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Abstract

Large language models (LLMs) have emerged
as a widely-used tool for information seeking,
but their generated outputs are prone to halluci-
nation. In this work, our aim is to allow LLMs
to generate text with citations, improving their
factual correctness and verifiability. Existing
work mainly relies on commercial search en-
gines and human evaluation, making it chal-
lenging to reproduce and compare different
modeling approaches. We propose ALCE, the
first benchmark for Automatic LLMs’ Citation
Evaluation. ALCE collects a diverse set of
questions and retrieval corpora and requires
building end-to-end systems to retrieve sup-
porting evidence and generate answers with
citations. We develop automatic metrics along
three dimensions—fluency, correctness, and ci-
tation quality—and demonstrate their strong
correlation with human judgements. Our exper-
iments with state-of-the-art LLMs and novel
prompting strategies show that current systems
have considerable room for improvement—For
example, on the ELI5 dataset, even the best
models lack complete citation support 50% of
the time. Our analyses further highlight promis-
ing future directions, including developing bet-
ter retrievers, advancing long-context LLMs,
and improving the ability to synthesize infor-
mation from multiple sources.1

1 Introduction

Large language models (LLMs; Brown et al., 2020;
OpenAI, 2023) have gained increasing popularity
as a tool for information seeking. While they gener-
ate engaging and coherent responses, their outputs
are prone to hallucination and often contain fac-
tually incorrect information (Ji et al., 2023). This
makes it harder for users to trust and verify LLM-
generated outputs without any supporting evidence.

In this work, we study a new generation
paradigm for LLMs, in which we require LLMs

1Our code and data are available at https://github.
com/princeton-nlp/ALCE.

When did the US break away from England?

The US took the first step towards gaining independence from 
GB when it declared independence on July 2, 1776 (although the 
event is now commemorated on July 4, 1776, the date when the 
Declaration of Independence was officially adopted by Congress) 
[1][2]. The Treaty of Paris was later signed on September 3, 1783, 
formally separating the United States from the British Empire [3].
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[1] Decolonization of 
the Americas:  … in-
dependence from GB 
on July 2, 1776 …

[3] American Revolu-
tion: … The Treaty of 
Paris was signed 
September 3, 1783 ...

[2] Decolonization: …  
It was officially adop-
ted by Congress on 
July 4, 1776 …

…

Figure 1: The task setup of ALCE. Given a question,
the system generates text while providing citing pas-
sages from a large retrieval corpus. Each statement may
contain multiple citations (e.g., [1][2]).

to provide citations to one or a few text passages
for any statement they generate (Figure 1). Incor-
porating citations brings several benefits: (1) users
can easily verify LLMs’ claims with the provided
citations; (2) LLMs can generate text that faithfully
follows cited passages, which has the promise to
improve correctness and alleviate hallucination.

Multiple commercial systems have adopted this
paradigm: Bing Chat2 and perplexity.ai3 respond to
user questions in natural language with references
to Web pages. Nakano et al. (2021); Menick et al.
(2022) share a similar motivation, but they mainly
experiment with commercial search engines and
closed-source models, making their results difficult
to evaluate. Retrieval-augmented LMs (Borgeaud
et al., 2022; Izacard et al., 2022) incorporate re-
trieved passages during both training and infer-
ence, but do not guarantee faithfulness to retrieved
passages or explicitly provide citations. Addition-
ally, previous studies mostly rely on human eval-
uation (Nakano et al., 2021; Menick et al., 2022;
Liu et al., 2023), which is expensive and difficult to
reproduce. We argue that the absence of automated
evaluation hinders the advances of such systems.

2https://www.bing.com/new
3https://www.perplexity.ai
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Dataset Corpus (#passages) Question type Example

ASQA Wikipedia (21M) Factoid (ambiguous) Q: When did the US break away from England?
A: The US declared independence on July 2, 1776 [1][2] ... The
Treaty of Paris was later signed on September 3, 1783 [3].

QAMPARI Wikipedia (21M) Factoid (list) Q: Which films have Gong Li as a member of their cast?
A: The Story of Qiu Ju [1], Farewell My Concubine [2], The
Monkey King 2 [3], Mulan [3], Saturday Fiction [3] ...

ELI5 Sphere (899M) Why/How/What Q: How do student loans affect getting a mortgage?
A: Student loans can affect the debt to income ratio [1], which is
a key factor in determining the amount that ... [2][3]

Table 1: The three datasets used in our ALCE benchmark. These datasets cover a wide range of question types and
the corresponding corpora span from Wikipedia to Web-scale document collection.

We present ALCE, the first reproducible bench-
mark for automatically evaluating LLMs’ gener-
ations with citations. ALCE assumes a natural-
language question and a retrieval corpus, and re-
quires building end-to-end systems to retrieve rel-
evant passages from the corpus, generate a re-
sponse to the question, and cite corresponding sup-
porting passages. We compile three datasets that
cover different types of questions and corpora—
ASQA (Stelmakh et al., 2022), QAMPARI (Ru-
bin et al., 2022), and ELI5 (Fan et al., 2019)—as
shown in Table 1. Different from previous bench-
marks (Lee et al., 2019; Bohnet et al., 2022), ALCE
evaluates long-text generation, focusing on auto-
matically evaluating citation quality, and allows
citing multiple passages for individual statements.

We design automatic evaluation methods in three
dimensions: fluency, correctness, and citation
quality. Specifically, we use MAUVE (Pillutla
et al., 2021) to measure fluency, propose tailored
correctness metrics for each dataset, and adopt a
natural language inference (NLI) model (Honovich
et al., 2022) to measure citation quality. We show-
case how the three dimensions together contribute
to a robust evaluation, preventing systems from ex-
ploiting shortcuts. Additionally, we conduct human
evaluation and demonstrate a strong correlation
with our automatic metrics.

We experiment on multiple systems with state-
of-the-art LLMs and retrievers and also propose
novel prompting strategies to synthesize retrieved
text into text generation. Although all systems are
capable of providing fluent and coherent responses,
there remains substantial room for improvement in
terms of correctness and citation quality: For exam-
ple, on the ELI5 dataset, around 50% generations
of our ChatGPT and GPT-4 baselines are not fully
supported by the cited passages. Additionally, we
find that (1) a closed-book model (generating an-
swers without accessing any retrieved documents)

with post-hoc citing achieves good correctness but
much worse citation quality; (2) although interac-
tive retrieval approaches (Yao et al., 2023; Schick
et al., 2023) offer more flexibility in when/what
to retrieve, they do not improve the performance
on this challenging benchmark; (3) summarizing
the retrieved passages in a shorter text improves
correctness but not citation quality; (4) reranking
multiple generations boosts citation quality mea-
sured by human evaluation; (5) incorporating more
retrieved passages in context does not help Chat-
GPT but improves GPT-4 performance.

Our extensive analyses highlight three major
challenges of building LLMs to generate text with
citations: (1) the retrieval quality is crucial to the
final performance and has substantial room for im-
provement; (2) LLMs’ limited context window re-
stricts the number of passages they can incorporate;
(3) current LLMs struggle to synthesize multiple
documents in context without being distracted by
irrelevant ones, although better instruction tuning
brings significant improvement. These challenges
pose promising research directions for developing
better systems integrating retrieval and LLMs.

2 Task Setup and Datasets

Our task is formalized as follows: Given a query
q and a corpus of text passages D, the system
is required to return an output S, which consists
of n statements s1, ..., sn, and each statement si
cites a list of passages Ci = {ci,1, ci,2, . . .}4, where
ci,j ∈ D. In this work, we segment LLMs’ output
into statements by sentence boundaries.5 While
LLMs may include sentences that do not require a
citation, such as “I’m happy to help”, we observe
that almost all sentences that LLMs output provide

4In practice, we allow at most 3 citations for each state-
ment as more citations usually do not help.

5QAMPARI requires a list as the answer, and we choose
each entity in the generated list as a statement.
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valuable information and require citations, similar
to findings in Liu et al. (2023). In this work, cita-
tions are enclosed by box brackets such as [1][2].

We divide the corpus D into 100-word passages
following previous works on open-domain question
answering (Karpukhin et al., 2020; Petroni et al.,
2021; Piktus et al., 2021), in contrast to commer-
cial systems like Bing Chat, which cite entire Web
pages. We take 100-word passages because it is
easier for humans to verify, and allows for more
retrieved passages to fit in LLMs’ limited context.

We choose QA datasets so that (1) they contain
factual questions, in which references are impor-
tant; (2) questions require long-text answers that
cover multiple aspects; (3) answering the questions
requires synthesizing multiple sources. We select
three datasets (Table 1) and introduce them below.
See §B for additional statistics.

ASQA (Stelmakh et al., 2022) is a long-form fac-
toid dataset. As shown in Figure 1, each question is
an ambiguous question from AmbigQA (Min et al.,
2020) that requires multiple short answers to cover
different aspects, and the dataset provides a long-
form answer that covers all short answers. Since
most questions can be answered by Wikipedia, we
use the 2018-12-20 Wikipedia snapshot as D.

QAMPARI (Rubin et al., 2022) is a factoid QA
dataset constructed from Wikipedia, where the an-
swer is a list of entities that are drawn from differ-
ent passages. Same as ASQA, we use the 2018-12-
20 Wikipedia as the corpus.

