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Abstract

Dialogue State Tracking (DST) is of paramount
importance in ensuring accurate tracking of
user goals and system actions within task-
oriented dialogue systems. The emergence of
large language models (LLMs) such as GPT3
and ChatGPT has sparked considerable inter-
est in assessing their efficacy across diverse
applications. In this study, we conduct an ini-
tial examination of ChatGPT’s capabilities in
DST. Our evaluation uncovers the exceptional
performance of ChatGPT in this task, offer-
ing valuable insights to researchers regarding
its capabilities and providing useful directions
for designing and enhancing dialogue systems.
Despite its impressive performance, ChatGPT
has significant limitations including its closed-
source nature, request restrictions, raising data
privacy concerns, and lacking local deployment
capabilities. To address these concerns, we
present LDST, an LLM-driven DST framework
based on smaller, open-source foundation mod-
els. By utilizing a novel domain-slot instruction
tuning method, LDST achieves performance
on par with ChatGPT. Comprehensive evalua-
tions across three distinct experimental settings,
we find that LDST exhibits remarkable per-
formance improvements in both zero-shot and
few-shot setting compared to previous SOTA
methods. The source code1 is provided for re-
producibility.

1 Introduction

Task-oriented dialogue systems have emerged as
powerful tools for assisting users in accomplishing
a wide range of tasks (Huang et al., 2020). These
systems, such as Apple Siri and Microsoft Cortana,
function as virtual personal assistants, providing
support for tasks like flight reservations, appoint-
ment scheduling, and hotel bookings. Dialogue
State Tracking (DST) plays a crucial role in task-
oriented dialogue systems by accurately tracking

∗Corresponding author.
1https://github.com/WoodScene/LDST

Figure 1: Example of a multi-domain dialogue. The
slots “hotel-pricerange” and “restaurant-pricerange”
have a co-reference relationship, where the value of the
former is inferred from the latter. The slot “restaurant-
area” demonstrates error propagation behavior.

the evolving user goals and system actions during
a conversation. In general, the multi-domain di-
alogue state is represented as a list of triplets in
the form of (domain, slot, value), e.g., “<restau-
rant, area, east>”. These predefined slot pairs are
extracted from the dialogue context at each turn.

A plethora of models have been proposed to
address the challenges of multi-domain DST, as
documented in recent studies (Qixiang et al., 2022;
Zhou et al., 2022; Feng et al., 2022b; Guo et al.,
2022a; Yang et al., 2022; Ma et al., 2023; Xu et al.,
2023a). These models primarily focus on effective
transfer and generalization across diverse domains,
addressing the crucial challenges of co-reference
(Feng et al., 2022a) and error propagation prob-
lem (Wang and Xin, 2022) depicted in Figure 1.
The co-reference challenge poses a significant hur-
dle in enhancing DST performance, as it arises
from the linguistic variations in multi-turn dia-
logues where slots and values are often indirectly
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expressed. Moreover, the error propagation issue
emerges when the model fails to recognize and
rectify errors in the previously predicted dialogue
state, leading to the persistence of errors in subse-
quent turns. Despite significant efforts to address
these issues, they persist as ongoing challenges.

In recent days, the emergence of large-scale pre-
trained language models has revolutionized the
field of natural language processing (NLP). Models
like ChatGPT2 have shown excellent performance,
sparking significant interest in evaluating their ef-
fectiveness across different dimensions (Tan et al.,
2023; Wang et al., 2023; Jiao et al., 2023; Yang
et al., 2023a; Gao et al., 2023; Liu et al., 2023). De-
spite the significant advancements made by large
language models (LLMs), their performance in
multi-domain DST remains relatively unexplored.
To bridge this research gap, we conduct an evalua-
tion of ChatGPT’s capabilities for DST. The evalu-
ation unveils ChatGPT’s exceptional performance
in the DST task, offering valuable insights to re-
searchers and providing useful directions for fur-
ther exploration.

While ChatGPT demonstrates superb perfor-
mance, it has significant limitations (Zhou et al.,
2023; Yang et al., 2023a; Cao et al., 2023). Firstly,
it is not open source, so the underlying code and
model parameters cannot be modified by users.
Second, it is subject to request limitations, which
can restrict its usage in high-demand scenarios. Fur-
thermore, there are concerns regarding strong data
privacy protection, as the system may collect and
store user data. Lastly, ChatGPT cannot be de-
ployed locally, limiting its availability and control.
These limitations hinder the applicability and adop-
tion of ChatGPT in various practical scenarios for
building task-oriented dialogue systems.

To overcome the limitations of ChatGPT, we in-
troduce LDST, a DST framework driven by LLMs
but based on smaller, open-source foundation mod-
els. LDST employs a novel assembled domain-
slot instruction tuning method and a parameter effi-
cient tuning technique, enabling it to achieve per-
formance comparable to ChatGPT while utilizing
a much smaller model and limited computational
resources. LDST demonstrates exceptional perfor-
mance across three different experimental settings,
surpassing prior state-of-the-art methods by a large
margin and demonstrating its remarkable adapt-
ability and generalization capabilities. Our main

2https://chat.openai.com

contributions are concluded as follows:

• We present the first evaluation of ChatGPT
in DST task, highlighting its superior perfor-
mance over prior methods and providing valu-
able insights for advancing dialogue systems.

• We propose LLM-driven DST (LDST) based
on smaller, open-source foundation models.
LDST achieves comparable performance to
ChatGPT by employing an innovative assem-
bled domain-slot instruction tuning technique.

• We extensively evaluate LDST on three bench-
mark datasets across various experimental set-
tings, revealing significant performance im-
provements over previous approaches. In the
zero-shot scenario, LDST boosts the JGA
score by 16.9%, elevating it from 65.3% to an
outstanding 82.2%. In the few-shot scenario,
LDST improves the JGA score by 7.5%, rais-
ing it from 47.7% to a notable 55.2%.

2 Assessing the Capabilities of ChatGPT
for DST

In this section, we evaluate the effectiveness of
ChatGPT in addressing the DST task. Before going
into detail, we first formally define the problem.

DST: Problem Formulation In task-oriented di-
alogue systems, a dialogue with T turns of conver-
sations between the system and the user can be rep-
resented as {(A1, U1) , (A2, U2) . . . , (AT , UT )},
where A represents system response and U rep-
resents user input. A predefined slot set S =
{S1, . . . , SJ} is given, where J is the total number
of slots. The dialogue context at turn t includes
previous turns of interactions, denoted as Xt =
{(A1, U1) , (A2, U2) . . . , (At, Ut)}. The dialogue
state at turn t is represented as a set of (slot, value)
pairs, denoted as Bt =

{(
S1, V

t
1

)
, . . . ,

(
SJ , V

t
J

)}
,

where V t
J is the value of slot SJ . For multi-domain

DST, following previous works (Lee et al., 2019),
a slot is defined as the concatenation of the specific
domain and the slot, e.g., “<restaurant-area>”. If no
information is provided in the dialogue about a spe-
cific slot, the value associated with that slot is set to
“NONE”. Essentially, the DST problem is defined
as learning a dialogue state tracker F : Xt → Bt.

