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Abstract

An end-to-end speech-to-text (S2T) transla-
tion model is usually initialized from a pre-
trained speech recognition encoder and a pre-
trained text-to-text (T2T) translation decoder.
Although this straightforward setting has been
shown empirically successful, there do not ex-
ist clear answers to the research questions:
1) how are speech and text modalities fused
in S2T model and 2) how to better fuse the
two modalities? In this paper, we take the
first step toward understanding the fusion of
speech and text features in S2T model. We
first design and release a 10GB linguistic prob-
ing benchmark, namely Speech-Senteval, to in-
vestigate the acoustic and linguistic behaviors
of S2T models. Preliminary analysis reveals
that the uppermost encoder layers of the S2T
model can not learn linguistic knowledge ef-
ficiently, which is crucial for accurate trans-
lation. Based on the finding, we further pro-
pose a simple plug-in prompt-learning strategy
on the uppermost encoder layers to broaden
the abstract representation power of the en-
coder of S2T models. We call such a prompt-
enhanced S2T model PromptST. Experimen-
tal results on four widely-used S2T datasets
show that PromptST can deliver significant im-
provements over a strong baseline by captur-
ing richer linguistic knowledge. Benchmarks,
code, and scripts are freely available at https:
//github.com/ytf-philp/PromptST.

1 Introduction

Different from a cascade of separately trained au-
tomatic speech recognition (ASR, Yu and Deng
2016) and machine translation (MT, Luong et al.
2016) models, end-to-end speech-to-text transla-
tion (S2T, Duong et al. 2016; Bérard et al. 2016)
directly translates source-language acoustic speech

∗Work was done when Tengfei was interning at JD Ex-
plore Academy.

†Corresponding Author

signals into a foreign text without any intermedi-
ate output, which has gained increasing popular-
ity and obtained great success recently (Anasta-
sopoulos and Chiang, 2018; Ansari et al., 2020;
Li et al., 2021b; Bentivogli et al., 2021). Since
directly modeling speech-to-text mapping is non-
trivial, the common practice (Wang et al., 2020c,
2021) trains a well-performed S2T system by ini-
tializing the encoder and decoder with pre-trained
single-modality models that are designed for ASR
(e.g., wav2vec (Baevski et al., 2020)) and MT (e.g.,
mBART (Liu et al., 2020b)), respectively.

While this straightforward setting has been
shown empirically successful, there are no clear
answers to the research questions: 1) how does the
S2T model combine speech and text modalities?
2) how to improve the fusion of speech and text
modalities in the S2T model? Several attempts
have been made to alleviate cross-modal represen-
tation discrepancy. For example, Yin et al. (2023)
use implicit guidance from external ASR model,
Le et al. (2023) optimize the CTC loss at the pre-
training stage, Ye et al. (2022) use cross-modal
contrastive learning (Rao et al., 2023a). Addition-
ally, Fang et al. (2022) mix up the speech and text
representation to fuse speech and text modalities
from the neural representation perspective. How-
ever, these methods have not delved into analyzing
the intrinsic properties of model representations.

Different from the modal fusion in the input, this
paper takes the first step toward understanding the
fusion of speech and text features in the S2T model.
Specifically, we design a fine-grained linguistic
probing benchmark, namely Speech-Senteval, for
the S2T model following Conneau et al. (2018).
Considering the information flow transferring from
audio to text, the encoder of the S2T model prob-
ably learns to extract, align, and fuse acoustic fea-
tures at the lower layers and then turns to learn the
important knowledge, e.g., linguistic properties, to
achieve translation at the high-level layers. To fur-
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ther understand this, we investigate a fine-grained
comparison of acoustic and linguistic analysis and
leave the vanilla text probing benchmark for the
T2T model. The result shows that the pre-trained
S2T model fails to effectively learn linguistic infor-
mation at the high-level layers, which brings a gap
between speech and text in end-to-end S2T models.

Motivated by these findings, we argue that broad-
ening the representation power of the high-level
layers for the pre-trained S2T models is at the core
of achieving better performance. Plenty of works
have shown that translation models can largely ben-
efit from the enriched representation (Wang et al.,
2019; Wu et al., 2019; Wei et al., 2020; Liu et al.,
2019a, 2020a, 2021e; Sun et al., 2022; Zan et al.,
2022). To this end, we design a strategy, abstract
prompt, to augment the high-level layers of the
pre-trained S2T model, leveraging prompt-learning
methods (Li and Liang, 2021). This strategy is
named PromptST due to its succinct and plug-
in properties. We experiment with the method
in a widely used pre-trained S2T model (Wang
et al., 2021) on CoVoST-2 data sets, spanning
English-German, English-Catalan, English-Arabic,
and English-Turkish language pairs. PromptST
consistently and significantly outperforms a strong
baseline by an average of +0.4 BLEU.

