Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus

Tianhang Zhang!, Lin Qiu?, Qipeng Guo?, Cheng Deng!, Yue Zhang®
Zheng Zhang?, Chenghu Zhou?, Xinbing Wang' and Luoyi Fu!
!Shanghai Jiaotong University, China 2Amazon AWS Al
3Westlake University, China “IGSNRR, Chinese Academy of Sciences, China
{zhangtianhang, davendw, xwang8, yiluoful}@sjtu.edu.cn
{quln, ggipeng, zhaz}@amazon.com, yue.zhang@wias.org.cn

Abstract

Large Language Models (LLMs) have gained
significant popularity for their impressive per-
formance across diverse fields. However,
LLMs are prone to hallucinate untruthful or
nonsensical outputs that fail to meet user expec-
tations in many real-world applications. Exist-
ing works for detecting hallucinations in LLMs
either rely on external knowledge for reference
retrieval or require sampling multiple responses
from the LLM for consistency verification,
making these methods costly and inefficient.
In this paper, we propose a novel reference-
free, uncertainty-based method for detecting
hallucinations in LLMs. Our approach imitates
human focus in factuality checking from three
aspects: 1) focus on the most informative and
important keywords in the given text; 2) focus
on the unreliable tokens in historical context
which may lead to a cascade of hallucinations;
and 3) focus on the token properties such as
token type and token frequency. Experimen-
tal results on relevant datasets demonstrate the
effectiveness of our proposed method, which
achieves state-of-the-art performance across all
the evaluation metrics and eliminates the need
for additional information.'

1 Introduction

Large Language Models (LLMs) have garnered
substantial attention for their remarkable per-
formance across various domains, such as fi-
nance (Wu et al., 2023; Lopez-Lira and Tang,
2023), medicine (Javaid et al., 2023; Lee et al.,
2023), and education (Tlili et al., 2023; Baidoo-
Anu and Owusu Ansah, 2023). These models ex-
hibit an extraordinary capacity to generate natural
language texts with high levels of coherence, flu-
ency, and informativeness. Nevertheless, a signifi-
cant obstacle confronting LLMs is the risk of pro-
ducing hallucinations (Shen et al., 2023b; Sallam,

'Code can be found at https://github.com/zthang/
focus.

2023), which refers to the generated text that is un-
truthful or nonsensical (Ji et al., 2023; Bang et al.,
2023). Hallucinations are a common occurrence
in almost all applications (Xu et al., 2023), thus
undermining the reliability and trustworthiness of
LLMs, especially in scenarios where accuracy and
veracity are essential.

Existing studies on hallucination detection for
LLM:s can be broadly divided into two categories:
(i) retrieval-based methods (Min et al., 2023;
Liu et al., 2023), which evaluate the veracity of
the given text against knowledge bases, and (ii)
sampling-based methods (Miindler et al., 2023;
Manakul et al., 2023), which assess information
consistency between the evaluated text and ad-
ditional sampled responses from the same LLM.
However, retrieval-based methods depend heavily
on the external knowledge that may not always be
accessible. And sampling-based methods require
multiple responses from the LLM for the infor-
mation consistency verification or model training,
making these methods costly and inefficient.

To address the above issues, we propose a novel
reference-free, uncertainty-based method to detect
hallucinations in LLMs that are factually incor-
rect according to the world knowledge. The pro-
posed method relies exclusively on the LLM output
text, thereby eliminating the need for additional re-
sources like sampled responses from LLM or exter-
nal knowledge, as well as further training based on
such data. Our basic idea is to use a proxy language
model for calculating the probability of each token
in a given text. Based on the calculated probabil-
ity, we can compute the hallucination score at both
token and sentence level using uncertainty-based
metrics (Guerreiro et al., 2022; Xiao and Wang,
2021), where tokens and sentences with high hallu-
cination scores are identified as candidate halluci-
nated contents. Our assumption is that a powerful
enough LLLM should assign a low probability to to-
kens that make up hallucinated information, since
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Figure 1: (a) Using a naive proxy model can hinder the focus on hallucination itself: 1) considering all tokens within
the given text may introduce noise; 2) the hallucinated tokens might be assigned high probabilities (green bar) due
to the overconfidence problem; 3) factual tokens may receive low probabilities (red bar) due to the underconfidence
problem. (b) To strengthen such focus, we imitate how humans perform factuality checking from three aspects:
1) focus on the informative keywords; 2) focus on the preceding words by propagating the uncertainty through
attention weights; 3) focus on the token properties by providing entity type before each named entity.

they deviate from the world knowledge the model
has learned during its training stage.

The above method serves as a base framework,
which can be limited by the inherent characteristics
of the prediction probability from a naive proxy
model. Such a model functions as a general prob-
ability estimator, its predictions reflect syntactic,
semantic and other sources of information, which
can hinder the focus on hallucination itself as illus-
trated in Figure 1a.

Firstly, the proxy model ignores varying de-
grees of informativeness, which may introduce
noise. Secondly, the probabilities assigned by LMs
are general and can deviate from factuality confi-
dence in different contexts. For instance, the proxy
model can be overconfident if the historical con-
text contains surface tokens that are correlated with
a hallucinated token, or the historical context fea-
tures exposure bias (Bengio et al., 2015; Igbal and
Qureshi, 2022) due to the auto-regressive nature
of generative process. One example is shown in
Figure 1a, where hallucinated tokens “2012 Sum-
mer Olympics” are assigned high probabilities. In
addition, a proxy model can be underconfident if
there are many plausible choices of topic directions
to continue a context, despite that the hallucination
involves different tokens within only one topic di-
rection. One example is shown in Figure 1a, where
the factual token “1992” received a low probability
due to the competitors like “West” and “Coral”.

To strengthen the focus on hallucination, we take
inspiration from human factuality checking, which
can include at least three specific considerations as
depicted in Figure 1b:

* Focus on the informative keywords: the key-
words that express salient information will be ex-
tracted for the calculation of hallucination scores

at both sentence-level and passage-level.

* Focus on the preceding words: we propagate
the uncertainties of previous tokens to the subse-
quent ones according to their attention weights
to alleviate the overconfidence problem. This ap-
proach is based on the hypothesis that words that
are strongly connected to unreliable tokens may
also be influenced by these inaccuracies, which
can trigger a chain reaction of hallucinations.

* Focus on the token properties: the predicted
token probability is conditioned on its entity type
(if any) and adjusted by its inverse document
frequency (IDF). This results in a probability
distribution that aligns more closely with human
evaluation in a posterior manner, thus mitigating
the underconfidence problem.

In summary, our primary contribution is that we
introduce a novel reference-free, uncertainty-based
approach for detecting hallucinations in LLMs.
Our approach does not require additional sampled
responses or external knowledge bases, making
it simple and cost-effective. Experimental results
demonstrate that our proposed method achieves
state-of-the-art performance on the WikiBio GPT-3
dataset across various models with different scales,
and shows effectiveness in detecting hallucinations
within summaries generated by small models.