Leveraging ChatGPT for DST We evaluate the
performance of ChatGPT (using the gpt-3.5-turbo
API service) on three multi-domain DST bench-
marks, using the JGA and AGA evaluation metrics
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Figure 2: Illustration of different prompt templates used and the corresponding results on the MultiWOZ 2.2 test set.

(for detailed descriptions of the datasets and met-
rics, refer to Section 4.1). As shown in Figure 2,
we explore various prompt templates and utilize
the MultiWOZ 2.2 dataset (Zang et al., 2020) to
select the optimal prompt.

In Figure 2, “single return” and “multi return”
refer to the number of slot values returned in each
ChatGPT API request. “Single return” involves
requesting and receiving values for one slot at a
time, while “multi return” entails requesting and
receiving values for all slots simultaneously. For
instance, in the MultiWOZ 2.2 dataset which has
49 different slots, “multi return” retrieves values for
all 49 slots in a single request. This causes a signif-
icant increase API requests for "single return" but
simplifies the model’s task, resulting in improved
performance. Conversely, “multi return” reduces
API requests but increases token count per request.
"No/one demo" denotes whether an example is pro-
vided in the prompt as a demonstration to aid the
model’s comprehension of the task. Selecting "one
demo" is similar to adopting the in-context learn-
ing concept. Detailed prompt template design is
provided in the Appendix A.1.

Performance of ChatGPT As can be seen from
Figure 2, the first prompt, which retrieves the value
of a single slot in each request without including
a demo in the input, achieves the highest AGA
score. This is attributed to the inherent difficulty
of the task that necessitates the model to provide
multiple slot values in a single request. We have
observed that ChatGPT tends to predict “NONE”
for slots that should have a specific value. For in-
stance, in the case of the slot “hotel-leaveat” where

(a) JGA score (b) AGA score

Figure 3: The results of the best baseline and ChatGPT
on various datasets. The higher the values of the JGA
and AGA metrics, the better. SOTA results for Multi-
woz 2.2, Multiwoz 2.4, JGA score for SGD datasets,
and AGA score for SGD datasets were obtained from
previous works (Bang et al., 2023a; Ye et al., 2022a;
Zhao et al., 2022; Feng et al., 2022a), respectively.

the expected value is “14:00”, ChatGPT may in-
correctly predict “NONE”, resulting in lower pre-
diction accuracy. Secondly, the addition of a demo
to the input has a reduced effect, which may seem
counter-intuitive. However, our analysis of the er-
ror results suggests that ChatGPT also analyzes the
dialogue context within the demo, even when the
demo and tested sample are clearly differentiated
in the input. Therefore, we chose the first prompt
as the best template for the subsequent evaluation.

The full evaluation results of ChatGPT on the
three datasets3 are shown in Figure 3. Firstly, on
the SGD dataset, the AGA score of ChatGPT is sig-
nificantly superior than the previous SOTA method
(Feng et al., 2022a), and it achieves a 7.46% ab-

3The evaluation of the MultiWOZ 2.2 dataset were con-
ducted between April 15th and 18th, 2023. The evaluations of
MultiWOZ 2.4 occurred between June 10th and 12th, 2023.
The SGD was assessed between June 14th and 17th, 2023.
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solute imporvement in AGA score. In addition,
the average improvement on the three datasets is
0.73% in JGA score and 2.34% in AGA score.
Secondly, ChatGPT’s performance on the Multi-
WOZ 2.2 dataset is slightly worse than the previ-
ous SOTA method (Bang et al., 2023a). However,
through careful analysis of the errors, we found
that 70% of them were due to annotation errors
in the original dataset. Thus, on the MultiWOZ
2.4 dataset which has fixed the annotation errors,
ChatGPT outperforms the best baseline method (Ye
et al., 2022a).

Limitations of ChatGPT In summary, ChatGPT
exhibits comparable performance when solving the
DST task compared to the previous SOTA meth-
ods. This highlights the ability of current LLMs
to capture and comprehend complex linguistic pat-
terns and dependencies within multi-turn dialogues.
However, ChatGPT has several significant limita-
tions that impede its applicability and adoption in
various practical scenarios. Firstly, we observed
that ChatGPT often provides responses with a sig-
nificant amount of explanatory content, or it may
not align perfectly with our expected answer for-
mat. For instance, when the ground truth value is
“2 pm,” ChatGPT might return “14:00.” While both
are essentially correct answers, such variations can
affect the accuracy of the final metrics. And Chat-
GPT is not open source, which restricts the ability
of developers and researchers to modify and cus-
tomize the model. Secondly, ChatGPT is subject to
request limitations, which may impact real-time or
high-volume applications that rely on prompt and
efficient responses. Furthermore, ChatGPT oper-
ates in a cloud-based environment and lacks strong
data privacy protection measures, which raises con-
cerns about the privacy and security of sensitive
information shared during the dialogue sessions.
Lastly, ChatGPT relies on an internet connection
for operation and cannot be deployed locally.

3 Fine-tuning Smaller Foundation
Models with Instructions for DST

To overcome the aforementioned limitations
of ChatGPT, we introduce LDST, an LLM-
driven DST framework that leverages fine-tuning
smaller, open-source foundation models such as
LLaMa (Touvron et al., 2023) with instructions
specially tailored for DST. We first outline the
process of constructing an instruction dataset for
the multi-domain DST task. Next, we utilize a

parameter-efficient fine-tuning (PEFT) technique
to train the foundation model with the instruction
dataset. PEFT enables the training of a foundation
model with limited computational resources.

3.1 Instruction Tuning
Unlike prompt tuning, instruction tuning (Chung
et al., 2022) provides more explicit and detailed
guidance to the model through task-specific instruc-
tions. This allows for finer control over the model’s
behavior and leads to improved performance com-
pared to prompt tuning. The core idea of instruction
tuning is designing the instruction dataset, typically
including instruction, input, and output fields. Usu-
ally, different instructions are assigned for different
tasks. However, employing a fixed instruction tem-
plate for multi-domain DST may limit the model’s
robustness, as emphasized by Wang et al. (2023),
which highlights the crucial influence of prompt
design on model performance.

To address this challenge, we propose a novel
Assembled Domain-Slot Instruction Generation ap-
proach for the DST task. This approach generates
diverse instruction samples by randomly combin-
ing different instruction and input templates, expos-
ing the model to a rich variety of instruction types
during the fine-tuning process to reduce the model’s
sensitivity to prompts. As shown by the provided
example in Figure 4, for each sample in the original
dataset, it consists of the dialogue context Xt at turn
t, the current requested slot SJ and its correspond-
ing state V t

J . The raw data is then passed through
the Instruction Data Generation module to generate
instruction samples. The detailed template settings
for each field are introduced as follows.

Instruction Prompt Specifically, two types of
instruction templates are defined: (1) Standard
Slot Tracking Instruction and (2) Customized Slot
Tracking Instruction. The difference between them
is that the Customized Slot Tracking Instruction
provides a more specific domain-slot information.
And the instruction field of each sample is ran-
domly selected from these two templates.

