
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 10107–10121
December 6-10, 2023 ©2023 Association for Computational Linguistics

Make Every Example Count: On the Stability and Utility of Self-Influence
for Learning from Noisy NLP Datasets

Irina Bejan∗ and Artem Sokolov and Katja Filippova
Google DeepMind

irinam.bejan@gmail.com, {artemsok, katjaf}@google.com

Abstract

Increasingly larger datasets have become a stan-
dard ingredient to advancing the state-of-the-
art in NLP. However, data quality might have
already become the bottleneck to unlock fur-
ther gains. Given the diversity and the sizes
of modern datasets, standard data filtering is
not straight-forward to apply, because of the
multifacetedness of the harmful data and elu-
siveness of filtering rules that would generalize
across multiple tasks. We study the fitness of
task-agnostic self-influence scores of training
examples for data cleaning, analyze their effi-
cacy in capturing naturally occurring outliers,
and investigate to what extent self-influence
based data cleaning can improve downstream
performance in machine translation, question
answering and text classification, building up
on recent approaches to self-influence calcula-
tion and automated curriculum learning.

1 Introduction

Deep learning on increasingly larger and diverse
data sources brought impressive advances in natu-
ral language processing (NLP), however, data qual-
ity might be the major bottleneck to unlock further
gains (Kumar et al., 2020). NLP data are usually ac-
quired via large-scale weakly-labeled data scraping
or crowd-sourcing labels from non-expert human
annotators, which are both error-prone (Bowman
and Dahl, 2021). At the same time, ambiguous
training data are also known to hurt models’ per-
formance through overfitting or memorization in
overparameterized networks (Zhang et al., 2017).
Finally, not all data are equally easy to learn and
overly complex instances may hinder learning as
well. Below, we refer to all of those cases – label
noise, out-of-distribution, ambiguous or difficult-
to-learn examples – by an umbrella term outliers.
Two key questions of our work are: How can out-
liers be detected and how should they be dealt with?

∗ The work was done while interning at Google.

1.1 Detecting Outliers

Defining outliers and how they may (harmfully) in-
fluence model predictions in a task-agnostic way is
hard and so, until recently, mostly task-dependent
heuristics have been employed (Wang et al., 2018).
More principled approaches define an impact of a
training instance via the concept of influence func-
tions (henceforth IFs) (Cook and Weisberg, 1980),
which quantify the effect on the loss on a test point
z when removing an individual training point x.
For example, Koh and Liang (2017) used access to
gradients and their fast products with the loss Hes-
sian (Pearlmutter, 1994) to approximate the loss
change at z that would occur had x been infinites-
imally upweighted in the training set. IFs have
been used for debugging of machine learning mod-
els (Han et al., 2020), data poisoning attacks (Koh
et al., 2022) and detecting dataset errors (Schioppa
et al., 2021; Kong et al., 2022). There, it has been
conjectured and empirically tested that filtering
highly self-influential (z = x) points, i.e., the ones
that would cause a large loss delta on themselves
(suggesting that they are “unsupported” by other
data points and need to be memorized), does lead
to improvements in synthetic and real scenarios.

To deepen this line of work, we also operational-
ize IFs to detect outliers with self-influence scores,
and formulate our first research question being:

RQ1: When are self-influence scores effective
for detecting outliers?

The above improvements, however, contrast with
the observations that IFs are sensitive to model and
training hyperparameters in the general, z ̸= x,
case due to violation of the convexity assumption
by IFs in deep learning: Basu et al. (2021) showed
that depth and width of the network, its architecture,
training regularization and the stochastic approx-
imations inside IF have strong effects on the IF
accuracy and stability (measured on retrieved influ-
ential xs for a fixed z), which are aggravated with

10107

the network size. K and Søgaard (2021) further
found that IFs are sensitive to the parameter ini-
tialization, ordering of the training data and batch
size. Both papers thus doubted that IF scores of
training instances would be reliable for practical
purposes, and that retraining after removing or fix-
ing the flagged instances would lead to improve-
ments. Very recently Schioppa et al. (2023) gave a
theoretical perspective on IFs instability.

Since, at a minimum, for self-influence to point
at outliers in any objective and verifiable sense,
they should exhibit certain stability, this leads us to
the second research question of our work:

RQ2: How stable are self-influence scores?
Unlike general influence, the self-influence stability
has not been covered by previous studies.

1.2 Dealing with Outliers

A standard approach to reducing the harms caused
by outliers is to filter them out (Khayrallah and
Koehn, 2018; Peskov et al., 2019). However, com-
ing up with a filtering rule that would generalize
across multiple tasks is not straightforward. Most
scalar-based (incl. self-influence) filtering schemes
would prescribe setting a threshold cut-off value
to delineate outliers from the rest data. This may
be reasonable for datasets where the to-be-filtered
data portion has no apparent signal, however, in
more realistic scenarios many outliers are at least
somewhat useful. Applying threshold filtering in
such situation may lead to performance decrease
as a portion of useful signal would be lost. For
example, memorizing some outliers (e.g. under-
represented training examples) can in fact improve
accuracy (Feldman and Zhang, 2020).

Motivated by this shortcoming, in this paper we
explore alternatives to filtering where it is possible
to make use of outliers and in particular consider
automated curriculum learning (AutoCL). AutoCL
covers a range of algorithms, where not only the
training data are presented to a neural network in
a different order than random sampling, but also
where this order is adapted alongside main training
based on learning progress (Graves et al., 2017;
Kreutzer et al., 2021). This is particularly useful
when dealing with outliers, as we can learn (via the
self-influence proxy) to ignore the outlying data
samples and prioritize the most helpful ones, with-
out having to choose apriori the cut-off threshold.

Thus, the final research question we address is:

RQ3: Does AutoCL with self-influence scores
bring gains compared to filtering?

1.3 Contributions

We study the stability of self -influence scores,
which are task-agnostic and, if stable, would be
an attractive candidate to serve as the data clean-
ing foundation. We further analyze the efficacy of
capturing naturally occurring outliers by IFs and
investigate to what extent self-influence can im-
prove performance in NLP tasks with Transformer
architectures, building up on recent improvements
in IF approximation accuracy and scalability with
the Arnoldi iteration based IFs (ABIF) (Schioppa
et al., 2021), and AutoCL (Kreutzer et al., 2021).

In more detail, our contributions are:

• Stability of self-influence scores. We start by
measuring how stable self-influence scores are,
since this is a prerequisite for both successful
data filtering and data scheduling. To this end,
in §3, we study correlation and overlap of data
rankings by self-influence scores across different
model states, i.e., different final states the training
converges to as a function of varying batch size,
random seeds of data sampling, data ordering and
IF calculation. We also explore the correlation be-
tween model prediction stability (defined below
as model churn) and IF’s sensitivity to architec-
ture. We find that, unlike the general (z ̸= x)
IF scores, the self-influence (z = x) scores are
stable with respect to training and model hyperpa-
rameters, and across architecture variations, but
care should be exercised in transferring findings
between architectures of different capacity.

• Effectiveness of self-influence scores. In §4, we
employ a suite of different in-distribution and
out-of-distribution (o.o.d.) evaluation setups and
show that filtering out highly self-influential ex-
amples is more effective for the o.o.d. setup. We
hypothesize that self-influence capturing general
outliers prevents learning systematic noise pat-
terns that would otherwise artificially inflate per-
formance in the in-distribution evaluation setup,
making it harder to improve upon with filtering.
Furthermore, we investigate what is captured
by influence scores using both natural outliers
and synthetic label noise, showing that natural
data can be spread among high and low influen-
tial samples, thus the common top-X% filtering
strategies can be ineffective.

10108

• Data filtering automation. The fixed percent-
age filtering can also be costly to tune or inaccu-
rate, while attempts to automate it using abrupt
changes at the top of the ranking have a low re-
call rate (Lam et al., 2022). To remedy, in §5
we employ bandit AutoCL to dynamically detect,
during training, the harmful or the useful train-
ing data quantiles to feed from at each step. The
possible bandit actions are derived from the self-
influence ranking and further split into a fixed
number of discrete buckets. As a result, AutoCL
adjusts on-the-fly the ratio of high or low influ-
ence examples to train on. This is more gen-
eral than threshold filtering, which is a particular
(static and hard-weighted) case of general (dy-
namic and soft-weighted) schedules.