2 Related Work

2.1 Hallucinations in Text Generation

Hallucinations are prevalent phenomenon in deep
learning-based models employed for various text
generation tasks (Xu et al., 2023), such as ab-
stractive summarization (Huang et al., 2021; Nan
et al., 2021), dialogue generation (Dziri et al.,



2022; Rashkin et al., 2021) and question answer-
ing (Longpre et al., 2021; Su et al., 2022). Hal-
lucinations present significant challenges in text
generation tasks, as they can lead to inaccurate
or misleading results, which is unacceptable in
most user-oriented applications (Liu et al., 2022;
Xu et al., 2023; Rebuffel et al., 2022).

2.2 Hallucination Detection

Previous studies on hallucination detection have
primarily concentrated on identifying hallucina-
tions produced by small models (fewer than 1b
parameters) that are tailored for specific tasks. For
instance, Kasner et al. (2021) combined a rule-
based system and a pretrained language model
to identify hallucinations in table-to-text genera-
tion. Guerreiro et al. (2022) adopted the average
log-probability across all the tokens in the output
sequence as the model uncertainty metric for de-
tecting hallucinations in machine translation. Dale
et al. (2022) attempted to detect hallucinations by
evaluating the percentage of the source contribution
to the generated text. However, the hallucination
patterns exhibited by LL.Ms tend to be divergent
from those in small models (Guerreiro et al., 2023),
posing challenges for the generalization of these
methods on detecting hallucinations in LLMs. Ac-
cordingly, hallucination detection in small models
is not within the primary scope of this paper.

The widespread incorporation of LLMs across
a diverse range of applications has drawn sub-
stantial attention from researchers towards the is-
sue of hallucinations within LLMs (Bang et al.,
2023; Shen et al., 2023a; Alkaissi and McFarlane,
2023). For instance, Min et al. (2023) introduced
FACTSCORE to evaluate the correctness of each
atomic fact in the generated text by referencing a
knowledge source. Miindler et al. (2023) aimed
to detect hallucinations by examining whether two
sampled sentences generated at the same position
within a text contradict each other. A recent work
by Manakul et al. (2023) proposed SelfCheckGPT,
a black-box approach for detecting hallucinations
in LLM-generated responses. The primary premise
of SelfCheckGPT is that when the LLM is uncer-
tain about a given concept, the sampled responses
may contain inconsistent facts. Nonetheless, these
methods either rely on external knowledge bases
or multiple responses sampled from LLM, which
are resource-intensive and inefficient.

3 Methods

A proxy model is utilized in our method for uncer-
tainty assessment in cases where token-level prob-
abilities are inaccessible, such as GPT-3 (Ouyang
et al., 2022). Although previous work by Manakul
et al. (2023) has demonstrated the ineffective per-
formance of using a proxy model, we attribute it to
the uncertainty metrics employed. These metrics,
such as the average entropy and average loss for
all tokens in the sentence, are insufficiently aligned
with human evaluation. We believe this issue stems
from the inherent disparities in how models and hu-
mans perceive and assess information, thus limiting
the capability of the uncertainty-based approach for
hallucination detection.

To mitigate this problem, we imitate how hu-
mans perform factuality checking from three as-
pects, which will be discussed in following sections.

3.1 Keywords selection

Prior works (Pagnoni et al., 2021; Kryscinski et al.,
2020) suggest that entities are the most frequently
hallucinated words in text generation. This aligns
with the intuition that, when evaluating the verac-
ity of generated results, our primary focus lies on
keywords that convey the most crucial information.
In this regard, we only focus on keywords identi-
fied by Spacy (Honnibal and Montani, 2017) when
calculating the hallucination score at both sentence-
level and passage-level. The keywords identified by
Spacy can be classified into two groups. The first
group comprises 18 distinct types of named entities,
including person, location, date, event, organiza-
tion, and others. The second group encompasses
nouns that do not belong to the first group.

Specifically, for a given text r, we will compute
a hallucination score h; for the ¢-th token ¢; in . To
fully utilize both local and global uncertainty infor-
mation, h; is the sum of the negative log probability
and entropy when generating ¢;:

hi = —log(pi(t:)) + H, (1

H; = 2~ 2ovey Pi(v)*loga(pi(v)) )

where p;(v) denotes the probability of generating
the token v over all tokens in the vocabulary V' at

position ¢. The hallucination score h® for the sen-
tence s is calculated by a weighted sum, where the
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Figure 2: The attention heat map after max-pooling for all the layers and attention heads when generating the
example using 1lama-30b, where the x-axis only presents the first and last sentence, while the y-axis only includes
the last sentence due to space constraints. The brightness of each rectangle represents the attention score between

the corresponding tokens, with brighter shades indicating higher scores.

weight is determined by whether ¢; is a keyword:

1 |s|—1
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where |s| is the number of tokens in s, K de-
notes the set of keywords, I(-) is an indicator func-
tion. Moreover, this formulation can be extended
to compute the passage-level hallucination score
by averaging hallucination scores of keywords in
the given passage.
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3.2 Hallucination propagation

Several studies (Guerreiro et al., 2022; Xiao and
Wang, 2021) have utilized token probability as
a measure for hallucination detection. However,
probabilities derived from a language model may
not accurately reflect the factuality confidence in
the generated content. Some hallucinated tokens
can be assigned high probabilities when the history
context contains hallucinated information, which
we term as the overconfidence issue. This issue is
exacerbated by the self-attention mechanism that is
commonly used in transformer-based LLMs, since
it introduces exposure bias (Bengio et al., 2015;
Igbal and Qureshi, 2022), which refers to the dis-
crepancy between training and inference caused by
the use of teacher forcing during the training stage.
Consequently, the generated text is accepted as fac-
tual claims, even though it may be non-factual.
Figure 2 provides an example that illustrates the
overconfidence issue. Considering the following
text: “Mackenzie Caquatto is an American former
artistic gymnast, who competed at the 2012 Sum-
mer Olympics in London. Caquatto was born in
1992, and began gymnastics at the age of three. She
competed on the uneven bars and balance beam
at the 2012 Summer Olympics.” Notably, the term

“2012” makes two appearances, with the proba-
bility of its initial occurrence being significantly
lower than the probability of its subsequent appear-
ance. The visualized self-attention matrix reveals
that considerable attention is given to the same
phrase in the first sentence (circled with a blue
box) when generating “2012 Summer Olympics” in
the last sentence. However, the claim “Mackenzie
Caquatto competed at the 2012 Summer Olympics
in London” is untruthful.

This observation inspired us to introduce a
“penalty” for tokens generated with attentions paid
to unreliable tokens. In other words, we consider
the hallucination scores of preceding tokens and
apply them as a penalty to the current token based
on their respective attention weights. Here, we only
consider propagation between keywords. Specifi-
cally, we first check if the current token is a key-
word as described in Section 3.1. If not, the penalty
is set to zero. If it is a keyword, we normalize the
attention weights between the current token and
all previous keywords to obtain a penalty weight.
The penalty for the current token is computed as
a weighted sum of the hallucination scores associ-
ated with the previous tokens. Since the penalty
can be transmitted to all the subsequent tokens via
multi-hop, a coefficient v € [0, 1] is introduced to
ensure that the penalty diminishes geometrically
with the increase in the number of hops.

