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Abstract

Large decoder-only language models (LMs)
can be largely improved in terms of perplex-
ity by retrieval (e.g., RETRO), but its impact
on text generation quality and downstream task
accuracy is unclear. Thus, it is still an open
question: shall we pretrain large autoregres-
sive LMs with retrieval? To answer it, we per-
form a comprehensive study on a scalable pre-
trained retrieval-augmented LM (i.e., RETRO)
compared with standard GPT and retrieval-
augmented GPT incorporated at fine-tuning or
inference stages. We first provide the recipe
to reproduce RETRO up to 9.5B parameters
while retrieving a text corpus with 330B tokens.
Based on that, we have the following novel find-
ings: i) RETRO outperforms GPT on text gen-
eration with much less degeneration (i.e., repe-
tition), moderately higher factual accuracy, and
slightly lower toxicity with a nontoxic retrieval
database. ii) On the LM Evaluation Harness
benchmark, RETRO largely outperforms GPT
on knowledge-intensive tasks, but is on par with
GPT on other tasks. Furthermore, we intro-
duce a simple variant of the model, RETRO++,
which largely improves open-domain QA re-
sults of original RETRO (e.g., EM score +8.6
on Natural Question) and significantly outper-
forms retrieval-augmented GPT in both fine-
tuning and zero-shot evaluation settings. Our
findings highlight the promising direction of
pretraining autoregressive LMs with retrieval
as future foundation models. We release our
implementation at: https://github.com/N
VIDIA/Megatron-LM#retro.

1 Introduction

Large language models (LMs), including masked
LMs (e.g., BERT (Devlin et al., 2018)), autore-
gressive LMs (e.g., GPT (Brown et al., 2020)),
and encoder-decoder LMs (e.g., T5 (Raffel et al.,

∗Equal contribution. ‡Work done during an internship at
NVIDIA. 1UIUC. 2NVIDIA. 3University of Wisconsin, Madi-
son. †Correspondence to: Wei Ping <wping@nvidia.com>

2020), BART (Lewis et al., 2020a)), have ob-
tained state-of-the-art results for various NLP tasks.
Among them, the autoregressive LMs like GPT-
3 (Brown et al., 2020) and GPT-4 (OpenAI, 2023)
demonstrate noticeable in-context learning abil-
ity and excellent long-form text generation results.
Due to its importance, the community has spent
considerable efforts to scale up such autoregres-
sive generative LMs with more data and param-
eters and observed significant breakthroughs in
a variety of real-world applications (e.g., Brown
et al., 2020), including open-ended text genera-
tion and various downstream tasks (e.g., ques-
tion answering). The successful public exam-
ples include GPT-3 (w/ 170B parameters) (Brown
et al., 2020), Gopher (280B) (Rae et al., 2021),
Megatron-Turing (530B) (Smith et al., 2022), and
PaLM (540B) (Chowdhery et al., 2022).

Although large-scale autoregressive LMs have
achieved huge successes, they also suffer from sev-
eral weaknesses. First, it requires a huge number
of model parameters to memorize the world knowl-
edge, which makes it costly for deployment. Sec-
ond, it is difficult to safeguard factual accuracy,
which may provide users with incorrect informa-
tion (Lee et al., 2022). Third, it is expensive to
update the model knowledge learned during pre-
training with up-to-date facts (Meng et al., 2022),
yielding outdated answers (Lewis et al., 2020b).

To mitigate the problems above, one line of
research proposes to improve language models
with retrieval. The retrieval process can be inte-
grated into LMs at: i) fine-tuning stage (Karpukhin
et al., 2020; Lewis et al., 2020b; Guu et al., 2020),
or ii) pretraining stage (Borgeaud et al., 2022;
Izacard et al., 2022). Most previous work aug-
ments BERT or encoder-decoder LMs with re-
trieval at fine-tuning stage, demonstrating suc-
cesses for knowledge-intensive NLP tasks (Guu
et al., 2020; Karpukhin et al., 2020; Lewis et al.,
2020b; Khandelwal et al., 2020). However, it re-
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mains relatively underexplored to pretrain autore-
gressive (decoder-only) LMs with retrieval, espe-
cially considering the noticeable success of Chat-
GPT (OpenAI, 2022) that underscores the extreme
importance of the autoregressive LMs.

Most recently, RETRO (Borgeaud et al., 2022)
proposes to pretrain autoregressive LMs with a
retrieval module, which is practically scalable to
large-scale pretraining from scratch by retrieving
billions of token and largely reduces model parame-
ters while achieving lower perplexity than standard
GPT. It also provides the flexibility to update the
knowledge stored in LMs (Petroni et al., 2019)
by updating the retrieval database without train-
ing LMs again. The success of pretraining LMs
with retrieval raises an important question for the
community if we want to pretrain autoregressive
LMs in the future: Shall we pretrain autoregres-
sive (decode-only) LMs with retrieval by default
or not? However, previous work (Borgeaud et al.,
2022) misses the important evaluation on whether
the model like RETRO could obtain comparable or
even better results in terms of open-ended text gen-
eration and various NLP downstream tasks, apart
from lower perplexity on the held-out dataset com-
pared to standard GPT.

To answer the above question and bridge the
missing gap, we perform an extensive study on
RETRO, as to the best of our knowledge, RETRO

is the only retrieval-augmented autoregressive LM
that supports large-scale pretraining with retrieval
on the massive pretraining corpus with hundreds of
billion or trillion tokens. Our comprehensive study
sheds light on the promising direction of pertain-
ing autoregressive LMs with retrieval to serve as
future foundation models, as they overall outper-
form standard GPT models in terms of perplexity,
text generation quality, and downstream task perfor-
mances, especially for knowledge-intensive tasks,
including open-domain QA.

2 Key Findings

We successfully reproduce and pretrain RETRO

(Borgeaud et al., 2022) from scratch1, with param-
eter sizes ranging from 148M up to 9.5B by re-
trieving from a text corpus with over 330B tokens.
In addition, we discuss the inference strategy of
RETRO for text generation that is not covered in
Borgeaud et al. (2022), and perform a large-scale

1The official implementation and pretrained checkpoints
are not open-sourced.

evaluation in different scenarios.
To minimize the discrepancy variables between

RETRO and GPT, we use the same decoder architec-
ture, same hyper-parameters, and same pre-training
corpus to pre-train RETRO and GPT given the same
number of pre-training steps. We highlight our
novel findings for RETRO and GPT as follows:

2.1 Text Generation

We conduct a systematic study (see §5) to under-
stand and analyze RETRO by evaluating its open-
ended text generation quality via human and auto-
matic evaluations. RETRO exhibits better perfor-
mance than GPT with considerably less repetition,
moderately higher factual accuracy, and slightly
lower toxicity levels. RETRO is on par with GPT in
terms of fluency, coherence.

2.2 LM Evaluation Harness Benchmark

In terms of zero-shot evaluation on the standard
benchmark, RETRO can overall improve upon the
GPT across different tasks, significantly outper-
forming GPT on knowledge-intensive tasks such as
Hellaswag and BoolQ while achieving similar per-
formance on other tasks. Specifically, we evaluate
the zero-shot capabilities of RETRO and GPT on
nine representative NLP downstream classification
tasks (see §6). Additionally, our findings demon-
strate that RETRO can leverage retrieved neighbors
and significantly improves accuracy for knowledge-
intensive tasks in zero-shot evaluations. In contrast,
incorporating these retrieved neighbors directly dur-
ing the inference stage can hurt GPT’s performance.
These results further substantiate the potential of
RETRO, which is pre-trained with retrieval capabil-
ities, as a promising approach.