2 Tasks, Datasets, Models and Methods

Throughout this study, we investigate how self-
influence methods perform and generalize across
multiple NLP tasks, varying the tasks’ nature, size,
noise levels and model architectures (Table 1).

2.1 Tasks and Datasets
MT:Paracrawl. We consider the German-
English translation task from the noisy Paracrawl
corpus (Bañón et al., 2020), which consists of
100M sentence pairs obtained via web-crawling.
We evaluate using BLEU after a fixed number
of steps on the newstest17 set from WMT17 to
match the setup of Schioppa et al. (2021), who
also filtered Paracrawl with ABIF.

QA:Natural Questions. The NQ dataset consists
of real queries issued to the Google search engine,
alongside Wikipedia fragments that could poten-
tially contain an answer (Kwiatkowski et al., 2019).
Each query can have a short answer (incl. empty)
and a long answer, the latter requiring to predict
spans from the fragments. Since we run our NQ
experiments with a seq2seq model, we adopt the
dataset version which only covers short answers
from (Guo et al., 2022), who split the official train-
ing set of 307k samples (90% for training, 10%
as the dev set) for fine-tuning, and use the offi-
cial dev set for testing. From the data quality per-
spective, being real user queries, NQ is relatively
clean but contains a high degree of natural ambi-
guity: about 33% of NQ annotations are debatable
and 16% are wrong, meaning the Wikipedia frag-
ment provides no evidence for the ground-truth
answer (Kwiatkowski et al., 2019).

QA:TriviaQA. This dataset includes 110k
question-answer pairs authored by trivia enthu-
siasts, who gathered evidence documents for an-
swering questions drawn from Wikipedia and Bing
search results (Joshi et al., 2017). This is a par-
ticularly high quality supervised task, but is still
difficult to learn: the input length is on average 10
times longer than in NQ, bringing additional chal-
lenges such as complex, compositional questions
that require higher cross-sentence reasoning. We
evaluate both on TriviaQA and on NQ using the
Exact-Match (EM) and F1 scores.

Classification:Wikipedia Toxicity. The dataset
contains 223k human annotated comments from
Wikipedia talk page comments (Wulczyn et al.,
2017). While the original dataset covers a variety
of toxicity subtypes, we only consider a binary
classification into toxic and non-toxic comments as
in (Ebert et al., 2022), and report accuracy and F1.

2.2 Models

We experiment with three different architectures:
the standard Transformer-base on the MT task, two
sizes of the state-of-the-art LongT5 architecture for
long inputs on the QA tasks, and the classic BERT-
base and T5 architectures on the text classification
task. See §A for training details of each of those.

2.3 Methods

Influence functions are an approximation to the
loss change at the test point z after an infinitesimal
upweighting of a training point x (Koh and Liang,
2017): I(x, z) = ⟨∇ΘL(z), H

−1∇ΘL(x)⟩, where
∇L(x) is the gradient of the loss L at the points x
or z, and H = ∇2

ΘL is the Hessian of the model
at parameters Θ. For deep learning, the Hessian is
impractical to compute exactly, so Koh and Liang
(2017) proposed an approximate estimation proce-
dure to calculate I(x, z). Recently, Schioppa et al.
(2021) proposed a more accurate and stable method
that uses Arnoldi iteration to approximate the in-
verse Hessian in subspaces spanned by H’s largest
eigenvectors. This enabled scaling up the computa-
tion of influence scores to hundreds of millions of
training points and model parameters. We use their
released code to compute I(x, z) (ABIF).

TracIn (Pruthi et al., 2020) is a gradient-only al-
ternative influence definition that relies on C ≥ 1
checkpoints to approximate by how much x’s gradi-
ent changes model parameters and, in turn, the loss
at z: IT (x, z) = 1

C

∑C
c=1⟨∇ΘcL(x),∇ΘcL(z)⟩.

10109

Dataset Task Noise Model Training Architecture Params Train/Dev/Test

Paracrawl MT very high enc-dec from scratch Transformer-base 60M 100M/3k/3k
Natural Questions QA low enc-dec fine-tuning LongT5-base/large 220M/770M 276k/31k/7.8k
TriviaQA QA very low enc-dec fine-tuning LongT5-base 220M 88k/11k/11k
Wikipedia Toxicity text-class. high enc(-dec) fine-tuning BERT-base/T5-base 110M/220M 144k/16k/63k

Table 1: Dataset and model statistics.

The question of which layers are more effective
for IFs is still open, with recent work showing good
results using the last or few last layers (Han et al.,
2020; Barshan et al., 2020), but also using the first
layers (Yeh et al., 2022). Therefore, we experiment
with IF methods in three variants: first (the first
two layers of the encoder and decoder), last (last
two layers of both) and all parameters and draw
a comparison between them. For the Paracrawl
experiments, following Schioppa et al. (2021), first
and last only include the first two encoder and the
last two decoder layers; and the ABIF eigenvectors
were extracted from a model trained on WMT17.
More details on self-influence computation in §B.

Self-influence and outliers. For both influence
definitions, the self-influence of a training point x
can be derived from them setting z = x. It has
been conjectured that high values of self-influence
indicate data outliers (Koh and Liang, 2017; Pruthi
et al., 2020); intuitively, if removing x deteriorates
the loss value on itself, then x should be different
enough so that the prediction on x could not be
learned from the rest of the training data and had to
be memorized. Grounding the influence definition
in the loss magnitude covers many possible causes
for being an outlier, such as mislabeling (i.e., true
noise), ambiguity (i.e., multiple possible labels,
depending on the information missing from the
input), being out-of-distribution, or being a difficult
example (for the model) for other reasons.

Automated curriculum learning. We use the
framing of curriculum learning as a multi-armed
bandit problem (Kreutzer et al., 2021), where arms
represent distinct subsets of the data that are con-
sidered bandit actions and are played at each train-
ing step t. When an action at is played (as man-
dated by the EXP3 or EXP3S algorithms (Auer
et al., 2002)), a uniformly sampled batch belong-
ing to that data subset is fed to the model and
the scalar reward feedback yt = Y t

at is received,
where Y t would be an unknown reward vector
of all possible actions. Through this, the bandit
learns alongside the main task to minimize the re-
gret, R = E[

∑
t y

t]−maxa
∑

t Y
t
a , of not having

played the best-in-hindsight arm.
To quantify the learning progress, existing met-

rics are looking at the loss (L) decrease or the in-
crease in model complexity (Graves et al., 2017).
Among those, we use normalized prediction gain
reward (pgnorm): 1 − L(θt+1)/L(θt) and the co-
sine similarity reward between the gradients of the
training and the reward batches, where the reward
batches are (re)sampled from development sets, fol-
lowing (Kumar et al., 2019; Kreutzer et al., 2021).

3 Stability of Self-Influence

In this section, we evaluate the stability of self-
influence scores with respect to model states, ar-
chitecture and ABIF-specific hyperparameters with
Spearman rank correlation and the 90th percentile
overlap (i.e. overlap between top-10% examples),
suggested by K and Søgaard (2021) as an alterna-
tive to global correlation since one normally cares
only about highly self-influential examples.

It is important to understand whether self-
influence ranking, given that it is thought to be
predictive of data quality, is an inherent data prop-
erty or it is mainly rooted in the architecture. In
this regard, we look at the extent to which model
stability and self-influence stability are intercon-
nected, via the model churn metric (Cormier et al.,
2016), which is the joint expected percentage of
errors on a test distribution. For example, if model
A is right on 9% of the examples that model B gets
wrong, and B is right on the 10% of the examples
that A gets wrong, the churn is 19%. While chang-
ing weight initialization does not always impact
accuracy, it can result in a net zero wins and losses,
referred to as unnecessary churn.

3.1 Dependence on model states

We investigate if the self-influence scores are sen-
sitive to the model state, i.e., initialization of the
model, data ordering or batch size. Previously, K
and Søgaard (2021) showed instability of general
IFs with regards to these variables, while we turn
attention to self -influence stability, given its foun-
dational role for data filtering.