Let h; represent the hallucination score of the
i-th token ¢; with an accumulated penalty, the cal-
culation of /; can be expressed as follows:

hi = hi +1(t; € K) % v * p; )

i—1
pi= Y wij*h; 5)
=0
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where p; represents the penalty of the i-th token,
att; ; denotes the attention weight between ¢; and

t; after max-pooling for all the layers and attention
heads.

(6)

3.3 Probability correction

Apart from the overconfidence issue, there are
also instances where the model exhibits undercon-
fidence, which can also lead to deviations in to-
ken probability from factuality confidence. We
believe such underconfidence is related to the to-
ken properties, including the entity type and token
frequency. As shown in Figure 1a, when generat-
ing the subsequent words following “Caquatto was
born in”. The model may have multiple possible
choices of topic directions such as “West chester”,
“Coral Springs”, “1992” et al, despite that the hallu-
cination involves different tokens within a specific
topic direction. Consequently, the probability of
generating the date “1992” would be relatively low,
given the existence of several other viable options.
This highlights the stark disparities in how mod-
els and humans assess information: when eval-
uating the plausibility of “1992”, the model fo-
cuses meticulously on all the feasible choices with
different entity types. In contrast, humans tend
to intuitively include it within a tailored set of
candidate words that predominantly consists of
terms related to dates. Suppose there are n tokens
to:n—1 = to,t1, ..., tn—1 in a model response r. Let
¢(to.;) denote the set of ideal candidate words for
t; given the first ¢ 4+ 1 tokens. According to the
Bayes rule, the probability of generating ¢; given
to.;—1 and the candidate set can be expressed as:

p(tilto:i—1, c(to:))
_ ple(toq)[to:i1,ts) * p(tilto.i—1)
p(c(to:i)|to:i—1)
bbb g
p(c(to:)|to:i—1)
_ p(tilto:i—1)
Zvéc(to:i) p(v’tO:ifl)

It suggests that when assessing the rationality of
a given word, the focus should be directed towards
similar words rather than encompassing all possible
choices. However, constructing such a candidate
set poses a challenge during the model generation

K<PERSON> Mackenzie Caquatto is an <NORP> American former artistic\
gymnast, who competed at the <DATE> 2012 Summer Olympics in <GPE>

London.
@ Caquatto was born in <DATE> ! '?
(@)
+ O

0.62
0.22
0.10
I———l . 0.03
- =3
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Figure 3: An example of providing entity type preceding
named entities: Top-3 words that follow the incomplete
sentence are all related to dates. Despite having the
highest probability in Figure 1a, the token “West” is
generated with a relatively low probability of 0.03.

stage, given all words are tokenized into sentence
pieces. To tackle this problem, we leverage the in-
context learning capability of the proxy model by
inserting the entity type” preceding every named
entity identified by Spacy as shown in Figure 3.
The entity type serves as a constraint in generation,
thereby enabling us to approximate the ideal can-
didate set c(to.;) in Equation 7 using tokens with
a generation probability greater than a threshold
p. Accordingly, the token probability distribution
is corrected to assign higher probability to tokens
adhering to the given entity type.

Additionally, as outlined in previous stud-
ies (Raunak et al., 2020; van der Poel et al., 2022;
Demeter et al., 2020), tokens with low frequency
are likely to receive lower prediction probabilities,
potentially leading to the underconfidence in the
model. To mitigate this issue, the probability of
token ¢ is further corrected by its token IDF:

p(t) * idf (t)
>vey P(v) x idf (v)

where p(t) denotes the probability of token ¢ across
all tokens in the vocabulary )V with entity type pro-
vided. The token IDF is calculated based on 1M
documents sampled from RedPajama dataset’.

p(t) =

®)

3.4 Putting things together

To combine all the methods proposed above, we re-
place the token probability in Equation 1 and Equa-
tion 2 with p(¢). Subsequently, we apply hallucina-
tion propagation to obtain the token-level hallucina-
tion score with penalty accumulated. The sentence-

The entity type inserted in the text do not participate in
hallucination propagation or hallucination score calculation.

*https://huggingface.co/datasets/togethercomputer/
RedPajama-Data-1T-Sample



level and passage-level hallucination scores are cal-
culated based on Equation 3.

4 Experiments and Results

4.1 Experiment setting

Dataset. We evaluated our proposed method on
WikiBio GPT-3 dataset (Manakul et al., 2023),
which, to the best of our knowledge, is the only
publicly accessible dataset for LLLM hallucination
detection at present. Additionally, to assess the ex-
tent to which our proposed method can be applied
for detecting hallucinations produced by different
models, and in particular small models, we con-
ducted supplementary experiments on the XSum-
Faith (Maynez et al., 2020) and FRANK (Pagnoni
et al., 2021) datasets. Given the primary focus of
this paper is hallucination detection in LLM as dis-
cussed in Section 2.2, the details and results of the
two datasets are provided in Appendix A.

The WikiBio GPT-3 dataset comprises 1908 an-
notated sentences from 238 Wikipedia passages
generated by text-davinci-003. Each sentence is
assigned one of the following labels: 1) major in-
accurate, if the sentence is irrelevant to the given
topic; 2) minor inaccurate, if the sentence includes
non-factual information verifiable via web search;
3) accurate, if the sentence does not contain any
hallucination. We provided some examples from
the dataset in Appendix D. The dataset also in-
cluded 20 stochastically-sampled responses from
text-davinci-003 for each passage, but these were
not utilized in our experiments as our method does
not necessitate additional sampled responses.

In accordance with the setting in Manakul et al.
(2023), sentences labeled as major inaccurate and
minor inaccurate are grouped into the non-factual
class, while remaining sentences are grouped into
the factual class. For the non-factual* class, we first
remove passages where all sentences are labeled
as major inaccurate. Then, we classify remaining
major inaccurate sentences as non-factual*.
Baselines. (i) GPT-3 (Ouyang et al., 2022) Uncer-
tainties: GPT-3 (text-davinci-003) API returns top-
5 probabilities for each generated token, which can
be used to quantify its uncertainty using negative
log probability and entropy. (ii) SelfCheckGPT:
SelfCheckGPT (Manakul et al., 2023) is a black-
box method for detecting hallucinations in LLMs,
which demands additional responses sampled from
the same LLLM for the consistency verification.
Metrics. To ensure a fair comparison, we adopt

same metrics employed by SelfCheckGPT. The
Area Under the Precision-Recall Curve (AUC-PR)
is used to measure the performance of sentence-
level hallucination detection, while the Pearson
and Spearman’s correlation coefficient are applied
to evaluate the agreement between the passage-
level hallucination score and human judgement.
For space saving, AUC-PR of non-factual class is
abbreviated as NonFact or NoFac in the following
sections, and similarly for the other classes.
Proxy model. To demonstrate the generalizabil-
ity of our proposed method across different scales
of LL.Ms, we conduct experiments on 22 diverse
proxy models. The specific details of these proxy
models can be found in Appendix E.

Prompts. In experiments where entity types are
not provided, we use the prompt “This is a
passage from Wikipedia about {concept}:”.
Conversely, when entity types are inserted before
named entities, the prompt is “Please complete
the passage below using appropriate words
that follow to the given type with < >
wrapped. This is a passage from Wikipedia
about {concept}:”.

