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Abstract

In recent years, large language models (LLMs),
such as GPTs, have attained great impact world-
wide. However, how to adapt these LLMs to
better suit the vertical domain-specific tasks
by utilizing external knowledge remains not
completely solved. Indeed, there have emerged
a few works on this line where most of them
rely on an alignment heuristic that is built to
inject the corresponding knowledge tuple into
the associated text sample.

However, despite the promise, we identify a piv-
otal problem in this work ubiquitously. Simply
put, we find that injecting unaligned (i.e., ran-
dom) knowledge tuple into the LLMs achieves
comparable (and sometimes better) results than
the aligned knowledge being injected. We
therefore take a thorough investigation of this
frustrating finding on a variety of related prior
work and further provide a chain of potential
interpretations for the phenomenon. Based on
all that, we offer a simple remediated technique.
Briefly, the core of this technique is rooted in
an ideological emphasis on the pruning and
purification of the external knowledge base to
be injected into LLMs. At last, we show that
by integrating this technique into most (if not
all) knowledge injection frameworks and recent
LLMs, it manages to overcome the aforemen-
tioned sanity problem and further pushes the
boundary of the performance of the domain-
adaptive LLMs.

1 Introduction

The large language models (LLMs)1 — like
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), GPT-3 (Brown et al., 2020), ChatGPT, GPT-
4, etc. — truly have brought gigantic waves world-
wide. While these LLMs have evidently extended
the frontier of NLP, the prior works (JI et al.,

∗“*" means both Peng Fu and Yiming Zhang contributed
equally to this work.

1LLMs are commonly referred to as pre-trained language
models (PLMs).

2022; Bang et al., 2023) have also pointed out that
when lacking domain-specific knowledge, LLMs
are more prone to hallucinate in downstream tasks.

Notably, a relatively lightweight but promising
means to tackle this is through knowledge injection
such as ERNIE (Zhang et al., 2019), KnowBert (Pe-
ters et al., 2019) and K-BERT (Liu et al., 2020)
where an external knowledge graph is adopted as
shown in Figure 1. Despite the plethora of work
on this line being proposed in the past, we present
a pivotal problem in this work via comprehensive
scrutiny. Generally, this line of work relies on an
alignment module where one can automatically as-
sociate a given text sample with a knowledge tuple
that is extracted from an external knowledge base.
This aligned knowledge tuple is then facilitated to
influence the downstream task, which manifests a
hybrid mixing in the input text (Liu et al., 2020),
positional embedding (He et al., 2020) or the upper-
level embedding space (Zhang et al., 2019).
Our findings: In brief words, for most, (if not all)
of the prior work, injecting misaligned, random-
ized, or (intentionally) irrelevant knowledge tuples
yields comparable (and sometimes better) results
than the aligned knowledge being injected. More
specifically, this ablation protocol indicates a re-
placement of the matched (aligned) knowledge in
Figure 1 by a randomly drafted knowledge. These
results are validated both quantitatively and qual-
itatively on a variety of prominent knowledge in-
jection frameworks across 12 popular datasets. We
further note that we dedicate this work to the spec-
trum of fine-tuning stages thanks to its lightweight
nature and arguably wider real-world deployment.

Nevertheless, our work does not mean that
knowledge injection is unfeasible as a whole.
Rather, the similar mechanism applied in the pre-
training stage did have some successes (Ye et al.,
2022; Wang et al., 2021b), in spite of the forbid-
den computational cost incurred. To this end, we
believe that there are two prioritized prospects that
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Figure 1: The Process of Common Knowledge Injection. For an input text, the injection method first aligns the
entities in the input text (as mentions m) with its corresponding entities in the external knowledge base (as entity
ke). Afterward, it retrieves the external knowledge that needs to be injected through entity ke. Finally, the injection
model injects the input text together with the knowledge into the pre-trained model.

ought to be explained or studied: (i)-to revisit the
tuning dynamism2 by injected knowledge and (ii)-
to derive a fix to the problem.

To do that, we first supplement a set of addi-
tional experiments by injecting Gaussian noise as
a replacement for injected knowledge. Perhaps
with surprises, this set of injection flow winds up
with indiscernible results with either randomized or
aligned knowledge injection. The major question
we come up with this far is therefore directed to
why the LLMs treat the aligned knowledge
similarly to noise. In pursuit of the answer to
this question, we cast our hypothesis: Within the
fine-tuning scheme, the LLMs fail to adequately
disentangle the intricacy possessed in the external
knowledge base so as to treat the injected item
ubiquitously as noise. For instance, ERNIE (Zhang
et al., 2019) intends to integrate a wiki knowledge
graph that is composed of a vast of more than 5 mil-
lion entity nodes. We thereby vaguely connect this
hypothesis — together with the prior empirical con-
clusion — to data augmentation that explains why
both randomized knowledge and noise injection
still renders some performance gain.

At last, rather than composing a complete
methodological solution to this newly found prob-
lem, we intend to emphasize the importance of
injected item itself. In particular, we construct a
new conceptual knowledge graph that is purified
and pruned from other knowledge base’s taxonomy,
similar to McCrae et al. (2019). By injecting this

2This refers to the fine-tuning mechanism.

knowledge graph into the aforementioned LLM
frameworks, the LLMs work just as expected and
manage to overcome the previous sanity-checking
experiments. In virtue of this workflow, we posit
that our hypothesis is further strengthened and vali-
dated. We prove that this remediated technique can
seamlessly be consolidated with all prior knowl-
edge injection frameworks, and also recent LLMs
such as ChatGPT.