10110

Layers Method LongT5: NQ Transformer: Paracrawl
90th ∩ Spearman 90th ∩ Spearman

first
ABIF 77.78 0.781 40.71 0.727
TracIn 80.49 0.938 63.47 0.872

last
ABIF 87.67 0.933 51.03 0.726
TracIn 86.95 0.949 64.83 0.901

all ABIF 78.03 0.804 44.58 0.771

Table 2: Stability of self-influence estimates to chang-
ing model states (batch size, data ordering and model
initialization), using ABIF and TracIn for LongT5-base
on NQ and Transformer-base on Paracrawl.

Setup. To evaluate the sensitivity of self-
influence to changes in model states, we fine-tune
the same model twice: first we fix all hyperpa-
rameters and second, we vary the batch size, data
ordering seed and the model initialization, keeping
the rest of the hyperparameters fixed between the
two runs, to look into the worst case scenario out
of the ones proposed in K and Søgaard (2021). For
both runs, we compute the self-influence scores
for the training set and compare the two resulting
rankings for all three variants of ABIF (30 eigenvec-
tors) and TracIn. We found it too slow to evaluate
TracIn when using all layers, so we only report
results obtained with ABIF. We run this analysis
for two architectures/tasks: LongT5-base on NQ
and Transformer-base on Paracrawl.

Results. From Table 2, we see that both meth-
ods are considerably more stable to changes in the
model state, than in (K and Søgaard, 2021), where
the maximum 90th percentile overlap was 32.77 for
IFs and Spearman correlation below 0.07. Despite
that the 90th percentile overlaps for Transformer
are lower, we can see the ranking correlation is
still high and believe that, because Paracrawl is a
very noisy dataset (>90% of it is noise, as we show
below), the overlaps are less informative.

The choice of layers has a significant impact on
the stability, the last layers being more stable com-
pared to the first layers, which is consistent with
previous work (Han et al., 2020; Barshan et al.,
2020) where the last layer also yielded better re-
sults. We believe that these results indicate that
self-influence is robust enough to be relied on in
detecting training outliers.

3.2 Dependence on model architecture
Basu et al. (2021) found that network architecture,
in particular its depth and width, impact the accu-
racy of IFs. Here, we investigate to what extent
self-influence is sensitive to a broader set of model
changes that affect model capacity and capabilities.

In order for self-influence to surface dataset er-
ror/outliers, a low degree of instability across such
changes would be necessary to avoid misattribution
of self-influence stability to model architecture. We
compare the self-influence scores resulted from:

• LongT5-base vs. LongT5-large: we fine-tune
both models with the same hyperparameters to
analyze the sensitivity of self-influence to model
size that increases from 220M to 770M params.

• Local vs. Transient-Global attention of LongT5:
we fine-tune two LongT5-base models, each with
a different attention, yet the same configuration
of other hyperparameters, to analyze the sensitiv-
ity to increased capability at same model size.

Results. From Table 3, changing the model ca-
pacity (size or attention) has a negative effect on
the stability of self-influence scores, with the size
hyperparameter affecting it less. The first or all
configurations make self-influence scores more sta-
ble to large capacity changes than last layers, which
were more robust to training parameter modifica-
tions. We conclude, given the strong correlation
between increase in churn and decrease in stabil-
ity, that model instability is a contributor to the
self-influence scores’ instability. Importantly, self-
influence scores appear to be particular sensitive
to model’s architecture or capacity, and should be
used with caution across differently-powered mod-
els. This is expected, as the architecture and model
capacity, unlike training hyperparameters, define
the loss landscape and its dynamics under training
data perturbations. Below, we hence calculate and
use self-influence scores for fixed architectures to
minimize the chances of running into instabilities.

3.3 ABIF-pertinent instability
Finally, as ABIF is a newly developed method, we
inspect the effect of its hyperparameters on stability
in §C and find that contributions pertaining to ABIF
itself are not of concern.

4 Effectiveness of Self-Influence Scores

The impact of filtering highly self-influential exam-
ples on the downstream performance and the recall
of synthetically perturbed training samples, have
been used to measure the correctness of IFs (Guo
et al., 2021; Schioppa et al., 2021), given that the
ground-truth estimate via leave-one-out is unfea-
sible to compute even for medium-sized models.
We ask whether filtering of highly self-influential

10111

Model A Model B Churn Layer 90th ∩ Spearman

LongT5-base
TGlobal attention

|B|=128, seedshuf/init=0

LongT5-base
TGlobal attention

|B|=64, seedshuf/init=43
8.6%

first 77.78 0.781
all 78.03 0.804
last 87.67 0.933

LongT5-base
TGlobal attention

|B|=128, seedshuf/init=0

LongT5-large
TGlobal attention

|B|=128, seedshuf/init=0
12.77%

first 68.06 0.630
all 67.89 0.621
last 42.00 0.432

LongT5-base
TGlobal attention

|B|=128, seedshuf/init=0

LongT5-base
Local attention

|B|=128, seedshuf/init=0
13.54%

first 61.19 0.591
all 60.05 0.591
last 41.92 0.292

Table 3: Relation between model stability and its architecture, capacity or training hyperparameters, on the NQ
dataset. Bold marks differences between models A and B. The first group of ABIF results is from Table 2.

examples is more helpful for o.o.d. evaluation (by
removing true outliers) or if it can also improve
performance on test sets distributed similarly to
training data (and containing the same error types).

Setup. To evaluate the performance of filtering,
we calculated the self-influence scores using all
three layer settings of ABIF, sorted them to retrieve
the highly self-influential examples, and experi-
mented with different thresholds given that the ra-
tio of (harmful) outliers in each dataset is unknown.
Then we retrained on the filtered data, kept the best
result across the layers choices and reported nearby
percentages to illustrate the performance trend.

We consider three tasks with same distribution
evaluation (on NQ, TriviaQA and Toxicity) and
three o.o.d. setups (NQ, Paracrawl and Toxicity):
1) Training a Transformer-base model on Paracrawl
using the same setup as above, and evaluating
on the newstest17 dataset. 2) Fine-tuning the
LongT5-base on NQ as before, but evaluating on
the TriviaQA dataset to make it o.o.d. To align
the task definitions, we only keep the normalized
answer from TriviaQA’s answers list, whereas usu-
ally the metrics are computed against each of the
given answers and the maximum score is reported.
3) Fine-tuning on Wikipedia Toxicity, but evaluat-
ing on the o.o.d. Civil Comments (CivilC) develop-
ment set of 97k comments (Borkan et al., 2019).

Results. From Table 4, we see that self-influence
filtering using ABIF brings higher improvements
for the o.o.d. evaluation setup: up to +9 BLEU
points on Paracrawl-newstest17 and +3 F1 points
on NQ-TriviaQA setup, with a negligible improve-
ment in the Toxicity-CivilC case, which shows that
training on cleaner datasets improves performance
on an o.o.d. test set. In the in-distribution setup,
TriviaQA and NQ trained on full data always out-
perform filtering, which is not surprising given both
are high-quality datasets, but also brings very small

Figure 1: Distribution of the correct and incorrect exam-
ples annotated by expert annotators in 5 equally-sized
bins (quantiles) computed based on the self-influence
ranking (last layers), and ordered from low (0) to high
influence (4). The annotations include wrong input (con-
text), wrong label, or both wrong.

improvements on Toxicity, which is expected to be
very noisy. This shows that the common heuristic
of filtering highly self-influential examples might
not be the best fit for the in-distribution tasks and
we develop further why.

4.1 Noise captured by high self-influence scores

Here we study how a naturally occurring noise, as
annotated by human experts, is partitioned by the
self-influence ranking. Additionally, we compare
to synthetic noise, tested previously to be accu-
rately retrieved by high self-influence in (Schioppa
et al., 2021), to see if significant differences occur.

Setup. We use the 5-way annotations by hu-
man experts on a set of 205 uniformly sampled
NQ examples and released with the original pa-
per (Kwiatkowski et al., 2019). The examples were
annotated as correct, debatable and wrong, but we
treat the debatable entries to be in the correct bucket
as there is no strong evidence that suggests they
are wrong. We compute the self-influence scores
on the first and the last layers and analyze how the
natural noise is being ranked.