ELI5 (Fan et al., 2019) is a long-form QA
dataset built on the Reddit forum “Explain Like I’m
Five”.6 Most ELI5 questions are how/why/what
questions that require long answers and multiple
passages as evidence. Due to the diverse topics dis-
cussed in the questions, we use Sphere (Piktus et al.,
2021)—a filtered version of Common Crawl7—as
the corpus. The ELI5 dataset is widely used in
related work due to its challenging nature (Nakano
et al., 2021; Menick et al., 2022; Liu et al., 2023).

We randomly select 1,000 examples from the
development set of each dataset for ALCE. Our
benchmark primarily assesses the citation capabili-
ties of existing LLMs and does not provide training
data, as there are no available examples that pro-
vide supervision for citations in these datasets.

6https://www.reddit.com/r/explainlikeimfive/
7https://commoncrawl.org. We also filter out any Web

pages from Reddit.

3 Automatic Evaluation
Our benchmark measures the following three di-
mensions of system responses:
• Fluency: whether the model’s generated text is

fluent and coherent.

• Correctness: whether the answer is accurate
and covers all aspects of interest.

• Citation quality: whether the answer is well
supported by the cited passages and no irrelevant
passages are cited.

In the following, we present automatic metrics for
each dimension and discuss why the combination
of the three metrics provides a robust evaluation.

3.1 Fluency
We use MAUVE (Pillutla et al., 2021) to evaluate
the fluency of the output (§C). We deploy MAUVE
for ASQA and ELI5 and omit it for QAMPARI, as
QAMPARI only requires a list of short answers as
the response and LLMs consistently adhere to the
format in our experiments. As MAUVE is sensitive
to output length and text style, and most LLMs are
capable of producing fluent text, we mainly employ
it as a sanity check as long as the MAUVE scores
are high enough.

3.2 Correctness
Our objective is to measure the informativeness and
utility of the generation to the question. Liu et al.
(2023) propose to directly evaluate perceived utility
by humans, a process difficult to automate. There-
fore, we use correctness—whether the response is
accurate compared to a ground truth answer—as a
proxy. Evaluating the correctness of long-form gen-
eration is a challenging task (Krishna et al., 2021),
and we describe our strategy for each dataset be-
low. Figure 2 illustrates the metrics and we include
additional implementation details in §C.

For ASQA, we follow Stelmakh et al. (2022)
and calculate the recall of correct short answers by
checking whether the short answers (provided by
the dataset) are exact substrings of the generation
(exact match recall; EM recall).

For QAMPARI, we follow Rubin et al. (2022)
and calculate the precision and recall of the model
prediction, by checking the exact match to the gold
answer list. We add one additional adjustment:
considering that users often want to know only a
few example answers of the question, our evalua-
tion considers recall to be 100% if the prediction
includes at least 5 correct answers (recall-5).
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ASQA   Exact Match Recall

ELI5   Claim Recall

When did the US break away from England?
Question

Short answers (from the dataset)

July 2, 1776 September 3, 1783July 4, 1776

… it declared independence on July 3, 1776 … The Treaty of 
Paris was signed on September 3, 1783 …

Model output

How do student loans affect getting a mortgage?
Question

They do not appear in credit history and do not affect debt to 
income ratio. Thus they do not affect getting a mortgage.

Model output

Claims (generated by text-davinci-003 based on gold answers)

Student loan does not appear in credit history.

Student loan can affect the debt to income ratio.

Debt to income ratio affects mortgage applications.

String exact match
Recall=33.3%

NLI
Claim recall=33.3%

QAMPARI   Precision, Recall

Which films have Gong Li as a member of their cast?
Question

Short answers (from the dataset)

The Story of Qiu Ju Saturday FictionMulan

Saturday Fiction, The Great Wall, Mulan, Shadow.
Model output

String exact match
Recall=66.6%
Precision=50%

Figure 2: Evaluation of correctness (details in §3.2).

Unlike ASQA and QAMPARI, the ELI5 dataset
does not provide short entity answers. Fan et al.
(2019) use ROUGE for evaluation, which does
not reflect the correctness well (Krishna et al.,
2021; §A). Inspired by works in summariza-
tion evaluation (Zhang and Bansal, 2021; Kamoi
et al., 2023; Wang et al., 2020), we use Instruct-
GPT (text-davinci-003; Ouyang et al., 2022)
to generate three “sub-claims”. Then we use
TRUE8 (Honovich et al., 2022), a T5-11B (Raf-
fel et al., 2020) model fine-tuned on a collection of
natural language inference (NLI) datasets, to check
whether the model output entails the sub-claims
(claim recall). TRUE targets factual correctness
and has been used by previous works in similar
context (Bohnet et al., 2022; Gao et al., 2023). We
demonstrate that claim recall provides a more ac-
curate measure of correctness than existing metrics
(more details in §A).

3.3 Citation Quality

We evaluate citation qualities using two metrics: (1)
citation recall, which determines if the output is en-
tirely supported by cited passages, and (2) citation
precision, which identifies any irrelevant citations.
Although we prioritize citation recall as it entails
a well-supported and truthful answer, enhancing
precision is crucial for better user satisfaction, re-
ducing the need for human review of extraneous

8https://huggingface.co/google/t5_xxl_true_
nli_mixture. Details in §C.

[1]        
[2]             

For this question, citation precision = 4 / 6 = 66%

{statement 1} [1][2]. {statement 2} [3].{statement 3} [2][4][5].    
Model output

“entailment”
Premise: passage [1][2]
Hypothesis: {statement 1}

NLI
model

Citation Recall 

{statement 2} [3]

{statement 1} [1][2]

{statement 3} [2][4][5]    

For this question, citation recall = 2 / 3 = 66%

Citation Precision 

Detect “irrelevant” citation: one citation alone does not support the claim, and 
removing it does not affect other citations combined to support the claim.

When did the US break away from England?
Question

{statement 1} [1][2]      : 

{statement 3} [2][4][5]      : 
                         [2]        [4][5]        

[4]        [2][5]        
[5]        [2][4]

[2] is “irrelevant’’. Precision = 0

Precision = 1

{statement 2} [3] If recall = 0, then precision = 0

Recall = 1 if the concatenation of all cited passages fully supports the segment.
We use an NLI model to determine “fully support”.

Precision = 1

Precision = 1
Precision = 1

[2]        
[1]             

Figure 3: Evaluation of citation quality (details in §3.3).
We use an NLI model to verify whether a statement is
supported by its citations.

passages. Figure 3 provides an illustrated example.
We use the NLI model TRUE (Honovich et al.,

2022) again to automatically examine whether the
cited passages entail the model generation. We con-
duct human evaluation (§6) to demonstrate strong
human correlation of our metric.

Citation recall. We calculate the citation recall of
each statement (0 or 1) and average over all state-
ments in the model response. For each statement si,
its citation recall is 1 if and only if there is at least
one citation (Ci ̸= ∅) and ϕ(concat(Ci), si) = 1,
where ϕ(premise, hypothesis) is the NLI model
that outputs 1 if the premise entails the hypoth-
esis, and 0 otherwise; concat(Ci) concatenates all
passages in Ci together (details in §C). The NLI
evaluation is in accordance with the attributable to
identified sources (AIS) framework (Rashkin et al.,
2023): ϕ(concat(Ci), si) = 1 implies that si is true
based solely on concat(Ci).
Citation precision. Our citation precision evalua-
tion detects citations that are irrelevant, but it does
not require citing a minimal set. We follow this de-
sign because human writing often cites redundant
sources to enhance credibility; human readers may
also appreciate multiple citations, especially when
it pertains to critical claims such as medical advice.

We calculate the citation precision for each ci-
tation (0 or 1) and average over all citations in the
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Instruction: Write an accurate, engaging, and
concise answer for ...

<Retrieve for the question>

Document [1](Title: American Decolonization)
...
Document [2](Title: Decolonization) ...
Document [3](Title: American Revolution) ...
...

Question: When did US break away from England?

Answer: The United States took the first step
towards gaining independence ... [1][2]. The
Treaty of Paris was later signed ... [3].

Table 2: An example of our VANILLA method. Differ-
ent colors represent prompt, model generation, and
<actions>. We also provide two in-context demonstra-
tions before the test example.

response. We first define if a citation is “irrele-
vant”. Intuitively, a citation ci,j is “irrelevant” if (a)
ci,j itself cannot support si and (b) removing ci,j
does not affect the rest of the citations to support
si. Formally, ci,j is “irrelevant” if and only if

(a) ϕ(ci,j , si) = 0, AND

(b) ϕ(concat(Ci \ {ci,j}), si) = 1.

ci,j has a precision of 1 if si has recall=1 and
ci,j is not irrelevant. For example (Figure 3),
when s3 cites three references [2][4][5] and
recall=1, [2] is “irrelevant” if ϕ([2], s3) = 0 and
ϕ([4][5], s3) = 1. For condition (b) to work, we
set recall=1 as a prerequisite for precision= 1.
Note that this algorithm overlooks the scenario
when one citation partially supports the statement.
We discuss the details in §E.