Input Prompt For the input field, the prompt
template is composed of four main parts: (1) the di-
alogue context, (2) domain-slot description prompt,
(3) Possible Value List (PVL) prompt and (4) the
query prompt. The green, purple, blue and orange
text in the example in Figure 4 refers to these four
prompts respectively. In particular, we concate-
nate all sub-sequences with special segment tokens,
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Figure 4: Structure of the LDST model. In the first step, we construct the instruction dataset from the original
dataset using the Instruction Data Generation module. Next, we utilize the parameter-efficient fine-tuning technique
to train the foundation model with the instruction dataset.

such as the “[USER]” segment token used to in-
dicate the start of a system utterance. And both
the domain-slot description prompt and the PVL
prompt are supplementary descriptions of the re-
quested slot, they all derive from the given schema
in original dataset (PVL prompts are only available
for categorical slots). Here, to simulate the situa-
tion when the model may not get a description of
the requested slot or it’s possible values during the
testing phase, we add these two prompt templates
randomly with a 50% probability, respectively.

Ouput Prompt Finally, the output field consists
of the corresponding value V t

J of the requested slot
SJ . By following the aforementioned process, we
obtained a newly and diverse instruction dataset for
the next step of fine-tuning the model.

3.2 Parameter Efficient Tuning
In this part, we describe how to fine-tune the foun-
dation model using a parameter efficient approach.
LDST takes the instruction and input field from the
dataset as inputs and retrieves the corresponding
slot value V t

J as output:

V t
J = Decoder(X̂ ) (1)

where Decoder indicates that the foundation model
(e.g., LLaMa) uses the Transformer-decoder frame-
work, and X̂ denotes the instruction data, i.e., the
combination of instruction and input fields.

As shown in Figure 4, to enhance the efficiency
of the fine-tuning process and reduce memory
requirements, we utilize Low-Rank Adaptation
(LoRA) (Hu et al., 2021). LoRA freezes the pre-
trained model weights and injects trainable rank de-
composition matrices into each layer of the Trans-

former architecture, greatly reducing the number
of trainable parameters for downstream tasks. For
example, in our experiment with LLaMa 7B, the
number of learnable parameters is 8.4M, which
is only 0.12% of the total model parameters. De-
note by the trainable parameters as a weight ma-
trix W0 ∈ Rd×k. Unlike traditional methods
that directly modify the values of W0, LoRA in-
troduces an additional set of trainable parame-
ters, denoted as ∆W , which are directly injected
into the original W0. We represent the update as
W = W0 +∆W = W0 +BA, where B ∈ Rd×r,
A ∈ Rr×k. The rank r ≪ min(d, k). During train-
ing, W0 is frozen and does not receive any gradient
updates, we only update the parameters in A and
B. Note both W0 and ∆W = BA are multiplied
with the same input, and their respective output
vectors are summed coordinate-wise. For the origi-
nal output h = W0x, LoRA modified forward pass
yields:

h = W0x+∆Wx = W0x+BAx. (2)

Finally, the learning objective of the generation
process in LDST is to minimize the negative log-
likelihood of V t

J given the context Xt and slot SJ :

L = −
T∑

t

J∑

j

log p
(
V t
j | Xt,Sj

)
. (3)

4 Experiments

4.1 Datasets

We conducted experiments using the benchmark
datasets for multi-domain task-oriented dialogue,
and Table 1 gives detailed statics on these datasets.
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Characteristics SGD MultiWOZ 2.2 MultiWOZ 2.4

No. of domains 16 8 7
No. of dialogues 16,142 8,438 8,438
Total no. of turns 329,964 113,556 113,556
Avg. turns per dialogue 20.44 13.46 13.46
Avg. tokens per turn 9.75 13.13 13.38
No. of slots 215 61 37
Have schema description Yes Yes Yes
Unseen domains in test set Yes No No

Table 1: Statistics of the datasets used for training in
our experiments.

Schema-Guided Dialogue (SGD) SGD (Rastogi
et al., 2020) is the most challenging dataset, consist-
ing of over 16,000 conversations between a human-
user and a virtual assistant. It encompasses 26
services across 16 domains, such as events, restau-
rants, and media. Notably, SGD introduces unseen
domains in its test set, challenging the generaliza-
tion ability of the model.

MultiWOZ 2.2 and MultiWOZ 2.4 MultiWOZ
2.4 (Ye et al., 2022a) is an updated version on top
of MultiWOZ 2.2 (Zang et al., 2020) to improve
DST evaluation, and the validation set and test set
of MultiWOZ 2.4 have been carefully reannotated.
We therefore treat it as a clean dataset for testing.
We also conduct experiments on MultiWOZ 2.2
which is known to contain annotation noise. We
used this noisy dataset to test the robustness of the
model and to analyse the ability of the model to
detect annotation errors present in the test set.

4.2 Evaluation Metrics

We adopt the following evaluation metrics, consis-
tent with previous works (Ye et al., 2022b): Joint
Goal Accuracy (JGA) and Average Goal Accu-
racy (AGA). JGA serves as the primary metric for
DST evaluation and represents the ratio of dialogue
turns for which the entire state is correctly pre-
dicted. AGA is the average accuracy of the active
slots in each turn. A slot becomes active if its value
is mentioned in the current turn and is not inherited
from previous turns.

4.3 Main Results

We conducted full-scale evaluations of the LLM-
driven LDST model in three distinct experimental
settings, where the model showed a tremendous
performance improvement in both zero-shot and
few-shot settings. These findings can provide valu-
able insights and contribute to the research com-
munity through substantial advances in the field of
DST. The detailed results are as follows:

Domain SGD-baseline TransferQA SDM-DST D3ST LDST

Messaging 10.2/20.0 13.3/37.9 36.6/61.4 - 89.6/90.4
Payment 11.5/34.8 24.7/60.7 16.5/62.0 - 92.3/96.4
Trains 13.6/63.5 17.4/64.9 46.7/86.9 - 81.0/94.0
Alarm 57.7/1.8 58.3/81.7 58.3/87.5 - 94.4/96.9

Average 20.5/34.2 25.9/61.8 40.4/76.8 83.3/- 89.3/94.4

Table 2: Zero-shot results (JGA(%)/AVG(%)) on SGD.

Domain TRADE SUMBT SimpleTOD T5DST D3ST LDST

Attraction 19.87 22.60 28.01 33.09 57.10 75.61
Hotel 13.70 19.80 17.69 21.21 22.30 63.32
Restaurant 11.52 16.50 15.57 21.82 38.90 73.72
Taxi 60.58 59.50 59.22 65.09 79.00 91.47
Train 22.37 22.50 27.75 35.42 39.60 71.03

Average 25.76 28.18 29.65 35.20 47.38 75.03

Table 3: Zero-shot results (JGA(%)/AVG(%)) on Multi-
WOZ 2.0.