Our main contributions are as follows:

• We extend earlier works on text probing tasks
to speech scenarios, organized by the type
of linguistic properties they probe. We pub-
licly release our probing benchmark Speech-
Senteval, with the hope that it will be helpful
for further study on linguistic properties of
ASR and ST communities.

• By acoustic and linguistic probing analy-
sis, we show there are great differences be-
tween speech-to-text translation and text-to-
text translation, particularly in the higher-level
encoder layers of the models.

• Based on our findings, we propose a straight-
forward prompt learning strategy to enhance
the representation capabilities of the higher-
level layers in pre-trained S2T models.

2 Related Work

Speech-to-Text Translation Most studies have
been conducted to enhance end-to-end S2T mod-
els. Le et al. (2020) propose a multi-task learning

approach that jointly performs automatic speech
recognition and S2T, while Liu et al. (2019b)
presents a knowledge distillation technique (Deng
et al., 2023) by transferring knowledge from T2T
models. However, previous works indicate that
their successes heavily rely on large amounts of
labeled training data, which is challenging to ac-
quire. Recent advancements in pre-trained mod-
els, such as wav2vec2.0 (Baevski et al., 2020) and
mBART (Liu et al., 2020b, 2021c,d), have enabled
the utilization of large amounts of unlabeled data
for pre-training, followed by fine-tuning on S2T
tasks. By using pre-trained weights to initialize
the S2T structure, the convergence accuracy and
training performance of S2T models can be signifi-
cantly improved (Stoian et al., 2020; Wang et al.,
2021; Ouyang et al., 2022; Yin et al., 2023). In
this study, we aim to investigate the impact of pre-
trained knowledge on end-to-end S2T models.

Interpreting the Neural Network Models Prob-
ing task is often designed to facilitate comparison
between different models at a fine-grained level.
For example, Yang et al. (2019) design a word
reordering detection task to evaluate a model’s abil-
ity to extract word order information. Rogers et al.
(2021); Lin et al. (2019) analyze the hierarchy of
linguistic information in transformer encoder’s hid-
den representation. Shi et al. (2016) assess the
learned representations in machine translation mod-
els for syntactic knowledge (Wang et al., 2023).
Conneau et al. (2018) introduce a set of tasks to
probe the linguistic knowledge encoded in sentence
embeddings. These methods help open the black
box of networks. In the realm of speech-to-text,
Tang et al. (2021) compare auxiliary text transla-
tion tasks, and Xu et al. (2021) define the localness
of a word to analyze the model architecture. In this
paper, we extend these ideas and construct a 10GB
probing benchmark, Speech-Senteval, to analyze
the learned linguistic properties of S2T models.

Prompt Learning Prompting refers to adding
a snippet of natural language text to unlabeled
data during the pre-training phase. In the case
of discrete prompting, discrete information is
added to the dataset as described in (Schick and
Schütze, 2021). For example, discrete prompt to-
kens such as “It”, “is”, “[MASK]” can be used
to classify a movie review. To illustrate, given
the input text x =“Amazing movie!”, the in-
put embedding sequence would be formulated as
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Figure 1: Performance on 10 probing tasks to evaluate
the linguistics information encoded by the S2T and T2T
models. These tasks are divided into three categories:
surface, syntactic, and semantic. We averagely divide
the encoder layers into three levels: bottom, middle,
and top. The red spots show the surface and syntactic
knowledge learned in the last layer is similar to that of
the middle layer, indicating the S2T model can not learn
linguistic information well on the top layers.

[e(x), e(“It”), e(“is”), e(“[MASK]”)]. To reduce
manual intervention, Lester et al. (2021); Liu et al.
(2021b); Hsu et al. (2023) introduce trainable con-
tinuous prompts (Qi et al., 2023) as a substitution
for natural language prompts for language under-
standing tasks. For language generation tasks, Gar-
cia and Firat (2022) uses an input template that con-
tains a slot for input to control the output of trans-
lation models. However, the field of prompting
speech translation models remains under-explored.
We borrow ideas from this line of research by in-
corporating text-enhancement parameters into a
pre-trained end-to-end S2T model to guide better
speech translation.