4.2 Main results

The performance comparison between our pro-
posed method and the baseline approaches is pre-
sented in Table 1. Due to space limitations, we only
display the results of LLaMA family. Comprehen-
sive comparison results for all proxy models can
be found in the Appendix H. The hyperparameters
~ and p are set to 0.9 and 0.01, respectively. The
baseline results are referenced from Manakul et al.
(2023). Other implementation details can be found
in Appendix B. Our key findings are as follows:

Proxy model surpasses all the baselines. Lever-
aging three proposed focus mechanisms, LLaMA-
30b consistently outperforms SelfCheckGPT-
Combination* and other baselines across all five
metrics. Significantly, this is achieved without re-
sorting to sampled responses or further training,
exhibiting superior efficiency compared to Self-
CheckGPT. As presented in Table 1, the perfor-
mance of LLaMA family improves as the model
size increases. However, this improvement is not

*We noticed that on June 1 1th, the authors of SelfCheck-
GPT updated their results on GitHub (but not for their arXiv
paper). The new approach entails a large number of ChatGPT
queries for text inconsistency assessment. We do not include
the results in this paper since they are contemporaneous with
our work, as well as the comparison is not fair.



Method

Sentence-level Metrics

Passage-level Metrics

NonFact NonFact* Factual Pearson Spearman
GPT-3 Uncertainties
Avg(—logp) 83.21 38.89 53.97 57.04 53.93
Avg(H) 80.73 37.09 52.07 55.52 50.87
Max(—logp) 87.51 35.88 50.46 57.83 55.69
Max(H) 85.75 32.43 50.27 52.48 49.55
SelfCheckGPT
BERTScore 81.96 45.96 44.23 58.18 55.90
QA 84.26 40.06 48.14 61.07 59.29
Unigram (max) 85.63 41.04 58.47 64.71 64.91
Combination 87.33 44.37 61.83 69.05 67.77
Ours
LLaMA-7B focus 84.26 40.20 57.04 64.47 54.73
LLaMA-13B focus 87.90 43.84 62.46 70.62 63.03
LLaMA-30B focus 89.79 48.80 65.69 77.15 73.24
LLaMA-65B focus 89.94 48.69 64.90 76.80 73.01

Table 1: Performance comparison between proposed method and baseline methods. AUC-PR is adopted as the
performance metric for sentence-level hallucination detection. Passage-level performances are measured by Pearson
correlation coefficient and Spearman’s correlation coefficient with respect to human annotations. Results of GPT-3
and SelfCheckGPT are referenced from the paper (Manakul et al., 2023).

linearly correlated to the model size as shown in
Figure 9 of Appendix F. LLaMA-65b even exhibits
slightly inferior performance compared to LLaMA-
30b in four of the five metrics.

Moreover, the comprehensive results across 22

proxy models as demonstrated in Table 8 affirm
that within the same model family, models with
more parameters tend to perform better. This can
be attributed to their broader and more accurate
understanding of world knowledge. In addition,
when comparing different model families, models
that exhibit superior performance on general NLP
tasks often perform well on the WikiBio GPT-3
dataset. These observations provide valuable in-
sights for future exploration and enhancement of
our hallucination detection method.
Focus allows small-scale models to achieve com-
parable performance to GPT-3. As shown in
Table 1, LLaMA-7b achieves comparable or even
superior performance when compared with GPT-3
uncertainties. This observation suggests that de-
spite being a powerful LLM with 175b parameters,
GPT-3 may be similarly plagued by issues of over-
confidence and underconfidence. However, neither
the attention weights nor the full probability dis-
tribution of GPT-3 are accessible, otherwise, the
incorporation of focus would enable uncertainties
of GPT-3 to yield considerably enhanced results.

4.3 Analysis

Table 2 presents the results of our ablation study
conducted on LLaMA-30b. The average halluci-
nation score in Equation 1 without any proposed

Method | NoFac | NoFac* | Fact | Pear. | Spear.
ave(h) | 8207 | 4147 |47.22]51.03 | 37.29
+keyword | 83.01 | 41.57 |45.8256.07 | 44.77
tpenalty | 86.68 | 4527 |54.9359.08 | 55.84
+entity type | 88.89 | 46.92 | 65.12]76.82 | 71.49
+token idf | 89.79 | 48.80 | 65.69 | 77.15 | 73.24

Table 2: Ablation study of the proposed method using
LLaMA-30b (v = 0.9, p = 0.01).

tricks serves as the baseline in the first row, with
each trick incorporated incrementally in the suc-
ceeding rows. The ablation studies on the remain-
ing 21 proxy models are detailed in Appendix H.
Focus on the informative keywords. By focus-
ing on the keywords, improvements are observed
across nearly all metrics. Notably, the Pearson and
Spearman correlation coefficients are improved by
5.04% and 7.48%, respectively. These results sug-
gest a stronger correlation between the keyword
uncertainties and passage-level human judgments.
Focus on the preceding words. When hallucina-
tion propagation is incorporated on the basis of key-
word selection, remarkably, substantial improve-
ments can be observed across all metrics. Particu-
larly, the AUC-PR of the non-factual class exhib-
ited a significant increase of 3.67% on LLaMA-
30b. This enhancement can be attributed to the
successful remediation of the overconfidence issue
as discussed in Section 3.2.

The overall performance of LLaMA-30b with
ranging from O to 1 (no hallucination propagation
when 7 is set to zero) is illustrated in Figure 10 of



Text h h
12.38 | 133.96

Paul Taylor is an American singer-
songwriter, multi-instrumentalist, and
record producer. He is best known as
the lead singer and songwriter of the
band Winger.

C. V. Ananda Bose was an Indian free- | 1.36 53.53
dom fighter, lawyer, and politician. (...)
He was a member of the Indian delega-
tion to the United Nations in 1951. He
was a member of the Indian delegation

to the United Nations in 1952.

Table 3: Cases detected by hallucination propagation. /
and h denote the hallucination scores of the highlighted
sentences without and with penalty, respectively.

Appendix G. It is evident that most metrics improve
as vy increases. However, a performance decline is
noticeable when ~y exceeds 0.8, indicating that an
excessive focus on the preceding words could also
lead to a deterioration in performance.
Focus on the token properties. Further enhance-
ments in model performance can be achieved by
incorporating entity type information and token
IDF, leading to drastic improvements as evidenced
in the last two rows. Specifically, the AUC-PR of
the factual class increases by 10.76%, and both
correlation coefficients improve by approximately
18%. This demonstrates the effectiveness of proba-
bility correction in mitigating the underconfidence
problem as discussed in Section 3.3. Nevertheless,
we observe little improvement for the non-factual*
class when considering only the entity type prop-
erty on multiple proxy models. The reason behind
this observation will be explained in Section 4.4.2.
The performance impact of varying p values is
depicted in Figure 11 of Appendix G. Generally,
p = 0.01 delivers optimal results. A large p could
lead to the omission of crucial information due to
a restricted candidate set, while a small p might
introduce noise by including irrelevant tokens.