2 Related Works

2.1 Knowledge injection for LLMs

Recently, the emergence of large pre-trained lan-
guage models, such as ChatGPT and GPT-4, has at-
tracted great attention from the community and the
public, due to their emergent abilities demonstrated
in many tasks. Although ChatGPT includes a lot
of knowledge through pre-training, the knowledge
injection method is still necessary because Chat-
GPT cannot fully solve problems in professional
fields, such as healthcare (Wu et al., 2023; Liu et al.,
2023). For this problem, LLMs can pre-train on
professional field corpora or retrieve documents
(like New Bing) to obtain that knowledge. How-
ever, these methods may incur substantial costs
and pose a challenge wherein the obtained knowl-
edge may not align seamlessly with the internal
knowledge of the models. We aim to integrate the
external structured knowledge sources in a more
concise and convenient way, rather than updating
the internal parameters of LLMs.
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2.2 Knowledge-Enhanced Models

Since the large-scale application of pre-trained
models in the NLP field, many works expect to
improve the downstream tasks’ performance by
integrating external knowledge. Among those
knowledge-enhanced models, many works use
knowledge representation-based methods to incor-
porate factual knowledge (Zhang et al., 2019; Su
et al., 2021; Ye et al., 2022; Peters et al., 2019;
Wang et al., 2021b; Yamada et al., 2020; Sun et al.,
2020; He et al., 2020; Yuan et al., 2021). Other
models use other forms to integrate knowledge into
the model (Liu et al., 2020; Wang et al., 2021a;
Meng et al., 2021; Hosseini et al., 2022,?; Ke et al.,
2020; Lu et al., 2022).

Among those works, some achieved eye-
catching performances on different downstream
tasks. To name a few, ERNIE (Zhang et al., 2019)
integrates entities’ knowledge aligned with the
mentions of the input text in the pre-training and
fine-tuning stage. LUKE (Yamada et al., 2020)
proposes an entity-aware self-attention mechanism
and forms a multi-way injection summarizing both
words and entities. KnowBert (Peters et al., 2019)
incorporates an additional entity disambiguation
module towards improving the entity linker and
recombines knowledge features for injection. K-
BERT (Liu et al., 2020) converts the relation triples
with the context into the sentence tree, then encodes
them assisted by a novel soft positional encoding
method. Although they designed various injection
mechanisms, they do not discuss and analyze the
research questions in depth. To some extent, this
makes their works lack interpretability.

2.3 Interpretable Analysis In LLMs

The closest to this work is the transparency and
interpretability analysis of knowledge injection
frameworks. While there has not been much work
covering it, as we go deep into the literature: Pe-
ters et al. (2019); Jiang et al. (2020); Cao et al.
(2021) have proved that a pre-trained language
model can acquire substantial factual knowledge
via pre-training on large-scale unlabeled data. Li
et al. (2022) analyzes the capacity of LLMs from
the aspect of capturing factual knowledge. Zhang
et al. (2021) exhibits that injecting redundant and ir-
relevant knowledge causes an efficiency drop. Hou
et al. (2022) shows there is no positive relation-
ship between knowledge injection corpus size and
knowledge injection quality.
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Figure 2: Word And Knowledge Embedding Fusion Pro-
cess Diagram. Word embedding (blue) and knowledge
embedding (green) are usually infused in the intermedi-
ate layer, and after that, the related tokens may contain
some knowledge-related information, as shown in the
iconic framework ERNIE (Zhang et al., 2019).

Regardless, we believe proper study on the trans-
parency of knowledge injection is somewhat criti-
cal. This line of work is still at its early stage and
is often neglected or deprioritized by prior works.
With the study of this work, we may humbly alert
the community by showcasing some negative re-
sults yielded by our proposed protocol.

3 Preliminaries

In this section, we present some preliminary con-
cepts related to knowledge injection. And these
introductions serve as a foundation for the subse-
quent chapters.

3.1 Text-KG Alignment

As a prerequisite step, one needs to align the knowl-
edge graph or its subgraph to the input text. For a
standard method, it uses the entity alignment tool
— such as TagMe (Ferragina and Scaiella, 2010a)
— to detect KG’s entities mentioned in the input
text and link them to the correct KG entry, then
tuple them together (Broscheit, 2019). Specifically,
given a knowledge graph G and a sentence x, this
process can be defined as

m, ke = h(x,G), (1)

where m denotes entities mentioned in x (mention
entity or mentions), ke denotes the linked entities
(a kind of factual knowledge) in G, and h means
the entity linking or alignment tool.

3.2 Knowledge Injection Methods

From a high-level standpoint, the mission of knowl-
edge injection methods aims to inject an exter-
nal source of knowledge into the language mod-
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Setup

MedicalNER
+

MedicalKG

MedicalNER
+

HowNet

MedicalNER
+

CnDbpedia

FinancialNER
+

HowNet

FinancialNER
+

CnDbpedia
F1 F1 F1 F1 F1

BERT (w/o KI) 92.5 - - 86.1 -
K-BERT 94.2 93.3 93.8 87.3 87.4

K-BERT-Aligned 94.00±0.18 93.51±0.15 93.48+0.26 87.49±0.08 87.37±0.19
K-BERT-Random 93.89±0.33 93.52±0.22 93.55±0.25 87.35±0.19 87.46±0.11

(a) Results of K-BERT. K-BERT-Aligned and K-BERT-Random correspond setup 1, 2 respectively. The results BERT and
K-BERT come from Liu et al. (2020).