3 S2T Behaviors Analysis

In a simple implementation of an end-to-end S2T
model, only the top-most representation is used for
decoding, ignoring the interactions among layers
(Li et al., 2020). To better understand the fusion of
speech and text features, we averagely divide the
encoder layers into three levels: bottom, middle,
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Figure 2: Performance results from acoustic and linguis-
tic probing tasks, we align and average based on the
S2T layers. The shaded areas denote our primary focus.

and top, and analyze the properties learned in each
layer. Specifically, we design a fine-grained linguis-
tic probing benchmark, namely Speech-Senteval,
for the S2T model following Conneau et al. (2018)
and leave the vanilla text probing benchmark for
the T2T model to further understand linguistic prop-
erties. Subsequently, we focus on different views
between acoustic (speech view) and linguistic prop-
erties (text view) in different layers of the S2T
model in order to explore the acoustic and linguis-
tic behaviors, respectively.

3.1 Speech-Senteval Benchmark
For conducting a comparative experiment in repre-
sentation between S2T and T2T, we extend earlier
work on linguistic probing tasks to S2T. In detail,
we employ the same MLP classifier as Conneau
et al. (2018), analyzing a rich hierarchy of linguis-
tic properties in the encoder of S2T models1.

Speech-Senteval Data To build the data set of
probing tasks, we use a publicly available Baidu
speech synthesis model2 to convert the text probing
data set into audio. An instance consists of a 16khz
sampling audio, a transcription, and a classification
label. Considering audio has more complex feature
sequences than textual data, higher GPU memory
constraints, and experimental costs are required,
we reduce the size of the data set. The detailed data
volume and statistics are shown in Appendix A.1.

S2T and T2T Results We analyze 10 probing
tasks on S2T and T2T respectively and provide
a detailed S2T statistics in Table 1. To make the
analysis more intuitive, we average and smooth
the experimental results according to the class the
probed property belongs to. As shown in Figure 1,

1The encoder is initilized by using the wav2vec2.0-large
model which is pretrained on Libri-960hr and self-trained on
Libri-light (LV-6k).

2https://ai.baidu.com/tech/speech/tts
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Categories Task Emb 4 8 12 16 20 24

Surface Word Content 0.0 1.1 2.2 1.5 8.0 11.0 2.5
Sentence Length 73.0 69.0 73.0 76.0 79.0 78.0 78.2

Synatactic
Top Constituent 33.4 35.5 57.3 56.9 70.7 64.5 50.2
Tree Depth 25.2 26.9 28.3 25.0 33.5 35.7 41.3
Bigram Shift 52.2 49.5 57.8 64.9 63.8 69.0 67.5

Semantic

Coordination Inversion 54.7 52.2 51.8 48.5 50.8 58.9 61.6
Object Number 71.6 72.7 76.8 74.7 78.3 80.0 81.8
Past Present 68.9 64.4 72.0 82.0 82.1 80.8 83.8
Subject Number 70.0 59.2 75.2 83.0 79.3 82.2 83.9
Odd Man Out 47.7 51.0 50.1 55.1 50.4 53.3 58.3

Table 1: Probing task results for S2T model. We show the analysis results of every four layers.

we compare differences between S2T and T2T with
surface, syntactic, and semantic information. The
results of our analysis reveal that the T2T model
encodes a hierarchy of linguistic information, with
surface features at the bottom, syntactic features in
the middle, and semantic features at the top. The
S2T system gradually encodes these three kinds of
properties as the information propagates through
the model’s layers.

Notably, it is observed that the learning of the
S2T model exhibits fluctuations. Analysis of sur-
face and syntactic information reveals a clear de-
cline in representation after the middle layers,
which means the output of the encoder in the S2T
model encodes similar information as the middle
layer. Conversely, this is not present in the T2T
model. This suggests that the pre-trained S2T
model may not effectively learn linguistic informa-
tion at higher layers, potentially due to limitations
in model capacity, which brings a gap between
speech and text in end-to-end S2T models.

3.2 Comparison: Acoustic and Linguistic
For exploring speech and text modalities of the S2T
model at a fine-grained level, we employ acoustic
and linguistic probing tasks to discern the differ-
ences between the two modalities.

Setting We analyze acoustic and linguistic prop-
erties by preparing task-oriented datasets, respec-
tively. Phonetic probing can tell us how much the
acoustic property S2T model catches. Adopting
the methodology of Belinkov and Glass (2017), we
employ the TIMIT dataset, which provides time-
segmented phonemes, to extract frames from al-
ternate encoder layers for the phoneme classifi-
cation task. A classifier is then trained on these
features and its performance evaluated on a test

set. The constructed training sets contain 87,295
training phonemes and 32,170 validation phonemes
extracted from utterances. The possible labels are
60 phone symbols included in TIMIT (excluding
the begin/end silence symbol h). Speech-senteval
probing we proposed can tell us how much the
linguistic property S2T model catches. To make
comparing easy, we average all tasks by layers.