3.4 ALCE is Robust to Shortcut Cases
We showcase how the ALCE evaluation is robust
to two possible shortcuts in §D: (1) using the top-1
retrieved passage as the response and citing itself,
and (2) using the first two sentences of the top-1
passage. Both cases have almost-perfect citation
scores, but (1) has low fluency due to its unnaturally
long length compared to human answers, and (2)
has low correctness due to low coverage.

4 Modeling

In this section, we discuss three major modeling
components for an ALCE system—retrieval, syn-
thesis, and post-editing.

4.1 Retrieval
We explore simple, off-the-shelf retrievers. We use
dense retrievers for Wikipedia, including GTR (Ni

et al., 2022) and DPR (Karpukhin et al., 2020);
we use BM25 for Sphere. For each question, we
retrieve the top-100 passages.

4.2 Synthesis

We focus on how to prompt an LLM to interact
with the retriever, and synthesize and cite the ev-
idence (without fine-tuning internal parameters).
One noteworthy challenge is that existing LLMs
all have limited context window and thus can only
fit a handful of passages.

VANILLA. We simply provide the model with the
top-k9 passages and instruct the model to cite ac-
cordingly (Table 2). We also use in-context learn-
ing (Brown et al., 2020) and prepend two demon-
strations. The complete instruction is in Table 23.

SUMM/SNIPPET. With a 4K context window, we
can at most safely fit k = 5 passages. As shown in
Figure 4, top-5 retrieved passages can only cover
56.8% percent of the answers in ASQA.

To tackle this limitation, we propose to provide
summaries or snippets of passages instead of the
full text (summaries are abstractive but snippets are
spans from passages). We acquire summaries and
snippets by prompting ChatGPT with instructions
(prompts in Table 25 and 26).10 Then we replace
all passages with summaries/snippets. Summaries
or snippets significantly reduce the passage length,
allowing for more passages to fit in: for ASQA,
they reduce passage length by 6× on average.

Though SUMM/SNIPPET allows for more re-
trieved passages, they are lossy compressions. To
alleviate this problem, we propose INTERACT, an
interactive prompting scheme to allow the model to
check the full text of certain passages. At each step,
the model can execute one of three actions: (1)
“Check: Document [1][2]” to check the full text
of the corresponding documents; (2) “Output:” to
output a statement of the answer; (3) “End.” to end
the generation. §C provides more details.

INLINESEARCH. The above methods all dis-
play retrieval results at the beginning. In INLI-
NESEARCH, we allow LLMs to call “search” dur-
ing the generation process (Yao et al., 2023; Press
et al., 2022; Jiang et al., 2023). At each step, the
model can execute one of three actions: “Search:

9We can fit at most k = 3 for models with 2K window
and at most k = 5 for models with 4K context window.

10We also query ChatGPT whether the passage is relevant
to the question, and filter out passages that are “irrelevant”.
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Instruction: ...

<Retrieve for question “...”>

Question: When did US break away from England?
Search: Declaration of Independence
<Search the query among the top-100 passages>
Document [1](Title: ...) ...
Output: The United States ... [1].
<Remove Document [1] from context>
Search: Treaty of Paris
<Search the query among the top-100 passages>
Document [3](Title: ...) ...
Output: The Treaty of Paris ... [3].
<Remove Document [3] from context>
End.

Table 3: An example of INLINESEARCH.

{query}” to search among the top-100 passages11

by using GTR; the “Output” and “End” actions are
the same as INTERACT. For each “Search” action,
we display the best retrieved passage in the context.
The passage is removed after one action to save
context space. Table 3 shows an example.

CLOSEDBOOK. We also add a simple closed-
book baseline, where the model is only prompted
with the instruction and the question, without any
retrieved passages provided. Consequently, this
variant does not cite any evidences.

4.3 Post-editing
In this section we discuss two strategies for refining
the output to further improve its quality.

RERANK. We randomly sample nsample = 4 re-
sponses for each question, and select the best re-
sponse using the automatic citation recall score.
we expect RERANK to improve the citation quality.

POSTCITE. For each statement, we find the best
matching passage among the top-100 retrieved pas-
sages using GTR and cite it. We combine this with
CLOSEDBOOK in our experiments.

5 Experiments

We describe experiment details in §C. We use Chat-
GPT (gpt-3.5-turbo-0301) with a 4K context
window for most main experiments and ablations.
We also report results with ChatGPT-16K (gpt-
3.5-turbo-16k-0613) and GPT-4 (gpt-4-0613;
8K context window). For open-source models,
we test LLaMA (Touvron et al., 2023a) and its
instruction-tuned versions, including Alpaca (Taori
et al., 2023), Vicuna (Chiang et al., 2023), and

11We do not search over the entire corpus because {query}
may leave out certain context in the question and searching
among the already-retrieved passages gives better results.

Fluency Correct. Citation

(MAUVE) (EM Rec.) Rec. Prec.

ChatGPT
VANILLA (5-psg) 66.6 40.4 73.6 72.5
w/ RERANK 77.0 40.2 84.8 81.6

SUMM (10-psg) 70.0 43.3 68.9 61.8
w/ INTERACT 69.0 39.1 73.4 66.5

SNIPPET (10-psg) 69.8 41.4 65.3 57.4
INLINESEARCH 58.7 32.4 58.3 58.2
CLOSEDBOOK 52.7 38.3 26.7 26.7

GPT-4 (VANILLA prompting)
GPT-4 (5-psg) 67.1 41.3 68.5 75.6
GPT-4 (20-psg) 64.9 44.4 73.0 76.5

LLaMA (VANILLA prompting)
LLaMA-13B (3-psg) 68.4 26.9 10.6 15.4
Vicuna-13B (3-psg) 82.6 31.9 51.1 50.1
Chat-13B (5-psg) 72.4 35.2 38.4 39.4
Chat-70B (5-psg) 88.3 41.5 62.9 61.3

Table 4: Experiments on ASQA. For CLOSEDBOOK,
we use POSTCITE to get citations. k-psg: putting top-
k passages from the retrieval results into the context.
Chat-13B and Chat-70B refer to LLaMA-2-Chat.

Oasst (Köpf et al., 2023). They all have a 2K con-
text window. We use short instructions for LLaMA
(Table 24) to save context budget. Additionally,
we test LLaMA-2-Chat, which were also trained to
follow instructions (Touvron et al., 2023b). These
models have a context window of 4K tokens, which
allows for 5 passages per question.

5.1 Main Results
We present the main results on three datasets in
Table 4, 5, and 6 respectively (full results in §G.6).
We first note that all models achieve good fluency
scores (except some models on ELI5 mainly due to
their longer generations). We summarize the main
takeaways from the experiments below.

VANILLA achieves strong performance. Despite
its simplicity, VANILLA (putting retrieved passages
in context) achieves close-to-the-best performance
among all prompting strategies.

Using summaries or snippets improves correct-
ness. We see a universal trend that SUMM or SNIP-
PET improves correctness, though on ASQA and
ELI5, such an improvement comes at a cost of
citation quality due to the lossy compression. Com-
bining INTERACT with SUMM/SNIPPET does not
bring improvement, and we hypothesize that check-
ing the full passages offers limited benefit and cur-
rent LLMs are not proficient in an interactive usage.

Retrieving text on the fly does not improve per-
formance. All datasets show that VANILLA out-
performs INLINESEARCH on citation quality (and
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Correctness Citation

Rec.-5 Prec. Rec. Prec.

ChatGPT
VANILLA (5-psg) 20.8 20.8 20.5 20.9
w/ RERANK 22.8 21.4 21.2 21.4

SUMM (10-psg) 23.6 21.2 23.6 25.7
SNIPPET (10-psg) 24.5 21.5 22.9 24.9
w/ INTERACT 21.9 23.0 21.9 23.4

INLINESEARCH 17.2 20.4 14.9 14.9
CLOSEDBOOK 32.9 19.8 10.0 10.0

GPT-4 (VANILLA prompting)
GPT-4 (5-psg) 22.2 25.0 25.9 27.0
GPT-4 (20-psg) 29.6 26.2 27.4 28.5

LLaMA (VANILLA prompting)
LLaMA-13B (3-psg) 9.7 9.1 6.7 7.1
Vicuna-13B (5-psg) 14.0 15.9 12.5 13.4
Chat-13B (5-psg) 21.1 18.2 9.6 9.7
Chat-70B (5-psg) 21.8 18.4 15.1 15.6

Table 5: Experiments on QAMPARI. “Rec.-5”: we set
the recall to be 100% if the prediction includes at least
5 correct answers.

on correctness for ASQA and ELI5). By manually
examining the examples, we find that it is challeng-
ing to ask detailed questions without seeing any
passages. To improve INLINESEARCH, one may
need to provide more context about the questions
in advance or encourage the model to call retrievers
with more detailed and diverse queries.

RERANK boosts citation quality. We observe that
RERANK leads to consistent improvement in cita-
tion quality (on ASQA and ELI5). As the automatic
scores may be biased in RERANK, we also conduct
human evaluation (§6) and verify its effectiveness.

CLOSEDBOOK+POSTCITE delivers strong cor-
rectness but poor citation quality. CLOSED-
BOOK outperforms VANILLA in correctness on
ELI5 and QAMPARI, and has only a 2% gap on
ASQA. However, CLOSEDBOOK cannot provide
any citation; when combined with POSTCITE, the
citation quality remains inadequate. For instance,
citation recall of CLOSEDBOOK+POSTCITE is
lower than VANILLA by 47% on ASQA.