4.4 Case study

4.4.1 Non-factual cases detected by
hallucination propagation

Table 3 showcases two examples of hallucinated
content accurately identified by hallucination prop-
agation. In the first case, the pink sentence erro-
neously assigns the role of singer and songwriter
to Paul Taylor, who was actually a keyboardist/gui-
tarist of the band Winger. This error originates from
the model’s preceding hallucination (purple text)

h without type | h with type
major-inaccurate | 14.99 4.09
minor-inaccurate | 9.70 3.79
accurate® 5.63 2.75

Table 4: The average hallucination scores for each cate-
gory with and without entity type information provided.

“Paul Taylor is an American singer-songwriter”. In
the second case, the pink sentence duplicates exist-
ing text, consequently producing a significantly low
value of h owing to the overconfidence problem.
With the introduction of the penalty, the halluci-
nation score increases by approximately fifty-fold,
demonstrating the effectiveness of focusing on the
hallucination scores of the preceding words.

The attention heat maps corresponding to the
two cases can be found in Appendix C.

4.4.2 Failure cases after entity type provision

To explain the decrease in AUC-PR of the non-
factual* class when entity types are specified for
each named entity, we computed the sentence-level
average hallucination score h for each category in
Table 4.

We notice that the average hallucination score h
for all classes decreases when entity type informa-
tion is provided, since the probability is corrected
to be more confident for the keywords. However,
this decrease is especially noticeable in the ma-
jor inaccurate category due to the fact that sen-
tences labeled as major inaccurate contain more
hallucinated keywords. As a result, distinguish-
ing between major inaccurate and minor inaccurate
becomes more challenging. Given that the non-
factual* class only includes sentences classified as
major inaccurate, this increased difficulty in differ-
entiation contributes to the observed decrease in
AUC-PR for the non-factual* class.

5 Conclusion

In this paper, we propose a reference-free,
uncertainty-based method for detecting hallucina-
tions in LLMs. The proposed method aims to imi-
tate human factuality checking by considering three
aspects: focus on informative keywords, focus on
preceding words and focus on token properties.
Our experimental results empirically demonstrate
the effectiveness of the proposed method for hal-
lucination detection at both sentence and passage
level, without requiring any external knowledge or
training data. We have also analyzed how each of



the three focus mechanisms impacts the overall per-
formance when using different proxy models as the
backbone. The results on XSumFaith and FRANK
datasets further showcase the potential capability
of the proposed method for detecting hallucinations
produced by small models. We hope our work can
contribute to the field of LLM research and help
improve the reliability and factuality of LLMs.
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Limitations

The keyword identification and named entity recog-
nition in our approach is based on Spacy, which
may introduce some errors as observed in our prac-
tice. For instance, the television drama “The Great
Ambition” could erroneously be classified as an
organization. Such failures can result in the calcu-
lated probability becoming unreliable, leading to
a decrease in performance. Additionally, the cat-
egories of named entities in real-world scenarios
are considerably more diverse than those identifi-
able by Spacy, such as food, vehicles, and other
specialized domains.

A further limitation arises from our assumption
that LLM proxies are consistently current with fac-
tual knowledge. However, LLMs are not continu-
ously updated post-training, hence they may lack
recently emerged factual information. This could
influence the assigned probabilities and in turn af-
fect our hallucination detection’s effectiveness.
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A Results for detecting hallucinations
generated by small models

To assess the effectiveness of our proposed method
in detecting hallucinations produced by small
models, we conducted experiments using two
hallucination detection datasets extracted from
the test split of the SummaC benchmark (La-
ban et al.,, 2022): XSumFaith and FRANK.
These datasets consist of summaries generated by
small models such as TransS2S (Vaswani et al.,
2017), TCONVS2S (Narayan et al., 2018), and
BART (Lewis et al., 2020).

Although the benchmark includes a total of six
datasets, it should be noted that some of them con-
tain summarizations not produced by generative
models, such as Polytope (Huang et al., 2020) and
SummEval (Fabbri et al., 2021). Additionally, cer-
tain datasets (Kryscinski et al., 2020; Falke et al.,
2019) label any content not present in the input as

extrinsic hallucination®. However, such extrinsic
hallucination might actually be factual (Dong et al.,
2022; Cao et al., 2022).

Specifically, for the FRANK dataset, which pro-
vides the error type of each sample, we removed the
instances that were labeled as OutE (statement con-
tains information not present in the source article)
for the reason discussed above. For XSumFaith,
we excluded the human-written summaries since
they may differ in style from model-generated sum-
maries (Gekhman et al., 2023). The statistics of the
two datasets are shown in Table 5.

Dataset #Num  %Hallucination
XSumFaith 984 90.40
FRANK 1242 57.41

Table 5: The statistics of XSumFaith and FRANK
dataset (test split from SummaC benchmark).

We report the AUC-PR for the non-factual class
and factual class and balanced-accuracy in Ta-
ble 6 and Table 7. Our method performs well
across all three metrics when applied to the XSum-
Faith dataset. However, we observed that, for the
FRANK dataset, using only the negative log prob-
ability yields better results compared to using the
sum of negative log probability and entropy. Fur-
thermore, focus on the keywords proves less ef-
fective than considering all tokens in the passage.
We attribute this discrepancy to the unique char-
acteristics of the FRANK dataset, which contains
hallucinations such as predicate errors, pronoun
errors, and preposition errors. Therefore, we only
use the negative log probability of token ¢ as its
hallucination score and disregard keyword selec-
tion for FRANK dataset. These results highlight
the effectiveness of focusing on token property in-
formation, but little enhancement is observed when
solely relying on hallucination propagation. Fur-
ther investigation is left for the future work.

B Implementation Details

Our experiments were conducted on an AWS
p3dn.24xlarge instance, each of which is equipped
with 8§ NVIDIA V100 32GiB GPUs, 96 CPU cores,
and 768 GiB RAM. In order to prevent the in-
fluence of type tags when calculating the token
probability, we set the probability of token “<" to

3Only about 5% of such cases in XSumFaith as reported

in the original paper, hence, we have included this dataset in
our analysis.
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Method | NonFact | Fact | Balanced-Acc
avg(h) | 9279 |[1175|  57.65
tkeyword | 9265 |14.19| 5624
spenalty | 9234 |1497| 5777
+entity type | 94.98 | 18.46 | 64.77
+token idf ‘ 95.13 ‘ 18.86 ‘ 64.81

Table 6: Performance of the proposed method using
LLaMA-30b-SFT on XSumPFaith dataset (v = 0.9, p =
0.01).

Method | NonFact | Fact | Balanced-Acc
avg(—logp) | 89.82 |79.00 | 78.79
+penalty | 89.87 |78.37| 79.46
+entity type | 90.44 | 79.78 | 80.31
+tokenidf | 90.12 [80.00|  80.70

Table 7: Performance of the proposed method using
LLaMA-30b-SFT on FRANK dataset (y = 0.4,p =
0.01).

zero. When using the SFT version of LLaMA, the
prompt as described in Section 4.1 is formatted to
follow the Alpaca (Taori et al., 2023) pattern: “###
Instruction: {instruction} ### Response:
{response}”.

For the experiments on the two summarization
datasets, we excluded instances where the token
count exceeded LLaMA’s maximum context length
of 2048, resulting in the elimination of 16 cases
from the XSumPFaith dataset. The prompts em-
ployed are “{document} TL;DR” and “Summarize
the following text using appropriate
words that follow to the given type:
{document} TL;DR”, without and with the provi-
sion of entity types, respectively.