For comparison, we looked at the ability to

10112

Train Eval % Used EM F1 BLEU

se
q2

se
q

NQ NQ
100% 59.05 63.97 -
90% 58.49 63.06 -

TriviaQA TriviaQA
100% 78.08 80.17 -
98% 77.49 79.72 -
90% 74.64 76.96 -

NQ TriviaQA
100% 16.06 20.55 -
95% 18.96 23.52 -
90% 17.52 21.85 -

Paracrawl newstest17
100% - - 21.36
10% - - 30.45

Train Eval % Used Acc F1

cl
as

si
fic

at
io

n

Toxicity Toxicity
100% 92.61 95.80
95% 93.15 96.13
90% 92.86 95.97

Toxicity CivilC
100% 95.28 97.51
90% 95.42 97.59

Table 4: Performance of percentile filtering of highly self-influential examples as per ABIF self-influence on in- and
out-of-distribution test sets, for seq2seq and classification tasks. We report the maximum over all, first, and last
settings. For the seq2seq tasks, the metrics that don’t apply are marked with dashes.

retrieve synthetic noise via the self-influential
examples and compute the recall in the top-
10%/20%/30% of self-influence scores. We alter
the original data by uniformly sampling 10% of the
dataset for which we shuffle the labels, ensuring
all labels were changed from its initial value. This
is important because a significant amount of ques-
tions have no answer (they are not answerable),
because they are natural search queries.

Results. The synthetic noise retrieval confirms
previous findings with a high recall, as 29% of the
synthetic noise lands in the top-20% ranks and 94%
in the top-30%, when using last layers (vs. 84% in
top-30% for first layers). We hypothesize that the
synthetic noise is not predominantly in top-10%
because other forms of outliers are already present
in the dataset that are more harmful to the model.

The behaviour of natural noise is considerably
different. It barely comes up among highly self-
influential buckets as we can see in Figure 1, but
is distributed predominantly among the lowest and
mid-influential buckets. Examples annotated as
having wrong labels are absent from the top-20%.
Additionally, we see that input noise does not affect
the model as much as label noise, given that exam-
ples with wrong input are almost evenly distributed
in the lower 80% of the data. These results suggest
that manual tuning of the filtering threshold of self-
influence rankings may not find a percentile range
which, if removed, improves performance.

5 Automated Filtering of Outliers

As we showed above, using self-influence to filter
noisy training data has the drawback of the diffi-
culty of choosing a right cut-off threshold. Yet,
trial-and-error search for a fixed threshold based
on the downstream performance remains popular,
which is costly and does not generalize across

datasets. To rectify, Lam et al. (2022) attempted
clustering and identifying abrupt changes in the
magnitude of the sorted self-influence scores, but
this resulted in a low recall rate. Hence, we move
to automated curriculum learning to dynamically
identify the outlying parts of data based on the
buckets of self-influence scores without commit-
ting to completely remove any of them.

First, we validate how different the quality sig-
nal is from each individual self-influence bucket on
NQ. We found (Figure 4 in §F) that EM of the high-
est self-influence bucket is much lower (although
not zero) compared to the rest of buckets, which
are in turn difficult to separate, possibly, because
they contain data of mixed usefulness. A positive
aspect of AutoCL is that, due to exploration, the
model regularly visits all buckets, and may dynami-
cally up- or down-weight buckets depending on the
model’s current needs, overcoming the rigidness of
a fixed threshold filtering.

Setup. We verify the feasibility of AutoCL with
two definitions of the self-influence, given by ABIF
and by TracIn, and check that the findings are con-
sistent across three datasets (NQ, Paracrawl and
Toxicity on T5). Bandit actions are mapped to
equal-sized data buckets corresponding to a prede-
fined number of percentile ranges of self-influence
scores. We first explore 10 buckets, which should
allow the bandit to at least match the performance
of filtering, and then consider more granular setups
(20 and 25 buckets) which would be infeasible to
manually test against filtering. We expect the ban-
dit not to use much of the high self-influential buck-
ets, nor the lowest bucket, which prior work found
to be less useful because of its simplicity (Feldman
and Zhang, 2020; Schioppa et al., 2021). Follow-
ing (Schioppa et al., 2021), we report BLEU for
Paracrawl at 10k and 200k steps. As baselines

10113

Config Method BLEU@10k BLEU@200k

Pa
ra

cr
aw

l
Baseline 13.75 21.36

Filtered 90% ABIF 26.8 30.45
Filtered 90% TracIn(1) 22.10 27.87

AutoCL - 5 bins ABIF 21.45 27.48
AutoCL - 10 bins ABIF 25.50 30.45
AutoCL - 25 bins ABIF 24.13 31.38
AutoCL - 25 bins TracIn(1) 18.60 29.33

Config Method EM F1

N
at

ur
al

Q
ue

st
io

ns Baseline 59.05 63.97
Filtered 10% ABIF 58.49 63.06
Filtered 10% TracIn(3) 58.09 62.75

AutoCL - 10 bins ABIF 59.72 64.33
AutoCL - 25 bins ABIF 59.20 64.01
AutoCL - 25 bins TracIn(3) 59.59 64.32

Config Method Acc F1

To
xi

ci
ty Baseline 91.73 67.37

Filtered 5% ABIF 91.80 67.22
AutoCL - 10 bins ABIF 93.61 70.56
AutoCL - 25 bins ABIF 92.09 67.58

Table 5: Performance of threshold filtering and AutoCL,
on top of self-influence scores by ABIF or TracIn (num-
ber of checkpoints C in brackets).

we use the filtering methods from §4. See §G for
AutoCL hyperparameters of reported results.

Results. From Table 5, we see that AutoCL
strongly outperforms filtering methods when
given enough bucket granularity, for very noisy
Paracrawl, noisy Toxicity and low noise NQ, and
regardless of the task and IF definition. We improve
over filtering on Paracrawl by +1 BLEU point, on
Toxicity by +3.2 F1 points, and on NQ by +1.2 F1
points. In addition, on Paracrawl at 10k steps fil-
tering with a good threshold outperforms AutoCL
which requires time to learn which are the useful
buckets. Given that ABIF and TracIn showed simi-
lar results for NQ and Paracrawl, we only look at
ABIF for Toxicity.

We check if the multi-armed bandit’s learned
policy (probabilities of choosing a data bucket)
is interpretable in Figure 2. In general, there is
no incentive for the policy to be interpretable as
it targets loss improvements only and may under-
take redundant switches between neighboring buck-
ets in setups with high bucket granularity with the
same end performance. That said, for Paracrawl,
the model quickly learns to drop the top-92% of
the data as ranked by self-influence, which almost
matches our best filtering threshold of 90%, in-
stead training on 2/3 of time on the bottom-4%/8%
and only 1/3 of time from the top-4% which cor-
responds to the lowest influence and is known to
be less useful to the model (Schioppa et al., 2021).
For NQ, there is more of bucket switching, and the

model initially uses the mid-influence buckets (top-
50%/80%), followed by the high-influence outlier
buckets (top-80%) which are quickly dropped and
continues alternating between the lowest buckets
(in bottom-20%). For Toxicity, the policy is not
interpretable (though the high influence bucket is
heavily used at all stages) but still brings more
gains compared to the filtering. As TriviaQA is
a very clean human-curated dataset, filtering does
not improve over baseline, and AutoCL brings only
nominal insignificant gains (see §D).

Finally, one might wonder if AutoCL improve-
ments are due to self-influence or due to the in-
creased data scheduling flexibility, i.e., if a sim-
pler example difficulty signal would suffice to at-
tain similar gains. In §E, we run AutoCL on
NQ/TriviaQA buckets defined via difficulty sig-
nals based on domain knowledge (context length,
word rarity, context-question lexical overlap and
question type) and find that self-influence is indeed
crucial for the observed gains.