To understand why CLOSEDBOOK achieves bet-
ter correctness and why POSTCITE cannot deliver
satisfying citation quality, we manually examine
model outputs and find that: (1) open-book mod-
els are easily distracted by irrelevant passages and
generate responses with lower correctness, a phe-
nomenon also observed by Shi et al. (2023); (2)
CLOSEDBOOK often generates texts that are cor-
rect but not similar to any retrieved passages, mak-
ing it difficult to match a citation post-hoc.

Fluency Correct. Citation

(MAUVE) (Claim) Rec. Prec.

ChatGPT
VANILLA (5-psg) 57.2 12.0 51.1 50.0
w/ RERANK 56.1 11.4 69.3 67.8

SUMM (10-psg) 40.3 12.5 51.5 48.2
SNIPPET (10-psg) 62.9 14.3 50.4 45.0
w/ INTERACT 68.0 13.3 47.8 45.0

INLINESEARCH 49.7 13.4 45.6 43.7
CLOSEDBOOK 32.6 18.6 15.5 15.5

GPT-4 (VANILLA prompting)
GPT-4 (5-psg) 38.4 14.2 44.0 50.1
GPT-4 (20-psg) 41.5 18.3 48.5 53.4

LLaMA (VANILLA prompting)
LLaMA-13B (3-psg) 50.0 3.9 3.1 5.3
Vicuna-13B (3-psg) 58.2 10.0 15.6 19.6
Chat-13B (5-psg) 34.7 13.4 17.3 15.8
Chat-70B (5-psg) 38.6 12.8 38.3 37.9

Table 6: Experiments on ELI5. We use claim recall
for the correctness evaluation. Chat-13B and Chat-70B
refer to LLaMA-2-Chat.

GPT-4 brings limited improvement but is better
at using long context. We evaluate GPT-4 with
VANILLA and different numbers of passages (more
results in §G.6). GPT-4 brings consistent (but lim-
ited) improvement on correctness, but often at a
cost of citation quality. GPT-4 can also incorporate
more passages due to its longer context window,
which boosts both correctness and citation qual-
ity. On the contrary, including more passages with
ChatGPT-16K does not improve the results (Ta-
ble 7), suggesting that processing more passages
is non-trivial and GPT-4 is better at synthesizing
information from its long context than ChatGPT.

5.2 Comparison of Different LLMs

Table 7 compares different LLMs on ASQA
using VANILLA (more results in §G.6). No-
tably, instruction-tuned models (Vicuna-13B and
LLaMA-2-Chat) outperform the original LLaMA
models in correctness and considerably enhance
the citation quality. We observe that while the orig-
inal LLaMA models are able to copy facts from
the context, they struggle with accurately citing the
sources or simply do not cite. Notably, the best
open-source model, LLaMA-2-70B-Chat, achieves
comparable correctness score as the OpenAI mod-
els, but still lags behind in citation quality.

5.3 Retrieval Analysis

The retrieval results play a crucial role to the cor-
rectness and the citation quality. Figure 4 presents
the retrieval recall@k with different datasets and
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Fluency Correct. Citation

(MAUVE) (EM) Rec. Prec.

ChatGPT (VANILLA)
DPR (5-psg) 61.8 36.1 65.0 65.6
GTR (1-psg) 69.5 38.4 56.0 64.0
GTR (3-psg) 66.6 39.6 72.8 73.9
GTR (5-psg) 66.6 40.4 73.6 72.5

Figure 4: Retrieval recall@k on ASQA (EM recall), QAMPARI (recall-5), and ELI5 (claim recall). Retrieval recall
serves as an upper bound for model performance, and we compare them with two models’ correctness results in the
figure (dashed lines): “Vanilla (5-psg)” is ChatGPT VANILLA with top-5 passages in context; “Oracle” is the same
model except that it uses 5 gold passages (§G.1), whose recall matches Recall@100 on all three datasets.

Fluency Correct. Citation

(MAUVE) (EM Rec.) Rec. Prec.

Open-source (max #tokens=2K-4K)
LLaMA-13B (3-psg) 68.4 26.9 10.6 15.4
Vicuna-13B (3-psg) 82.6 31.9 51.1 50.1
Chat-13B (5-psg) 72.4 35.2 38.4 39.4
Chat-70B (5-psg) 88.3 41.5 62.9 61.3

ChatGPT (max #tokens=4K)
ChatGPT (3-psg) 66.6 39.6 72.8 73.9
ChatGPT (5-psg) 66.6 40.4 73.6 72.5

ChatGPT-16K (max #tokens=16K)
ChatGPT (5-psg) 60.3 36.1 76.2 76.5
ChatGPT (10-psg) 56.3 36.7 75.3 75.0
ChatGPT (20-psg) 56.7 36.1 73.7 73.5

GPT-4 (max #tokens=8K)
GPT-4 (5-psg) 67.1 41.3 68.5 75.6
GPT-4 (10-psg) 71.5 43.1 72.0 75.5
GPT-4 (20-psg) 64.9 44.4 73.0 76.5

Table 7: Comparison of different LLMs on ASQA
(GTR+VANILLA). LLaMA-13B and Vicuna-13B have
a context limit of 2,048 tokens, and thus can only use a
short version of instructions and at most top-3 passages.
Chat-13B and Chat-70B refer to LLaMA-2-Chat.

retrievers. As the number of passages increases, re-
trieval recall steadily improves. Additionally, Fig-
ure 4 shows the correctness performance of two
models: (1) ChatGPT VANILLA with top-5 pas-
sages (our primary baseline); (2) an oracle ver-
sion of the same model employing 5 gold passages
(§G.1; the 5 gold passages match the retrieval re-
call@100). Notably, both models’ correctness lags
behind the corresponding retrieval recall (except
for ELI5 top-5). The discrepancy suggests that de-
spite the presence of accurate answers in context,
LLMs struggle to utilize them in their outputs.

We compare the impact of different retrievers
and different numbers of passages to LLMs. Fig-
ure 4 (right) shows that GTR outperforms DPR
in both correctness and citation quality, emphasiz-
ing the importance of deploying better retrievers.
Contrary to the retrieval recall trend in Figure 4,
more passages in context do not yield substantial

improvement for ChatGPT. Specifically, correct-
ness plateaus at top-1 passage and citation qual-
ity plateaus at top-3. GPT-4 (Table 7) exhibits
an increasing trend with more passages, but the
improvement is not proportional to the retrieval
performance. This indicates the limited ability of
LLMs in utilizing multiple passages within context.

5.4 Other Ablations
We provide additional ablations in §G. In summary,
we find that (1) using comprehensive instructions
enhances the citation quality of instruction-tuned
models (§G.2); (2) including at least one demon-
stration improves the performance (§G.3); (3) fine-
tuned models (FiD; Izacard and Grave, 2021) with
POSTCITE lag behind LLMs in both correctness
and citation quality and fail to generalize (§G.4).

6 Human Evaluation

To verify that our automatic evaluation correlates
with human judgement, we conduct human eval-
uation on selected models and request workers to
judge model generations on three dimensions simi-
lar to Liu et al. (2023)—(1) utility: a 1-to-5 score
indicating whether the generation helps answer the
question; (2) citation recall: the annotator is given
a sentence and all passages that the sentence cited,
and is asked to judge whether the passages fully
support the sentence; (3) citation precision: given
a sentence and one of its citations, the annotator
is asked to judge whether the citation “fully sup-
ports”, “partially supports”, or “does not support”
the sentence. Each citation gets a precision score
1 if the output sentence has a citation recall of 1
and this citation at least “partially supports” it. See
Appendix F for more details.

Model outputs score high utility. The utility
scores do not differ significantly between models,
ranging 3.7-3.9 for ASQA and 3.5-3.6 for ELI5.
Upon inspection, all tested models are mostly able
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Human scores ALCE scores

Rec. Prec. Rec. Prec.

ChatGPT VANILLA 74.7 76.6 75.3 74.4
w/ RERANK 79.3 81.9 83.9 80.8

Vicuna-13B VANILLA 51.6 51.5 50.3 50.1

Table 8: Human citation quality evaluation vs. ALCE
citation quality evaluation on ASQA.

Human scores ALCE scores

Rec. Prec. Rec. Prec.

ChatGPT VANILLA 50.8 52.4 52.8 50.4
w/ RERANK 59.7 60.6 63.0 60.6

Vicuna-13B VANILLA 13.4 19.2 13.6 18.1

Table 9: Human citation quality evaluation vs. ALCE
citation quality evaluation on ELI5.

to output fluent answers that are related to the ques-
tion, despite differences in factual correctness.

Our automatic evaluation of citation quality
strongly correlates with human judgements. As
shown in Table 8 (ASQA) and Table 9 (ELI5), the
relative rankings induced by human and our auto-
matic metrics are consistent. The absolute citation
scores from human and ALCE are very close except
for RERANK (which uses the automated citation
recall for reranking). This suggests that an im-
provement on ALCE citation metrics translates to
improvement on human preferences. Furthermore,
the Cohen’s kappa coefficient between human and
ALCE suggests substantial agreement for citation
recall (0.698) and moderate agreement for citation
precision (0.525). We also show in §G.5 that our
automatic evaluation achieves high accuracy when
treating human annotations as gold labels (85.1%
for citation recall and 77.6% for citation precision).