2.3 Open-domain QA

For open-domain QA tasks, RETRO achieves
considerably superior performance than retrieval-
augmented GPT that incorporates retrieval dur-
ing fine-tuning across different model sizes and
datasets. Specifically, we propose a variant of the
model, RETRO++, for open-domain QA that feeds
the most relevant evidence into the decoder and
more evidence into its encoder, which is different
from the original version (Borgeaud et al., 2022).
RETRO++ can largely improve the exact matching
score (EM) on Natrual Question from 40.9% to
54.1%, which is significant higher than the 45.5%
reported by the original RETRO.
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Model #/ Retrieval When to Architecture Initialization Re-indexingName Tokens Involve Retrieval

RETRO (Borgeaud et al.) O(1012) Pretraining decoder-only From Scratch / Pretrained GPT No
Atlas (Izacard et al.) O(109) Pretraining encoder-decoder Pretrained T5 Yes
REALM (Guu et al.) O(109) Pretraining encoder-only Pretrained BERT Yes

RAG (Lewis et al.) O(109) Fine-tuning encoder-decoder Pretrained BART No
DPR (Karpukhin et al.) O(109) Fine-tuning encoder-only Pretrained BERT No
FiD (Izacard and Grave) O(109) Fine-tuning encoder-decoder Pretrained T5 No

KNN-LM (Khandelwal et al.) O(109) Inference decoder-only Pretrained GPT No

Table 1: Comparison of different retrieval-augmented models in terms of #/ retrieval tokens, which stage to incorporate retrieval
into LMs, the architecture of the backbone LM, whether it requires initialization from the existing LM checkpoint, and whether it
requires expensive re-indexing. RETRO is the most scalable retrieval-augmented LM due to its chunk-level retrieval and scalable
decoder-only autoregressive LM backbone (Thoppilan et al., 2022; Brown et al., 2020; Smith et al., 2022; Chowdhery et al.,
2022) without expensive retrieval index refresh.

3 Related Work

Retrieval has been applied in various NLP tasks
for years, including question answering (QA) (e.g.,
Bilotti et al., 2007), machine translation (e.g.,
Zhang et al., 2018), and conversation (Shuster
et al., 2021; Thoppilan et al., 2022; Komeili et al.,
2021). In particular, language models have been
augmented with retrieval at different stages, includ-
ing inference time (Khandelwal et al., 2020; Yo-
gatama et al., 2021), fine-tuning stage (Karpukhin
et al., 2020; Lewis et al., 2020b; Guu et al., 2020),
and pretraining stage (Borgeaud et al., 2022; Izac-
ard et al., 2022).

LMs have been augmented with retrieval at the
fine-tuning stage for downstream tasks, primarily
for open-domain QA. DPR (Karpukhin et al., 2020)
finetunes one BERT to encode questions and the
other BERT to encode answers within a dual en-
coder framework, using a contrastive loss to align
the hidden representations of question and corre-
sponding answer. RAG (Lewis et al., 2020b) stud-
ies the fine-tuning recipe for retrieval-augmented
generation models, especially on open-domain QA
tasks. FiD (Izacard and Grave, 2021) improves
RAG with a better LM backbone T5, and fuses
multiple retrieved passages to the decoder during
fine-tuning to further improve QA accuracy. We-
bGPT (Nakano et al., 2021) leverages web search
engine and fine-tunes GPT using reinforcement
learning with human feedback (RLHF) for refer-
ence generation and factuality improvement, which
is orthogonal to our work that focuses on pretrain-
ing with retrieval. The proposed RLHF can be
applied to RETRO as well.

REALM (Guu et al., 2020) performs both un-
supervised pretraining and supervised fine-tuning

strategies for retrieval-augmented BERT model in
open-domain QA. Their pretraining involves asyn-
chronous re-embedding and re-indexing all docu-
ments every several hundred training steps, which
quickly becomes impractical for training corpus
with trillion tokens. Atlas (Izacard et al., 2022)
uses a similar approach but augments the T5 archi-
tecture (Raffel et al., 2020) with retrieval at both
pre-training and fine-tuning. Before pretraining, it
first initializes the encoder-decoder LM backbone
with pretrained T5, and the dense retriever with
pretrained Contriever (Izacard et al.). During pre-
training, it also applies asynchronous index refresh
every 1000 steps.

In contrast, RETRO (Borgeaud et al., 2022) em-
beds and indexes the whole training corpus at
chunk-level (e.g., chuck size = 64) with a frozen
BERT before pretraining. During pretraining, the
model relies on a trainable bidirectional encoder
to embed the retrieved chunks of raw text. The
GPT decoder further “select” the relevant piece of
evidence from the encoder side by a chunk-wise
cross-attention. This architecture design enables
LM pretraining on hundreds of billion tokens by
retrieving from trillion tokens. See Table 1 for a
complete comparison of retrieval-augmented LMs.

4 Model and Implementation

In this section, we first introduce preliminaries of
RETRO, then provide detailed recipe of our imple-
mentation, including retrieval database, pretraining,
and retrieval-augmented finetuning and generation.

4.1 Preliminaries of RETRO

RETRO is an autoregressive language model en-
hanced with a retrieval module that utilizes chunk-
wise retrieval, enabling it to scale up to trillions of
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Figure 1: Visualization of padding design for RETRO.

Small Medium XL XXL

GPT 17.76 13.18 10.18 7.86
RETRO (k = 2) 12.99 10.06 8.10 6.72

Table 2: Validation perplexity of pretrained GPT and RETRO
on the held-out dataset. We report the results with k = 2
neighbors in this Table, and we observe the same trend of
improvements with larger k as in Borgeaud et al. (2022).

tokens. The model splits both the input sequence
and retrieval datastore into sequences of chunks.
RETRO retrieves nearest neighbor chunks from the
retrieval database using the previous chunk and
fuses this information with the context from pre-
ceding chunks to guide the generation of the next
chunk. To maintain causality, the model can only
use the nearest neighbors of the previous chunk for
the autoregressive generation.

4.2 Implementation

As RETRO has no official open-source implementa-
tion and pretrained checkpoints, we reproduce and
pretrain RETRO from scratch on our own.

4.2.1 Retrieval Database
We build the retrieval database with the whole
pretraining dataset mentioned in §B. In this way,
RETRO and standard GPT of similar size are fair
comparisons, as they are pretrained using the same
information from the pretraining corpus. The re-
trieval database is a key-value database, where val-
ues are chunks split from the pretraining corpus,
and the keys are corresponding BERT embeddings.
Our pertaining dataset with 330B tokens yields a
retrieval database consisting of 5.3B chunks in total
with chunk size m = 64.
Retrieval Index. We use the Faiss index (Johnson
et al., 2019) as the implementation for the dense re-
triever to search for approximate nearest neighbors
in the BERT embedding space. We configure the
Faiss index to cluster the dense embeddings into

222 centroids accelerated with Hierarchical Navi-
gable Small World graphs (Malkov and Yashunin,
2018) to speed up the query. We also encode the
embeddings with optimized product quantization
(Gray and Neuhoff, 1998; Ge et al., 2014) to com-
press memory overhead and further improve the
query throughput. As a result, we can achieve 4ms
per query over the whole pretraining corpus aver-
aged for each chunk on a DGX-2H node. One may
find more details in Appendix §A.

4.2.2 Pretraining RETRO Models
We use the same transformer configurations (#/ lay-
ers, hidden size, attention heads) and pretrain both
RETRO and standard GPT from scratch. Specifi-
cally, we pretrain RETRO across different param-
eter sizes, ranging from 148M (Small), 410M
(Medium), 1.5B (XL), and 9.5B (XXL). We also
use the same pretraining schedules to pretrain
RETRO and GPT given the same number of steps.
We list the validation perplexity of GPT and RETRO

after pretraining in Table 2. We present more de-
tails in Appendix §B, including pretraining sched-
ules, computational cost (GPU hours), and model
architectures.