6 Related Work

Dataset error detection. Deep learning models’
performance can be sensitive to noisy datasets (Ku-
mar et al., 2020; Zhang et al., 2017; Khayrallah
and Koehn, 2018), and various instance-based scor-
ing methods have been proposed, alongside with
sorting and thresholding to filter out noisy training
example, including bilingual cross-entropy differ-
ence to rank parallel corpora (Axelrod et al., 2011),
“forgetting events”, where an individual training
example transitions from being classified correctly
to incorrectly over the course of learning (Toneva
et al., 2019), or area-under-margin (Pleiss et al.,
2020), computed as the difference between the log-
its value in classification tasks. IFs were used to de-
tect dataset errors (Koh and Liang, 2017; Schioppa
et al., 2021), by looking at self-influence – how
much a training point influences its own loss. How-
ever, these methods led to various degrees of suc-
cess: in the case of IFs, Koh and Liang (2017)
and Guo et al. (2021) improve performance by di-
rectly fixing/augmenting the mislabeled highly self-
influential training examples, but filtering lowest or
highest influential examples out did not outperform
training on full data in other studies (Guo et al.,
2021; Kocijan and Bowman, 2020). At the same
time, it brought consistent performance gains on an
o.o.d. task for MT (Schioppa et al., 2021), raising
the question whether filtering helps for improving

10114

(a) Paracrawl (25 bins); very high noise. (b) NQ (10 bins); low noise data. (c) Toxicity (10 bins); high noise data.

Figure 2: Learned AutoCL policies, showing the probabilities attributed to each bucket (where B0 is the lowest
influence bin). The policy extracted from Paracrawl (a) used 25 bins (with only B0-B3 in the legend), and the ones
from NQ (b) and Toxicity (c) used 10 bins.

performance on in-distribution test sets or is more
effective for o.o.d. generalization.

Harmful vs. useful outliers. A shortcoming of
filtering/data selection is that outliers are not al-
ways harmful. Prior work has shown that training
with noise, or with injected artificial noise, can in-
crease the stability of the models vis-à-vis noisy
data (Vaibhav et al., 2019; Belinkov and Bisk, 2018;
Heigold et al., 2018), which can be caused by dif-
ferences in noise types and their interaction with
the target task. Al Sharou et al. (2021) noted that
only “harmful noise” that affects the performance
of the system or does not carry the intended mean-
ing should be removed, while “useful noise” should
be kept or even added to the training data if it nat-
urally occurs at test time (Rolnick et al., 2017).
Moreover, the performance of the noise detection
methods were evaluated, due to a lack of suitable
datasets, on synthetic noise, but Jiang et al. (2020)
found synthetic noise to affect much more DNN’s
capability to generalize than real noise. We are par-
ticularly interested in whether that holds true for
IFs and analyze what kinds of outliers are captured
by highly self-influential examples.

Dynamic data schedules. Following this limita-
tion of filtering methods, different training sched-
ules that account for the training dynamics have
been developed inspired by Bengio et al. (2009)
and van der Wees et al. (2017). Swayamdipta et al.
(2020) proposed a “easy-to-hard” training sched-
ules based on the mean (confidence) and standard
deviation (variability) of the gold label probabil-
ities over the training epochs, where hard points
to samples with low confidence and low variabil-
ity. Wang et al. (2018) proposes using a small
amount of trusted data to help the model measure

noise and do online data selection to train on gradu-
ally noise-reduced data batches, resembling active
learning. Similarly, Nguyen et al. (2020) uses a
self-ensemble for label filtering during training, by
gradually allowing supervision from clean labels
and stopping learning on the filtered noisy labels.
Jiang et al. (2020) develops a method that use cur-
riculum learning and vicinal risk minimization to
handle both real and synthetic noise. We note that
curriculum-based methods have been more effec-
tive than filtering, but also have inherent complica-
tions, such as defining “easy” and “hard” or design-
ing an effective training schedule following these
definitions. To overcome this limitation, we used
automated curriculum learning (Graves et al., 2017;
Kreutzer et al., 2021) that employ a multi-armed
bandit to learn the most effective training schedule.

7 Conclusion

We proposed a general method for improving
model performance in the presence of noisy train-
ing data based on self-influence and bandit cur-
riculum learning, and without relying on thresh-
old filtering. We showed that Arnoldi iteration
based self-influence scores of training instances
are stable with respect to varying training hyper-
parameters such as batch size, random seeds, and
the iteration’s hyperparameters, and thus can be
a reliable foundation for data cleaning methods.
We further demonstrated that not all data outliers
(as per human annotation) receive similarly-valued
self-influence scores, what necessitates generaliz-
ing threshold filtering to a dynamic data reweigh-
ing. Finally, we showed that dynamically reweigh-
ing based on multi-armed bandits, which pick self-
influence bins to sample batches from, outperforms
threshold filtering on noisy and clean datasets.

10115

8 Limitations

A potential limitation of our approach is the re-
quirement to precompute self-influence scores on
a pretrained model and to retrain again using
these scores. While recomputing the self-influence
scores during training may make them reflect the
influence w.r.t. the current state of the evolving
model better, doing this efficiently would be a non-
trivial engineering problem. Additional unexplored
factors are the choice of the training data for the
scores-producing model (i.e. trained on clean data,
as in (Schioppa et al., 2021) and in our Paracrawl
experiments, or on the to-be-cleaned data as in our
QA and toxicity experiments) and the trade-offs
of bandit rewards which influence the overhead of
bandit learning alongside the main training (from
negligible for the cosine similarity reward to an
additional forward pass for the pgnorm reward).
Finally, we left exploration of the impact of natural
noise on performance, task-specific rewards and
exploiting other signals for filtering to future work.

References
Khetam Al Sharou, Zhenhao Li, and Lucia Specia. 2021.

Towards a better understanding of noise in natural
language processing. In RANLP.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer.
2002. Finite-time analysis of the multiarmed ban-
dit problem. Mach. Learn., 47(2–3):235–256.

Amittai Axelrod, Xiaodong He, and Jianfeng Gao. 2011.
Domain adaptation via pseudo in-domain data selec-
tion. In EMNLP.

Marta Bañón, Pinzhen Chen, Barry Haddow, Kenneth
Heafield, Hieu Hoang, Miquel Esplà-Gomis, Mikel L.
Forcada, Amir Kamran, Faheem Kirefu, Philipp
Koehn, Sergio Ortiz Rojas, Leopoldo Pla Sempere,
Gema Ramírez-Sánchez, Elsa Sarrías, Marek Strelec,
Brian Thompson, William Waites, Dion Wiggins,
and Jaume Zaragoza. 2020. ParaCrawl: Web-scale
acquisition of parallel corpora. In ACL.

Elnaz Barshan, Marc-Etienne Brunet, and
Gintare Karolina Dziugaite. 2020. Relatif:
Identifying explanatory training examples via
relative influence. In AISTATS.

Samyadeep Basu, Philip Pope, and Soheil Feizi. 2021.
Influence functions in deep learning are fragile. In
ICLR.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In ICLR.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
ICML.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum
Thain, and Lucy Vasserman. 2019. Nuanced metrics
for measuring unintended bias with real data for text
classification. In WWW.

Samuel R. Bowman and George Dahl. 2021. What
will it take to fix benchmarking in natural language
understanding? In NAACL.

R. Dennis Cook and Sanford Weisberg. 1980. Char-
acterizations of an empirical influence function for
detecting influential cases in regression. Technomet-
rics, 22(4):495–508.

Quentin Cormier, Mahdi Milani Fard, Kevin Canini, and
Maya Gupta. 2016. Launch and iterate: Reducing
prediction churn. In NIPS.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL.

Sebastian Ebert, Alice Shoshana Jakobovits, and Katja
Filippova. 2022. Understanding text classification
data and models using aggregated input salience. In
R2HCAI workshop at AAAI.

Vitaly Feldman and Chiyuan Zhang. 2020. What neural
networks memorize and why: Discovering the long
tail via influence estimation. In NeurIPS.

Matt Gardner, Jonathan Berant, Hannaneh Hajishirzi,
Alon Talmor, and Sewon Min. 2019. Question an-
swering is a format; when is it useful? CoRR,
abs/1909.11291.

Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi
Munos, and Koray Kavukcuoglu. 2017. Automated
curriculum learning for neural networks. In ICML.

Han Guo, Nazneen Fatema Rajani, Peter Hase, Mohit
Bansal, and Caiming Xiong. 2021. Fastif: Scalable
influence functions for efficient model interpretation
and debugging. In EMNLP.