Zero-shot Cross-domain Results Following pre-
vious zero-shot settings (Wang et al., 2022c), all
models are first trained on some domains and then
evaluated on the test-set of the unseen domain.
Here we compare with the baseline models that can
predict dialogue state on unseen domains: SGD-
baseline (Rastogi et al., 2020), TransferQA (Lin
et al., 2021a), SDM-DST (Wang et al., 2022a),
SUMBT (Lee et al., 2019), SimpleTOD (Hosseini-
Asl et al., 2020), T5DST (Lin et al., 2021b) and
D3ST method (Zhao et al., 2022).

Tables 2 and 3 highlight the exceptional perfor-
mance of our approach in zero-shot cross-domain
DST. Specifically, on the SGD dataset, LDST
achieves a remarkable 6.0% absolute increase in the
JGA score when compared to the larger T5-XXL
(11B)-based D3ST model, elevating it from 83.3%
to an impressive 89.3%. Additionally, the AGA
score experiences a substantial surge of 17.6%, es-
calating from 76.8% to a remarkable 94.4%.

On the MultiWOZ 2.0 dataset, we observe a sig-
nificant advancement in the average JGA score,
surging from 47.38% to 75.03%, reflecting an ab-
solute improvement of 27.65%. Notably, the Pay-
ment domain in the SGD dataset displays the most
prominent improvement, with the JGA metric soar-
ing from 24.7% to an astounding 92.3%. This re-
markable enhancement is attributed to the Payment
domain’s independence from the source domains.
This significant boost not only demonstrates the
powerful transfer learning capabilities of the LDST
model but also emphasizes its valuable implications
for the DST research community.

Few-shot Results In the few-shot settings, we
follow the multi-domain scenario from Wu et al.
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Models
MultiWOZ 2.4

1% 5% 10%

DS2-BART 30.55 42.53 41.73
DS2-T5 36.76 49.89 51.05
IC-DST GPT-Neo 17.36 29.62 34.38
SM2-11b 40.03 51.14 51.97

LDST 46.77 56.48 62.45

Table 4: Results (in JGA(%)) of few-shot experiments
on MultiWOZ 2.4.

(2019), where randomly select 1%, 5%, and 10%
of training dialogues to train, and evaluation is
conducted on the full test set of each domain. The
evaluation results on MultiWOZ 2.4 are shown in
Table 4, where we compare with SOTA few-shot
DST methods: DS2-BART (Shin et al., 2022), DS2-
T5 (Shin et al., 2022), IC-DST GPT-Neo (Hu et al.,
2022), and SM2-11b (Chen et al., 2023).

The results indicate a clear trend: as the amount
of training data increases, the performance of all
models consistently improves. Notably, our LDST
model stands out in this setting. At the 10%
data setting, it achieved significant performance
gains by elevating the JGA metric from 51.97% to
62.45%, marking an impressive 10.48% absolute
improvement. Even at the 5% data setting, our
approach surpassed traditional methods that were
using 10% of the data. This highlights LDST’s
remarkable capacity to excel in learning and cap-
turing the core aspects of the task with a smaller
dataset.

Results of Fine-tuning with Full Training Data
We also evaluate the performance of LDST using
the complete training data, and compare it with
the following strong baselines, including SGD-
baseline (Rastogi et al., 2020), TRADE (Wu et al.,
2019), DS-DST (Zhang et al., 2019), TripPy (Heck
et al., 2020), Seq2Seq-DU (Feng et al., 2020),
MetaASSIST (Ye et al., 2022b), SDP-DST (Lee
et al., 2021), TOATOD (Bang et al., 2023b), DiCoS-
DST (Guo et al., 2022b), D3ST (Zhao et al., 2022),
paDST (Ma et al., 2019). And the results are shown
on Table 5.

We initially note significant advancements in
recent LLMs like ChatGPT and LLaMa. Notably,
our model achieves competitive performance with
ChatGPT and even surpasses it on the SGD dataset,
particularly excelling in the AGA metric with a
score exceeding 98%.

The paDST method has currently achieved

Methods
Based-model

(# Parameters)
MultiWOZ 2.2 MultiWOZ 2.4 SGD
JGA AGA JGA AGA JGA AGA

SGD-baseline - 42.00 - - - 25.40 90.60
TRADE - 45.40 - 55.05 - - -
DS-DST BERTbase(110M) 51.70 - - - - -
TripPy BERTbase(110M) 53.50 - 64.75 - - -
Seq2Seq-DU BERTbase(110M) 54.40 90.90 67.10 - 30.10 91.00
MetaASSIST BERTbase(110M) - - 78.57 99.08 - -
DiCoS-DST T5base(220M) 61.13 98.06 - - - -
TOATOD T5base(220M) 63.79 - - - - -
SDP-DST T5large(770M) 57.60 98.49 - - - -
paDST XLNetlarge(340M) - - - - 86.50 -
D3ST T5XXL(11B) 58.60 - 75.90 - 86.40 -

ChatGPT GPT-3.5-Turbo∗ 61.52 97.86 83.16 99.27 84.81 98.46
LLaMa LLaMa (7B) 55.37 95.71 75.13 97.58 75.32 95.83

LDST (ours) LLaMa (7B) 60.65 98.83 79.94 98.90 84.47 99.38

Table 5: Results of fine-tuning with full training data.
- represents the results are not reported in the original
paper. ∗ means that the exact number of parameters is
uncertain but definitely exceeds 100 billion.

Transfer
D3ST

(T5XXL-11B)
LDST

(LLaMa-7B)

SGD → MultiWOZ 2.4 28.9 31.6
MultiWOZ 2.4 → SGD 23.1 25.9

Table 6: Results (in JGA(%)) of cross-dataset transfer
between SGD and MultiWOZ 2.4.

SOTA performance on the SGD dataset (with a
JGA score of 86.5%), surpassing LDST’s 84.47%.
However, it’s important to note that paDST re-
lies on additional techniques, which contain back-
translation between English and Chinese for data
augmentation and special manual rules for model
predictions. In contrast, LDST relies solely on
the default SGD dataset without additional aids.
Another SOTA method is D3ST, which uses T5-
XXL as backbone model with 11B parameters (our
LDST utilizes a 7B model, for outcomes based on
different foundational models and different model
sizes, please consult Appendix B). D3ST surpasses
LDST on the SGD dataset. However, it’s notewor-
thy that LDST outperforms D3ST on Multiwoz 2.2
and 2.4. Additionally, our model demonstrates im-
proved effectiveness when compared to the LLaMa
backbone model, underscoring the ongoing impor-
tance of fine-tuning LLMs in current research.

Results of Cross-dataset Transfer We further
performed experiments to assess cross-dataset
transfer capabilities, akin to the experiment out-
lined in Table 4c by Zhao et al. (2022). The JGA re-
sults are presented in Table 6, highlighting LDST’s
exceptional cross-dataset transfer abilities. When
compared to the D3ST method, LDST showcases
an average improvement of 2.7% in terms of JGA.
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Models JGA AGA

LLaMa (backbone model) 68.61 96.37
+ Traditional Instruction Tunnig 72.87 97.98
+ Ours 75.02 99.04

Table 7: Ablation study. The mean JGA(%) and
AGA(%) scores on Multiwoz 2.2, Multiwoz 2.4 and
SGD are reported.