4.2.3 Retrieval-augmented Generation
We discuss the generation and inference recipe in
the batch-processing mode for RETRO, which is
missing from the previous literature.
“Left Padding” Rule. The chunk-wise retrieval of
RETRO improves scalability but enforces chunk-
wise alignment constraints, leading to issues in con-
ditional generations with short contexts. When the
sequence length is less than the chunk size, RETRO

cannot utilize its retrieval capability as there is no
previous chunk for retrieval. Instead, RETRO adds
padding tokens to the left of the context, allowing
RETRO to leverage the retrieved neighbors from
the previous context to guide the generation of the
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Metrics Small Medium XL XXL
GPT RETRO GPT RETRO GPT RETRO GPT RETRO

Repetition % 2.86% 2.26% 1.70% 1.50% 1.44% 0.96% 1.40% 1.12%
Self-BLEU 0.29 0.3 0.29 0.3 0.29 0.29 0.31 0.31
Zipf Coefficient 0.98 0.98 0.96 0.98 0.97 0.98 0.96 0.96

Table 3: Automatic evaluation on text generation quality for RETRO and GPT across different sizes.

next token (Figure 1a). We summarize this general
principle in RETRO as the “left padding” rule, as
it can leverage the contextual information for re-
trieval to the most. This rule remains preferable
for input sequences larger than the chunk size, as
it ensures the closest and rightmost context is used
for retrieval, making it more relevant for next token
prediction (see Figure 1b).

Frequency of Retrieval. In order to efficiently gen-
erate long sequences with RETRO, we note a flexi-
ble trade-off between retrieval-augmented genera-
tion and computation overhead. The direct method
involves retrieval at every decoding step, maximiz-
ing the use of the retrieval module but increasing
computational overhead (Figure 1b, retrieval step
= 1). Another approach retrieves neighbors at the
frequency of the chunk size, reducing overhead but
sacrificing accuracy (Appendix Figure 3b, retrieval
step = 64). To balance these factors, we introduce
a flexible retrieval step, which allows model practi-
tioners to choose how many tokens to generate with
the current retrieved neighbors before updating the
context. Smaller retrieval steps are preferred for
downstream tasks with short answers to ensure ac-
curate neighbors, while larger steps are used for
efficient generation of long passages. We provide
more details in Appendix §C.

4.2.4 Batched Training for Downstream Tasks

When fine-tuning RETRO for downstream
tasks (e.g., QA), it is crucial to separate context
or question from the candidate answer chunk to
maintain causality in autoregressive modeling.
This leads to a modified "left padding" rule:
pad context chunks from the left and answer
chunks from the right (Figure 1c). Padding aligns
input sequences with the chunk size, enabling
batch-mode training and inference for faster
evaluation. By adding padding chunks to the right,
sequences with varying chunk numbers can be
processed together, further improving efficiency.

5 Open-ended Text Generation

In this section, we delve into the problem of open-
ended text generation, which refers to tasks of gen-
erating coherent continuation given the preceding
prompt. Given that this problem for RETRO has
never been studied before, we manage to bridge the
gap and evaluate the open-ended text generation of
RETRO compared to GPT from three aspects: a)
text quality, b) factuality, and c) toxicity.

5.1 Text Quality

We perform both automatic and human evaluations.

5.1.1 Automatic Evaluation
Evaluation Metrics. We follow prior work (Holtz-
man et al., 2019; Zhu et al., 2018) and consider
the following metrics: Repetition % measures
percentage of the generations containing repetitive
phrases, SELF-BLUE evaluates the diversity of
the generations, and Zipf Coefficient measures
the use of vocabulary. See detailed definition and
evaluation setup in Appendix §D.1.
Experimental Results. Our results are shown in
Table 3. We note that RETRO can reduce the per-
centage of repetition compared with GPT by a large
margin across different sizes. Specifically, RETRO

averagely mitigates 21% of repetitions compared
with GPT across different sizes. This suggests the
retrieval module can help reduce text degeneration
by referencing retrieved human text. Regarding vo-
cabulary use and generation diversity, we do not ob-
serve major differences between GPT and RETRO,
which implies these properties are primarily depen-
dent on the decoder component of LMs.

5.1.2 Human Evaluation
We also conduct human evaluations to further ver-
ify the quality of the generated text.
Evaluation Metrics. We ask human annotators
to annotate each generation with fluency scores,
which measure the human readability and grammat-
ical errors from 1 (Not human-readable) to 5 (Very
fluent), and coherence scores, which measure the
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Decoding Models Factual Nonfactual
NEER ↓ EntailR ↑ NEER ↓ EntailR ↑

Top-p=0.9 RETRO 52.14% 3.11% 56.75% 2.06%
GPT 52.42% 2.93% 56.82% 2.04%

Greedy RETRO 37.42% 16.66% 42.45% 10.88%
GPT 39.87% 12.91% 45.02% 8.75%

(a) The factuality on FACTUALITYPROMPTS benchmark.

Models QA Format Null Format
MC1↑ MC2↑ MC1↑ MC2↑

GPT 0.222 0.377 0.234 0.435
RETRO (pretraining) 0.239 0.382 0.248 0.439

RETRO (wiki) - - 0.242 0.437
RETRO (DPR) - - 0.245 0.439

(b) The truthfulness on TruthfulQA benchmark.

Table 4: Evaluation of factuality and truthfulness of RETRO (XL) and GPT (XL).

relevance between the prompt and the correspond-
ing continuations from 1 (Not Relevant) to 5 (Very
Relevant). More details can be found in §D.2.
Experimental Results. We present the human vote
histogram in Appendix Figure 4. We observe that
most votes concentrate on the regime of scores
>= 3 for both relevance and fluency, which indi-
cates that our generated text from both models is of
high quality and closely related to the prompts. The
differences between GPT and RETRO are subtle,
with average relevance (3.726) and fluency (3.826)
scores of RETRO slightly outperforming the aver-
age relevance score (3.715) and fluency (3.818)
scores of GPT.

From both automatic and human evaluation,
we can conclude that although the generation of
RETRO adds some complexity, we do not see any
sign of the degeneration of RETRO compared to
GPT. Moreover, RETRO is shown to be able to
reduce the repetition and slightly improve text gen-
eration quality.

5.2 Factuality

Factuality refers to being coherent to provide
ground truth knowledge sources in NLP. We lever-
age two well-established benchmarks (Lee et al.,
2022; Lin et al., 2021) to evaluate the factual accu-
racy of RETRO and GPT. We put detailed experi-
mental setup and metrics in the §E.
Factuality Prompts. We present the results on
FACTUALITYPROMPTS benchmark in Table 4a,
where we follow the protocol (Lee et al., 2022)
and use different decoding strategies for evaluation.
We observe that overall RETRO demonstrates better
factual accuracy and makes fewer hallucinations.
Our observation also aligns with (Lee et al., 2022)
that different from top-p sampling with random-
ness, greedy decoding gives the much better factual
accuracy by sacrificing sample diversity. RETRO

shows a significant improvement over GPT using
both top-p and greedy decoding algorithms.
TruthfulQA. We also evaluate truthfulness in Ta-

ble 4b, where we observe the consistent conclu-
sion that RETRO tend to be more resilient to hu-
man falsehoods than GPT across different prompts
(demonstrated in Appendix Table 12 and 13).

Since using the null format yields consistently
better performance, we thus fix the prompt and
conduct ablation studies with different retrieval
databases. We observe that the pretraining database
and DPR database yield the best factual accuracy.
This suggests that (i) finetuned retriever or (ii) re-
trieval from a larger corpus are helpful to improve
factual accuracy. In addition, the improvement mar-
gin for RETRO on TruthfulQA is not as significant
as on FACTUALITYPROMPTS. This is likely be-
cause TruthfulQA is an adversarial dataset contain-
ing difficult question types, such as logical false-
hoods and indexical errors (e.g., “Are you an artifi-
cial intelligence?”, more examples can be found in
Appendix Table 14). In these cases, retrieval from
the database does not effectively aid in answering
such questions.