Mandy Guo, Joshua Ainslie, David Uthus, Santiago On-
tanon, Jianmo Ni, Yun-Hsuan Sung, and Yinfei Yang.
2022. LongT5: Efficient text-to-text transformer for
long sequences. In NAACL.

Xiaochuang Han, Byron C. Wallace, and Yulia Tsvetkov.
2020. Explaining black box predictions and unveil-
ing data artifacts through influence functions. In
ACL.

Georg Heigold, Stalin Varanasi, Günter Neumann, and
Josef van Genabith. 2018. How robust are character-
based word embeddings in tagging and MT against
wrod scramlbing or randdm nouse? In AMTA.

10116

https://aclanthology.org/2021.ranlp-1.7
https://aclanthology.org/2021.ranlp-1.7
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://aclanthology.org/D11-1033
https://aclanthology.org/D11-1033
https://doi.org/10.18653/v1/2020.acl-main.417
https://doi.org/10.18653/v1/2020.acl-main.417
https://doi.org/10.48550/ARXIV.2003.11630
https://doi.org/10.48550/ARXIV.2003.11630
https://doi.org/10.48550/ARXIV.2003.11630
https://doi.org/10.48550/ARXIV.2006.14651
https://doi.org/10.48550/ARXIV.1711.02173
https://doi.org/10.48550/ARXIV.1711.02173
https://doi.org/10.48550/ARXIV.1711.02173
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.48550/ARXIV.1903.04561
https://doi.org/10.48550/ARXIV.1903.04561
https://doi.org/10.48550/ARXIV.1903.04561
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
http://www.jstor.org/stable/1268187
http://www.jstor.org/stable/1268187
http://www.jstor.org/stable/1268187
https://proceedings.neurips.cc/paper/2016/file/dc5c768b5dc76a084531934b34601977-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/dc5c768b5dc76a084531934b34601977-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/ARXIV.2211.05485
https://doi.org/10.48550/ARXIV.2211.05485
https://proceedings.neurips.cc/paper/2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1e14bfe2714193e7af5abc64ecbd6b46-Paper.pdf
https://doi.org/10.48550/ARXIV.1909.11291
https://doi.org/10.48550/ARXIV.1909.11291
https://proceedings.mlr.press/v70/graves17a.html
https://proceedings.mlr.press/v70/graves17a.html
https://doi.org/10.48550/ARXIV.2012.15781
https://doi.org/10.48550/ARXIV.2012.15781
https://doi.org/10.48550/ARXIV.2012.15781
https://doi.org/10.18653/v1/2022.findings-naacl.55
https://doi.org/10.18653/v1/2022.findings-naacl.55
https://doi.org/10.48550/ARXIV.2005.06676
https://doi.org/10.48550/ARXIV.2005.06676
https://aclanthology.org/W18-1807
https://aclanthology.org/W18-1807
https://aclanthology.org/W18-1807

Lu Jiang, Di Huang, Mason Liu, and Weilong Yang.
2020. Beyond synthetic noise: Deep learning on
controlled noisy labels. In ICML.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In ACL.

Karthikeyan K and Anders Søgaard. 2021. Revisit-
ing methods for finding influential examples. CoRR,
abs/2111.04683.

Huda Khayrallah and Philipp Koehn. 2018. On the
impact of various types of noise on neural machine
translation. In WMT.

Vid Kocijan and Samuel Bowman. 2020. Influence
Functions Do Not Seem to Predict Usefulness in
NLP Transfer Learning. wp.nyu.edu.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In
ICML.

Pang Wei Koh, Jacob Steinhardt, and Percy Liang. 2022.
Stronger data poisoning attacks break data sanitiza-
tion defenses. Mach. Learn., 111:1–47.

Shuming Kong, Yanyan Shen, and Linpeng Huang.
2022. Resolving training biases via influence-based
data relabeling. In ICLR.

Julia Kreutzer, David Vilar, and Artem Sokolov. 2021.
Bandits don’t follow rules: Balancing multi-facet
machine translation with multi-armed bandits. In
EMNLP.

Ankit Kumar, Piyush Makhija, and Anuj Gupta. 2020.
Noisy text data: Achilles’ heel of BERT. In Work-
shop on Noisy User-generated Text.

Gaurav Kumar, George Foster, Colin Cherry, and
Maxim Krikun. 2019. Reinforcement learning based
curriculum optimization for neural machine transla-
tion. In NAACL.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. TACL.

Tsz Kin Lam, Eva Hasler, and Felix Hieber. 2022. An-
alyzing the use of influence functions for instance-
specific data filtering in neural machine translation.
In WMT.

Duc Tam Nguyen, Chaithanya Kumar Mummadi, Thi
Phuong Nhung Ngo, Thi Hoai Phuong Nguyen,
Laura Beggel, and Thomas Brox. 2020. Self: Learn-
ing to filter noisy labels with self-ensembling. In
ICLR.

Barak A. Pearlmutter. 1994. Fast Exact Multiplication
by the Hessian. Neural Computation, 6(1):147–160.

Denis Peskov, Joe Barrow, Pedro Rodriguez, Graham
Neubig, and Jordan Boyd-Graber. 2019. Mitigating
noisy inputs for question answering. In Interspeech.

Emmanouil Antonios Platanios, Otilia Stretcu, Graham
Neubig, Barnabas Poczos, and Tom M. Mitchell.
2019. Competence-based curriculum learning for
neural machine translation. In NAACL.

Geoff Pleiss, Tianyi Zhang, Ethan R. Elenberg, and
Kilian Q. Weinberger. 2020. Identifying mislabeled
data using the area under the margin ranking. In
NeurIPS.

Garima Pruthi, Frederick Liu, Mukund Sundararajan,
and Satyen Kale. 2020. Estimating training data
influence by tracing gradient descent. In NeurIPS.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMRL, 21:1–67.

Adam Roberts, Hyung Won Chung, Anselm Levskaya,
Gaurav Mishra, James Bradbury, Daniel Andor, Sha-
ran Narang, Brian Lester, Colin Gaffney, Afroz
Mohiuddin, Curtis Hawthorne, Aitor Lewkowycz,
Alex Salcianu, Marc van Zee, Jacob Austin, Sebas-
tian Goodman, Livio Baldini Soares, Haitang Hu,
Sasha Tsvyashchenko, Aakanksha Chowdhery, Jas-
mijn Bastings, Jannis Bulian, Xavier Garcia, Jianmo
Ni, Andrew Chen, Kathleen Kenealy, Jonathan H.
Clark, Stephan Lee, Dan Garrette, James Lee-Thorp,
Colin Raffel, Noam Shazeer, Marvin Ritter, Maarten
Bosma, Alexandre Passos, Jeremy Maitin-Shepard,
Noah Fiedel, Mark Omernick, Brennan Saeta, Ryan
Sepassi, Alexander Spiridonov, Joshua Newlan, and
Andrea Gesmundo. 2022. Scaling up models and
data with t5x and seqio. CoRR, abs/2203.17189.

Anna Rogers, Matt Gardner, and Isabelle Augenstein.
2023. QA dataset explosion: A taxonomy of NLP
resources for question answering and reading com-
prehension. ACM Computing Surveys, 55(10):1–45.

David Rolnick, Andreas Veit, Serge Belongie, and Nir
Shavit. 2017. Deep learning is robust to massive
label noise. CoRR, abs/1705.10694.

Andrea Schioppa, Katja Filippova, Ivan Titov, and
Polina Zablotskaia. 2023. Theoretical and practi-
cal perspectives on what influence functions do. In
NeurIPS.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and
Artem Sokolov. 2021. Scaling up influence functions.
In AAAI.

Saku Sugawara, Kentaro Inui, Satoshi Sekine, and
Akiko Aizawa. 2018. What makes reading compre-
hension questions easier? In EMNLP.