7 Related Work

Evaluating citations. Generating text with ci-
tations is closely related to attribution. Rashkin
et al. (2023) define the “attributable to identified
sources” (AIS) score to measure how faithful a gen-
erated text is to its sources. Bohnet et al. (2022) ap-
ply AIS scores on a single-document short-answer
QA dataset. Honovich et al. (2022); Yue et al.
(2023) study automatic evaluations for the AIS
score. A concurrent work (Liu et al., 2023) conduct
human evaluation on commercial generative search
engines to examine their citation qualities.

Scientific citation text generation (Funkquist
et al., 2022) is a related task to ALCE where the

model is provided the papers-to-cite and context
and is required to recover the citing text. It is differ-
ent from ALCE as all citations are provided and the
model only needs to perform the summarization.

Retrieval-augmented LMs. Many studies have ex-
plored augmenting LMs with externally retrieved
information. Guu et al. (2020); Borgeaud et al.
(2022); Izacard et al. (2022) pre-train language
models with retrieved passages, while Khandel-
wal et al. (2020); Zhong et al. (2022) augment
LLMs’ output by interpolating it with a kNN mod-
ule; though none of them explicitly provide cita-
tions to the retrieved sources. Other works prompt
or fine-tune LLMs to “retrieve on-the-fly” (Parisi
et al., 2022; Schick et al., 2023; Shuster et al., 2022;
Jiang et al., 2023; Yao et al., 2023; Press et al.,
2022), which offers flexibility of when and what to
search. Gao et al. (2023); He et al. (2022) propose
to first generate text without accessing external doc-
uments and then retrieve relevant documents and
revise the generation to be consistent.

Among previous explorations, Nakano et al.
(2021); Menick et al. (2022) are the closest to our
setting, where LLMs are trained to answer ques-
tions while providing citations. However, they do
not explore retrieval strategies and simply use com-
mercial search engines, which are not reproducible,
and their models and training data are closed-
source. To the best of our knowledge, we are the
first to implement end-to-end systems that retrieve,
synthesize, and cite documents with LLMs.

8 Conclusion

We propose ALCE, the first automatic benchmark
for evaluating LLM generations with citations. We
deploy automatic metrics to measure fluency, cor-
rectness, and citation quality, and verify their effi-
cacy via human evaluation. We explore a variety of
strategies for incorporating citations in LLMs and
demonstrate that current systems have considerable
room for improvement on ALCE.

Our experiments highlight a number of promis-
ing research directions, including (1) enhancing re-
trieval and refining retrieval integrations in LLMs,
(2) developing long-context LLMs, and (3) advanc-
ing LLMs’ ability to synthesize multiple sources.
What’s even more intriguing is that these research
proposals extend beyond the ALCE setup (for ex-
ample, long-context LLMs have numerous exciting
applications), and ALCE can serve as a valuable
testbed for their development.
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Limitations

Our evaluation still has room for improvement: (1)
MAUVE is found to be sensitive to output length
and may provide unstable results; (2) for the ELI5’s
correctness evaluation, the automatically generated
claims may not cover all possible answers due to
the open-ended nature of the questions; (3) our ci-
tation quality evaluation is limited by the accuracy
of the NLI model; for citation precision, the NLI
model cannot detect the case of “partially support”
and thus leads to a lower citation precision score
than the human evaluation.

Although we believe our curated datasets closely
resemble the distribution of real-world user ques-
tions, we acknowledge that they do not cover more
challenging scenarios, such as multi-hop reasoning,
math reasoning, and code completion.

In our experiments, we focus on prompting
LLMs without updating their model weights. Train-
ing a model directly to incorporate citations re-
mains challenging due to the lack of supervised
data. However, we observe that certain human-
instruction datasets contain examples similar to our
task setup. We leave the exploration of training
LLMs to generate citations for future work.
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A Generating Claims for ELI5

We elect not to use ROUGE-L as our main cor-
rectness metrics since it does not account for the
different ways of expressing the same answer and it
can be easily gamed (Krishna et al., 2021). We fur-
ther illustrate this issue in Table 10. A system can
easily achieve high ROUGE-L score by retrieving
and returning the top passage from a BM25 index.
However, the claims evaluation metric does not
reward this approach since the output often lacks
different aspects of the answers.

ROUGE-L Claim recall

ChatGPT VANILLA 20.6 12.0
ChatGPT ORACLE 21.2 21.3
LLaMa-13B VANILLA 16.2 3.9
Top-1 passage 19.1 3.0

Table 10: Comparison between ROUGE-L and claim
recall scores on ELI5.

Instead, we leverage the original answers to gen-
erate sub-claims and use them to serve as an esti-
mate of the different aspects of the answers that
we expect the model to cover. This approach is
inspired by works in summarization evaluation and
claim verification (Zhang and Bansal, 2021; Kamoi
et al., 2023; Wang et al., 2020).

Specifically, we use text-davinci-003 to gen-
erate the sub-claims. We first manually annotate
three question and answer pairs from the original
ELI5 training set with 3 sub-claims each. Then,
we prompt text-davinci-003 with these pairs as
demonstrations. The full prompt with an example
is shown in Table 22.

InstructGPT generates coherent and faithful
sub-claims. To ensure that the generated sub-
claims are of good quality, we manually inspect
a random sample of 40 answers and their generated
sub-claims (totaling to 120 sub-claims). For each
sub-claim, we assign a score of 1 if it is relevant to
the question and faithful to the facts presented in
the ground truth, and 0 otherwise. We found that
112 out of the 120 (93.33%) sub-claims received a
score of 1, meaning that our generated sub-claims
are of high quality and faithful to the ground truth.
Furthermore, the average number of words in the
generated sub-claims is 14 words, and they are
typically just one sentence long. This is aligned
with the intent behind the metric—to capture short
factual claims made by the original answer.

NLI model accurately predicts the entailment
of sub-claims. We further analyze our sub-claim
evaluation metrics by checking the error rate of
the final prediction of the NLI model. To this end,
we first manually annotate the entailment scores
between 40 outputs and their sub-claims (in total
of 120 pairs; these are the same questions from the
previous analysis). We then use the NLI model
to obtain the entailment scores for the output and
sub-claims. Using the human annotations as the
ground truth label, we found that the NLI model
achieved an accuracy of 80.0%.

B Dataset Statistics

For ASQA, human answers have an average length
of 65 words. For QAMPARI, each question has
on average 13 answers. For ELI5, human answers
have an average length of 131 words.

C Implementation Details

NLI model. We use the version of TRUE
model from https://huggingface.co/google/
t5_xxl_true_nli_mixture, which is trained on
SNLI (Bowman et al., 2015), MNLI (Williams
et al., 2018), Fever (Thorne et al., 2018), Sci-
tail (Khot et al., 2018), PAWS (Zhang et al., 2019),
and VitaminC (Schuster et al., 2021). This model
uses the following prompt: “premise: {PREMISE}
hypothesis: {}” and outputs “1” if the premise
entails the hypothesis. We format each passage
(when used as premise) by the format of “Title:
{TITLE}\n{TEXT}” and concatenate all passages
with “\n” as a separator.

MAUVE. When running MAUVE, we concatenate
the question and the model output (or human an-
swer) by space. We truncate both the references
and the model generations to 100 words, as we
found MAUVE results are unstable beyond this
length for ELI5 (this is due to that ELI5 has a lot
of extremely long human answers).

Exact match for ASQA and QAMPARI. Both
ASQA and QAMPARI provide aliases for their
short answers. We normalize the response and the
short answers similarly to Rajpurkar et al. (2016)
and report the score with the best-matching aliases.
For ASQA, Stelmakh et al. (2022) also propose a
QA-based evaluation which we found to be not as
stable, and thus we do not report it in our paper.

Output truncation. Before evaluation, we trun-

6478

https://huggingface.co/google/t5_xxl_true_nli_mixture
https://huggingface.co/google/t5_xxl_true_nli_mixture


cate model output by new lines, as non-instruction-
tuned models may generate more content after new
lines that are irrelevant.

INTERACT. Empirically, we found that models
tend to execute too many consecutive “check” ac-
tions, so we force the model to always “output”
after each “check”. We limit the maximum number
of passages to check as 3 to avoid exceeding the
length limit. The full passages are removed from
the context after one action to save context space.
Table 27 provides an example for INTERACT.

Main experiments. For all experiments except
ChatGPT RERANK, we run each model three times
with different seeds and each time we sample two
demonstrations from a pool of four. We report the
averaged scores for all experiments in the main
paper and we report the standard deviations in Ap-
pendix G.6.

Decoding methods. Based on preliminary experi-
ments we choose the following decoding methods:
For ChatGPT and GPT-4, we use sampling with
temperature 0.5; for all open-source models, we
use Nucleus sampling (Holtzman et al., 2020) and
set top_p = 0.95.

D ALCE Catches Shortcut Cases

Fluency Correct. Citation

(MAUVE) (EM Rec.) Rec. Prec.