Setup BC5chem BC5dis NCBI BC2GM JNLPBA
F1 F1 F1 F1 F1

BioBERT (w/o KI) 92.9 84.7 89.1 83.8 79.4
KeBioLM 93.3 86.1 89.1 85.1 82.0

KeBioLM-Aligned 93.24±0.71 87.96±1.05 88.46±0.66 83.99±0.22 78.81±2.51
KeBioLM-Random 93.06±0.69 88.57±0.92 88.91±0.25 83.25±0.61 78.81±2.48

(b) Results of KeBioLM. KeBioLM-Aligned and KeBioLM-Random correspond setup 1, 2 respectively. The results of BioBERT
and KeBioLM come from Yuan et al. (2021) and BioBERT is a LLM pre-trained on biomedical corpora.

Table 1: Results of Named Entity Recognition Task. All these experiments are run 5 times with varying random
seeds.

Setup Open Entity TACRED
P R F1 P R F1

BERT (w/o KI) 76.37 70.96 73.56 67.23 64.81 66.00
ERNIE 78.42 72.90 75.56 69.97 66.08 67.97

ERNIE-Aligned 78.81±1.05 72.15±0.92 75.33±0.41 71.09±1.62 58.15±5.88 63.79±3.60
ERNIE-Random 77.85±1.13 73.12±1.07 75.37±0.31 68.29±5.91 58.08±5.83 63.73±3.64

Table 2: Results of ERNIE on Open Entity and TACRED. ERNIE-Aligned and ERNIE-Random correspond setup
1, 2 respectively and all these experiments are run 5 times with varying random seeds. The results of BERT and
ERNIE come from Zhang et al. (2019). The drop in performance of ERNIE on TACRED may be attributed to the
data quality issues inherent in the dataset itself (Alt et al., 2020; Stoica et al., 2021).

els, with an ultimate goal of better suiting the
models to downstream tasks, particularly the low-
source domains. Throughout the literature, there
has emerged a few separate branches shedding light
on different paradigms.

To begin with, the major division of this line can
be categorized by injection during the pre-training
stage or the fine-tuning stage. Hereby, we use the
iconic framework, ERNIE (Zhang et al., 2019), for
demonstration. On one hand, in the pre-training
stage of knowledge injection, ERNIE forms a sepa-
rate masked language modeling objective. Specifi-
cally, it randomly masks off the linked entities and
has an additional softmax head to recover it. On the
other hand, during the fine-tuning stage, ERNIE
fuses the text and aligned knowledge in the vecto-
rial representation space, as shown in Figure 2.

Notice, the purpose of this paper is not to pro-
pose a novel knowledge injection scheme, nor to
promote any existing method. Therefore, abstract-
ing away from one specific showcasing method, we

may use the simplest form to represent the knowl-
edge injection process, as follows:

y = f(x, k), (2)

where x denotes the input text, k denotes the in-
jected knowledge regardless of its instantiated form,
y denotes the corresponded gold label and f indi-
cates a trainable neural network. Notice, in this
investigative work, we cover many instantiations of
f and k, including not only ERNIE, KnowBert, and
other models that integrate external knowledge, but
also ChatGPT, GPT-4, etc., mainly for knowledge
injection during the fine-tuning stage to achieve
optimal empirical transparency.

3.3 The Different Injected Knowledge
To explore the above questions, we design a set of
ablation experiments with strictly controlled vari-
ables. In those ablation experiments, we follow
the previous protocol with the origin knowledge-
injected models, only changing the knowledge they
inject. That knowledge includes:
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Setup SQuAD 1.1
Dev Acc Dev F1

BERT-large (w/o KI) 84.1 90.9
LUKE 86.1 92.3

LUKE-Aligned 86.22±0.37 92.34±0.09
LUKE-Random 86.15±0.15 92.39±0.11

Table 3: Results of LUKE. LUKE-Aligned and LUKE-
Random correspond setup 1, 2 respectively and all these
experiments are run 5 times with varying random seeds.
The results of BERT-large and LUKE come from Lan et al.
(2019) and https://github.com/studio-ousia/luke.

Setup WiC
Dev Acc

KnowBert-Aligned 69.53±1.24
KnowBert-Random 69.25±1.09

Table 4: Results of KnowBert, KnowBert-Aligned
and KnowBert-Random correspond setup 1, 2 re-
spectively and all these experiments are run 5 times
with varying random seeds.

• Aligned Knowledge: refers to the retrieved
knowledge that is injected into the model, as
done by all prior work, described as k. The
text-Knowledge Graph alignment process is
often conducted beforehand.

• Random Knowledge: refers to the random se-
lection of a knowledge point from an external
knowledge base and using it in the same form
as aligned knowledge, denoted as krandom. No
alignment process is conducted.

• Wiki Triples Knowledge: refers to the triples
extracted from WikiData5M (Wang et al.,
2021b), where the knowledge graph only com-
poses entity id from the linked ones ke. The
triples are described as k1, k2, . . . , kn, where
n represents the length of a triplet matched
by an entity ID. Entity-linking is conducted
necessarily before retrieving triples.

• Conceptual Knowledge: refers to the knowl-
edge extracted from Wikidata and Wordnet,
denoted as kc. Specifically, for an entity id
in ke, we extract its title and type from Wiki-
data and find the corresponding concept from
Wordnet. Finally, we combine title, type, and
concept into a triplet such as (title, type, con-
cept), as the conceptual knowledge of the cor-
responding entity. The entity-linking process
is also necessary to obtain conceptual knowl-
edge.