Figure 5: Comparison of the sensitivity of the models
to different prompts during the testing phase.

4.4 Ablation Study

To validate the effectiveness of the assembled
domain-slot instruction tuning, we conducted a
comparison with traditional instruction tuning,
which employs a fixed prompt template contain-
ing all the descriptions for the requested slot (see
details in Appendix A.2). The results, as displayed
in Table 7, clearly demonstrate that our method
outperforms traditional instruction tuning. We ob-
served a substantial 2.15% improvement in the JGA
score and a 1.06% improvement in the AGA score.

Next, to analyse the sensitivity of the model to
different prompts during the testing phase. we de-
signed six different prompts and evaluated their
effects, the results are shown in Figure 5. The
results clearly indicate that LDST demonstrates
significantly higher accuracy and lower variance
in test results compared to the other two baseline
methods. The mean variance of our method is 0.04,
in contrast to 0.78 for the LLaMa model, represent-
ing a substantial decrease of 0.74. These findings
highlight that the utilization of the assembled tech-
nique for instruction tuning effectively reduces the
model’s sensitivity to prompts. This not only pro-
vides a more stable and efficient inference process
but also enhances overall robustness.

4.5 Error Analysis

We analyze the types of incorrect predictions in
LDST by using the 2835 incorrectly predicted sam-
ples on MultiWOZ 2.4. Firstly, 45.72% of the

Figure 6: JGA score at each turn on MultiWOZ 2.2.

errors are related to the values “dontcare” and
“not mentioned”. For example, in cases where the
ground truth is “dontcare”, the model predicts “not
mentioned”, and vice versa. Among all 37 slots,
the top five with highest error rates are “hotel-type”
(338 errors), “restaurant-name” (290 errors), “hotel
area” (225 errors), “hotel name” (221 errors), and
“attraction name” (205 errors), collectively account-
ing for 45.11% of the total errors. Specifically,
for the "hotel-type" slot, 78.10% of the errors are
attributed to the model frequently confusing “not
mentioned” with the value “hotel”. For instance,
the correct value for “hotel-type” was “hotel”, but
the model incorrectly predicted as “not mentioned”.

4.6 Effectiveness of LDST in Addressing the
Main Challenges of DST

For the co-reference challenge, we analyze the
MultiWOZ 2.3 dataset (Han et al., 2021), which
includes 253 test samples annotated with co-
reference relationships. Our evaluation reveals that
the best baseline method achieves an accuracy rate
of 91.1%, whereas LDST model achieves an im-
pressive accuracy rate of 96.4%, showcasing the
significant improvement offered by our approach.

Additionally, we visualize the JGA score for
each dialogue turn in Figure 6 to demonstrate the
effectiveness in addressing error propagation. The
result clearly shows that as the number of dialogue
turns increases, the performance of all methods ex-
periences a decline. However, our LDST model
demonstrates a remarkable resilience to error prop-
agation, showcasing a significantly slower decline
compared to LLaMa and the best baseline method.
These results emphasize the LDST model’s capac-
ity to capture and comprehend complex linguistic
patterns and dependencies in multi-round conver-
sations, making it a promising solution to mitigate
the challenges associated with the DST task.
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5 Related Work

5.1 Multi-Domain Dialogue State Tracking
Recent studies in multi-domain DST have exten-
sively utilized the pre-trained language models to
achieve high-performance results (Ravuru et al.,
2022; Yu et al., 2022; Sun et al., 2022; Feng et al.,
2021; Wang et al., 2022b; Xu et al., 2023c). For ex-
ample, Xie et al. (2022) proposed a multi-stage cor-
rectable dialogue state tracking method to mitigate
the error propagation phenomenon, while Wang
and Xin (2022) proposed a jointly decision making
and a dialogue update technique to prevent error
accumulation. In addition, Wang et al. (2022a) and
Manotumruksa et al. (2022) solve the challenge
of co-referencing by learning correlations between
slots, for example, by using a combination of slot
prompts or hard copy mechanism. However, these
approaches still have limitations, such as the lack
of robustness in handling complex dialogue con-
texts and the difficulty in capturing fine-grained
semantic relationships between slots and values.

5.2 LLMs for Dialogue State Tracking
While large language models such as GPT-3
(Brown et al., 2020) and T5 (Raffel et al., 2020)
have gained significant popularity, the efficient uti-
lization of these models remains a significant chal-
lenge. Recent advancements in parameter-efficient
fine-tuning (PEFT) techniques have effectively alle-
viated this problem, such as LoRA(Hu et al., 2021)
and Prefix Tuning(Liu et al., 2021). For instance,
both Lee et al. (2021) and Yang et al. (2023b)
proposed a prompt-tuning method that leverages
domain-specific prompts and context information
to improve the performance of DST task. Mean-
while, Ma et al. (2023) and Chen et al. (2023) intro-
duced the prefix tuning approach, which involves
modifying the input prompt by adding specific to-
kens at the beginning of the dialogue, aiming to
enhance the efficiency of model fine-tuning. How-
ever, these methods still face challenges, where the
effectiveness heavily depends on prompt design.

Recently, Heck et al. (2023) exclusively tested
ChatGPT’s performance on the Multiwoz 2.1
dataset. In contrast, our evaluation covers the Mul-
tiwoz 2.2, 2.4, and SGD datasets, providing a more
comprehensive assessment. While both Pan et al.
(2023) and Hudeček and Dušek (2023) included re-
sults on the Multiwoz 2.2, Multiwoz 2.4, and SGD
datasets, their results were relatively lower due to
their use of the text-davinci-003 API. In contrast,

we utilized the latest gpt-3.5-turbo API, a highly
capable GPT-3.5 model optimized for chat at a frac-
tion of the cost. Consequently, we achieved new
SOTA performance with ChatGPT, showcasing its
significant strengths.

With the emergence of open-source large lan-
guage models, such as LLaMa (Touvron et al.,
2023), it provides a series of higher-quality back-
bone models with different parameters. Leveraging
LLaMa and the technique of instruction tuning has
proven to achieve better results (Taori et al., 2023),
opening new avenues for our research.

6 Conclusion

In this study, we conduct an initial examination
of ChatGPT’s capabilities in multi-domain DST,
showcasing its superiority over previous methods.
This comprehensive evaluation provides useful di-
rections for researchers to design and enhance dia-
logue systems. To solve the limitations of ChatGPT,
we present LDST, an LLM-driven DST framework
based on smaller, open-source foundation models.
By utilizing a novel assembled domain-slot instruc-
tion tuning method, LDST achieves performance
on par with ChatGPT. Comprehensive evaluations
across three distinct experimental settings demon-
strate the remarkable performance improvements
achieved by LDST compared to previous methods.