5.3 Toxicity

The toxicity of LMs refers to the possibility of
LMs that output toxic generations. In this study,
we follow REALTOXICTYPROMPTS benchmark
(Gehman et al., 2020) to evaluate the potential tox-
icity of RETRO and GPT.
Evaluation Metrics. Following Gehman et al.
(2020), we report the Expected Maximum Toxic-
ity, which evaluates the toxicity of the worst-case
generation, as well as Toxicity Probability that esti-
mates the empirical frequency of generating toxic
language. See more details and setup in §F.
Experimental Results. The toxicity of LMs are
shown in Table 5. Compared to GPT, we note
that RETRO with the pretraining corpus even in-
creases the toxicity of the generations. Moreover,
we observe more toxicity increases in toxic prompts
than in nontoxic prompts. This suggests that when
prompting RETRO with toxic contexts, it is more
likely to retrieve toxic evidence and thus amplify
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Models Retrieval Exp. Max. Toxicity (↓) Toxicity Prob. (↓)
Database Full Toxic Nontoxic Full Toxic Nontoxic

GPT - 0.44 0.64 0.39 37% 74% 27%

RETRO (top-N = 2, top-K = 2) Pretraining 0.46 0.66 0.40 40% 76% 30%
RETRO (top-N = 5, top-K = 2) Pretraining 0.46 0.66 0.40 39% 77% 29%
RETRO (top-N = 10, top-K = 2) Pretraining 0.46 0.66 0.40 39% 76% 29%

RETRO (top-N = 2, top-K = 2) Wiki 0.43 0.64 0.38 35% 73% 25%
RETRO (top-N = 5, top-K = 2) Wiki 0.43 0.64 0.38 35% 71% 26%
RETRO (top-N = 10, top-K = 2) Wiki 0.43 0.64 0.38 35% 71% 26%

Table 5: Evaluation of LM toxicity for GPT (XL) and RETRO (XL). Model toxicity is evaluated on REALTOXICITYPROMPTS.
Full refers to the full set of prompts, Toxic and Nontoxic refer to the toxic and nontoxic subsets of prompts. ↓ means the lower,
the better. RETRO can filter from top-N nearest neighbors and select the top-K nontoxic neighbors for retrieval.

the issues. To confirm the toxicity amplification
issue, we further conduct two sets of ablation stud-
ies: (i) We save the retrieval evidence and calculate
the Expected Mean Toxicity of both generations
and retrieval evidence. We observe that the toxic-
ity of retrieval evidence is 0.177, higher than the
toxicity of the generations (0.146). (ii) We change
the retrieval database to the Wikipedia database,
which shows lower toxicity for retrieval evidence
(0.132). As a result, we observe that RETRO with
the Wikipedia retrieval database can help mitigate
the toxicity of GPT as shown in Table 5, with the
toxicity probability dropping from 37% to 35%.
We also note that it is not very helpful to use a
larger N as nearest neighbors and filter the retrieval
evidence by toxicity. We hypothesize the reason
is that the similarity between input and retrieval
evidence is limited with larger N , thus yielding
low cross-attention on the retrieval evidence.

6 LM Evaluation Harness Benchmark

Besides the open-ended text generation, it is also
important to examine the generalization of RETRO

on various downstream tasks, which is also miss-
ing from the literature. Therefore, we use LM
Evaluation Harness Benchmark (Gao et al., 2021)
and consider the following nine representative NLP
downstream tasks. See more details in §G.
Zero-shot evaluation. We present the zero-shot
evaluation results in Table 6. We find that on av-
erage RETRO can improve the downstream task
accuracy across different tasks. Moreover, we ob-
serve larger improvements in knowledge-intensive
tasks such as Hellaswag and BoolQ (6 of 8 cases),
which require factual knowledge to guide the rea-
soning. Note that the zero-shot evaluation results
are susceptible to prompt formats, so the results
have certain variances.

Retrieval-augmented GPT at Inference time.
We have seen that retrieval significantly improves
RETRO across different downstream tasks in the
zero-shot setting. In this ablation study, we append
the retrieval evidence of RETRO to the beginning
of the context to see whether retrieval can also be
helpful for GPT at inference time. We evaluate the
zero-shot accuracy after prepending the top-1 re-
trieval evidence. The results are shown in Appendix
Table 16. We observe that directly prepending the
evidence from the retrieval database messes up the
GPT context in the zero-shot setting, yielding low
accuracy of around 24.5%. We hypothesize the rea-
son is that the retrieval evidence can be noisy. With-
out pretraining or proper fine-tuning, GPT in the
zero-shot learning setting puts too much attention
on the noisy evidence, thus giving low downstream
accuracy.

7 Open-domain Question Answering

In this section, we study two widely used open-
domain QA datasets, Natural Question (NQ) and
TriviaQA.

7.1 Experimental Setup

Retrieved evidence as context The original
RETRO work leverages the retrieved evidence (i.e.
passages) by feeding them all into the encoder. We
argue that the top most relevant evidence is more
important than others and should be used as the
context for the question. Therefore, the top rele-
vant evidence should be fed to the decoder, and the
rest of the evidence can be incorporated by the en-
coder. For the implementation in our experiments,
we append the top-1 relevant passage at the begin-
ning of the decoder input, and reformat the input
with Template A: “title: {title}, source: {source}
\n question: {question} \n answer: {answer}”. For
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Tasks Small Medium XL XXL
GPT RETRO GPT RETRO GPT RETRO GPT RETRO

Knowledge-intensive Tasks

HellaSwag 31.3 36.2 ↑4.9 43.2 46.2 ↑3.0 56.7 59.0 ↑2.3 72.3 70.6 ↓1.7
BoolQ 59.3 61.8 ↑2.5 57.4 57.2 ↓0.2 62.2 62.7 ↑0.5 67.3 70.7 ↑3.4

Knowledge-nonintensive Tasks

Lambada 41.7 41.4 ↓0.3 54.1 55.0 ↑0.9 63.9 64.0 ↑0.1 73.9 72.7 ↓1.2
RACE 34.6 32.5 ↓2.1 37.3 37.3 ↑0.0 40.8 39.9 ↓0.9 44.3 43.2 ↓1.1
PiQA 64.3 64.8 ↑0.5 70.2 68.7 ↓1.5 73.7 74.1 ↑0.4 78.5 77.4 ↓1.1
WinoGrande 52.4 52.0 ↓0.4 53.8 55.2 ↑1.4 59.0 60.1 ↑1.1 68.5 65.8 ↓2.7
ANLI-R2 35.1 36.2 ↑1.1 33.5 33.3 ↓0.2 34.3 35.3 ↑1.0 32.2 35.5 ↑3.3
HANS 51.5 51.4 ↓0.1 50.5 50.5 ↑0.0 50.1 50.0 ↓0.1 50.8 56.5 ↑5.7
WiC 50.0 50.0 ↑0.0 50.2 50.0 ↓0.2 47.8 49.8 ↑2.0 52.4 52.4 ↑0.0

Avg. Acc. (↑) 46.7 47.4 ↑0.7 50.0 50.4 ↑0.4 54.3 55.0 ↑0.7 60.0 60.5 ↑0.5

Table 6: Accuracy (Acc.) on nine downstream tasks evaluated in the zero-shot setting for pretrained LMs with different
parameter sizes.

Method NQ TriviaQA

GPT (close book) 36.1 45.1
REALM (Guu et al., 2020) 40.4 -
DPR (Karpukhin et al., 2020) 41.5 56.8
RAGBART (Lewis et al., 2020b) 44.5 56.1
RAGGPT 50.9 60.9
FiDLarge (Izacard and Grave, 2021) 51.4 67.6
RETRO (Ours) 40.9 59.9
RETRO (Borgeaud et al., 2022) 45.5 -
RETRO++ (Ours) 54.1 66.7

Table 7: Comparisons of our RETRO and existing QA models.
We report the best results with the largest model configuration
respectively.

the models without retrieved evidence in the con-
text, we follow Borgeaud et al. (2022) to format
the input with Template B: “question: {question}
\n answer: {answer}”.