4 Random v.s. Aligned

In this section, we address a research question –
Does the performance improvement of existing in-
jection algorithms truly attribute to the injected
knowledge? To solve this issue, we design a se-
ries of ablation experiments with rigorously con-
trolled variables to investigate the practical impact

of knowledge information. The experiment re-
sults across 12 pertinent datasets demonstrate that
aligned knowledge injection is not superior to
random knowledge injection. In the remainder
of this section, we will provide a comprehensive
description of the experimental setup and present
the corresponding results in detail.

Ablation Protocol. In hindsight, the effect of
knowledge injection can be decomposed into two
parts: (i)-the knowledge injection mechanism as
to how to inject it and (ii)-the knowledge itself as
to what to inject. The very majority, if not all,
of the prior work is dedicated to the (i) and uses
final performance as the sole metric to check if the
injection works. Nevertheless, to further enhance
the transparency of the system, we wholeheartedly
believe that both conditions shall be studied and
met. In that regard, to complete the picture, we
focus majorly on (ii).

Briefly, we intend to substitute the previously-
added knowledge with the random knowledge 3.3,
and assess the performance of the original injection
(with aligned knowledge 3.3) in comparison. In
particular, we adopt the following settings:

1. knowledge injection refers to injecting aligned
knowledge in the training and testing process,
which can be described in Equation 2;

2. random injection refers to injecting random
knowledge in the training and testing process.
Other experimental settings, like baseline and
fine-tuning configurations, are consistent with
the knowledge injection. It can formally be
defined as y = f(x, krandom);

3. noise injection refers to injecting randomized
Gaussian white noise in the training and test-
ing process, as y = f(x, ϵ).

Backbones and Datasets. Indeed, different
downstream tasks may require different knowledge
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Setup
MedicalNER

+
MedicalKG

MedicalNER
+

HowNet

MedicalNER
+

CnDbpedia

FinancialNER
+

HowNet

FinancialNER
+

CnDbpedia

BERT (w/o KI) 92.5 - - 86.1 -
K-BERT-Random 93.89±0.27 93.52±0.18 93.55±0.20 87.35±0.15 87.46±0.09

K-BERT-Noise 93.79±0.32 93.73±0.13 93.80±0.13 87.15±0.11 87.10±0.11

(a) Results of noise injecting to K-BERT for NER datasets. The results of BERT come from Liu et al.
(2020)

Setup SQuAD 1.1
Dev Acc Dev F1

LUKE-Random 86.22±0.37 92.34±0.09
LUKE-Noise 86.09±0.48 92.33±0.04

(b) Results of noise injecting to LUKE. The results of
BERT-large come from Lan et al. (2019)

Setup Open Entity
P R F1

BERT (w/o KI) 76.37 70.96 73.56
ERNIE-Random 78.81±1.05 72.15±0.92 75.33±0.41

ERNIE-Noise 77.28±0.54 72.98±0.42 75.07±0.06

(c) Results of noise injecting to ERNIE. The results of BERT come
from Zhang et al. (2019).

Table 5: Results of Gaussian Noise. All these experiments are run 5 times with varying random seeds.

types, scales, or quantities. Distinctive knowledge
injection methods and model backbones for differ-
ent NLP applications may also vary widely. To
take a comprehensive revisit of the knowledge-
enhanced models, we choose the most advanced
as well as the best performing knowledge-injected
LLMs as our baselines, in correspondence to the
different benchmarks. Following the aforemen-
tioned principles, we primarily choose LUKE (Ya-
mada et al., 2020), ERNIE (Zhang et al., 2019),
KnowBERT (Peters et al., 2019), K-BERT (Liu
et al., 2020) and KeBioLM (Yuan et al., 2021) as
the major backbones/methods for the purpose of the
study. The methods can be primarily classified into
two categories: text-based methods, exemplified by
K-BRERT, and embedding-based methods, such
as KnowBert, ERNIE, LUKE, and KeBioLM. In
the meantime, we cover most of the major datasets.
The details and stats of them are provided in Ap-
pendix A.1 and A.2. And for the information on
knowledge graphs, please refer to Appendix A.3.

Main Results And Discussion. Exhibited in Ta-
ble 1 to 5c, we conclude that: (i) the knowledge
injection is not superior to random injection. The
differences between them generally within 1.0, and
some are even lower than 0.1; (ii) the difference
between random injection and noise injection is
also much neglectable, ranging by no more than
0.3 by F1.

These phenomenons can be further inferred that
the knowledge-injected models do not adequately
make use of the knowledge injected in the fine-
tuning stage, which may be a fatal problem for
those injection models. Upon those closer examina-

tions, we have reason to believe that the model may
treat knowledge injection in a way resemblance to
white noise injection.

Further Analysis. To further explore the differ-
ence between knowledge injection and random in-
jection, we compare their similarity in the encoder
and the output of the classifier in Open Entity and
TACRED and find the differences are also small.
For the details of the further exploration, please
refer to Appendix B.

Takeaways ①. Through these experiments, we
discover that the previous approaches of knowl-
edge injection, random injection, and even noise
injection do not produce notable distinctions. It
renders us that they may not be regarded as favor-
able choices. Drawing from previous analyses, we
observe that prior works (Zhang et al., 2019; Ya-
mada et al., 2020) tend to emphasize the injection
method itself rather than considering the model’s
ability to accurately perceive and comprehend the
injected knowledge. This could be identified as the
underlying cause of the problem.