10117

https://proceedings.mlr.press/v119/jiang20c.html
https://proceedings.mlr.press/v119/jiang20c.html
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.48550/ARXIV.2111.04683
https://doi.org/10.48550/ARXIV.2111.04683
https://doi.org/10.18653/v1/w18-2709
https://doi.org/10.18653/v1/w18-2709
https://doi.org/10.18653/v1/w18-2709
https://wp.nyu.edu/cilvr/2020/08/27
https://wp.nyu.edu/cilvr/2020/08/27
https://wp.nyu.edu/cilvr/2020/08/27
https://doi.org/10.48550/ARXIV.1703.04730
https://doi.org/10.48550/ARXIV.1703.04730
https://doi.org/10.48550/ARXIV.1811.00741
https://doi.org/10.48550/ARXIV.1811.00741
https://openreview.net/forum?id=EskfH0bwNVn
https://openreview.net/forum?id=EskfH0bwNVn
http://arxiv.org/abs/2110.06997
http://arxiv.org/abs/2110.06997
https://doi.org/10.18653/v1/2020.wnut-1.3
https://doi.org/10.48550/ARXIV.1903.00041
https://doi.org/10.48550/ARXIV.1903.00041
https://doi.org/10.48550/ARXIV.1903.00041
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.48550/ARXIV.2210.13281
https://doi.org/10.48550/ARXIV.2210.13281
https://doi.org/10.48550/ARXIV.2210.13281
https://openreview.net/forum?id=HkgsPhNYPS
https://openreview.net/forum?id=HkgsPhNYPS
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/6/1/147/812672/neco.1994.6.1.147.pdf
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/6/1/147/812672/neco.1994.6.1.147.pdf
https://doi.org/10.48550/ARXIV.1908.02914
https://doi.org/10.48550/ARXIV.1908.02914
https://doi.org/10.48550/ARXIV.1903.09848
https://doi.org/10.48550/ARXIV.1903.09848
https://doi.org/10.48550/ARXIV.2001.10528
https://doi.org/10.48550/ARXIV.2001.10528
https://doi.org/10.48550/ARXIV.2002.08484
https://doi.org/10.48550/ARXIV.2002.08484
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.2203.17189
https://doi.org/10.48550/ARXIV.2203.17189
https://doi.org/10.1145/3560260
https://doi.org/10.1145/3560260
https://doi.org/10.1145/3560260
https://doi.org/10.48550/ARXIV.1705.10694
https://doi.org/10.48550/ARXIV.1705.10694
http://arxiv.org/abs/2305.16971
http://arxiv.org/abs/2305.16971
https://arxiv.org/abs/2112.03052
https://doi.org/10.48550/ARXIV.1808.09384
https://doi.org/10.48550/ARXIV.1808.09384

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith,
and Yejin Choi. 2020. Dataset cartography: Mapping
and diagnosing datasets with training dynamics. In
EMNLP.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des
Combes, Adam Trischler, Yoshua Bengio, and Geof-
frey J. Gordon. 2019. An empirical study of example
forgetting during deep neural network learning. In
ICLR.

Vaibhav Vaibhav, Sumeet Singh, Craig Stewart, and Gra-
ham Neubig. 2019. Improving robustness of machine
translation with synthetic noise. In NAACL.

Marlies van der Wees, Arianna Bisazza, and Christof
Monz. 2017. Dynamic data selection for neural ma-
chine translation. In EMNLP.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

Wei Wang, Taro Watanabe, Macduff Hughes, Tetsuji
Nakagawa, and Ciprian Chelba. 2018. Denoising
neural machine translation training with trusted data
and online data selection. In WMT.

Ellery Wulczyn, Nithum Thain, and Lucas Dixon. 2017.
Ex machina: Personal attacks seen at scale. In WWW.

Chih-Kuan Yeh, Ankur Taly, Mukund Sundararajan,
Frederick Liu, and Pradeep Ravikumar. 2022. First
is better than last for language data influence. In
NeurIPS.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. 2017. Understanding deep
learning requires rethinking generalization. In ICLR.

10118

https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.48550/ARXIV.1812.05159
https://doi.org/10.48550/ARXIV.1812.05159
https://doi.org/10.18653/v1/N19-1190
https://doi.org/10.18653/v1/N19-1190
https://doi.org/10.18653/v1/D17-1147
https://doi.org/10.18653/v1/D17-1147
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1809.00068
https://doi.org/10.48550/ARXIV.1809.00068
https://doi.org/10.48550/ARXIV.1809.00068
https://doi.org/10.48550/ARXIV.1610.08914
https://doi.org/10.48550/ARXIV.2202.11844
https://doi.org/10.48550/ARXIV.2202.11844
https://doi.org/10.48550/ARXIV.1611.03530
https://doi.org/10.48550/ARXIV.1611.03530

A Model training details

We experiment with three different architectures:
the standard Transformer-base on the MT task, two
sizes of the state-of-the-art LongT5 architecture for
long inputs on the QA tasks, and the classic BERT-
base and T5 architectures for text classification.

Transformer. For the MT task, we implement
the standard, 6-layer, Transformer-base architec-
ture (Vaswani et al., 2017) trained for 200k steps
with a batch size of 128 using T5X (Roberts et al.,
2022) on 16-core TPUv2 and fixed input length
of 128 on Paracrawl dataset. For training, we use
Adafactor with a learning rate of 2.0 and the rsqrt
decay (Vaswani et al., 2017) of 0.8, a dropout rate
of 0.1 and a 32k SentencePiece model.

LongT5. For our QA tasks, we use the state-of-
the-art LongT5-base and LongT5-large architec-
ture (Guo et al., 2022)1 implemented in T5X, using
a 32k SentencePiece model, a batch size of 128
and AdaFactor as in the original work. We fine-
tune the models on NQ for 261k steps on a 16-
core TPUv2 to convergence, with a learning rate of
0.001, dropout rate of 0.1 and a fixed input length
of 4,096. We employ the same setup for TriviaQA,
except we double the input length, to account for
TriviaQA’s much longer contexts than in NQ.

BERT. For the text toxicity classification, we ex-
periment with BERT-base (Devlin et al., 2019), and
fine-tune it for 35k steps with early stopping, batch
size of 32, learning rate of 10−6, weight decay of
5 · 10−6, input length of 128 and dropout of 0.5.

T5. To use our T5X AutoCL implementation,
we reframed the toxicity classification task as a
seq2seq task in T5 (Raffel et al., 2019) by pre-
dicting two tokens: toxic and safe, treating other
output tokens as misclassifications, and report F1
for the toxic class. The T5-base model is trained
for 120k steps, with input length of 128, batch size
of 64, dropout rate of 0.1, using Adafactor, with a
learning rate of 0.01 and decay rate of 0.1.

B Self-influence calculation

ABIF self-influence. To trade-off between mem-
ory/speed for accuracy, ABIF introduces several
hyperparameters that may impact its accuracy, in-
cluding the choice of layer’s gradients to use, the

1github.com/google-research/longt5.

Layers 90th ∩ Spearman

number of eigenvectors
first 96.79 0.99
last 96.74 0.99
all 93.90 0.99

initialization
first 96.21 0.99
last 96.92 0.99
all 97.08 0.99

Table 6: Stability of self-influence estimates with re-
spect to ABIF hyperparameters using LongT5 on NQ.

number of top eigenvalues to use, and the num-
ber of Arnoldi iterations. We use 30 eigenvalues
and 60 iterations for computing the self-influence
scores, and compare it, resp., to 100 and 200 in an
ablation.

TracIn self-influence. We employ TracIn as a
baseline for NQ self-influence scoring, and use
a fixed projection size of 1,024 and three check-
points: from the beginning of the training (60k
steps), middle of training (140k) and the final
checkpoint (260k). We could not scale TracIn to
100M Paracrawl examples, so we use its variant
by (Schioppa et al., 2021), who reduce gradient
dimensionality to 30 using Gaussian matrices for
the last checkpoint at 100k steps.

C ABIF-pertinent instability

Finally, given that ABIF is a newly developed
method, we inspect if different choices of hyper-
parameters for ABIF can contribute to the instabil-
ity, including layers choice, number of top eigen-
vectors (30 vs. 100) and the initialization seed, by
recomputing the self-influence scores with vari-
ous configurations using the fixed hyperparameters
variant of the LongT5-base fine-tuned earlier.