ChatGPT 66.6 40.4 73.6 63.0
Top-1 passage 20.8 35.1 99.4 99.4
First 2 sents 67.2 18.9 98.7 98.7

Table 11: ASQA cheating cases. “ChatGPT”: the Chat-
GPT VANILLA model with GTR-retrieved top-5 pas-
sages. “Top-1 passage”: use the top-1 retrieved passage
as the response. “First 2 sents”: use the first 2 sentences
of the top-1 retrieved passage.

Table 11 demonstrates the experiments to show
that ALCE is robust to shortcut cases. Using the
top-1 passages or first two sentences of the top-1
passages induces almost perfect citation quality,
but fluency and correctness are dramatically lower.

E Citation Recall Discussion

Our citation precision evaluation cannot detect a
citation that partially supports the statement and
hence will falsely penalize it. Consider a state-
ment s3 and its citations [2][4][5]: if [2] entails
partial information of s3 that [4][5] also entails,

[2] will be counted as “irrelevant” while it should
not be penalized. Liu et al. (2023) conduct hu-
man evaluation on citation precision in a different
way: For each citation, they ask annotators to judge
whether the citation (1) fully support, (2) partially
support, or (3) does not support si. One citation ci,j
is precise if (a) ci,j fully supports si or (b) Ci fully
supports si, ci,j partially supports si, and no c ∈ Ci
alone fully supports si. This evaluation solved the
corner case we mentioned in the main paper (one
citation partially supports the claim but is identi-
fied as “irrelevant”). However, it is challenging to
conduct such evaluation automatically, as there is
no existing model that can judge whether a cita-
tion “partially” supports a claim. We also explore
prompting ChatGPT to conduct such a task, which
yields poor results. We defer it to future work to
collect supervised data to train a better ϕ that can
detect “partial support”.

F Human Evaluation

We employ Surge AI (https://www.surgehq.
ai/) for our human evaluation. The average pay to
workers is 20 USD per hour. We randomly sample
100 examples from ASQA and ELI5 and annotate
outputs of selected models: ChatGPT VANILLA,
ChatGPT RERANK, and Vicuna-13B VANILLA.

F.1 Utility

To check if the model output is useful to down-
stream users, we measure the utility of the response
S. We first show the query q and model response
S to the worker and ask them to rate their agree-
ment with the statement "The response is a helpful
and informative answer to the query" on a Likert
scale of 1-5, corresponding to Strongly Disagree,
Disagree, Neutral, Agree, and Strongly Agree.

F.2 Citation Recall

The annotators are shown the question q, the state-
ment si, and all of its citations Ci, and they rate if
the joint set of citations fully support the statement
(recall=1) or if they do not support all the claims
(recall=0). We calculate the overall recall score
for the generation by taking an average of all the
statements’ recall scores.

F.3 Citation Precision

We show the question q and a pair of a statement
si and one of its citation ci,j ∈ Ci to the annotator.
We ask the annotator if the citation fully supports,
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R@1 R@3 R@5 R@20 R@100

DPR 29.6 44.5 51.5 64.6 74.1
GTR 35.1 50.7 56.8 70.3 78.4
Oracle 63.8 72.8 78.4 - -

Table 12: Retrieval results for ASQA (EM recall).

R@1 R@3 R@5 R@20 R@100

DPR 6.7 13.5 17.6 30.4 47.6
GTR 14.6 24.7 31.6 49.7 65.6
Oracle 44.3 58.7 65.6 - -

Table 13: Retrieval results for QAMPARI (recall-5).

partially supports, or does not support the factual
claims in si. Citation ci,j has a citation precision
of 1 if si has a recall of 1, and ci,j fully or partially
supports si. Finally, we take an average of preci-
sion scores of all citations in the statement S to
obtain the citation precision score.

G More Experiments

G.1 Retrieval Analysis

Oracle. Since the original datasets do not contain
gold passages at the same granularity level as our
setting (100-word passages), we approximate gold
passages by running the following algorithm on the
top-100 retrieved passages. We first calculate the
recall score for each passage. Then, we sort the
passages using their recall score and take the top 5
passages as our initial oracle set. Finally, we iterate
through all passages that were not initially in the or-
acle set and try to replace the passages in the oracle
set in a greedy fashion: we calculate the change in
the recall score of the oracle set for every possible
replacement and proceed with the replacement that
results in the largest recall improvement. The set
of 5 oracle passages were able to match the recall
scores of the top-100 retrieved passages.

Detailed retrieval results. We show detailed re-
trieval results in Tables 12, 13, and 14.

G.2 Effect of Instructions

Table 15 shows results of using a full instruction
(Table 23) and a short version of the instruction
(Table 24). We see that the full version induces
stronger correctness and citation recall, while the
two instructions lead to similar citation precision.

R@1 R@3 R@5 R@20 R@100

BM25 3.0 6.6 9.6 19.3 31.8
Oracle 25.3 29.7 31.8 - -

Table 14: Retrieval results for ELI5 (claim recall).

Fluency Correct. Citation

(MAUVE) (EM Rec.) Rec. Prec.

ChatGPT (VANILLA, 5-doc)
Short instruction 64.1 39.5 69.6 73.2
Full instruction 66.6 40.4 73.6 72.5

Table 15: Effect of different instructions on ASQA.

G.3 Effect of Demonstrations

Table 16 shows results on effect of different num-
bers of demonstrations. We see that numbers of
demonstrations do not affect ChatGPT’s correct-
ness but using at least one demonstration ensures
high citation recall. For the original LLaMA model,
Table 16 shows the trend that more demonstrations
lead to better performance.

G.4 Fine-tuned Models

To better understand the differences between fine-
tuned models and prompted large language mod-
els, we train state-of-the-art question answer-
ing model, Fusion-in-Decoder (FiD; Izacard and
Grave (2021)), and evaluate it in conjunction with
POSTCITE. Due to the lack of training data with
citation annotation, we first train a T5-base FiD
model for 5 epochs on the ASQA training set with
a batch size of 64 and a learning rate of 1e-4. Dur-
ing evaluation, we use POSTCITE to add citations
to the output. We also use k = 5 passages during
both training and evaluation of the FiD model.

Then, we evaluate this model on both ASQA
(in-domain) and ELI5 (out-of-domain), and the re-
sults can be found in Tables 17 and 18. Note that
this is not a direct comparison, as ALCE assumes
only evaluation data available and uses only few-
shot data for prompting. As the results show, the
FiD baseline still significantly lags behind prompt-
ing ChatGPT in both correctness and citation qual-
ity (even though it is trained on 4000+ examples).
When tested on another dataset (ELI5), FiD per-
forms even worse, showing that it is challenging
to solve the problem by fine-tuning a small pre-
trained model.
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Fluency Correct. Citation

(MAUVE) (EM) Rec. Prec.

ChatGPT (VANILLA)
#demo = 0 74.5 41.9 69.3 73.4
#demo = 1 68.9 39.8 74.6 73.2
#demo = 2 66.6 40.4 73.6 72.5

Table 16: Different demonstrations on ASQA.

Fluency Correct. Citation

(MAUVE) (EM Rec.) Rec. Prec.

ChatGPT 66.6 40.4 73.6 72.5
FiD + POSTCITE 75.8 28.4 58.1 58.0

Table 17: Comparison of Fusion-in-Decoder with Chat-
GPT on ASQA. Both models use top-5 GTR passages.

G.5 More Human Evaluation
We evaluate the accuracy of our automatic metrics
by treating the human annotations as gold labels.
For citation recall, ALCE achieves an accuracy of
85.1%; for citation precision, ALCE has an accu-
racy of 77.6%. Regarding detecting insufficient
citations, ALCE has a recall of 82.3% and a pre-
cision of 84.2%; regarding detecting “irrelevant”
citations, ALCE has a recall of 75.6% and a pre-
cision of 66.1%—ALCE is effective in detecting
“irrelevant” citations, but due to the limitation of
the NLI model (cannot detect “partial support”), it
has a relatively high false positive rate.

G.6 Main Results
We show full results of our experiments along with
the standard deviation in Tables 19, 20, and 21. We
repeat all experiments with three different random
seeds. However, for ChatGPT RERANK, we use
only one seeded run since each run repeats the
generation step four times, and more experiments
would incur significant costs.

H Prompts

We show detailed prompts used in our paper in
Tables 23, 24, 25, 26, 27, 28, and 29.

I Examples

In Tables 30 and 31 we show some examples of
questions and model generated outputs.

Fluency Correct. Citation

(MAUVE) (Claim) Rec. Prec.