5 More Does Not Mean Better

Prior results have pointed to a devastating conclu-
sion — the knowledge injection frameworks are
not generally grounded in the knowledge injected
in the fine-tuning stage. LLMs are more likely to
treat knowledge injection in a way resemblance to
white noise injection. In this section, to answer
the question why the injected LLMs treat the in-
jected knowledge as noise during the fine-tuning
stage, we begin to analyze the reasons behind this
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Figure 3: The relationship between the number of injected triplets and the injection effect. The vertical axis
represents the F1 deviation between knowledge injection and random injection on the test set. The horizontal axis
represents the number of triples extracted from each mention of the input text (for example, if there are 4 mentions in
a text, a horizontal axis of 1 means that 4 triples are injected into the text). And 0.1 means that there is a probability
of 10% to inject a triplet for each mention.

phenomenon.
As we posit before, excessive and overly com-

plex injecting knowledge may be partially respon-
sible for this issue. To validate our hypothesis,
we conducted further experimental explorations by
increasing the quantity of relevant knowledge in-
jected at once. An excessive amount of knowledge
may not necessarily indicate better performance,
and in some cases, it could lead to a performance
drop, as per Figure 3.

Experiment Details. In previous ablation exper-
iments, there are mainly two types of knowledge
injection in the fine-tuning stage, text-based and
embedding-based. It is hard to design related ex-
periments in embedding-based knowledge-injected
methods, for adding different knowledge embed-
dings at a single point may lose a lot of information
from those knowledge embeddings. However, text-
based knowledge-injected methods like K-BERT,
which are designed for mass knowledge injection
(such as the design of soft-position embedding and
seeing layer), are unfit for this kind of experiment.

Based on these, we design a straightforward text-
based injection method. This method involves
utilizing the corresponding title of the mentions
to label the mentioned entity within the text and
appending the corresponding triplet of the men-
tions at the text’s conclusion. To give a concrete
example, given the original input text, Grumpy
Cat, the internet’s most famous cat, died at 7 years
old. is transferred to be: *Grumpy Cat* Grumpy
Cat, the internet’s most famous cat, died at 7
years old. (Grumpy Cat type cat). It can be de-
fined as y = f(x, (k1, k2, . . . , kn)), where n is

the amount of injecting knowledge we limited and
(k1, k2, . . . , kn) refer to wiki triples knowledge 3.3.
To strictly control the variables and correspond to
the previous experimental analysis, we use BERT-
base as the baseline and keep the same fine-tuning
settings as ERNIE.

Analysis. Figure 3 shows the performance dif-
ference change between knowledge injection and
random injection on Open Entity and FewRel in the
text-based method experiment, With the increase of
injected knowledge. We could observe that as the
number of injected triples increases, the disparity
between knowledge injection and random injection
diminishes on the whole.

Takeaways ②. More does indeed not mean bet-
ter without controlling knowledge purity. Conse-
quently, it is imperative to direct our focus from
injecting more knowledge to injecting more refined
and targeted knowledge.

6 A Remedy by a Simple Method

In this section, we provide an (embarrassingly) sim-
ple fix (only in fine-tuning stage) that succeeds in
all the aforementioned ablation tests. To alleviate
the problem of knowledge injection failure, we in-
troduce conceptual knowledge, which may be more
clean and abstract, as a remedy. To validate the ef-
fectiveness of the remedy, we devise the last piece
of our protocol.

Injection Details. In particular, we propose to
alter the injected knowledge with a much cleaner
and more concise one: y = f(x, kc), where kc
is the conceptual knowledge 3.3 we construct. In
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Setup Open Entity
P R F1

BERT (w/o KI) 76.37 70.96 73.56
ConceptualKI-Random (Ours) 77.18±0.87 73.11±0.61 75.09±0.53
ConceptualKI-Aligned (Ours) 77.53±1.76 73.54±0.99 75.47±0.44

Table 6: Results of Our method on Open Entity. ConceptualKI-Aligned (Ours) and ConceptualKI-Random (Ours)
correspond setup 1, 2 respectively and all these experiments are run 5 times with varying random seeds. The results
of BERT come from Zhang et al. (2019).

Setup FewRel TACRED
P R F1 P R F1

BERT (w/o KI) 85.05 85.11 84.89 67.23 64.81 66.00
ConceptualKI-Random (Ours) 83.54±0.61 83.60±0.61 83.43±0.62 70.87±0.77 54.60±12.14 61.04±8.84
ConceptualKI-Aligned (Ours) 87.47±0.06 87.41±0.05 87.34±0.06 70.81±1.47 62.80±2.30 66.54±1.36

Table 7: Results of Our method on FewRel and TACRED. ConceptualKI-Aligned (Ours) and ConceptualKI-Random
(Ours) correspond setup 1, 2 respectively and all these experiments are run 5 times with varying random seeds. The
results of BERT come from Zhang et al. (2019).

contrast to the factual knowledge base Wikidata
(including more than 80 million entities), the con-
ceptual knowledge base Wordnet is significantly
smaller, consisting of only 117 thousand concepts.
And as the conceptual network (structure of Word-
net) deepens, the conceptual knowledge base can
be refined and pruned to a greater extent. With the
conceptual knowledge, the example in section 5
is transferred to be: *Grumpy Cat* Grumpy Cat,
the internet’s most famous cat, died at 7 years old.
(Grumpy Cat cat animal).