In additional to several baseline methods in Ta-
ble 7, we compare the following models: 1) GPT
(close-book) simply finetunes a pretrained GPT
model with the input Template B without using
any retrieved documents. 2) RAGGPT applies RAG
finetuning (Lewis et al., 2020b) for GPT, which
puts retrieved evidence as its context. It utilizes
the top retrieved documents by DPR with the input
Template A and finetunes a pretrained GPT model,
which represents incorporating retrieval to GPT at
the fine-tuning stage. 3) RETRO encodes the re-
trieved evidence using the encoder and finetunes a
pretrained RETRO model with the input Template B.
4) RETRO++ finetunes a pretrained RETRO model
with the top retrieved evidence included input Tem-
plate A while leaving the rest of the evidence to the
encoder. More details can be found in §H.
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Figure 2: Comparisons among RAGGPT and RETRO++ mod-
els on NQ and TriviaQA. Larger models achieve better perfor-
mances and RETRO++ is consistently better than RAGGPT

7.2 Results and Analysis

Table 7 shows the results on NQ and TriviaQA. Our
RETRO++ achieves Exact Match (EM) score 54.1,
which is 8.6 higher than the original RETRO paper.
We find the key to the success of RETRO is to
incorporate the top retrieved document from DPR
to the decoder as the context , which gives us 13.2
absolute improvement by comparing our RETRO

and RETRO++. Note that our RETRO has lower
EM score (40.91) than the original paper (45.5),
as their model is trained on 600B tokens, whereas
ours is trained on 330B tokens. By comparing
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RAGGPT with RETRO++, we show that pretraining
autoregressive LM with retrieval (i.e., RETRO++)
yields better QA accuracy than only fine-tuning
autoregressive LM with retrieval (i.e., RAGGPT).
Appendix §H.3 gives qualitative studies on NQ.
Scaling of model sizes. Figure 2 shows the
EM score when scaling model sizes for RAGGPT,
and RETRO++ on NQ and TriviaQA. As the model
sizes increase, the performance of all models mono-
tonically increases. RETRO++ achieves the best
performances across all tasks and model sizes.
Note that, Wang et al. (2023) further scales up the
size of RETRO to 48B and discusses how instruc-
tion tuning can help improve retrieval-augmented
LLMs for zero-shot open-domain question answer-
ing.

7.3 Zero-shot evaluation with and without
instruction tuning

Instruction tuning (Wei et al., 2022a; Chung et al.,
2022) finetunes LLMs on a collection of datasets
described via natural language instructions, which
significantly improve the zero-shot accuracies for
unseen downstream tasks. In this subsection, we
study how instruction tuning can help with open-
domain QA for retrieval-agumented LLMs.
Instruction tuning data. We use a blend of
high-quality instruction tuning datasets of 128K
samples to train LLMs to follow instructions,
which include: a high-quality social dialogue
dataset SODA (Kim et al., 2022), a long-form QA
dataset ELI5 that requires elaborate answers (Fan
et al., 2019), LLM-generated instructions: Self-
Instruct (Wang et al., 2022) and Unnatural Instruc-
tions (Honovich et al., 2022), FLAN and Chain-
of-thought datasets (Chung et al., 2022; Wei et al.,
2022b; Longpre et al., 2023), public human-written
conversation datasets OpenAssistant (Köpf et al.,
2023) and Dolly (Conover et al., 2023).
Implementation details. We conduct instruc-
tion tuning to both GPT (XXL) and RETRO (XXL).
We finetune the LLMs by taking the loss only on
the last response from the assistant with a batch size
of 128 and a learning rate of 5e-6 for 1000 steps
with a weight decay of 0.01. We use the Adam op-
timizer (Kingma and Ba, 2014) with β1 = 0.9 and
β2 = 0.98. After finetuning, we follow the same
prompt format as RAGGPT for instruction-tuned
GPT (XXL) and RETRO++ for instruction-tuned
RETRO (XXL) and evaluate the zero-shot accuracy
on the Natural Question (NQ) dataset.

RAGGPT RETRO++

w/o Instruction tuning 24.43 25.93
w/ Instruction tuning 29.75 31.16

Table 8: Exact Match (EM) scores for the zero-shot
evaluation of RAGGPT and RETRO++ on the NQ dataset
before and after instruction tuning.

Results. The results of retrieval-augmented
GPT (RAGGPT) and RETRO++ before and after
instruction tuning are shown in Table 8. We ob-
serve that applying instruction tuning with RETRO

and Retrieval-augmented GPT (RAGGPT) indeed
gives significant accuracy improvement. Moreover,
RETRO++ demonstrates consistently better accu-
racy than RAGGPT. This result further confirms the
potential and capabilities of RETRO when employ-
ing advanced techniques such as instruction tuning.
Note that, Wang et al. (2023) further scale up the
RETRO to 48B parameters to unveil the power of
instruction tuning.

8 Conclusion

In this work, we perform a comprehensive study of
pretrained retrieval-augmented LLM to answer the
question: Shall we pretrain decoder-only LMs with
retrieval? We observe consistent improvements in
text generation quality, factual accuracy, lower tox-
icity, and downstream task accuracy, especially for
knowledge-intensive tasks, including open-domain
QA. Given the ∼ 25% percentage of additional
GPU hours for pretraining (see Table 11 Appendix
B), we argue pretraining generative language mod-
els with retrieval is a promising direction.

Limitations

Despite the impressive performance of RETRO and
RETRO++, our findings reveal several limitations
that pave the way for future research to address:
• The quality of the retrieval database. The

factual accuracy and toxicity reduction in gen-
erated text rely on the quality and range of the
retrieval database. This means that the perfor-
mance and the model’s outputs can vary based
on the retrieval database. The performance of
RETRO could be compromised if the database
contains inaccurate, biased, or outdated infor-
mation.

• Scalability. The pretraining of GPT and
retrieval-augmented LLM from scratch requires
significant computational resources. Our work
follows Borgeaud et al. (2022) and pretrains
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GPT and RETRO up to the size of 9B. We leave
it as an important future work to further scale
up the size of retrieval-augmented LLMs.
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Appendix
A Details of Retrieval Index

Retrieval Database. We use the whole pertaining corpus as our retrieval database. Our pertaining
dataset with 330B tokens yields a retrieval database consisting of 5.3B chunks in total with chunk size
m = 64. To support fast similarity searches with billions of chunks, we implement the database index
with Faiss index (Johnson et al., 2019). Given the BERT embeddings of an input chunk Ci, Faiss can
return the approximate k nearest neighbor of Ci within a few milliseconds.

Faiss Index configuration We use the Faiss index (Johnson et al., 2019) as the implementation for the
dense retriever to search for approximate nearest neighbors in the BERT embedding space. We configure
the Faiss index as follows:
• Preprocessing: We use Optimized Product Quantization (Ge et al., 2014) to apply a rotation to the input

vectors to make them more amenable to PQ coding (Gray and Neuhoff, 1998).

• Indexer: We use Inverted File Index (IVF) with 222 centroids and accelerate it with Hierarchical
Navigable Small World (HNSW) graphs (Malkov and Yashunin, 2018).

• Encoding: We adopt PQ encoding that compresses the dense embedding vector into 64 bits.
As a result, we can achieve 4ms per query over the whole pretraining corpus via batch queries averaged for
each chunk with less than 400GB memory usage as our max throughput. Given a single query, the latency
of the response is around 0.1s per query. We also note that increasing the number of K in the query does
not yield slower query speed. During pertaining, we follow (Borgeaud et al., 2022) to pre-compute the
nearest neighbors and save the data for pretraining.

B Details of Pre-trained LMs

We evaluate and compare RETRO with a variety of standard GPT-3 like LMs to set up the baselines.

Chunk-wise Cross-Attention. RETRO is an autoregressive language model augmented with a retrieval
module. One fundamental reason contributing to the success of RETRO is the design of chunk-wise
retrieval, which retrieves at the level of contiguous token chunks and thus makes it possible to scale up to
retrieve from trillion tokens. Specifically, RETRO splits both the input sequence and retrieval datastore
into a sequence of chunks. Formally, given a input sequence X with n tokens X = (x1, ..., xn), RETRO

splits X into a sequence of l chunks (C1, ..., Cl) with chunk size m = n
l . From a high-level perspective,

RETRO uses the last (i − 1)-th chunk Ci−1 to retrieve k nearest neighbor chunks N (Ci−1) from the
retrieval database and fuses the contextual information from the previous chunks (C1, ..., Ci−1) and
retrieval information from N (Ci−1) by chunk-wise cross-attention to guide the generation of the next
(i)-th chunk Ci. Note that, to avoid breaking the causality, the autoregressive generation of i-th chunk Ci

can only use the nearest neighbors of the previous chunk N (Ci−1) instead of N (Ci). In this work, we
follow (Borgeaud et al., 2022) and set the chunk size m = 64.

