienza

(EN. of Modern Art of Science).

Table 5: Examples of outputs from the baseline Mg, Mp_1pm+ELm and Mpygrm, along with the corresponding source
(SRC) and reference (REF). We indicate the correct/wrong gender translation for words on which gender accuracy
is evaluated, as well as generic mistranslations of other words.

en-es en-fr en-it
Models Coverage Gender Acc. Coverage Gender Acc. Coverage Gender Acc.
M F M F M F M F M F M F
Mg 7291 68.81 | 82.54 6399 || 66.60 59.57 | 84.74 68.61 || 58.55 60.30 | 81.27 64.63
Msp 73.75 66.79 | 82.48 65.83 || 64.45 5871 | 83.51 69.18 || 57.10 59.01 | 82.38  68.20
Meavseim || 7241 68.81 | 81.40 66.59 || 63.09° 59.78 | 82.87 69.87 || 57.74 56.87* | 81.44 67.36"

Table 6: (Term) coverage (1) and M/F gender accuracy (Gender Acc., 1) scores for Category 2 of MuST-SHE. Ala
and P/* indicate that the improvement (uppercase) or the degradation (lowercase) of our technique over the baseline
(M) and the fine-tuning approach (Mgp), respectively, is statistically significant (bootstrap resampling with 95% CI,

Koehn 2004).

sunto), even without the ILM removal (Mg m).
This is in line with the analysis in Appendix A,
where we have seen that gender accuracy mostly
depends on ELM integration.

Looking at the en-es example, instead, Mgy cor-
rectly assigns the gender but it wrongly translates
one of the adjectives referred to the speaker, us-
ing the epicene term intimidante (en: intimidating)
for intimidated. Similarly, the output of Mgp,grM,
although with the correct gender, contains an er-
ror (alienated is rendered as aislada, en: isolated).
Instead, all adjectives are correct in the output of
Msg.nLm+ELM, confirming its higher coverage (see
§4.1) and the importance of ILM removal to avoid
quality drops (see Appendix A and the BLEU
scores in §4.1). The latter aspect also emerges from
the errors introduced by Mg, g1 M With respect to
Mg both in en-fr and in en-it, which are not present
in the output of Mp_pMyrLm: for instance, in en-fr,
the translation of faking normal alters it meaning,
deviating to avoir ['impression d’étre normal (en:
having the impression of being normal).

D Impact on Human Referents Other
than the Speaker

Our work is dedicated to the gender translation of
speaker-dependent words i.e., those words that re-
fer to the first-person-singular referent. However,
the improvements in handling this aspect should
not come to the detriment of the accuracy in as-
signing the gender to referents different from the
speaker. To ensure that this is not the case, we also
evaluated the gender translation on the “Category
2” of the MuST-SHE benchmark. This contains
approximately 500 sentences with the annotation
of words related to third-person references, whose
gender is independent from that of the speaker. The
results are presented in Table 6.

As for gender accuracy, we observe that all sys-
tems are close for masculine forms (M), with vari-
ations that are not statistically significant. The
largest difference amounts to 1.87 points on en-
fr between the baseline (Mg) and our solution
(Mp-iLm+ELM)- Similarly, Mg iLm+ELM and the spe-
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cialized systems (Mgp) achieve comparable scores
on feminine forms (F) while Mg is constantly
worse, with a statistically significant difference in
en-it.

Looking at the term coverage, we do not
see clear trends across language pairs. For F,
Mg Lm+ELM suffers from a significant drop in en-it
with respect to Mp while it achieves the best scores
in en-es and en-fr. For M, there is a significant drop
in en-fr, which is not confirmed in the other two
language pairs. In addition, the differences with
Mgp are always ascribable to random fluctuations.

All in all, we can conclude that our debiasing so-
lution specifically designed for speaker-dependent
words does not significantly alter the gender assign-
ment for referents different from the speaker.
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