Main Results. We choose BERT-base as our
backbone and baseline, and follow the previous
protocol. Notice that, among the comparisons, all
setups are kept identical except for the different
forms of injected knowledge. As shown in Table 6
and 7, we draw the following observations: (i)-
the performance difference between correct knowl-
edge injection and random injection has been appar-
ently enlarged compared to previous sections, e.g.
+3.91 F1 on the two relation-extraction datasets;
(ii)-this difference on Open Entity remains rela-
tively smaller (0.32 F1), but it is still better than
previous ablation experiment results (≤0.06 F1).
We speculate that this might be caused by the small
scale (only 2000 samples for training and testing
each) of the dataset.

Experiment in ChatGPT To test the practical
effectiveness of concept injection in ChatGPT, we
extracted some data from TACRED. This experi-
ment was divided into three groups:

1. Group 1 adopts the text format of paragraph

"Injection Details", without triples in the end;
2. Group 2 retains and injects all the wiki

triple knowledge (k1, k2, . . . , kn), just as y =
f(x, (k1, k2, . . . , kn));

3. Group 3 injects conceptual knowledge kc, ex-
actly as y = f(x, kc).

The results demonstrate that both Group 1 and
Group 2 exhibit an accuracy level of 88%. Con-
versely, Group 3, which incorporates conceptual
knowledge, achieves a higher accuracy rate of 92%,
by an absolute 4% enhancement. It implies that
concept injection may exert a discernible impact
on ChatGPT. For more experimental information,
please refer to Appendix D.1.

Takeaways ③. Pruning the knowledge source
is essential for successful knowledge injection into
language models.

7 Conclusion

In this article, we present a comprehensive empir-
ical study of current knowledge injection frame-
works. Unfortunately, with a series of testing and
ablation protocols we propose, most, if not all, prior
knowledge injection methods perform erroneously.
We then provide an interpretation from the similar-
ity of noise injection. We finally provide a (very)
simple remediation method that may remedy the
issues. With this work, we wholeheartedly encour-
age the community towards (i)-further checking
the knowledge injection methods; (ii)-focusing a
bit more on the side of the knowledge itself, rather
than the entire dedication to the knowledge injec-
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tion mechanism or the neural architectures. At last,
we humbly hope that the set of our protocols can be
adapted for sanity-check in future research on this
line, together with our simple remediation method
applied as an additional baseline.
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Limitations

We present our limitations of this work in this sec-
tion. First, we only pick the most influential, repre-
sentative and iconic knowledge-injection methods
and datasets to form the main body of investigation.
Admittedly, there are other works proposed in re-
cent years (introduced in Section 2.2), but that is
perhaps beyond the scope of this paper.

Second, we primarily dedicate our extensive
study to the knowledge injection performed dur-
ing fine-tuning. The reasons are three-fold: (i)-
knowledge injected within the fine-tuning stage is
the most dominant paradigm in a real-world appli-
cation, compared to the prompting schemes with
pre-training which is significantly more unstable;
(ii)-knowledge injection in the fine-tuning stage ex-
tracts much less computational and carbon cost, so
most of the research groups worldwide can freely
reproduce our results; (iii)-if we extrapolate into
the future of the LLMs, it is trendy that these mod-
els’ sizes may keep growing. At that point, we
believe the portions of the model (say, the first cou-
ple layers, some intermediate layers, or the penul-
timate layers, respectively) can still be fine-tuned
and manageable. By contrast, pre-training a whole
large LLM with external knowledge-incorporated
and/or prompted data would become exponentially
harder.

Last but perhaps not least, due to computational
limitations, we conduct the relevant experiments
only on BERT and RoBERTa models. However,
We also provide primary investigation on LLMs,
such as ChatGPT. The work’s primary objective
is to explore and contribute to integrating external
knowledge into Language Model architectures. We
aim to provide a reference and assistance for fu-
ture research in knowledge data-centric approaches

and inspire future research to render the purity of
knowledge.
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A Experiment Details

A.1 Baseline Details
LUKE (Yamada et al., 2020) chooses to en-
hance RoBERTa with knowledge from Wikipedia.
It uses a new pre-training task that involves pre-
dicting randomly masked words and entities in
a large entity-annotated corpus retrieved from
Wikipedia. At the same time, LUKE also inputs
wikipedia entities into the model which are based
on the sentences in finetuning for the question-
answering dataset SQuAD1.1. In addition to inject-
ing knowledge, LUKE proposes an entity-aware
self-attention mechanism and considers the types
of tokens (words or entities) when computing at-
tention scores (Yamada et al., 2020).

ERNIE (Zhang et al., 2019) injects entity knowl-
edge from Wikipedia into BERT in pre-training and
finetuning. ERNIE first uses TAGME (Ferragina
and Scaiella, 2010b) to link entities mentioned in

10993

http://arxiv.org/abs/2304.14454
http://arxiv.org/abs/2304.14454
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2021.bionlp-1.20
https://doi.org/10.18653/v1/2021.bionlp-1.20
https://nlp.stanford.edu/pubs/zhang2017tacred.pdf
https://nlp.stanford.edu/pubs/zhang2017tacred.pdf


context to their corresponding entities in KG, then
injects the corresponding entities embedding into
language models. Embeddings of the correspond-
ing entities are trained on triples from WikiData
via TransE (Zhang et al., 2019).

KnowBERT (Peters et al., 2019) integrates
knowledge from WordNet and Wikipedia into
BERT and demonstrates improved perplexity and
ability to recall facts. KnowBERT first trains an
integrated entity linker to retrieve relevant entity
embeddings, which is used for entity disambigua-
tion. Then, the model uses a Knowledge Attention
and Recontextualization (KAR) mechanism to com-
bine the knowledge representation and contextual
word representations.