Gap between Feature Learning Figure 2
presents a detailed comparison of the acoustic and
linguistic properties. The results indicate opposing
trends, particularly at the high-level layers. The
ability of the S2T model to encode linguistic prop-
erties increases, while the ability to encode acoustic
properties decreases gradually. This finding con-
firms our hypothesis that S2T models prioritize
encoding of acoustic representation at low-level
layers and shift towards encoding of linguistic rep-
resentation at high-level layers.

3.3 Discussion
Based on the above-detailed analysis of the differ-
ences between (1) S2T and T2T models in Sec-
tion 3.1, and (2) acoustic and linguistic features
in the S2T model in Section 3.2, it is evident that
high-level layers play a crucial role in undertaking
linguistic representation tasks. However, the stan-
dard, pre-trained end-to-end S2T model represents
linguistic features sub-optimally at higher encoder
layers compared to the T2T model. Considering
the importance of augmenting linguistic features
for achieving high-quality translation (Dyvik, 1992;
Sennrich and Haddow, 2016; Ding and Tao, 2019),
we believe that enhancing the representation power
of high-level layers in S2T models could exploit
more linguistic properties and thus have the poten-
tial to improve speech translation performance.
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Figure 3: Architecture of the PromptST and its integration with the transformer block. Pink blocks refer to trainable
prompt embeddings. For an M -layers encoder, we add prompt embedding from (M2 + 1)th layers. Blue blocks are
transformer block embeddings initialized by wav2vec2.0. The decoder is an N-layer transformer-based model.

4 Abstract Prompt Learning for ST

Motivated by the analyses in Section 3, augment-
ing the representation power of higher encoder lay-
ers with a plug-and-play strategy is essential to
achieve better linguistic knowledge that serves for
high-quality speech translation. Besides efficient
and plug-in properties, the method is required to
enhance the higher layers without disturbing the
phonetic information learned in the lower layers.
Accordingly, we precisely meet these requirements
by introducing a soft prompt strategy (Liu et al.,
2021a) that has been empirically successful in sev-
eral natural language understanding tasks but re-
mains under-explored in the field of speech trans-
lation. Specifically, higher encoder layers in pre-
trained ST models will be equipped with learnable
soft-prompt representations to capture additional
abstract information, e.g., linguistic knowledge.
We call the proposed method Abstract Prompt.

4.1 S2T Architecture Description

Speech-to-text task directly translates source-
language audio to a foreign text without any inter-
mediate output. Intuitively, encoder-decoder (i.e.,
Seq2Seq) models are considered particularly suit-
able where the input and output sequences are not
monotonically aligned.

In this study, we use pre-trained S2T architec-
ture, consisting of a wav2vec2.0 (Baevski et al.,
2020) encoder and transformer-based (Vaswani
et al., 2017) decoder. Given a source raw waveform
audio, we use the wav2vec2 feature processor to
extract a raw waveform input, which is normalized

to zero mean and unit variance. The total stride of
the encoder determines the number of time-steps
T which are input to the Transformer. To address
the issue of dimension inconsistency between the
audio and text, we integrate a two-layer multilayer
perceptron (MLP) projection module between the
pre-trained encoder and decoder. Mathematically,
the encoder output h(O)

enc to the decoder input h(I)dec

is derived from:

h
(I)
dec = MLP

(
h(O)
enc

)
(1)

The transformed representation, h(I)dec, is integrated
into the cross-attention module of the decoder.

4.2 Abstract PromptST
The pink blocks in Figure 3 depict the concept of
Abstract PromptST, which involves the incorpora-
tion of continuous prompts in the higher layers of
the S2T model encoder. The method employed in
this study is not novel and can be considered an
optimization of P-Tuning V2 (Liu et al., 2021a).

Technically, we formalize the pseudo prompt to-
kens as [p1, · · · , pm]. PromptST maps them into
trainable tensors emb ([p1, · · · , pm]). In practice,
the transformer architecture generates representa-
tions of consistent dimensionality across all lay-
ers. This consistency presents a challenge when
attempting to establish a direct mapping between
the prompt representations and the hidden states,
as the dimensions of the two may not align. To
overcome this challenge, we utilize the attention
module in the encoder to facilitate the integration of
the prompt representations with the hidden states.
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Formally, the vanilla self-attention module can be
represented mathematically as

Attn
(
wqh(i)enc, w

kh(i)enc, w
vh(i)enc

)
(2)

where projections wq,wk,wv are parameter matri-
ces and h

(i)
enc is the input of the i-th layer.