Limitations

This work has two main limitations: (1) Subjec-
tivity in prompt design: Prompt engineering has
shown significant potential for the application of
LLMs. However, the prompt designs used in our
study are subjective and may not necessarily rep-
resent the optimal choices. Consequently, the ef-
fectiveness of using these prompts for model fine-
tuning or testing may not always yield the best
results. Exploring more systematic automated tech-
niques for prompt design could enhance the overall
performance of the model. (2) Input length con-
straints: In our study, we set the input length of
the model to 512, which was determined based
on statistical analysis and already contains more
than 90% of the samples. While it is possible to
increase the input length, doing so may result in
slower training and inference times. Additionally,
when the dialogue or description content becomes
too long, the challenge of effectively truncating or
summarizing the input arises. Further investigation
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into handling longer input sequences without com-
promising model efficiency would be beneficial.

Acknowledgments

We thank the anonymous reviewers for their valu-
able feedback and constructive comments, which
greatly contributed to improve the quality of this
work. This research was partially supported by the
grant of HK ITF ITS/359/21FP.

References

Namo Bang, Jeehyun Lee, and Myoung-Wan Koo.
2023a. Task-optimized adapters for an end-to-end
task-oriented dialogue system.

Namo Bang, Jeehyun Lee, and Myoung-Wan Koo.
2023b. Task-optimized adapters for an end-to-
end task-oriented dialogue system. arXiv preprint
arXiv:2305.02468.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai,
Philip S Yu, and Lichao Sun. 2023. A comprehensive
survey of ai-generated content (aigc): A history of
generative ai from gan to chatgpt. arXiv preprint
arXiv:2303.04226.

Derek Chen, Kun Qian, and Zhou Yu. 2023. Stabilized
in-context learning with pre-trained language models
for few shot dialogue state tracking. arXiv preprint
arXiv:2302.05932.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Yue Feng, Aldo Lipani, Fanghua Ye, Qiang Zhang, and
Emine Yilmaz. 2022a. Dynamic schema graph fusion
network for multi-domain dialogue state tracking.
arXiv preprint arXiv:2204.06677.

Yue Feng, Yang Wang, and Hang Li. 2020. A sequence-
to-sequence approach to dialogue state tracking.
arXiv preprint arXiv:2011.09553.

Yujie Feng, Jiangtao Wang, Yasha Wang, and
Xu Chu. 2022b. Spatial-attention and demographic-
augmented generative adversarial imputation network
for population health data reconstruction. IEEE
Transactions on Big Data.

Yujie Feng, Jiangtao Wang, Yasha Wang, and Xu Chu.
2023. Towards sustainable compressive population
health: A gan-based year-by-year imputation method.
ACM Transactions on Computing for Healthcare,
4(1):1–18.

Yujie Feng, Jiangtao Wang, Yasha Wang, and Sumi
Helal. 2021. Completing missing prevalence rates
for multiple chronic diseases by jointly leveraging
both intra-and inter-disease population health data
correlations. In Proceedings of the Web Conference
2021, pages 183–193.

Jun Gao, Huan Zhao, Changlong Yu, and Ruifeng Xu.
2023. Exploring the feasibility of chatgpt for event
extraction. arXiv preprint arXiv:2303.03836.

Jinyu Guo, Kai Shuang, Jijie Li, Zihan Wang, and
Yixuan Liu. 2022a. Beyond the granularity: Multi-
perspective dialogue collaborative selection for dia-
logue state tracking. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2320–
2332, Dublin, Ireland. Association for Computational
Linguistics.

Jinyu Guo, Kai Shuang, Jijie Li, Zihan Wang,
and Yixuan Liu. 2022b. Beyond the granular-
ity: Multi-perspective dialogue collaborative selec-
tion for dialogue state tracking. arXiv preprint
arXiv:2205.10059.

Ting Han, Ximing Liu, Ryuichi Takanabu, Yixin Lian,
Chongxuan Huang, Dazhen Wan, Wei Peng, and Min-
lie Huang. 2021. Multiwoz 2.3: A multi-domain task-
oriented dialogue dataset enhanced with annotation
corrections and co-reference annotation. In Natural
Language Processing and Chinese Computing: 10th
CCF International Conference, NLPCC 2021, Qing-
dao, China, October 13–17, 2021, Proceedings, Part
II 10, pages 206–218. Springer.

Michael Heck, Nurul Lubis, Benjamin Ruppik, Re-
nato Vukovic, Shutong Feng, Christian Geishauser,
Hsien-Chin Lin, Carel van Niekerk, and Milica Gašić.
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A Description of Prompt Templates

A.1 Prompt Templates for ChatGPT Request

Initially, we noticed that the results reported in the
studies by Pan et al. (2023); Hudeček and Dušek
(2023) were notably lower in comparison to our re-
sults. We attribute this observation to two primary
factors, as outlined below.

Mitigating the Generation of Excessively
Lengthy Responses ChatGPT often generated
answers with excessively detailed explanations, de-
viating from the expected response format. For
example, when asked about the "train-leaveat" slot,
ChatGPT might respond with extensive informa-
tion such as "Monday at 05:16 for the first train and
Monday at 16:16 for the last train," whereas the cor-
rect response should be simply "05:16." To address
this issue, we introduced a prompt that includes
"No explanation!" as an instruction to ChatGPT
not to provide detailed explanations. Experimen-
tal results indicated a significant improvement in
answer accuracy through this approach.

API Version Differences Another factor is the
utilization of different API versions. The prior
works all relied on the text-davinci-003 API, while
we utilized a more powerful gpt-3.5-turbo API, a
highly capable GPT-3.5 model optimized for chat
at a fraction of the cost.

Below we provide specific samples for the four
different prompts in Figure 2.
Prompt type 1: “single return” + “no demo”
{
“instruction”: Now you need to perform
the task of multi-domain dialogue state
tracking. You need to return the value of
the slot I’m asking about simply based

on the content of the dialogue. No
explanation!

“input”: Input dialogue: [USER] I would
like to find a salon. [SYSTEM] In
which city do you prefer the salon to
be located? [USER] In SFO will be
great. [domain] Hotels_2, it indicates
A popular service for searching and
booking houses for short term stay [slot]
number_of_adults, it indicates Number of
people for the reservation. This slot is
categorical and you can only choose from
the following available values: 1, 2, 3,
4, 5. If the slot is not mentioned in the
dialogue, just return NONE.

So the value of slot
<Hotels_2-number_of_adults> is

}

Prompt type 2: “multi return” + “no demo”
{
“instruction”: Now you need to
perform the task of dialogue state
tracking. And the slot schema is in
this list [restaurant-area, hotel-name,
attraction-name, ...(the remaining slots
are omitted here)], which is in a
domain-slot format. You need to return
the slot and its value in dict format if
the value is not none, and no explanation!

“input”: Input dialogue: [USER] I would
like to find a salon. [SYSTEM] In which
city do you prefer the salon to be
located? [USER] In SFO will be great.

Please return the value of slot
list [restaurant-area, hotel-name,
attraction-name, ...(the remaining slots
are omitted here)].

}

Prompt type 3: “single return” + “one demo”
{
“instruction”: Now you need to perform
the task of multi-domain dialogue state
tracking. And I will show you an example
and you need to return to the state of
the slot I asked about.