Entity types are also provided in the prompts as
few-shot examples. For instance, the prompt for
the concept “michael savage” is “This a passage
from <ORG> Wikipedia about <PERSON>
michael savage:”.

C More attention heat map cases

Figure 4 and Figure 5 provide visualizations of the
attention heat maps of the two cases mentioned in
Section 4.4.1. The attentions that are erroneously
directed towards preceding unreliable tokens are
marked within a blue box.

D Examples of passages with entity types
provided

Figure 6 to Figure 8 illustrate three examples of
Wikipedia passages generated by text-davinci-003,
along with their corresponding prompts. Before
inputting each passage into the proxy model for hal-
lucination detection, the entity types are provided
before each named entity recognized by Spacy.

E Details of the proxy models

The 22 proxy models used in our experiments
include LLaMA-{7b, 13b, 30b, 65b} (Touvron
et al., 2023a), LLaMA-2{7b, 13b, 70b} (Touvron
et al., 2023b), OPT-{125m, 1.3b, 13b, 30b} (Zhang
et al., 2022), GPT-J-6b (Wang and Komatsuzaki,
2021) GPT-NeoX-20b (Black et al., 2022), Falcon-
{7b, 40b} (Almazrouei et al., 2023), Vicuna-{7b,
13b, 33b} (Chiang et al., 2023), RedPajama-{3b,
7b} (Computer, 2023) and instruction tuning ver-
sions of LLaMA-{13b, 30b}-SFT®.

F Performance comparison of LLaMA
family

Figure 9 presents the performance comparison
among the LLaMA family. Models with a larger
parameter size generally demonstrate superior per-
formance on the WikiBio GPT-3 dataset. How-
ever, despite being twice the size of LLaMA-30b,
LLaMA-65b underperforms across four out of the
five evaluated metrics compared to LLaMA-30b.

G Hyper parameters analysis

Figure 10 shows the performance of LLaMA-30b
with v ranging from O to 1. When + is set to zero,
no penalty is accumulated to the token hallucina-
tion score. Figure 11 depicts the performance im-
pact of varying p. Setting p either too large or too
small leads to a decrease in performance.

H Additional Results

The main results including all the 22 proxy mod-
els are shown in Table 8. As observed in Table 9
to Table 29, our method consistently outperforms
the performance achieved by solely relying on the
uncertainty metric. The optimal setting may vary
across models, we attribute this to the different
generation patterns exhibited by each model.

®https://huggingface.co/ausboss/llama-30b-supercot
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Figure 4: The attention heat map corresponding to the first case in Section 4.4.1. Due to space limitations, not all
sentences are depicted in the figure.

Figure 5: The attention heat map corresponding to the second case in Section 4.4.1. Due to space limitations, not all
sentences are depicted in the figure.

Please complete the passage below using appropriate words that follow to the given type with < >
< wrapped.

This is a passage from <ORG> Wikipedia about <PERSON> michael savage:

<PERSON> Michael Alan Weiner (born <DATE> March 31, 1942), better known by his professional name
<PERSON> Michael Savage, is an <NORP> American radio host, author, activist, nutritionist, and
conservative political commentator. He is the host of <ORG> The Savage Nation, a nationally
syndicated talk show that aired on <ORG> Talk Radio Network across <GPE> the United States
until <DATE> 2012, and in <DATE> 2009 was the <ORDINAL> second most listened-to radio talk
show in the country with an audience of <CARDINAL> over 20 million listeners on <CARDINAL> 400
stations across <GPE> the United States. Since <DATE> October 23, 2012, <PERSON> Michael
Savage has been syndicated by <ORG> Cumulus Media Networks. He holds master's degrees from
<ORG> the University of Hawaii in medical botany and medical anthropology, and a <WORK_OF_ART>
Ph.D. from <ORG> the University of California, Berkeley in nutritional ethnomedicine. As
<PERSON> Michael Weiner, he has written books on nutrition, herbal medicine, and homeopathy.

N A

Figure 6: The text-davinci-003 generated Wikipedia passage about Michael Savage in WikiBio GPT-3 dataset.



Case 2: Michael Replogle

Please complete the passage below using appropriate words that follow to the given type with < >
< wrapped.

This is a passage from <ORG> Wikipedia about <PERSON> michael replogle:

<PERSON> Michael Replogle (born <DATE> 1951) is an <NORP> American environmentalist and
transportation planner. He is the founder and director of <ORG> the Institute for
Transportation and Development Policy (ITDP), a global non-profit organization that works to
promote sustainable transport solutions in cities around the world. <PERSON> Replogle has
been a leader in the field of sustainable transportation for <DATE> more than four decades,
and has been credited with helping to shape the modern urban transport landscape. He has
worked with cities in <CARDINAL> more than 4@ countries to develop and implement sustainable
transport policies and projects, including bus rapid transit, bike-sharing, and
pedestrian-friendly streets. He has also been a vocal advocate for the use of pricing
mechanisms to reduce traffic congestion and air pollution.
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Figure 7: The text-davinci-003 generated Wikipedia passage about Michael Replogle in WikiBio GPT-3 dataset.

Case 3: Tommy Nutter

Please complete the passage below using appropriate words that follow to the given type with < >
< wrapped.

This is a passage from <ORG> Wikipedia about <PERSON> tommy nutter:

<PERSON> Tommy Nutter (1943-1992) was a <NORP> British tailor who was a major figure in the fashion
world of <DATE> the late 1960s and <DATE> early 197@0s. He was known for his flamboyant style
and his work with <ORG> the Rolling Stones, <PERSON> Elton John, and other celebrities. He was
born in <GPE> London and began his career as an apprentice tailor at <DATE> the age of 15. He
opened his own shop, Nutters of Savile Row, in <DATE> 1969. His designs were known for their
bold colors and patterns, and he was one of the <ORDINAL> first to introduce the "peacock
look” to men's fashion. He was also <CARDINAL> one of the <ORDINAL> first to use denim in
men's suits. He was a major influence on the punk and new wave fashion movements of <DATE> the
late 1970s and <DATE> early 198@s. He died of AIDS-related complications in <DATE> 1992.
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Figure 8: The text-davinci-003 generated Wikipedia passage about Tommy Nutter in WikiBio GPT-3 dataset.
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Figure 9: Performance comparison of LLaMA family = Figure 10: Performance of LLaMA-30b with different
with varying parameter sizes. 5.