K-BERT (Liu et al., 2020) choose CN-DBpedia,
HowNet, and MedicalKG as external knowledge
bases. K-BERT is devised to feed a structural tree
that is decoded from the sentence into a pre-trained
language model. The construction of the structural
tree is driven by both the sentence itself together
with an external knowledge graph. However, it
inevitably brings the problem of knowledge noise.
To solve this problem, K-BERT proposed to special
a seeing layer, which makes the injected triples can
only affect their corresponding subject.

KeBioLM (Yuan et al., 2021) injects entity
knowledge from UMLS (Bodenreider, 2004) by
fusing the entities in the knowledge base and men-
tions in the text in the middle layer. Firstly, it
uses a function to recognize if a span is an entity
mentioned. then, it links to a set of the mention’s
k-nearest entities and integrates the entity embed-
ding and the word embedding in the hidden layer,
as the input of the model.

A.2 Downstream tasks and Dataset Details

Named Entity Recognition (NER) is the task of
finding the corresponding span of the named entity
in the given sentence.

Finance NER 3 includes 3000 financial news ar-
ticles manually labeled, which contain over 65,000
name entities.

Medicine NER 4 is the Clinical Named En-
tity Recognition(CNER) task that was released
in CCKS 2017. The dataset mainly extracts
medical-related entity names from electronic medi-
cal records.

3https://embedding.github.io/evaluation/#extrinsic
4https://biendata.net/competition/CCKS2017_2/

BC5-chem & BC5-disease (Li et al., 2016) con-
tain 1500 PubMed abstracts that extract chemical
and disease entities respectively.

NCBI-disease (Doğan et al., 2014) includes 793
PubMed abstracts that had been detected disease
entities.

BC2GM (Smith et al., 2008) is a dataset includ-
ing 20K PubMed sentences extracting gene entities.

JNLPBA (Collier and Kim, 2004) is a dataset
including 2,000 PubMed abstracts that have been
identified as molecular biology-related entities.

Entity Typing is the task to find the correct type
of the corresponding label entities in giving a sen-
tence.

Open Entity (Choi et al., 2018), commonly used
in knowledge-enhanced LLMs, has about 6000 sen-
tences with six entity types. Each sentence has five
entity labels on average.

Relation Classification is the task of identify-
ing the relation between label entities in a given
sentence.

TACRED (Zhang et al., 2017), is a relation ex-
traction dataset with 106,264 examples. Examples
in TACRED cover 42 relation types.

Question Answering is the task of answering
questions such as reading comprehension ques-
tions.

SQuAD1.1 (Rajpurkar et al., 2016), is a read-
ing comprehension dataset, consisting of questions
from Wikipedia articles. SQuAD 1.1 contains
107,785 question-answer pairs on 536 articles.

Word Sense Disambiguation is the task to let
the model find label words’ most suitable entry in
the sense inventory.

WiC (Pilehvar and Camacho-Collados, 2019),
is a benchmark that is used for evaluating context-
sensitive word embeddings. Each instance in WiC
has a target word, and the task is to identify if the
occurrences of the target word in the two contexts
correspond to the same meaning or not.

Commonsense Causal Reasoning is the task of
finding corresponding options through the causal
dependencies.

A.3 Knowledge graph Details

CN-DBpedia (Xu et al., 2017) is a large-scale
open-domain encyclopedic Chinese knowledge
graph developed by the Knowledge Work Lab of
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Setup FewRel
P R F1

BERT (w/o KI) 85.05 85.11 84.89
ERNIE 88.49 88.44 88.32

ERNIE-Aligned 87.98±0.32 87.97±0.32 87.87±0.33
ERNIE-Random 85.75±0.26 85.73±0.25 85.62±0.26

Table 8: Results of ERNIE on FewRel. ERNIE-Aligned and ERNIE-Random correspond setup 1, 2 respectively
and all these experiments are run 5 times with varying random seeds. The results of BERT and ERNIE come from
Zhang et al. (2019).

Fudan University, covering tens of millions of enti-
ties and hundreds of millions of relationships. The
CN-DBpedia used in the paper includes 5.17 mil-
lion triples.

HowNet (Dong and Dong) is a large language
knowledge base of Chinese vocabulary and con-
cepts, including semantic annotations of Chinese
words. The HowNetused in the paper includes
52576 million triples.

MedicalKG is the Chinese medical concept
knowledge graph, which contains four types of
pseudonyms (symptoms, diseases, parts, and treat-
ments). MedicalKG contains a total of 13864
triples and is an open-source part of K-BERT.

UMLS (Bodenreider, 2004) is a compendium
of many controlled vocabularies in the biomedi-
cal sciences. It provides a mapping structure be-
tween these vocabularies, containing over 1 million
biomedical concepts and 5 million concept names.

Wiki graph The knowledge base is Wiki-
Data5M (Wang et al., 2021b), which consists of
3085345 entities and 822 relation types.

A.4 The Results of ERNIE on FewRel

Different from ERNIE’s performance on Open En-
tity and TACRED, the result of ERNIE’s ablation
experiment on FewRel is about 2.2. However, this
result is risky. Because the mention of FewRel is
consistent with the task label entity, and the task la-
bel is also consistent with the relationship informa-
tion in Wikidata, the injected knowledge may con-
tain label information (just like the training logic of
TransE, the difference between the two entity em-
beddings is equal to the relationship embedding).