“input”: The example is: Input dialogue:
[User]: I need train reservations from
norwich to cambridge [SYSTEM]: I have 133
trains matching your request. ...
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So the value of slot <train-departure>
is

And your result should be Norwich.

The following is the dialogue you need
to test:

Input dialogue: [USER] I would like to
find a salon. [SYSTEM] In which city
do you prefer the salon to be located?
[USER] In SFO will be great. [domain]
Hotels_2, it indicates A popular service
for searching and booking houses for
short term stay [slot] number_of_adults,
it indicates Number of people for the
reservation. This slot is categorical and
you can only choose from the following
available values: 1, 2, 3, 4, 5. If the
slot is not mentioned in the dialogue,
just return NONE. So the value of slot
<Hotels_2-number_of_adults> is

}

Prompt type 4: “multi return” + “one demo”
{
“instruction”: Now you need to perform
the task of multi-domain dialogue state
tracking. And I will show you an example
and you need to return the answer strictly
in the format of the example.

“input”: The example is: Input dialogue:
[User]: I need train reservations from
norwich to cambridge [SYSTEM]: I have 133
trains matching your request. ...

Output result: Train-Departure:
Norwich, Train-Arrival: Cambridge,
...(the remaining slots are omitted
here)

And you need to test this example:

Input dialogue: [USER] I would like to
find a salon. [SYSTEM] In which city do
you prefer the salon to be located? [USER]
In SFO will be great.

Please return the value of slot
list [restaurant-area, hotel-name,
attraction-name, ...(the remaining slots
are omitted here)].

}
For practical reasons related to API request costs,

we conducted tests using these four prompt tem-
plates exclusively on the MultiWOZ 2.2 dataset.
Subsequent evaluations on the MultiWOZ 2.4 and
SGD datasets focused on the most effective tem-

plate, i.e., “single return” + “no demo.”

A.2 Prompt Template for “Traditional”
Instruction Tuning

Here, we present the template for traditional in-
struction tuning, where "traditional" implies the ap-
plication of instruction tuning directly to the DST
task with a fixed prompt template. It’s important to
highlight that this fixed prompt template includes
all slot descriptions, such as the domain-slot de-
scription and the list of potential values. This fixed
prompt is utilized during both the fine-tuning and
testing phases.
{
“instruction”: Track the state of the slot
<restaurant-area> in the input dialogue.

“input”: [Dialogue context omitted...]
[Domain] restaurant, [Slot] area, it
indicates the area or place of the
restaurant. This slot is categorical, and
you can only choose from the following
available values: north, east, south,
west. If the slot is not mentioned in
the dialogue, just return NONE. So the
value of slot <restaurant-area> is

“output”: north

}

B Additional Results

B.1 Comparison of ChatGPT with Zero-shot
Methods

Essentially, the evaluation of ChatGPT inherently
belongs to the zero-shot setting. However, since
we found that ChatGPT’s results have been compa-
rable to traditional fine-tuning methods, we put its
results in Table 5 in the paper. Additionally, we in-
troduce ChatGPT’s results from zero-shot settings
and the results are shown in table 8 and 9 below.

Domain SDM-DST LDST ChatGPT

Messaging 36.6 89.6 92.8
Payment 16.5 92.3 94.1
Trains 46.7 81.0 83.3
Alarm 58.3 94.3 95.7

Average 40.4 89.3 91.5

Table 8: Zero-shot results (in JGA(%)) of ChatGPT on
SGD.

The results clearly demonstrate that ChatGPT
outperforms the two strong baselines, SDM-DST
and T5DST, by a huge margin. This is primarily
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Domain T5DST LDST ChatGPT

Attraction 33.09 75.61 78.50
Hotel 21.21 63.32 66.75
Restaurant 21.82 73.72 77.49
Taxi 65.09 91.47 92.38
Train 35.42 71.03 72.81

Average 35.20 75.03 77.58

Table 9: Zero-shot results (in JGA(%)) of ChatGPT on
MultiWOZ 2.0.

because the evaluation is conducted in a zero-shot
environment, where ChatGPT inherently holds an
advantage. It’s important to note that as an API
service, ChatGPT cannot be tuned offline and is
exclusively used for testing purposes.

In the zero-shot setting, the performance of tradi-
tional methods (e.g., SDM-DST and T5DST) is
worse due to the lack of domain-specific train-
ing data. ChatGPT, equipped with its extensive
model size and rich pre-trained knowledge, dra-
matically surpasses the performance of traditional
methods and sets the upper bound of performance
in the zero-shot setting. It’s also worth mentioning
that ChatGPT’s performance approaches the results
of traditional methods fine-tuned on the complete
training dataset, which is why we include it in Table
5 for comparison

In contrast, our LDST, utilizing a customized
instruction tuning method, effectively approaches
ChatGPT’s performance in the zero-shot setting,
with an average performance difference of 2.4% in
the JGA score.

B.2 Results with Different Foundation Models

We further performed evaluations using an alterna-
tive foundation model, Llama2-7B (Touvron et al.,
2023), as depicted in Table 10 below.

Methods Backbone Multiwoz 2.4 SGD

ChatGPT GPT-3.5-Turbo 83.2 84.8
LLaMa-7B LLaMa (7B) 75.1 75.3
LDST_LLaMa LLaMa (7B) 79.9 84.5
LDST_LLaMa2 LLaMa2 (7B) 81.9 85.1

Table 10: Results (in JGA(%)) with different backbones.

The results show that LDST_LLaMa2 performed
the best on SGD, attaining a JGA of 85.1% and
demonstrating a performance akin to that of Chat-
GPT on MultiWOZ 2.4. It suggests that a stronger
backbone can lead to better DST performance.

B.3 Results with LLaMa of different sizes
In order to investigate how model size influences
performance, we have incorporated supplementary
experimental findings involving the LLaMa-13B
and -30B models on the SGD dataset. These results
are presented in Table 11 below.

Methods Backbone # Training Epochs SGD

ChatGPT GPT-3.5-Turbo n/a 84.8
D3ST T5 XXL (11B) not provided 86.4
LDST LLaMa (7B) 2 84.5
LDST LLaMa (13B) 2 86.5
LDST LLaMa (30B) 0.5 86.9

Table 11: Results (in JGA(%)) with backbones of vary-
ing sizes.

The results provide a clear indication that an
increase in model size corresponds to an improve-
ment in the JGA score. However, in practical appli-
cations, a 7B model not only offers a more suitable
fit for local deployment but also showcases impres-
sive performance.

B.4 Inference Time Analysis
The table 12 below provides the results of infer-
ence time. It’s worth highlighting that we employ
8-bit quantization for the LLMs, which leads to
slower inference times compared to standard 32-bit
configurations.

Methods Inference Speed (Samples/Min)

T5_large-770M 531
LDST_LLaMa-7B 90
LDST_LLaMa2-7B 84
LDST_LLaMa-13B 64
LDST_LLaMa-30B 35

Table 12: Inference time for different models.