Sentence-level Metrics Passage-level Metrics

Method NonFact NonFact* Factual Pearson Spearman

GPT-3 Uncertainties

Avg(—logp) 83.21 38.89 53.97 57.04 53.93
Avg(H) 80.73 37.09 52.07 55.52 50.87
Max(—logp) 87.51 35.88 50.46 57.83 55.69
Max(H) 85.75 32.43 50.27 52.48 49.55
SelfCheckGPT

BERTScore 81.96 45.96 44.23 58.18 55.90
QA 84.26 40.06 48.14 61.07 59.29
Unigram (max) 85.63 41.04 58.47 64.71 64.91
Combination 87.33 44.37 61.83 69.05 67.77
Ours

GPT-J-6B focus 77.92 38.56 33.58 15.68 13.95
GPT-NeoX-20B focus 81.40 38.84 39.80 35.03 30.40
OPT-125Myocus 73.88 34.74 28.29 -8.04 -5.92
OPT-1.3Bfocus 73.84 34.00 30.88 1.08 -1.20
OPT-13B focus 79.63 39.97 39.23 27.88 23.65
OPT-30B focus 79.26 39.49 40.63 31.07 28.67
Falcon-7B focus 82.25 40.94 41.25 45.19 36.76
Falcon-40B focus 88.11 46.95 58.14 68.63 64.66
Vicuna-7b focus 84.14 39.93 53.41 58.78 49.84
Vicuna-13bfocus 86.87 41.80 60.25 66.72 58.64
Vicuna-33b ¢ocus 88.23 44.51 62.10 71.82 65.96
RedPajama-3B ., ., 82.26 40.49 43.38 46.48 40.56
RedPajama-7B ., 84.68 41.53 50.05 55.55 49.74
LLaMA-7B focus 84.26 40.20 57.04 64.47 54.73
LLaMA-2-7B focus 84.29 41.31 56.64 63.59 48.91
LLaMA-13Bfocus 87.90 43.84 62.46 70.62 63.03
LLaMA-2-13Bfocus 87.28 45.62 63.39 71.57 63.85
LLaMA-13B-SFT focus 88.17 44.62 62.25 71.91 63.81
LLaMA-30B focus 89.79 48.80 65.69 77.15 73.24
LLaMA-30B-SFT focus 90.34 49.17 65.29 77.53 73.10
LLaMA-65B focus 89.94 48.69 64.90 76.80 73.01
LLaMA-2-70B focus 89.95 52.06 65.11 76.88 72.36

Table 8: Main results including all proxy models in Section 4.1.

Method | NoFac | NoFac* | Fact | Pear. | Spear.

avg(h) | 78.67 | 37.19 |35.81]29.11| 16.65

e +keyword | 79.27 | 37.28 |35.86|36.26 | 23.61

il -w. eroenccel e spearman +penalty | 83.48 | 43.77 |49.22|46.22 | 38.32
0.9 +entity type | 83.40 | 39.27 |56.36 | 62.57 | 52.63

+token idf | 84.26 | 40.20 |57.04 | 64.47 | 54.73

0.8 1

____________ . Table 9: Ablation study of the proposed method using
. e AN LLaMA-7b (y = 0.9, p = 0.01).
T el NN
N e Method | NoFac | NoFac* | Fact | Pear. | Spear
0.6 e N,
o T avg(h) \ 80.18 \ 38.57 \41.21 \ 39.80\ 25.99
e +keyword \ 80.93 \ 38.85 \40.31 \45.83 \ 32.37

0.5 4

+penalty | 83.26 | 43.02 |43.3537.92 33.99
+entity type | 87.12 | 43.13 | 61.72 | 69.99 | 60.64

0.00001 0.0001 0.001 0.01 0.1

P +token idf | 87.90 | 43.84 | 62.46 | 70.62 | 63.03
Figure 11: Performance of LLaMA-30b with different

Table 10: Ablation study of the proposed method using

P LLaMA-13b (y = 0.9, p = 0.01).



Method | NoFac | NoFac* | Fact | Pear. | Spear. Method | NoFac | NoFac* | Fact | Pear. | Spear.

avg(h) | 82.62 | 40.94 |48.74|52.60 | 40.85 avg(h) | 7629 | 27.08 |29.65|11.28| 3.51
+keyword | 83.64 | 41.00 |46.77 | 58.01 | 49.44 +keyword | 77.50 | 27.56 |32.85]19.50 | 8.34
tpenalty | 88.06 | 46.94 |49.49 | 54.92 | 56.69 +penalty | 74.59 | 33.83 |38.53|23.30 | 9.87
+entity type | 89.54 | 47.66 |64.27 |76.30 | 72.54 +entity type | 83.14 | 3845 |52.50 | 56.32 | 48.41
+token idf | 89.94 | 48.69 | 64.90 | 76.80 | 73.01 +token idf | 84.14 | 39.93 |53.41 | 58.78 | 49.84

Table 11: Ablation study of the proposed method using  Table 16: Ablation study of the proposed method using

LLaMA-65b (y = 0.9, p = 0.01). Vicuna-7b (y = 0.9, p = 0.01).
Method | NoFac | NoFac* | Fact | Pear. | Spear. Method | NoFac | NoFac* | Fact | Pear. | Spear.
avg(h) | 80.00 | 39.28 |41.2239.36 | 24.80 avg(h) | 7921 | 3642 |3544(27.53| 17.35
+keyword | 81.01 | 39.29 |41.14 | 46.43 | 31.94 +keyword | 80.58 | 36.46 |37.10|40.37 | 27.67
tpenalty | 8439 | 45.06 | 5136 | 48.81| 40.78 tpenalty | 8452 | 43.10 |56.41 | 51.52] 40.13
+entity type | 87.81 | 44.28 |61.81 | 71.54| 62.75 +entity type | 86.78 | 41.35 |59.96 | 67.24 | 58.90
+token idf | 88.17 | 44.62 | 62.25|71.91 | 6381 +token idf | 86.87 | 41.80 | 60.25| 66.72 | 58.64

Table 12: Ablation study of the proposed method using  Table 17: Ablation study of the proposed method using

LLaMA-13b-SFT (y = 0.9, p = 0.01). Vicuna-13b (y = 0.9, p = 0.01).
Method | NoFac | NoFac* | Fact | Pear. | Spear. Method | NoFac | NoFac* | Fact | Pear. | Spear.
ave(h) | 8158 | 42.19 |47.56|49.02 | 35.50 ave(h) | 81.96 | 41.91 |42.83]42.09 | 3130
+keyword | 8332 | 42.63 | 47.13 | 56.45 | 45.38 +keyword | 82.95 | 40.87 |42.90 | 49.91 | 39.35
tpenalty | 8695 | 45.74 |59.60 | 66.56 | 59.14 tpenalty | 8659 | 47.65 |61.02]62.39 | 55.71
+entity type | 89.92 | 48.52 |65.12|77.48 | 72.42 +entity type | 88.10 | 44.40 | 61.35|71.06 | 64.53
+token idf | 90.34 | 49.17 | 65.29 | 77.53 | 73.10 +token idf | 88.23 | 44.51 |62.10 | 71.82 | 65.96

Table 13: Ablation study of the proposed method using  Table 18: Ablation study of the proposed method using

LLaMA-30b-SFT (y = 0.9, p = 0.01). Vicuna-33b (y = 0.9, p = 0.01).
Method | NoFac | NoFac* | Fact | Pear. | Spear. Method | NoFac | NoFac* | Fact | Pear. | Spear.
avg(h) | 77.06 | 3547 2942 9.64 | 3.8 avg(h) | 77.48 | 32.96 | 3024|1892 591
+keyword ‘ 77.59 ‘ 35.61 ‘30.41 ‘ 19.24‘ 10.98 +keyword ‘ 78.32 ‘ 34.00 ‘32.15 ‘ 28.78‘ 14.05
+penalty ‘ 80.74 ‘ 42.23 ‘ 38.03 ‘ 24.18 ‘ 20.17 +penalty ‘ 82.36 ‘ 42.41 ‘47.25 ‘ 42.65 ‘ 26.51
+entity type | 81.66 | 41.55 |40.03 | 44.04 | 36.62 Tentity type | 82.02 | 40.46 |43.24|46.31 | 39.44
+ioken idf | 8225 | 40.94 |41.25]45.19 ]| 36.76 +token idf | 82.26 | 40.49 | 4338 | 46.48 | 40.56