For the selected i-th layer of the encoder, we
concatenate the continuous prompt representations
to the keys and values in the self-attention module.
A randomly initialized embedding is employed to
achieve our objectives:

keys(i) =
[
emb([pk1, · · · , pkm]); wkh(i)enc

]

values(i) =
[
emb([pv1, · · · , pvm]); wvh(i)enc

] (3)

where m is the total length of prompt representa-
tions and emb(·) denotes a initialized representa-
tion. This approach allows the model to assign
different weights to different utterances in the input
and prompt. Additionally, we discuss the perfor-
mance of PromptST by incorporating a two-linear
module and a tanh activation to reparameterize the
prompt representations in Appendix A.2.

For the low-level layers of the encoder, we adopt
the vanilla self-attention module. Whereas the self-
attention module in high-level layers of the encoder
is revised into the following form:

Attn
(
wqh(i)enc, keys

(i), values(i)
)

(4)

To enhance the efficiency of fine-tuning while
considering model performance, it is essential to
utilize PromptST in conjunction with decoder fine-
tuning so that the prompt and the decoder parame-
ters can be updated jointly. We discuss the impact
of different fine-tuning strategies on model perfor-
mance in the Appendix A.3.

4.3 Experiment Setup

Data We use the CoVoST-2 ST data set3, which
is a large-scale multilingual ST corpus containing
both XX-English and English-XX translation tasks.
It is the largest open data set available to date from
the perspective of the total volume and covered
languages. Specifically, we choose four language
pairs, including English (En) to German (De), Cata-
lan (Ca), Arabic (Ar), and Turkish (Tr). Each of
them contains 430 hours of annotated data.

3https://github.com/facebookresearch/covost

Models and Settings Our implementation is
based on the HuggingFace (Wolf et al., 2020)
speech encoder-decoder models. Following the
best configuration of Wang et al. (2021), we use
a sequence-to-sequence model. The encoder is
a wav2vec 2.0 model with several convolutional
layers followed by a Transformer network. The
decoder is a 7-layer Transformer network whose
embedding size is 256, the number of attention
heads is 4, and the FFN dimension is 2048.

During model training, we reload the pre-trained
models s2t-wav2vec2-large-en-{de/ca/ar/tr} from
HuggingFace hub4. We use the byte-pair encoding
(BPE) (Sennrich et al., 2016) implementation from
Huggingface to learn the sub-word segmentation
where the vocabulary size of subword tokens V
is set as 10K. We train our model with AdamW
optimizer (Loshchilov and Hutter, 2019) with a
learning rate of 5e-5. We apply the label smooth-
ing with 0.1 and layer drop with 0.05. We set the
batch size as 4, which containing 4.8M tokens. We
perform the gradient accumulation trick (Ott et al.,
2018) with one update per 16 batch. A masking
strategy similar to wav2vec 2.0 is adopted with the
mask length set as 5 and the mask probability set
as 0.15.

Optimization and Evaluation In order to ex-
plore the influence of the method and length of
prompt for speech translation, we discuss the opti-
mization and prefix length in Appendix A.2. We
choose the prefix length by searching in the inter-
val [40, 400] and without MLP reparameterization.
During model decoding, we use beam search with a
beam size of 5. Models are trained for 20K updates
and the best checkpoint is selected w.r.t BLEU
score (Papineni et al., 2002) on the valid set. All
models are fine-tuned with 8 NVIDIA A100 GPUs.

4.4 Main Results

We use the official baselines for most prior works
(Wang et al., 2020b, 2021), which are implemented
upon fairseq (Wang et al., 2020a) and Hugging-
Face. Table 2 demonstrates our final results on the
test sets. We first evaluate performance of a strong
baseline model5 (#Model “5”) we analyzed in Sec-
tion 3. For a fair comparison, we adopt an identical
fine-tuning strategy wherein we fix the encoder and

4https://huggingface.co/facebook
5To evaluate the efficacy of our proposed method, we

refrain from utilizing the language model for decoding as
adopted in Wang et al. (2021).
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ID Model #Para En-De En-Ca En-Ar En-Tr Avg.

Previous results on CoVoST 2
1 End-to-end ST (Wang et al., 2020b) - 13.6 20.2 8.7 8.9 12.9
2 End-to-end ST (+ pre-ASR) (Wang et al., 2020b) - 16.3 21.8 12.1 10.0 15.1
3 Cascade SOTA (Li et al., 2021b) - 19.4 25.0 14.3 11.7 17.6
4 XMEF-JT. (Li et al., 2021b) 1.1B 25.8 30.9 18.0 17.0 22.9

Our results
5 Wav2vec-2.0 + self-training (LV-60k) (Wang et al., 2021) 0.3B 26.0 30.7 19.3 17.5 23.3
6 Continue Train 0.3B 25.9 33.3 19.3 17.6 24.0
7 PromptST 0.3B 26.4‡ 33.7‡ 19.6‡ 17.9‡ 24.4

Table 2: BLEU scores on four language pairs of CoVoST-V2 test set. “‡” indicates that the proposed method is
significantly better than continued train results at a significance level (p < 0.05). We also report the Translation
Error Rate (Snover et al., 2006) in Appendix A.4.