T5 large is the backbone model of the SDP-DST
baseline method. From the table, it’s clear that
the inference speed decreases as the model size in-
creases. For example, LDST_LLaMa-7B predicts
an average of 90 samples per minute. When com-
pared to the baseline method based on T5-large
(770M), the speed of LDST is approximately one-
sixth that of the baseline.

B.5 Effect of LoRA Configurations
In our work, we utilized common configurations:
lora_r = 8 and lora target modules=[query_proj,
key_proj, value_proj, output_proj] in each self-
attention module that needs to be updated.
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To further clarify the impact of LoRA configura-
tions on the experimental results, we performed ad-
ditional analysis on the Multiwoz 2.4 dataset using
1% training set (To save training time, we set the
epoch to 1). We varied the lora_r parameter with
values of 1, 2, 4, 8, and 16. In addition, we experi-
mented with two different lora_target_modules con-
figurations: [q_proj, v_proj] and [q_proj, k_proj,
v_proj, o_proj]. This resulted in 10 distinct experi-
mental setups.

lora_target_modules \lora_r 1 2 4 8 16

[q proj, v proj] 29.75 31.38 33.11 39.07 40.40
[q proj, k proj, v proj, o proj] 31.59 40.11 36.09 40.19 42.02

Table 13: Effect of LoRA configurations. All results are
reported in JGA(%).

In these results, a smaller value of “lora_r” in-
dicates fewer LoRA parameters, while lora target
modules determines which modules receive LoRA
update matrices. Generally, updating more atten-
tion matrices yields better results, and performance
improves as “lora_r” increases. However, it’s es-
sential to note that higher “lora_r” values might
extend the model’s training time. Hence, selecting
appropriate hyperparameters is crucial.

B.6 Results on MultiWOZ 2.1 Dataset

For a comprehensive evaluation, refer to Table 14,
which presents the results on the MultiWOZ 2.1
dataset, comparing ChatGPT by Heck et al. (2023)
with the D3ST method by Zhao et al. (2022).

Methods Based-model MultiWOZ 2.1

ChatGPT GPT-3.5-text-davinci-003 56.44
D3ST T5 XXL (11B) 57.80
LDST (ours) LLaMa (7B) 56.69

Table 14: Results (in JGA(%)) on MultiWOZ 2.1.

The results reveal that LDST’s performance is
marginally below that of D3ST. This could be at-
tributed to potential noise in the test set annotations,
mirroring our observations regarding the Multi-
WOZ 2.2 dataset.

C Implementation Details

C.1 Data Preprocessing and Evaluation

Step 1 - Standard Preprocessing In line with
the approach used by Lee et al. (2021), this initial
step involves the extraction of dialogue content and
slot-value pairs from the raw data. For instance,

consider the dialogue labeled "PMUL4398.json"
in the Multiwoz 2.2 training dataset. It comprises
6 dialogue turns between the system and the user.
With Multiwoz 2.2 featuring 49 unique slots, this
dialogue yields 294 (6*49) training data samples.
Here is a specific example:
{
“dialogue”: [SYSTEM] What can I help you
with [USER] i need a place to dine in the
center thats expensive [SYSTEM] I have
several options for you; do you prefer
African, Asian, or British food? [USER]
Any sort of food would be fine, as long
as it is a bit expensive. Could I get
the phone number for your recommendation?
[domain] restaurant find places to dine
and whet your appetite [slot] area area or
place of the restaurant [Possible Values]
centre, east, north, south, west

“state”: centre

}
In this example, the “dialogue” field includes the

content of the dialogue (A1, U1), (A2, U2), the
tracked slot <restaurant-area>, and it’s description.
The “state” field is the value of the corresponding
slot. For the slots that are not mentioned in the
dialogue, the “state” field is assigned to NONE.

Step 2 - Instruction Data Generation While the
preprocessing in Step 1 provided valuable data, it
didn’t entirely align with the required format for
instruction tuning. As a result, it led to suboptimal
experimental performance. To address this, we in-
troduced an additional preprocessing stage known
as the "Instruction Data Generation Module," as
depicted in Figure 4. This module is designed to
construct more suitable prompts.

The aforementioned details the entirety of the
preprocessing procedure, after which it can be
leveraged for both model training and testing.

Evaluation Regarding evaluation, we also uti-
lized the code provided by Lee et al. (2021) to cal-
culate JGA and AGA scores. A prediction was con-
sidered correct when it exactly matches the ground
truth. During the testing phase, we used a con-
sistent prompt template that included domain-slot
descriptions and lists of potential values. Experi-
mental findings showed that this template slightly
outperformed others because of its provision of
more comprehensive slot information.
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C.2 Experimental Settings

During the training phase, we utilized a batch size
of 128 and set the learning rate to 1e-4. The num-
ber of epochs varied depending on the specific ex-
periment setup. For zero-shot experiments, we
trained for 3 epochs. For few-shot experiments, we
conducted experiments with different percentages
of labeled data: 1% few-shot experiments were
trained for 10 epochs, 5% few-shot experiments
for 3 epochs, and 10% few-shot experiments for 2
epochs. For fine-tuning on the full dataset experi-
ments, we used 2 epochs.

The model’s cutoff length was set at 512, based
on data analysis. This length was determined
to be optimal as it covered more than 90% of
the data. For samples with input lengths exceed-
ing 512 tokens, we truncated them to fit within
the cutoff length. Additionally, the parameter
"train_on_inputs" was set to false, indicating that
the model solely computed the loss based on the
final output.

Regarding the hyperparameters of the LORA
module, we set the lora rank to 8, alpha to
16, dropout rate to 0.05, and selected “q_proj”,
“k_proj”, “v_proj” and “o_proj” as the LORA tar-
get modules. Furthermore, in order to reduce the
memory usage of the model, we employed 8-bit
quantization techniques to further optimize the fine-
tuning process.

We would also like to offer further insights into
the training time comparison of our model. In ex-
periments involving fine-tuning on the full dataset,
our model had an average training time of 8 hours.
In contrast, powerful baseline methods, such as
SDP-DST (Feng et al., 2023) and DiCoS-DST (Xu
et al., 2023b), required approximately 60 hours
for fine-tuning the T5 model based on our testing.
This substantial difference in training time under-
scores the efficiency of our approach. And for the
TOATOD (Bang et al., 2023b) method, which also
utilizes the PEFT technique, the fine-tuning process
only focuses on soft prompts, reducing the overall
runtime to 12 hours. This runtime is comparable to
our method, demonstrating the effectiveness of our
approach compared to traditional methods.

In the case of few-shot experiments, the train-
ing time for 1% labeled data was 5 hours, 5% la-
beled data required 8 hours, and 10% labeled data
took approximately 10 hours to train. In contrast,
the runtime for zero-shot experiments averaged
around 12 hours. It’s worth noting that our ap-

proach did not exhibit significant runtime improve-
ments compared to traditional methods in these
settings. However, it does illustrate that our LLM-
driven approach achieves the most substantial per-
formance improvements while still maintaining ef-
ficiency. These additional insights into the model’s
runtime in various experimental setups provide a
comprehensive understanding of the time required
for training our model and its comparison to other
baseline methods.
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