B Further Explanation

To dive further into these counter-intuitive results,
we propose to track down the path of the injected
knowledge. As we mentioned in Figure 2, the
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Figure 4: Schematic diagram of embedding similarity
change. In this experiment, we inject aligned and ran-
dom entities into ERNIE on the Open Entity test dataset.
We count the cosine similarity of [cls], mentions and
entities embedding in the hidden layers. The similarity
in the figure is the absolute average of the 1000 samples.

prior work mostly injects knowledge into hidden
layers of the encoder in the representation space.
In that regard, we propose to compare the hidden
states’ similarities. To design this part of the proto-
col, we prepare a well-trained knowledge-enhanced
model, then respectively load the aligned and ran-
dom knowledge data feeding through it. In what fol-
lows, we calculate the cosine similarity between the
two chosen hidden states, specifically, the values
of the chosen token’s position, from a certain layer,
yielded by feeding aligned v.s. random knowledge
injection. We mainly focus on the similarities of
[cls] and mentions’ (m defined by Section 1) em-
beddings, because these embeddings are primarily
served as the input gate to our downstream tasks.
We choose ERNIE and 2 datasets (Open Entity and
TACRED) for this set of experiments.

Experiment Setup. We first load the aligned and
random entities data on the trained knowledge-
enhanced models and print their output at each
hidden layer of the encoder. Then, we compare
the similarity among these outputs. We adopt co-
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Figure 5: The output stats of injecting aligned and ran-
dom knowledge. With two inference passes performed,
we count the number of samples with the same and dif-
ferent outputs, respectively. Notably, the “same output”
(orange bins) indicates that altering knowledge form
under our protocol does not change the model’s predic-
tion, while “different output” (blue bins) indicates the
opposite.

sine similarity as a measure of variation in word
embeddings and entity embeddings.

Among these similarities, we only keep similari-
ties of [cls], word embeddings related to knowl-
edge, and knowledge embeddings. After this, we
output the predictions of the same sentence with
different knowledge injected. The result validates
the previous inference in fine-grained dimensions.

Analysis. Our analytical experiments find that
word embeddings injected with different knowl-
edge are highly similar. Figure 4 shows the simi-
larity change of word and entity embeddings from
layer 1 to layer 12. From layer 1 to layer 5, there is
no interaction between the entity and word embed-
ding, so the similarities did not change. Starting
from layer 6, the entity and word embeddings be-
gin to fuse, and the corresponding similarity begins
to change, but the [cls] embedding changes are
always small. After layer 12, [cls] embedding
inputs into the linear layer and outputs logits.

It can be found that the similarities of [cls]
embeddings are very high in the whole process,
generally above 98%. In this case, it is difficult
for the model to find the difference between the
three sets of inputs. This result shows that the
model hardly obtains valuable information from
the knowledge representation.

Since cosine similarity may ignore differences
in some dimensions, classifiers may be able to
differentiate those differences by eliminating the
dominant dimension. So based on the previous
experiments, we output the prediction results of
the model. Figure 5 shows the results of Open

Entity and TACRED using ERNIE, which loads
the test data while injecting aligned and random
entities. Accordingly, it is fairly straightforward
to find that it is probably over for the model to
have identical predictive results when injected with
different forms of knowledge. On TACRED, this
portion even exceeds 99.6%. Simply put, those
findings may microscopically explain the reason
for the inconspicuous results in previous ablation
experiments, that the knowledge-injected models
have failed to leverage the injected knowledge, nor
to recognize the relevance of the knowledge and
the text input.

C Performance Gain Explained By Data
Augmentation

Indeed, given all the aforementioned empirical re-
sults, it is still undeniable that knowledge-injected
frameworks have a positive outcome from the per-
spective of eventual performance. To answer re-
search question 1, we hereby cast a hypothesis,
perhaps wild, that the injected knowledge is picked
by the model as a data augmentation module.

Experiment setting. To entertain this possibility,
we conduct the following two gauges: we meter the
degree of overfitting during training that is proxi-
mally calculated by the loss gap between the train-
ing and validation set. The rest of experimental
setup is kept identical to setup 2.

Discussion. In what follows, on the experiments
on Open Entity dataset with baseline ERNIE, we
curate and report both the loss gap between the
train and dev set. From an ordinary machine learn-
ing perspective, the larger this gap being revealed,
the more overfitted the model gets. The result is
summarized in the text as follows: (i)-injecting
aligned, unaligned (randomized) or white noise all
manage to decrease the loss gap to control overfit-
ting. (ii)-through manipulating the magnitude of
the knowledge vector (from 0.173 to 0.170), we
can see this gap becomes smaller (but perhaps hurt
the overall performance). From an empirical point
of view, we may also postulate that these patterns
all conform to the data augmentation, such as the
regularization effect, the larger scale of augmen-
tation the stronger regularization, etc. At last, as
an empirical study, we do not intend to make a de-
terministic conclusion. The hypothesis we cast —
that the previous knowledge injections may act as
a imperfect data augmentation module — is based
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on their similar performance pattern and perhaps is
only one among many other possibilities. We hope
to use this finding to motivate the community to
provide more theoretical and comprehensive evi-
dence.

D Details of Conceptual Knowledge
Injection

D.1 Details of ChatGPT Experiment
In this experiment, we choose 50 data from TA-
CRED, and add the words "Question: Is there a
relationship between A and B? If is, what is the
relationship between them?" after each text. At last,
Group 1 and 2 correctly answer 44 questions, and
Group 3 gets 46 correct answers.

E Dataset License

We only find three dataset licenses, which are as
follows:

SQuAD: CC-BY-SA 4.0
WiC: CC BY-NC 4.0
COPA: BSD 2-Clause
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