Selected Layers En-De En-Ca En-Ar En-Tr

0-24 layers 29.9 36.7 23.5 20.4
20-24 layers 29.8 36.8 23.4 20.6
16-24 layers 29.9 36.5 23.7 20.5

12-24 layers 30.1‡ 37.4‡ 23.8‡ 21.0‡

Table 3: BLEU scores of adding prompt representations
to different layers on the valid set. “‡” indicates that
“12-24 layers” significantly outperform "0-24 layers"
with a high degree of statistical significance (p < 0.05).

proceed to train the model with the same number
of epochs as our proposed method. The continued
training “Continue Train” (#Model “6”) achieves
24.0 BLEU on average, which is 0.7 points higher
than the baseline, showing the current model has
not yet attained full convergence.

Equipping with our prompt strategy, which adds
trainable tokens from 12 to 24 layers (#Model “7”),
the model outperforms the prior approach in all
language directions by average +1.1 BLEU points.
Notably, our PromptST also surpasses continue
train setting by +0.4 BLEU points, showing the
effectiveness of our approach.

4.5 Ablation Study on PromptST

We evaluate the impact of different components
of PromptST, including (1) prompting on different
layers, and (2) tuning with other efficient strategies
on En-De, En-Ca, En-Ar, and En-Tr datasets.

Impact of Prompting Layer Table 3 shows the
results of equipping our Abstract Prompt on differ-
ent layers. Adding soft-prompts from 12th layer
(“12-24 layers”) consistently outperforms other
variants (“0-24 layers”, “20-24 layers”, and “16-24
layers”), which we attribute to the advantage of
abstract prompt in enhancing the critical yet under-

Model Layers En-De En-Ca En-Ar En-Tr

Adapter 0-24 28.0 34.9 21.7 19.6
12-24 27.9 34.9 21.6 19.5

PromptST 12-24 30.1‡ 37.4‡ 23.8‡ 21.0‡

Table 4: BLEU scores of replacing prompt with the
adapter on the valid set. “‡” indicates our method out-
performs the adapter with a high degree of significance
(p < 0.05).

explored high-level layers. For effectiveness and
simplicity, we use the upper half encoder layers
“12-24 layers” as the default strategy.

Impact of Efficient Tuning Strategy As afore-
mentioned, one of the reasons to employ the
prompting strategy is to enhance the higher layers
without disturbing the phonetic information learned
in the lower layers. One may wonder whether other
efficient tuning approaches, e.g., Adapter (Houlsby
et al., 2019; He et al., 2022; Rao et al., 2023b), are
also suitable. To answer this doubt, we investigate
the impact of replacing the prompt with the adapter
and adding a length adapter (Li et al., 2021a; Le
et al., 2021) between the encoder and decoder to
reduce speech length. The result in Table 4 shows
that adding adapters to higher layers shows com-
parable performance with that of adding to all lay-
ers (“0-24”). Noticeably, adopting the prompt is
significantly better than that of the Adapter. The
reason may exactly match our guess; the adapter
is akin to the series circuit when inserted into the
original encoder blocks (He et al., 2021), heav-
ily disturbing the knowledgeable information flow
from lower layers, e.g., phonetic information. In
contrast, prompt tokens can be analogized to the
parallel circuit to provide auxiliary capacity with-
out affecting the original information.
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Model Surface Syntactic Semantic Avg.
SeLen WC TrDep ToCo BShif Tense SubNm ObjNm SoMo CoIn

Baseline 78.17 2.47 41.28 50.17 67.49 83.77 83.85 81.77 58.29 61.55 60.88
+PromptST 78.86 4.43 39.54 54.25 69.57 83.77 83.33 82.51 57.12 61.58 61.50

Table 5: Results of probing tasks on our constructed Speech-Senteval. We evaluate the linguistic properties learned
by the up-most layer and find that our method preserves more knowledge with improved average accuracy. We also
report the results of every four layers similar to Table 1 in Appendix A.5.
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Figure 4: BLEU scores on CoVoST-2 En-Ca valid set
with different ratios of the training data.

4.6 Analysis

We conduct a comprehensive analysis of our
methodology, addressing: (1) its aptitude in learn-
ing linguistic properties, (2) its performance robust-
ness across varying data scales, and (3) the nuanced
benefits beyond the BLEU score.