Results. From Table 6 we can see that contribu-
tions that pertain to ABIF itself are not of concern
since there are largely unaffected by the different
choice of its parameters. The 90th percentile over-
lap is lower, despite the almost perfect correlation,
because the overlap is sensitive to insignificant
movements in the vicinity of the cut-off value.

D AutoCL on clean dataset: TriviaQA

In Table 4, we saw that filtering for the in-
distribution task for TriviaQA proves unsuccess-
ful, attributable to TriviaQA being a very clean
human-curated dataset. Regardless, we attempted

10119

https://github.com/google-research/longt5

Figure 3: Policy learned by the model during AutoCL,
showing the soft-max weights attributed to each bin
(where B0 is the lowest influence bucket). This policy
leads to same downstream quality as the full data and
training with uniform sampling.

to run the AutoCL on it and found that the method
reaches the same quality as the model trained on
the full data (Table 7), despite not using uniformly
random samples. Figure 3 shows the learned pol-
icy for 10 self-influence buckets, where we see
that the model uses all buckets, initially with more
emphasis on harder buckets (top 30% of highly
influential examples) and follows up with using
more the top 10% and most of the lowest influence
bucket. Commencing with highly influential exam-
ples is reasonable because, given the lack of noise,
they are presumably difficult examples with high
impact on accuracy, which need to be memorized.

Config Method EM F1

Baseline 78.08 80.17
Filtered 10% ABIF 77.49 79.72

AutoCL - 10 bins ABIF 78.13 80.29

Table 7: Filtering performance and AutoCL on
TriviaQA (very clean dataset) using ABIF self-influence
scores.

E Other difficulty signals for AutoCL

In §5, AutoCL delivered important gains on NQ
(+1.2 F1) driven by self-influence ranking as a sig-
nal. However, one might wonder if the improve-
ments could be attainable by AutoCL with much
simpler example difficulty proxies for splitting the
data into buckets.

Setup. We propose a suite of heuristics, inspired
by prior work, to split the training data in a
fixed number of buckets, as we did with the self-
influence ranking, and explore a variety of hyper-
parameters configurations, using the LongT5-base
model on NQ and TriviaQA. We train the same

LongT5-base as in earlier sections, with the excep-
tion of training on NQ for 200k steps. The signals
we employ are:

• Context length: (Platanios et al., 2019) proposed
using sentence length as a proxy for translation
difficulty. We consider the length of the context
because longer context would require more cross-
sentence reasoning to find the answers.

• Word rarity: Another layer of difficulty can be
added by very specific domain-questions (thus
words that rarely appear in training). According
to Platanios et al. (2019), low frequency words
make it difficult to learn a robust representation
of the words, but also make the gradients of
the rare word embeddings to have high variance.
Therefore, Platanios et al. (2019) proposed us-
ing the likelihood of the unigram probabilities
to aggregate the word frequencies in a difficulty
heuristic. Given a corpus of sentences, siMi=1, the
relative word frequencies are defined as:

p̂(wj) ≜
1

Ntotal

M∑

i=1

Ni∑

k=1

1wi
k=wj

, (1)

where j indexes unique words in the corpus.
These are aggregated using the logarithm of word
probabilities to prevent numerical errors:

drarity(si) ≜ −
Ni∑

k=1

log p̂(wi
k) (2)

• Context-question lexical overlap: Sugawara
et al. (2018) showed that questions with low
lexical overlap with the context tend to require
reasoning skills compared to superficial word
matching, and showed the models have worse
performance on the subset where the answer was
not present in the most similar sentence to the
question. We propose as a metric the overlap
of tokens between context and question after re-
moving the stop words and normalizing by the
number of remaining tokens:

d(qno-sw, c) ≜
| qno-sw ∩ c |
| qno-sw | , (3)

where qno-sw denotes question from which stop
words have been removed.

• Question type: Gardner et al. (2019) argued that
question answering encompasses a broad range

10120

of conceptual tasks which are posed as questions
(i.e. fitting the question format), but do not resem-
ble a cohesive task. Rogers et al. (2023) grouped
these tasks into three categories, with an increas-
ing degree of difficulty based on easiness to re-
place the questions in a dataset with content-free
identifiers: classification (What is the sentiment
of [X]?), slot-filling/template with no meaning-
ful question understanding (When was [Person]
born?) and open-ended questions.

We capitalize on that distinction for automation
purposes and adapt it to the NQ-specific query
types. We consider the top-N type of questions
with a minimum representation of 5% of the data
given by the first token of each sentence (‘who’,

‘what’, ‘when’, ‘where’, ‘how’, ‘which’, ‘will’)
and place remaining training examples in the
category other, which should be highly diverse
and contain many under-represented examples.

Signal Algorithm # buckets Reward EM F1

N
at

ur
al

Q
ue

st
io

ns Baseline 58.10 62.65
Length EXP3 5 pgnorm 57.79 62.88
Length EXP3S 10 cosine 58.03 62.69

Word rarity EXP3 5 pgnorm 57.82 62.52
Word rarity EXP3S 5 cosine 57.56 62.65

Lexical overlap EXP3 5 pgnorm 58.10 62.82
Question type EXP3 8 pgnorm 58.02 62.66

Tr
iv

ia
Q

A Baseline 78.08 80.17
Length EXP3 5 cosine 76.14 78.30

Word rarity EXP3 5 cosine 77.92 80.00
Lexical overlap EXP3 5 pgnorm 77.37 80.01

Table 8: Results on LongT5-base using AutoCL on a
variety of feature splits on NQ and TriviaQA.

Results. In Table 8, regardless of the signal cho-
sen for the split, none of the methods strongly im-
proves on the base model performance. This shows
that self-influence scores are not only a generaliz-
able metric to be used in junction with curriculum
learning methods, but are also more informative
than trivial, NLP-specific, difficulty metrics.

F Training on different buckets in
isolation

Here, we validate how different the quality signal
is from each individual self-influence bucket. In
Figure 4, we see that the performance of the highest
self-influence bucket is much lower (although not
zero) compared to the rest of buckets, which are in
turn more difficult to separate, possibly, because
they contain data of different grades of usefulness.
A positive aspect of AutoCL is that, due to explo-
ration, the model will regularly visit all buckets,

Figure 4: LongT5-base performance trained individu-
ally on each self-influence bin, from B1 (bottom-10%)
to B10 (top-10%), of the NQ dataset.

and may dynamically up- or down-weight buckets
depending on the model’s current needs, overcom-
ing the rigidness of a fixed threshold filtering.

G Hyperparameters of AutoCL runs

Here, we report the hyperparameters of the bandit-
based AutoCL in Table 9. All experiments used the
fixed bandit learning rate of 0.001 and the explo-
ration rate of 0.01. We tuned between two bandit
algorithms (EXP3 and EXP3S) and two rewards
function (pgnorm vs. cosine similarity between gra-
dients of the train and the reward batch).

We found that for Paracrawl (very noisy dataset),
the EXP3’s design goal of minimizing the regret
over the whole history by finding a single best arm
(Auer et al., 2002) biases the bandit to commit
fully to playing the current best arms (lowest influ-
ence buckets in Figure 2) and it does not reconsider
noisy buckets which may decrease performance.
However, for datasets where the highly influential
buckets prove valuable and generally have a lower
level of noise, we saw that EXP3’s piecewise sta-
tionary behavior makes better use of all data and
brings more consistent gains.

Run Method Hyperparameters
Algorithm Reward

Pa
ra

cr
aw

l AutoCL - 5 bins ABIF EXP3 cosine
AutoCL - 10 bins ABIF EXP3 cosine
AutoCL - 25 bins ABIF EXP3 pgnorm
AutoCL - 25 bins TracIn(1) EXP3 pgnorm

N
Q

AutoCL - 10 bins ABIF EXP3S pgnorm
AutoCL - 25 bins ABIF EXP3S pgnorm
AutoCL - 25 bins TracIn(3) EXP3S pgnorm

To
x. AutoCL - 10 bins ABIF EXP3S cosine

AutoCL - 25 bins ABIF EXP3S cosine

Table 9: Hyperparameters for the reported AutoCL re-
sults in Table 5 in §5 found with grid search. The num-
ber of checkpoints, C, for TracIn is in brackets.

10121