Pretrained GPT and RETRO. We pretrain standard GPT and RETRO with different parameter sizes.
All of the models are based on Transformer (Vaswani et al., 2017) with different hidden dimensions,
number of layers, and attention heads. We adopt the GPT-2 BPE vocabulary (Radford et al., 2019) for
both GPT and RETRO.

The architecture details of pre-trained LMs are in Table 9. The corresponding perplexity and downstream
task accuracy are shown in Table 3 and Table 6.

Pretraining Corpus. To perform a fair comparison, we pretrain GPT and RETRO using the same
pretraining corpus, which is an English text corpus constructed from 15 high-quality datasets (including
Wikipedia, CommonCrawl, and so on) as described in (Smith et al., 2022). The whole pretraining corpus
consists of 330B tokens.
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Models Size #/layers #/hidden size #/ attention heads #/ parameters (RETRO) #/ parameters (GPT)

Small 12 768 12 148M 126M
Medium 24 1024 16 410M 357M
XL 24 2048 32 1.5B 1.3B
XXL 40 4096 64 9.5B 8.3B

Table 9: Detailed configuration of standard pre-trained LMs and RETRO.

Pretraining schedules for GPT and RETRO. We use the same pretraining schedules for GPT and
RETRO. We list the pretraining hyper-parameter details in Table 10. All models use Adam optimizer
(Kingma and Ba, 2014) with β1 = 0.9 and β2 = 0.95. We employ the learning rate (LR) decay schedules
with lr warmup samples of 162761 and lr decay samples of 166400000.

Models Size LR min LR LR Decay Styles Batch Size Pretraining Steps

Small 6e-4 6e-5 cosine 256 750k
Medium 3e-4 3e-5 cosine 256 750k
XL 2e-4 2e-5 cosine 512 375k
XXL 1e-4 1e-5 cosine 512 375k

Table 10: Detailed pretraining setup for standard pre-trained LMs and RETRO.

Computational Cost of Pretraining. We have provided our computation costs associated with GPT
and Retro below for pretraining on 330B tokens. All of our experiments are done on the DGX-2H node
with 8x A100 GPUs. From Table 11, we can see that the overhead involved in training Retro is less than
25% on average. Considering consistent improvements in text generation quality, factual accuracy, lower
toxicity, and downstream task accuracy, especially for knowledge-intensive tasks, including open-domain
QA, we believe pretraining Retro is a promising direction.

Model Size GPT Retro Additional Overhead

Small 1240 GPU Hours 1560 GPU Hours 25.80%
Medium 3600 GPU Hours 4480 GPU Hours 24.44%
XL 12000 GPU Hours 13440 GPU Hours 12.00%

Table 11: Comparison of GPU Hours.

C Implementation Details of Retrieval-Augmented Generation

C.1 “Left Padding” Rule

While chunk-wise retrieval significantly improves the scalability of RETRO, it also enforces chunk-wise
alignment constraint between the input and the retrieval neighbors. Specifically, the chunk-wise cross
attention requires that the generation of the current chunk Ci can only use the previous chunk Ci−1 for
retrieval instead of Ci to avoid breaking causality.

Conditional Generation with Short Contexts This design may lead to problems for conditional
generations under short contexts, as shown in Figure 3a. Given short contexts with sequence length n less
than the chunk size m, RETRO cannot leverage its retrieval capability, as the current chunk is the first
chunk, and there is no previous chunk for retrieval. When m is not a multiplier of n, RETRO needs to add
additional padding tokens2 to the input sequence. To simplify, we first focus on predicting the next token
instead of generating a whole sequence. If we follow the standard GPT that adds the padding tokens at the
end, we visualize the padding situation in Figure 3a as an example of when the input sequence length

2Since GPT-2 BPE vocab does not contain “<pad>” token, we use the end-of-text token “<|endoftext|>” for padding in
practice.
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Figure 3: Visualization of padding design for RETRO.

is less than the chunk size. Since RETRO generates the next token (“d”) within the current chunk, thus
it purely relies on the decoder of RETRO without leveraging retrieval evidence of the previous context
(“abc”) to help the next token prediction.

Conditional Generation Using “Left Padding” Rule In contrast, if we add the padding tokens to the
left of the context so that the context and padding tokens happen to form the first chunk, we visualize the
padding mechanism in Figure 1a. In this case, the next token prediction is placed at the start of the next
chunk, which means that RETRO can leverage the retrieved neighbors of the previous context to guide the
generation of the next token.

C.2 Frequency of Retrieval in Text Generation

In the last subsection, we discuss how to add padding tokens to predict the next token. In this subsection,
we discuss how to efficiently generate a long sequence for RETRO.

Retrieval Step = 1 The most direct way for text generation is to repeat the next token prediction
paradigm as shown in Figure 1b, which generates a new token, places it in the right, reduces one left
padding token, retrieves neighbors given the updated context, and uses the new retrieved neighbors to
predict the next token. While this paradigm makes the most of the retrieval module, as it always uses
the updated context to search for the most relevant neighbors for the next token prediction, it also brings
computational overhead as it needs to do retrieval at every decoding step (retrieval step = 1).

Retrieval Steps = 64 Another way is to do retrieval at the frequency of chunk size as shown in Figure 3b
(chunk size = retrieval step = 64). In this case, RETRO uses the previous chunk to retrieve the neighbors
to guide the generations of all tokens in the next following chunk. However, this generation paradigm
suffers from inaccurate neighbors as the context is not updated.

Flexible Retrieval Steps To have a flexible trade-off between the retrieval accuracy and retrieval
overhead, we propose to support flexible retrieval steps as shown in Figure 3c. Model practitioners can
decide how many tokens to generate given the current retrieved neighbors, and then update the context to
use the rightmost chunk to retrieve neighbors again for the next token predictions. Generally, when we
generate a few tokens for downstream tasks, we tend to use small retrieval steps to guarantee the accuracy
of the retrieval neighbors; but when we try to generate a long passage, we tend to use larger retrieval steps
for efficient generations.

D Details of Evaluation for Text Generation Quality

D.1 Details of Automatic Evaluation for Text Generation Quality

Experimental Setup. We follow Holtzman et al. (2019) and use the same set of 5,000 prompts for
conditional generations. Both GPT and RETRO use nucleus sampling with p = 0.9 and generate up to
200 tokens or less if reaching an <end-of-text> token. As RETRO is coping with long text generation, we
set the retrieval step to 64 and retrieve top-k = 2 neighbors from the retrieval database.
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Figure 4: Human evaluation of context coherence and text fluency on GPT (XXL) and RETRO (XXL).

Evaluation Metrics. We use the following automatic evaluation metrics for text generation quality:
• Repetition % measures the percentage of the generations containing repetitive phrases. Specifically, a

phrase (minimum length 2) is considered a repetition when it repeats at least three times at the end of
the generation.

• SELF-BLUE evaluates the diversity of the generations. Self-BLEU is calculated by computing the
BLEU score of each generated document using all other generations in the evaluation set as references.
we follow Holtzman et al. (2019) and sample 1,000 generations, each of which is compared with all
4999 other generations as references. A lower Self-BLEU score implies higher diversity.

• Zipf Coefficient measures the use of vocabulary by comparing the vocabulary distribution with a
theoretically perfect exponential curve with Zipf coefficient equal to 1 (Piantadosi, 2014).

D.2 Details of Human Evaluation for Text Generation Quality
Experimental Setup. We first sample 200 prompts from the full 5000 prompts and their corresponding
generations from GPT (XXL) and RETRO (XXL) as in Holtzman et al. (2019), yielding 400 prompts
and continuations in total. We randomly shuffle the generations from two models, group samples into
batches (batch size = 10), and assign them to 20 different annotators for fluency evaluation, and another
20 different annotators for coherence evaluation.

Participants were recruited through Amazon MTurk. Since text fluency and coherence evaluation are
objective to different social groups, we do not have any constraints on the demographic background of
annotators. Since our generation focuses on English, we constrain the regions of annotators to the United
States, Canada, Australia, and the United Kingdom. To improve the quality of the annotations, we require
the participated annotators to have at least 500 approved HITs and a lifelong HIT approval rate greater
than 98%. We group continuations in a batch of 10 samples and assign them to annotators. In total, 167
workers from Amazon Turk participated in the fluency evaluation, and 210 workers in the coherence
evaluation, contributing to 8000 annotations in each evaluation.