PromptST Obtains Richer Linguistic Properties
According to analyses in Section 3, our PromptST
may broaden the model capacity of higher layers,
affecting the linguistic properties learned by the
encoder. To verify this, we select the En-De well-
trained model and probe its linguistic properties.
Table 5 illustrates that our method indeed preserves
richer linguistic knowledge with better average ac-
curacy (especially on the surface and syntactic, i.e.,
+1.4%), confirming our hypothesis.

PromptST Robustly Works Across Data Scales
To confirm the effectiveness of our method across
different data sizes, we further experiment on the
En-Ca dataset partition into different data scales
{0.1, 0.25, 0.5}. As seen in Figure 4, our simple
method boost performances for speech translation
models consistently and significantly across the
different size of datasets, showing the robustness
and effectiveness of our approach.

Also, researchers may doubt that our approach
may fail in extremely low-resource settings where
the backbone ST model is not well pre-trained. To
dispel this concern, we conduct experiments on

Data Set Baseline PromptST ∆ BLEU

Ca-En 17.85 18.51 0.66
Es-En 18.00 18.79 0.78
De-En 15.88 16.27 0.39

Table 6: Results of the extremely low-resource dataset.
We report the results on the valid set.
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Figure 5: Word frequency and sentence length analysis.

CoVoST2.0 Ca-En, Es-En, and De-En, containing
only 99 hours of annotated data on average. Table 6
shows that the baseline indeed presents an overall
lower absolute BLEU score (<20) compared to
the large datasets in Table 3 (∼27). However, our
PromptST still significantly improves the perfor-
mance by an average of 0.61 BLEU, demonstrating
PromptST could be a promising plug-in strategy
to provide bonuses for any data scales and corre-
spondingly pre-trained models.

Fine-Grained Gains Beyond BLEU Score To
understand how PromptST improves translation be-
yond BLEU, we use compare-mt (Neubig et al.,
2019) to compare our model against baseline in
terms of word frequencies and sentence lengths.
Figure 5 interestingly shows PromptST (1) tends
to be more robust to mid-frequency (10-1000) and
high-frequency words (beyond 1000), while the
baseline model performs slightly better on rare
words (less than 10) and (2) facilitates shorter sen-
tences, e.g., <20, compared to the baseline. These
phenomena show PromptST can better meet the
needs of daily oral communication - relatively short
sentences with high-frequent words.
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5 Conclusion

In this paper, we take the first step toward under-
standing the fusion of speech and text features in
the S2T model by probing tasks, taking the text-to-
text model as a reference. Specifically, we design
and release a 10GB linguistic probing benchmark,
Speech-Senteval, for the S2T task. We find that the
uppermost encoder layers of the S2T model can
not learn linguistic knowledge efficiently, which is
vital for translation. Based on these insights, we
propose a straightforward plug-in prompt-learning
strategy, coined as Abstract Prompt, on the high-
level layers to broaden the representation ability of
the pre-trained ST models. Experimental results
on four widely-used datasets show that PromptST
can deliver significant improvements over a strong
baseline by capturing richer linguistic knowledge.

Limitations

While the proposed PromptST model augments the
representation power of higher layers in the en-
coder, it still has some limitations: (1) our analysis
primarily emphasizes the linguistic discrepancies
in end-to-end S2T models, sidelining the acoustic
perspective; (2) the resource-intensive nature of
loading pre-trained weights from existing methods;
(3) in Section 4.6, our comparison with Adapter
exclusively employs the series adapter technique,
neglecting the potential advantages of the parallel
adapter structure as highlighted in Gállego et al.
(2021), which warrants further exploration.
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Tasks Train Valid Test Cate.

Word Content 5,000 300 200 997
Sentence Length 5,000 300 200 5
Top Constituents 5,000 300 200 20
Tree Depth 5,000 300 200 7
Bigram Shift 7,000 300 200 2
Coordination 5,000 300 200 2
Object Number 5,000 300 200 2
Past Present 5,000 300 200 2
Subject Number 5,000 300 200 2
Odd Man Out 5,000 300 200 2

Table 7: Statistics of Speech-Senteval benchmark.

Model En-De En-Ca En-Ar En-Tr

MLP Encoder 29.8 36.9 23.4 20.7
prefix-40 30.1 37.2 23.6 20.8
prefix-100 30.1 37.2 23.6 20.8
prefix-200 30.0 37.2 23.7 21.0
prefix-300 30.0 37.4 23.8 20.8
prefix-400 30.0 37.3 23.8 20.8

Table 8: BLEU scores on the prompt length and
reparametrization (prefix-40) on valid set.

A Appendix

A.1 Speech-Senteval Data Set

For each task, we construct training sets containing
training, test and validation data sets.6 The overall
volume of data is presented in Table 7. All sets are
balanced, having an equal number of instances in
each target class.