Table 14: Ablation study of the proposed method using  Table 19: Ablation study of the proposed method using

Falcon-7b (y = 1.0, p = 0.01). RedPajama-3b (v = 1.0, p = 0.01).
Method | NoFac | NoFac* | Fact | Pear. | Spear. Method | NoFac | NoFac* | Fact | Pear. | Spear.
avg(h) | 7972 | 37.50 |323734.00 | 27.47 avg(h) | 7943 | 3437 |33.22]36.82 | 22.56
+keyword | 80.55 | 37.62 |35.13|45.45] 38.11 +keyword | 80.33 | 3546 |35.9244.25| 30.43
tpenalty | 87.26 | 47.22 | 44.88 |47.67| 52.01 tpenalty | 8357 | 4133 |44.87|42.34 | 35.39
+entity type | 87.11 | 45.74 |57.60 | 68.25 | 62.46 +entity type | 84.34 | 40.87 |50.53 | 56.38 | 50.28
+token idf | 88.11 | 46.95 |58.14 | 68.63 | 64.66 +token idf | 84.68 | 41.53 |50.05 | 55.55 | 49.74

Table 15: Ablation study of the proposed method using  Table 20: Ablation study of the proposed method using
Falcon-40b (v = 0.9, p = 0.01). RedPajama-7b (v = 0.9, p = 0.01).



Method | NoFac | NoFac* | Fact | Pear. | Spear.

avg(h) | 75.64 | 33.34 [28.30]-0.38 | -9.30 Method ‘ NoFac ‘ NoFac* ‘ Fact ‘ Pear. ‘ Spear.
+keyword | 76.31 | 33.99 |29.61 | 9.26 | -2.55 avg(h) | 7698 | 33.77 |29.65| 5.52 | -1.62
+penalty | 77.51 | 38.05 |37.54|25.50 | 7.06 +keyword | 77.61 | 34.59 |31.55]14.25| 2.98
+entity type | 77.68 | 37.73 |33.98 | 17.82 | 15.29 +penalty | 79.67 | 39.91 |43.18 |31.42 | 16.32
+token idf | 77.92 | 38.56 |33.58 | 15.68 | 13.95 +entity type | 79.31 | 39.32 | 41.66 | 33.75 | 28.98

+token idf | 79.26 | 39.49 |40.63 | 31.07 | 28.67

Table 21: Ablation study of the proposed method using

GPT-J-6b (v = 1.0, p = 0.01). Table 26: Ablation study of the proposed method using

OPT-30b (y = 1.0, p = 0.01).

Method | NoFac | NoFac* | Fact | Pear. | Spear.
avg(h) | 77.14 | 3349 [30.71|11.55| 3.18
+keyword | 77.97 | 33.70 |32.93|23.84] 11.53
+penalty | 80.77 | 40.22 |43.01|37.46 | 23.13
+entity type | 80.12 | 37.50 |38.70 | 31.24 | 25.08

Method | NoFac | NoFac* | Fact | Pear. | Spear.

ave(h) | 77.04 | 3422 |30.08 | 28.83 | 13.62

+iokenidf | 81.40 | 38.84 |39.80 | 35.03 | 30.40
tkeyword | 7820 | 35.64 |33.2338.39 | 23.96
Table 22: Ablation study of the proposed method using +penalty | 84.02 | 42.90 [39.17]39.10 | 41.84
GPT-NeoX-20b (y = 1.0, p = 0.01). +entity type | 83.55 | 41.12 | 55.57 | 62.05 | 47.94

+oken idf | 8429 | 41.31 |56.64 | 63.59 | 48.91

Method | NoFac | NoFac* | Fact | Pear. | Spear.

avg(h) | 71.05 | 30.96 |24.64|-19.84|-23.08 Table 27: Ablation study of the proposed method using
LLaMA-2-7b (v = 0.9, p = 0.01).

+keyword | 71.81 | 32.65 |25.08 | -15.16 | -19.79
+penalty | 7271 | 37.25 |26.19 | -9.94 | -14.61
+entity type | 73.64 | 34.64 |28.12] -9.09 | -6.75
+token idf | 73.88 | 34.74 |28.29 | -8.04 | -5.92

Method | NoFac | NoFac* | Fact | Pear. | Spear.

Table 23: Ablation study of the proposed method using avg(h) | 7771 | 3431 |32.24]36.55 | 22.61
OPT-125m (y = 1.0, p = 0.01).

+keyword | 79.75 | 36.24 |35.22 | 47.11 | 34.73
+penalty | 84.36 | 43.64 |51.50 | 52.88 | 44.72

Method | NoFac | NoFac* | Fact | Pear. | Spear.

+entity type | 85.87 | 4346 | 63.20 | 71.24 | 59.62
avg(h) | 7373 | 3215 [26.00 | -11.16 | -17.54

+oken idf | 87.28 | 45.62 |63.39 | 71.57 | 63.85
+keyword | 7432 | 3351 |27.05| -3.51 |-13.54
+penalty | 74.84 | 37.37 |31.13| 4.08 | -8.62 Table 28: Ablation study of the proposed method using
+entity type | 73.50 | 33.77 |30.02 | -1.03 | -2.59 LLaMA-2-13b (y = 0.9, p = 0.01).
+token idf | 73.84 | 34.00 |30.88| 1.08 | -1.20

Table 24: Ablation study of the proposed method using
OPT-1.3b (y = 1.0, p = 0.01).

Method | NoFac | NoFac* | Fact | Pear. | Spear.

Method | NoFac | NoFac* | Fact | Pear. | Spear. avg(h) | 79.05 | 3735 |36.99|49.79 | 39.58
avg(h) | 76.77 | 33.82 |29.75 | 4.36 | -3.96 +keyword | 81.50 | 39.17 |40.78 | 59.18 | 51.97
+keyword | 77.40 | 3444 |31.67|13.79 | 1.89 +penalty | 86.76 | 4639 |50.34 | 55.53 | 58.53
tpenalty | 79.72 | 39.44 | 40.65 | 29.13 | 14.30 +entity type | 89.66 | 51.33 | 65.14 | 77.58 | 72.43
+entity type | 79.06 | 39.19 |38.74 | 28.42 | 22.59 Hokenidf | 89.95 | 52.06 | 65.1176.88 | 72.36

ken idf . 97 231 27. 23. . .
+okenidf | 79.63 | 3997 [39.23]27.88 | 23.65 Table 29: Ablation study of the proposed method using

LLaMA-2-70b (y = 0.9, p = 0.01).

Table 25: Ablation study of the proposed method using
OPT-13b (y = 1.0, p = 0.01).