ChatGPT 57.2 12.0 51.1 50.0
FiD + POSTCITE 25.2 4.4 39.3 39.3

Table 18: Comparison of Fusion-in-Decoder with Chat-
GPT on ELI5. Both models use top-5 GTR passages.
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Fluency Correct. Citation

(MAUVE) (EM Rec.) Rec. Prec. ROUGE-L Length

ChatGPT
VANILLA (5-psg) 66.8 (2.0) 40.4 (0.6) 73.6 (1.1) 72.5 (1.8) 37.0 (0.4) 40.0 (3.1)

w/ RERANK 77.0 (0.0) 40.2 (0.0) 84.8 (0.0) 81.6 (0.0) 36.9 (0.0) 40.8 (0.0)

SUMM (10-psg) 70.0 (1.2) 43.3 (0.8) 68.8 (0.6) 61.8 (1.1) 36.9 (0.2) 49.8 (4.3)

w/ INTERACT 69.0 (2.7) 39.1 (0.5) 73.4 (0.2) 66.5 (4.9) 35.7 (0.2) 34.0 (0.9)

SNIPPET (10-psg) 69.8 (2.5) 41.4 (0.6) 65.3 (0.6) 57.4 (0.9) 36.4 (0.4) 43.0 (3.5)

INLINESEARCH 58.7 (1.3) 32.4 (0.6) 58.3 (1.3) 58.3 (1.3) 58.2 (1.1) 23.7 (1.1)

CLOSEDBOOK 52.7 (4.9) 38.2 (0.1) 26.7 (1.1) 26.7 (1.1) 37.1 (0.3) 61.1 (4.5)

ORACLE(5-psg) 64.4 (0.6) 48.9 (1.2) 74.5 (0.6) 72.7 (1.0) 38.2 (1.0) 37.4 (3.0)

ChatGPT-16K
VANILLA (5-psg) 60.3 (−) 36.1 (−) 76.2 (−) 76.5 (−) 36.2 (−) 24.7 (−)

VANILLA (10-psg) 56.3 (−) 36.7 (−) 75.3 (−) 75.0 (−) 35.6 (−) 23.5 (−)

VANILLA (20-psg) 56.7 (−) 36.1 (−) 73.7 (−) 73.5 (−) 35.5 (−) 23.1 (−)

GPT-4
VANILLA (5-psg) 67.1 (−) 41.3 (−) 68.5 (−) 75.6 (−) 39.2 (−) 31.8 (−)

VANILLA (10-psg) 71.5 (−) 43.1 (−) 72.0 (−) 75.5 (−) 39.7 (−) 33.8 (−)

VANILLA (20-psg) 64.9 (−) 44.4 (−) 73.0 (−) 76.5 (−) 40.1 (−) 34.3 (−)

Open-source
LLaMA-7B VANILLA (3-psg) 69.8 (2.0) 22.6 (0.9) 6.2 (2.7) 9.2 (2.9) 29.1 (0.2) 61.3 (14.3)

Alpaca-7B VANILLA (3-psg) 84.2 (2.7) 32.1 (1.7) 12.3 (7.2) 14.1 (7.0) 33.1 (0.8) 51.7 (12.8)

Vicuna-7B VANILLA (3-psg) 82.9 (5.0) 34.6 (0.7) 40.3 (0.5) 42.6 (1.0) 35.9 (0.7) 48.9 (6.6)

LLaMA-13B VANILLA (3-psg) 68.4 (6.4) 26.9 (0.4) 10.6 (4.7) 15.4 (5.2) 29.8 (0.5) 67.1 (19.1)

w/ RERANK 60.9 (14.5) 25.2 (2.5) 28.1 (9.3) 37.0 (7.2) 27.9 (2.4) 50.5 (14.3)

LLaMA-13B SUMM (10-psg) 76.8 (4.7) 33.3 (0.7) 19.6 (3.9) 23.7 (4.7) 32.1 (0.3) 54.4 (1.5)

LLaMA-13B SNIPPET (10-psg) 72.0 (0.8) 31.3 (1.1) 18.2 (3.1) 21.1 (3.6) 30.8 (0.4) 50.5 (4.5)

LLaMA-13B ORACLE (3-psg) 69.5 (11.4) 34.3 (0.9) 10.8 (4.9) 15.8 (5.9) 30.6 (0.1) 67.3 (17.9)

Vicuna-13B VANILLA (3-psg) 82.6 (9.4) 31.9 (3.9) 51.1 (1.4) 50.1 (2.5) 34.9 (1.3) 39.1 (6.6)

w/ RERANK 73.5 (2.1) 32.9 (1.3) 71.9 (1.9) 65.4 (1.5) 34.6 (0.3) 35.7 (4.2)

Vicuna-13B SUMM (10-psg) 67.7 (0.3) 43.2 (0.1) 52.7 (2.6) 50.0 (2.1) 36.7 (0.2) 66.0 (1.2)

Vicuna-13B SNIPPET (10-psg) 81.4 (3.0) 42.1 (1.2) 53.4 (1.9) 48.7 (1.6) 36.9 (0.4) 61.2 (7.4)

Vicuna-13B ORACLE (3-psg) 72.9 (3.5) 42.5 (1.6) 52.2 (0.8) 50.7 (1.6) 36.5 (0.9) 38.7 (3.5)

LLaMA-33B VANILLA (3-psg) 83.7 (5.4) 31.0 (0.8) 19.5 (5.3) 23.0 (5.3) 32.3 (0.6) 44.1 (9.3)

w/ RERANK 82.1 (3.0) 31.3 (1.1) 41.3 (6.4) 44.7 (5.5) 32.5 (0.9) 39.4 (8.0)

LLaMA-33B SUMM (10-psg) 72.0 (3.0) 33.1 (1.9) 34.7 (5.8) 35.2 (6.0) 31.1 (0.8) 43.7 (5.0)

LLaMA-33B SNIPPET (10-psg) 70.8 (3.1) 30.9 (1.4) 31.4 (4.2) 31.5 (5.3) 30.1 (0.7) 42.8 (3.6)

LLaMA-33B ORACLE (3-psg) 82.6 (7.1) 39.3 (2.9) 20.2 (6.2) 23.9 (6.3) 33.1 (0.9) 42.0 (9.3)

Oasst-33B VANILLA (3-psg) 82.9 (2.7) 34.8 (1.5) 36.2 (1.7) 38.3 (2.7) 35.5 (0.7) 45.2 (6.3)

w/ RERANK 83.2 (2.4) 35.1 (1.4) 66.7 (0.2) 64.3 (1.0) 35.0 (0.6) 41.8 (6.0)

Oasst-33B SUMM (10-psg) 74.3 (4.6) 40.9 (1.1) 45.5 (1.9) 44.0 (2.9) 35.8 (0.6) 54.3 (4.8)

Oasst-33B SNIPPET (10-psg) 79.3 (1.0) 40.1 (0.9) 45.0 (1.3) 43.3 (2.2) 35.8 (0.2) 50.9 (4.1)

Oasst-33B ORACLE (3-psg) 85.1 (2.8) 44.3 (2.4) 37.0 (1.0) 39.6 (1.5) 36.5 (1.1) 44.2 (5.8)

LLaMA-2-7B-Chat VANILLA (5-psg) 80.1 (6.5) 33.9 (2.1) 50.9 (4.5) 47.5 (3.7) 35.1 (0.9) 42.3 (10.1)

LLaMA-2-13B-Chat VANILLA (5-psg) 72.4 (6.3) 35.2 (1.2) 38.4 (5.9) 39.4 (4.8) 35.8 (0.9) 38.0 (6.4)

LLaMA-2-70B-Chat VANILLA (5-psg) 88.3 (4.1) 41.5 (0.8) 62.9 (1.4) 61.3 (2.1) 37.1 (0.4) 52.9 (9.5)

Table 19: ASQA full results.
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Correctness Citation

Rec.-5 Prec. Rec. Prec. Num Pred.

ChatGPT
VANILLA (5-psg) 20.8 (2.2) 20.8 (0.2) 20.5 (0.7) 20.9 (0.7) 5.0 (0.5)

w/ RERANK 22.8 (0.0) 21.4 (0.0) 21.2 (0.0) 21.4 (0.0) 5.4 (0.0)

SUMM (10-psg) 23.6 (0.9) 21.2 (0.5) 23.6 (0.7) 25.7 (0.8) 6.7 (0.4)

SNIPPET (10-psg) 24.5 (1.4) 21.5 (1.8) 22.9 (1.6) 24.9 (0.4) 7.2 (0.9)

w/ INTERACT 21.9 (0.9) 23.0 (0.4) 21.9 (1.2) 23.4 (0.9) 6.7 (0.4)

INLINESEARCH 17.2 (1.1) 20.4 (0.8) 14.9 (0.8) 14.9 (0.8) 6.7 (0.2)

CLOSEDBOOK 32.9 (1.1) 19.8 (1.6) 10.0 (0.4) 10.0 (0.4) 17.0 (2.9)

ORACLE 37.0 (3.1) 36.9 (0.6) 24.1 (1.2) 24.6 (1.3) 5.3 (0.6)

ChatGPT-16K
VANILLA (5-psg) 21.1 (−) 22.0 (−) 20.7 (−) 21.2 (−) 4.9 (−)

VANILLA (10-psg) 23.4 (−) 21.9 (−) 21.6 (−) 22.0 (−) 5.7 (−)

VANILLA (20-psg) 26.4 (−) 21.1 (−) 19.4 (−) 19.7 (−) 7.6 (−)

GPT-4
VANILLA (5-psg) 22.2 (−) 25.0 (−) 25.9 (−) 27.0 (−) 4.4 (−)

VANILLA (10-psg) 26.8 (−) 25.1 (−) 26.2 (−) 27.2 (−) 5.7 (−)

VANILLA (20-psg) 29.6 (−) 26.2 (−) 27.4 (−) 28.5 (−) 6.8 (−)

Open-source
LLaMA-7B VANILLA (3-psg) 7.8 (3.4) 7.4 (2.7) 5.1 (0.5) 5.7 (0.8) 5.7 (0.6)