A.2 Experiment Optimization

Previous studies have commonly employed a repa-
rameterization encoder, such as a multi-layer per-
ceptron (MLP), to optimize soft-prompt representa-
tions for NLU tasks. As demonstrated by Liu et al.
(2021b), the use of an MLP reparameterization can
enhance the robustness and performance of models.
In order to evaluate the performance of the S2T
model, we employ a simple MLP layer to encode
the trainable prefix tokens. However, our experi-
ments reveal that the use of an MLP led to negative
effects for nearly all language pairs.

Furthermore, the prompt length has been iden-
tified as a crucial factor in the S2T model. We
conducted an extensive search of the optimal prefix
length for four language pairs within the range of
[40, 400], respectively. As depicted in Table 8, we

6Following https://github.com/facebookresearch/
SentEval/tree/main/data/probing, the dataset is made
available under the BSD 3-Clause License.

Model En-De

Random Initialized 1.7
Finetune Encoder and Prompt 23.6
Finetune Prompt 25.9
Finetune Encoder Decoder and Prompt 26.0
Finetune Decoder and Prompt 26.4

Table 9: BLEU scores for randomly initialized model
and different fine-tune strategies on test set.

found that shorter prompts are sufficient for lan-
guage pairs that are closely related (e.g., En-De).
However, for long-distance language pairs (e.g.,
En-Ca, En-Ar, En-Tr), prompts longer than 200
tokens are found to be beneficial.

A.3 Pre-training and Efficient Fine-tuning
To demonstrate the importance of pre-trained mod-
els in an end-to-end S2T model, we conduct exper-
iments using the same settings to train a randomly
initialized En-De model. As shown in Table 9, the
use of random initialization results in a low BLEU
score, indicating that the performance of the S2T
model is heavily dependent on being initialized
with pre-trained parameters.

We further evaluate the efficiency of various tun-
ing strategies, namely: (1) fine-tuning the prompt
only, (2) comprehensive fine-tuning encompassing
prompt, encoder, and decoder, (3) fine-tuning the
encoder with the prompt, and (4) fine-tuning the
decoder with the prompt. Table 9 illustrates that
fine-tuning the decoder with the prompt achieves
the most optimal results. Specifically, jointly fine-
tuning the encoder and prompt led to swift overfit-
ting. This suggests that exhaustive encoder adjust-
ments might not be ideal.

A.4 Comparision on Translation Error Rate
In this study, we evaluate the performance of both
the baseline and the PrompST models using the
Translation Error Rate (TER) metric. The results,
presented in Table 11, demonstrate that when our
prompt strategy is applied, the model achieves an
average TER score of 57.2 on the validation sets.
This represents a significant reduction in the trans-
lation error rate across all language directions, with
an average decline of −3.5 points, showing the
efficacy of our proposed approach.

A.5 Speech-Senteval Results on PromptST
Table 10 presents the performance of the S2T
model using the PromptST approach on all 10 prob-
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Categories Task Emb 4 8 12 16 20 24

Surface Word Content 0.4 1.1 2.5 14.4 11.8 14.2 4.4
Sentence Length 76.5 68.1 76.5 77.3 79.5 80.5 78.9

Synatactic
Top Constituent 32.4 39.5 48.4 62.2 67.6 61.9 54.3
Tree Depth 19.7 28.5 28.0 36.0 31.7 31.2 39.5
Bigram Shift 45.5 49.7 57.2 58.7 71.2 67.3 69.6

Semantic

Coordination Inversion 54.7 46.3 51.2 61.5 59.8 57.3 61.6
Object Number 65.2 78.9 80.4 78.1 81.2 78.1 82.5
Past Present 67.2 69.0 78.0 81.6 80.8 83.8 83.8
Subject Number 53.7 65.6 70.4 79.9 78.8 81.8 83.3
Odd Man Out 55.6 50.9 47.1 49.8 52.9 53.9 57.1

Table 10: Probing task results for PromptST. We show the analysis results of every four layers.

Model En-De En-Ca En-Ar En-Tr Avg.

Baseline 56.8 52.4 67.9 65.5 60.7
PromptST 55.2 48.1 62.9 62.4 57.2

Table 11: Results of Translation Error Rate on valid set.

ing tasks. We run the analysis every four layers.
Our experimental data clearly indicate that using
PromptST enhances the model’s ability to retain
complex linguistic information. We specifically ob-
serve improvements in capturing surface and syn-
tactic properties at layers 12, 16, and 24, with in-
creases of +3.2, +1.9, and +1.4, respectively. These
findings suggest that PromptST effectively expands
the learning capacity of the model’s higher layers,
positively influencing the types of linguistic prop-
erties that the encoder can learn.
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