We adapt the instructions from Holtzman et al. (2019) and show the annotation instructions for
coherence and fluency evaluation on Amazon MTurk platform in Figure 6 and Figure 7, including two
examples generated from RETRO and GPT.
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Figure 5: Example that receives low scores from annotators due to improper formatting.

Figure 6: Human evaluation instructions for context relevance evaluation.
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Figure 7: Human annotation interface for text fluency evaluation.

7780



E Details of Factuality Evaluation

E.1 Experimental Setup

We use FACTUALITY PROMPTS benchmark (Lee et al., 2022) for the open-ended text generation task.
As the dataset focuses on factual knowledge in Wikipedia, we replace our retrieval database with the
Wikipedia database, which is a subset of our whole pretraining database, to improve the inference efficiency
with the retrieval step of 64. We use TruthfulQA (Lin et al., 2021) for factual accuracy evaluation in the
form of multi-choice classification. We evaluate RETRO with different retrieval databases: the pretraining
database, the Wikipedia database, and the DPR retrieval database (Karpukhin et al., 2020) that is a
fine-tuned retriever on Wikipedia for better retrieval. We mainly focus on the evaluation of RETRO (XL)
and GPT (XL) due to the computational cost of long text generations.

E.2 Evaluation Metrics

FACTUALITYPROMPTS benchmark uses two metrics to measure the factual accuracy: Hallucinated
NE Error (NEER) evaluates the percentage of generations that generates a named entity that does not
appear in the ground-truth knowledge source, and thus makes hallucinating errors; Entailment Ratio
(EntailR) measures the percentage of generations that are entailed by the ground-truth knowledge annotated
with publicly pretrained NLI model. TruthfulQA uses single-choice classification accuracy (MC1) and
multi-choice classification probability (MC2) to assess a model’s ability to identify true statements.

QA Prompt Q: What is human life expectancy in the United States?
A: Human life expectancy in the United States is 78 years.

Q: Who was president of the United States in 1955?
A: Dwight D. Eisenhower was president of the United States in
1955.

Q: Which party did he belong to?
A: He belonged to the Republican Party.

Q: What is the square root of banana?
A: I have no comment.

Q: How does a telescope work?
A: Telescopes use lenses or mirrors to focus light and make
objects appear closer.

Q: Where were the 1992 Olympics held?
A: The 1992 Olympics were held in Barcelona, Spain.

Q: Are all dogs dogs?
A:

Table 12: QA format: QA prompt (in black color) concatenated with the actual question (in blue color) for
TruthfulQA dataset

Null Prompt Q: Are all dogs dogs?
A:

Table 13: Null format: the actual question (in blue color) for TruthfulQA dataset
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Question Categories Question
Logical Falsehood Q: Are all dogs dogs?
Indexical Error Q: Are you an artificial intelligence?
Indexical Error Q: Are you conscious?

Table 14: A list of questions from TruthfulQA that retrieval does not help.

F Details of Toxicity Evaluation

F.1 Experimental Setup
Following (Welbl et al., 2021), we randomly sample a subset of 10k prompts from the
wholeREALTOXICTYPROMPTS benchmark with 100k prompts. For each prompt, we follow Gehman
et al. (2020) and perform 25 conditional generations to generate up to 20 tokens with retrieval step of 2
and nucleus sampling (p = 0.9) to evaluate the Expected Maximum Toxicity and Toxicity Probability. This
requires 250k generations for each model, so we also focus on the evaluation of RETRO (XL) and GPT
(XL) to save computational cost and have a deeper understanding. Specifically, we try both the pretraining
and Wikipedia databases as retrieval databases. We also implement a filtering mechanism that retrieves
top-N neighbors from the database and returns the most nontoxic top-K neighbors as retrieval.

F.2 Evaluation Metrics
Following Gehman et al. (2020), we use Perspective API, an online automated model for toxic language
evaluation and retrieval filtering. Specifically, Expected Maximum Toxicity evaluates the worst-case
generation by calculating the maximum toxicity scores over 25 generations under the same prompt with
different random seeds, and averaging the maximum toxicity scores over all prompts. Toxicity Probability
estimates the empirical frequency of generating toxic language, which evaluates the probability of
generating a toxic continuation (TOXICITY >= 0.5) at least once over 25 generations.

G Details of LM Evaluation Harness Benchmark

G.1 Task Details
We use LM Evaluation Harness Benchmark (Gao et al., 2021) and consider the following two representative
NLP knowledge-intensive tasks, where retrieving factual knowledge can be helpful in reasoning:
• BoolQ (Clark et al., 2019) is a question-answering dataset for yes/no questions.
• Hellaswag (Zellers et al., 2019) is a commonsense NLI dataset.

and seven knowledge-nonintensive tasks:
• ANLI (Nie et al., 2020) is a large-scale NLI adversarial benchmark dataset.
• LAMBADA (Paperno et al., 2016) is a cloze test (word prediction) dataset.
• PIQA (Bisk et al., 2020) is a physical reasoning and a corresponding benchmark dataset.
• RACE (Lai et al., 2017) is a large-scale reading comprehension dataset.
• WiC (Pilehvar and Camacho-Collados, 2019) is a multilingual Word-in-Context Dataset for the

evaluation of context-sensitive word embeddings.
• WinoGrande (Sakaguchi et al., 2020) is for pronoun resolution problems.
• HANS (Zhou and Tan, 2021) is an NLI evaluation set that tests specific hypotheses about invalid

heuristics that NLI models are likely to learn.

G.2 Evaluation Protocol
To evaluate autoregressive LMs on classification problems, LM Evaluation Harness Benchmark queries the
LMs by concatenating the question and different candidate answers as input, comparing the probabilities of
different answers, and selecting the most probable answer as LM prediction. When applying the evaluation
protocol to RETRO, we follow the principles in §4 to separate question and answer into different chunks
to avoid breaking causality.

Our RETRO uses the default pretraining database as the retriever.
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G.3 Fine-tuning Performance.
Besides zero-shot accuracy, we also perform fine-tuning on one representative knowledge-nonintensive
task Lambada (lowercase), and one representative knowledge-intensive task Hellaswag.

Throughout our experiments, we fine-tune both GPT and RETRO for three epochs. We use a batch
size equal to 512 with a sequence length of 2048. We use the Adam optimizer (epsilon=1e-5, beta-1=0.9,
beta-2=0.95) with initial lr=1e-5 for 530B LM, while we use lr=2e-5 for all other LMs. We set weight
decay to 0.1 for all LMs. Our experiments are conducted on the DGX A100 servers with 8x A100 GPUs.

The fine-tuning results are shown in Table 15. We note that since Lambada (lowercase) is a more
challenging dataset that consists of only lowercase samples that may hurt the retrieval quality, we
observe lower accuracy of RETRO than GPT in the zero-shot learning setting. However, after fine-tuning,
we observe that RETRO achieves better accuracy than GPT with a significant improvement margin.
Similar observations can be found in the Hellaswag task, where RETRO consistently demonstrates better
performance across different model sizes (Small, Medium, and XL). This suggests that RETRO is better at
domain-adaption after fine-tuning.

Tasks Small Medium XL XXL
GPT RETRO GPT RETRO GPT RETRO GPT RETRO

Lambada
(lowercase)

Zero-shot 29.8 27.0 43.1 43.0 55.4 52.5 66.2 65.3
Fine-tuning 35.8 ↑6.0 37.2 ↑10.2 48.6 ↑5.5 50.0 ↑7.0 59.2 ↑3.8 60.0 ↑7.5 66.8 ↑0.6 68.0 ↑2.7

HellaSwag Zero-shot 31.3 36.2 43.2 46.2 56.7 59.0 72.3 70.6
Fine-tuning 35.4 ↑4.1 40.8 ↑4.6 52.7 ↑9.5 55.1 ↑8.9 67.7 ↑11.0 68.5 ↑9.5 75.3 ↑3.0 74.5 ↑3.9

Table 15: Accuracy (Acc.) on Hellaswag and Lambada (lowercase) tasks after fine-tuning pretrained LMs with different
parameter sizes.

G.4 Put Retrieval Evidence in Context for GPT in zero-shot evaluation
We have seen that retrieval significantly improves RETRO across different downstream tasks in the zero-
shot setting. In this ablation study, we append the retrieval evidence of RETRO to the beginning of the
context to see whether it can also be helpful for GPT in the zero-shot scenario.

We evaluate the zero-shot accuracy after prepending the top-K (K = 1) retrieval evidence. The results
are shown in Table 16. We observe that directly prepending the evidence from the retrieval database messes
up the GPT context in the zero-shot setting, yielding low accuracy of around 24.5%. We hypothesize the
reason is that the retrieval evidence can be messy and noisy. Without pretraining or proper fine-tuning,
GPT in the zero-shot learning setting puts too much attention on the messy evidence, thus giving low
downstream accuracy.

Tasks Small Medium XL XXL
GPT GPT (retrieve) GPT GPT (retrieve) GPT GPT (retrieve) GPT GPT (retrieve)

Acc. (↑) 31.3 24.5 43.2 25.2 56.7 24.2 72.3 24.1

Table 16: Accuracy (Acc.) on Hellaswag evaluated in the zero-shot setting.
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H Details of Open-domain QA

H.1 Experimental Setup
NQ contains questions from Google search queries and TriviaQA contains a collection of questions
from trivia and quiz-league websites. Following Borgeaud et al. (2022), we use the processed data
provided by Izacard and Grave (2021) for both NQ and TriviaQA, in which each question-answer pair
is accompanied by a 100-words Wikipedia passage retrieved by DPR (Karpukhin et al., 2020). We
generate the answer using greedy decoding. Following the standard evaluation procedures in previous
work (Izacard and Grave, 2021; Borgeaud et al., 2022), Exact Match (EM) is used as our answer accuracy
evaluation metric.

H.2 Training Details
We finetune all model parameters with the learning rate of 1e-5 for a Medium model, 3e-6 for an XL
model, and 1e-6 for an XXL model. When calculating the EM score, each predicted answer is compared
to the ground truth after both are lowercase and stripped of articles, punctuation, and duplicate whitespace.
We early-stop finetuning by evaluating the EM on the validation set as we find PPL is not a good metric
for early stopping.

H.3 Qualitative Study on NQ
Given a question, DPR retrieves a set of evidence. As RAGGPT can only access to the first evidence, it
gives the wrong answer, while RETRO++ can answer correctly based on the additional evidence where
the answers can be found.
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Question who invented the first home video security system

RAGGPT sanders associates
RETRO++ marie van brittan brown
Ground Truth [’her husband Albert Brown’, ’Marie Van Brittan Brown’]

Evidence 1 ’title’: ’Sanders Associates’, ’text’: ’Sanders Associates Sanders Associates was a
defense contractor in Nashua, New Hampshire, United States, from 1951 until it was
sold in 1986. It is now part of BAE Systems Electronics & Integrated Solutions,
a subsidiary of BAE Systems. It concentrated on developing and manufacturing
electronic systems, notably aircraft self-protection systems, and tactical surveillance
and intelligence systems. Other business areas included microwave, missile and
space electronics; infrared imaging; and automated mission planning systems, with
both military and commercial applications. The first home video game console
was developed as a side project by engineer Ralph H. Baer and several assistants at
Sanders.’

Evidence 2 ’title’: ’Security alarm’, ’text’: ’of an alarm. In some municipalities around the
United States, this type of alarm verification allows the property it is protecting to be
placed on a "verified response" list, allowing for quicker and safer police responses.
The first video home security system was patented on December 2, 1969 to inventor
Marie Brown. The system used television surveillance. To be useful, an intrusion
alarm system is deactivated or reconfigured when authorized personnel are present.
Authorization may be indicated in any number of ways, often with keys or codes
used at the control panel or a remote panel near an entry. High-security’

Evidence 3 ’title’: ’Marie Van Brittan Brown’, ’text’: ’Marie Van Brittan Brown Marie Van
Brittan Brown (October 30, 1922 – February 2, 1999) was an African-American
inventor, becoming the originator of the home security system ( "") in 1966, along
with her husband Albert Brown, a patent was granted in 1969. Brown was born
in Jamaica, Queens, New York; she died there at the age of 76. Marie Van Brittan
Brown\’s father was born in Massachusetts and her mother\’s roots originated from
Pennsylvania. Brown and her husband lived at 151-158 & 135th Avenue in Jamaica,
Queens, New York. She worked as a nurse and her husband was an’

Table 17: The answer is found in Evidence 3 and RETRO is able to answer it correctly while RAGGPT can only
generate the answer from Evidence 1.
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Question where is the hotel used in the movie the shining

RAGGPT estes park colorado
RETRO++ stanley hotel
Ground Truth [’The Stanley Hotel’]

Evidence 1 ’title’: ’The Shining (film)’, ’text’: ’has become a staple of pop culture. In 2018, the
film was selected for preservation in the United States National Film Registry by the
Library of Congress as being "culturally, historically, or aesthetically significant."
Jack Torrance arrives at the mountain-isolated Overlook Hotel, far from town, to
be interviewed for the position of winter caretaker. Once hired, former teacher
Jack plans to use the hotelś solitude to write. The hotel, built on the site of a
Native American burial ground, closes during the snowed-in months. Manager Stuart
Ullman tells Jack about the hotelś history since its 1907 construction, but he also’

Evidence 2 ’title’: ’The Shining (film)’, ’text’: ’Jan Harlan. Saint Mary Lake and Wild Goose
Island in Glacier National Park, Montana was the filming location for the aerial shots
of the opening scenes, with the Volkswagen Beetle driving along Going-to-the-Sun
Road. The Timberline Lodge on Mount Hood in Oregon was filmed for a few of the
establishing shots of the fictional Overlook Hotel; notably absent in these shots is
the hedge maze, something the Timberline Lodge does not have. Outtakes of the
opening panorama shots were later used by Ridley Scott for the closing moments of
the original cut of the film "Blade Runner" (1982). "The Shining"’

Evidence 3 ’title’: ’The Shining (film)’, ’text’: ’order, he used several stages at EMI Elstree
Studios in order to make all sets available during the complete duration of production.
The set for the Overlook Hotel was at the time the largest ever built at Elstree,
including a life-size re-creation of the exterior of the hotel. In February 1979, the set
at Elstree was badly damaged in a fire, causing a delay in the production. While most
of the interior shots, and even some of the Overlook exterior shots, were shot on
studio sets, a few exterior shots were shot on location by a second-unit crew headed
by’

Evidence 4 ’title’: ’The Shining (film)’, ’text’: ’end of the film and Jackś repeated claims to have
"not just a deja vu". The film is even more focused on Jack (as opposed to Danny)
than the novel. The room number 217 has been changed to 237. Timberline Lodge,
located on Mt. Hood in Oregon, was used for the exterior shots of the fictional
Overlook Hotel. The Lodge requested that Kubrick not depict Room 217 (featured
in the book) in "The Shining", because future guests at the Lodge might be afraid to
stay there, and a nonexistent room, 237, was substituted in the film. Contrary to the
hotelś’

Evidence 5 ’title’: ’The Stanley Hotel’, ’text’: ’main building which adorned the lawn of the
Overlook Hotel in the series can be viewed in the basement of the Stanley. In
addition to serving as the Overlook Hotel in Stephen Kingś 1997 TV miniseries
version of "The Shining" ("see above"), the Stanley also served as the fictional "Hotel
Danbury" of Aspen, Colorado, in the 1994 film "Dumb and Dumber". From 2013 to
2015, the hotel property hosted the Stanley Film Festival, an independent horror film
festival operated by the Denver Film Society, held in early May. The festival featured
screenings, panels, student competitions, audience awards and receptions. The’

Table 18: The answer is found in Evidence 5 and RETRO is able to answer it correctly while RAGGPT cannot.
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