Alpaca-7B VANILLA (3-psg) 9.4 (3.7) 9.5 (3.6) 6.4 (0.5) 6.8 (0.5) 5.1 (0.1)

Vicuna-7B VANILLA (3-psg) 11.3 (1.4) 13.3 (2.3) 10.1 (0.6) 10.9 (0.5) 3.9 (0.3)

LLaMA-13B VANILLA (3-psg) 9.7 (3.6) 9.1 (3.1) 6.7 (0.9) 7.1 (0.9) 5.9 (0.6)

w/ RERANK 10.0 (3.3) 10.7 (3.3) 9.9 (1.2) 10.2 (1.1) 5.4 (0.5)

LLaMA-13B SUMM (10-psg) 14.8 (2.5) 12.6 (1.5) 7.4 (0.5) 8.0 (0.6) 8.1 (0.9)

LLaMA-13B SNIPPET (10-psg) 17.7 (1.4) 15.7 (0.9) 8.8 (0.7) 9.9 (0.6) 8.2 (0.4)

LLaMA-13B ORACLE (3-psg) 16.8 (6.6) 15.4 (5.6) 7.7 (1.0) 8.3 (1.1) 5.7 (0.7)

Vicuna-13B VANILLA (3-psg) 14.0 (0.6) 15.9 (1.7) 12.5 (0.8) 13.4 (0.7) 4.7 (0.3)

w/ RERANK 13.0 (0.7) 17.2 (2.2) 17.3 (0.8) 17.7 (0.6) 4.4 (0.3)

Vicuna-13B SUMM (10-psg) 21.1 (1.4) 17.1 (0.3) 15.7 (0.2) 17.8 (0.1) 6.9 (0.7)

Vicuna-13B SNIPPET (10-psg) 21.9 (0.8) 18.2 (0.3) 16.8 (0.3) 19.7 (0.6) 7.5 (0.4)

Vicuna-13B ORACLE (3-psg) 25.9 (1.6) 28.4 (2.6) 15.8 (1.4) 16.8 (1.4) 4.9 (0.5)

LLaMA-33B VANILLA (3-psg) 14.7 (3.3) 12.0 (2.2) 7.9 (0.7) 8.3 (0.6) 7.2 (0.7)

w/ RERANK 14.0 (3.4) 13.9 (2.6) 10.7 (0.6) 11.1 (0.5) 6.4 (0.7)

LLaMA-33B SUMM (10-psg) 19.0 (1.9) 14.8 (0.8) 12.5 (0.2) 15.0 (0.3) 7.6 (0.6)

LLaMA-33B SNIPPET (10-psg) 19.6 (1.1) 15.7 (0.1) 12.8 (1.1) 15.2 (1.2) 7.8 (0.5)

LLaMA-33B ORACLE (3-psg) 23.9 (6.9) 20.3 (5.2) 9.8 (1.2) 10.4 (1.2) 6.8 (0.9)

Oasst-33B VANILLA (3-psg) 15.5 (1.5) 14.9 (1.4) 9.0 (1.6) 10.1 (1.8) 5.6 (0.3)

w/ RERANK 14.1 (1.1) 15.8 (1.0) 15.0 (1.6) 15.9 (1.6) 4.7 (0.3)

Oasst-33B SUMM (10-psg) 21.0 (0.6) 17.5 (1.0) 12.9 (1.2) 16.6 (1.2) 7.1 (0.4)

Oasst-33B SNIPPET (10-psg) 22.0 (0.4) 17.4 (0.3) 13.6 (1.7) 17.7 (1.6) 7.5 (0.1)

Oasst-33B ORACLE (3-psg) 26.9 (3.7) 26.0 (3.3) 11.7 (1.0) 12.9 (1.2) 5.6 (0.4)

LLaMA-2-7B-Chat VANILLA (5-psg) 16.2 (1.3) 15.3 (1.6) 10.6 (0.9) 10.9 (1.0) 5.5 (0.0)

LLaMA-2-13B-Chat VANILLA (5-psg) 21.1 (0.9) 18.2 (0.5) 9.6 (1.5) 9.7 (1.5) 6.5 (0.3)

LLaMA-2-70B-Chat VANILLA (5-psg) 21.8 (0.7) 18.4 (0.1) 15.1 (1.2) 15.6 (1.3) 7.1 (0.2)

Table 20: QAMPARI full results.
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Fluency Correct. Citation

(MAUVE) (Claim) Rec. Prec. ROUGE-L Length

ChatGPT
VANILLA (5-psg) 57.2 (1.6) 12.0 (0.6) 51.1 (4.2) 50.0 (4.8) 20.6 (0.2) 91.5 (6.5)

w/ RERANK 56.1 (0.0) 11.4 (0.0) 69.3 (0.0) 67.8 (0.0) 20.3 (0.0) 103.4 (0.0)

SUMM (10-psg) 40.2 (1.2) 12.5 (0.2) 51.5 (1.1) 48.2 (2.0) 20.3 (0.1) 90.0 (6.6)

SNIPPET (10-psg) 62.9 (2.2) 14.3 (0.1) 50.4 (1.1) 45.0 (2.w) 21.0 (0.1) 100.0 (6.8)

w/ INTERACT 68.0 (5.8) 13.3 (0.5) 47.8 (3.3) 45.0 (3.1) 20.1 (0.2) 99.8 (6.1)

INLINESEARCH 49.7 (4.6) 13.4 (1.1) 45.6 (2.5) 43.7 (3.9) 20.4 (0.3) 103.0 (18.1)

CLOSEDBOOK 32.6 (1.1) 18.6 (0.5) 15.4 (0.3) 15.4 (0.3) 22.8 (0.1) 108.3 (8.9)

ORACLE (5-psg) 59.4 (4.1) 21.3 (0.2) 57.8 (3.7) 56.0 (3.8) 21.2 (0.3) 93.0 (7.8)

ChatGPT-16K
VANILLA (5-psg) 31.6 (−) 14.4 (−) 44.6 (−) 44.1 (−) 21.4 (−) 87.6 (−)

VANILLA (10-psg) 26.6 (−) 14.4 (−) 45.5 (−) 43.3 (−) 21.5 (−) 87.5 (−)

VANILLA (20-psg) 31.6 (−) 15.9 (−) 43.4 (−) 40.9 (−) 21.7 (−) 92.6 (−)

GPT-4
VANILLA (5-psg) 38.4 (−) 14.2 (−) 44.0 (−) 50.1 (−) 20.6 (−) 79.6 (−)

VANILLA (10-psg) 39.9 (−) 15.7 (−) 49.5 (−) 54.2 (−) 21.2 (−) 88.2 (−)

VANILLA (20-psg) 41.5 (−) 18.3 (−) 48.5 (−) 53.4 (−) 22.2 (−) 97.0 (−)

Open-source
LLaMA-7B VANILLA (3-psg) 28.6 (17.9) 1.6 (0.9) 1.2 (0.0) 2.7 (0.1) 12.2 (1.3) 46.9 (1.2)

Alpaca-7B VANILLA (3-psg) 45.9 (5.3) 9.2 (0.1) 4.5 (1.6) 5.2 (1.9) 18.8 (0.3) 67.1 (1.2)

Vicuna-7B VANILLA (3-psg) 43.2 (3.9) 10.0 (0.5) 12.6 (2.3) 16.3 (2.6) 19.1 (0.4) 68.7 (2.0)

LLaMA-13B VANILLA (3-psg) 50.0 (2.0) 3.9 (0.4) 3.1 (0.9) 5.3 (1.3) 16.1 (0.5) 63.3 (2.0)

w/ RERANK 46.7 (2.9) 4.3 (0.4) 9.7 (2.1) 15.0 (2.2) 16.1 (0.7) 63.0 (2.3)

LLaMA-13B SUMM (10-psg) 28.6 (1.8) 2.9 (0.1) 2.5 (0.8) 3.8 (0.8) 8.5 (0.3) 33.1 (0.6)

LLaMA-13B SNIPPET (10-psg) 48.4 (3.1) 5.7 (0.9) 5.8 (0.6) 7.6 (0.9) 15.1 (1.1) 60.2 (3.2)

LLaMA-13B ORACLE (3-psg) 49.5 (2.4) 6.4 (0.6) 3.7 (0.7) 6.5 (1.0) 16.8 (0.5) 64.5 (1.7)

Vicuna-13B VANILLA (3-psg) 58.2 (25.1) 10.0 (0.3) 15.6 (2.2) 19.6 (2.0) 19.1 (0.3) 69.6 (0.6)

w/ RERANK 45.9 (4.3) 9.2 (0.0) 31.7 (2.9) 38.2 (1.6) 18.6 (0.5) 69.7 (1.0)

Vicuna-13B SUMM (10-psg) 22.4 (3.0) 4.9 (0.1) 9.7 (1.3) 12.2 (1.2) 9.3 (0.4) 33.0 (3.7)

Vicuna-13B SNIPPET (10-psg) 48.1 (5.3) 11.2 (1.4) 27.2 (3.6) 27.9 (1.9) 18.4 (1.9) 76.8 (8.7)

Vicuna-13B ORACLE (3-psg) 41.6 (3.1) 17.1 (0.4) 20.2 (3.0) 26.5 (3.0) 20.0 (0.3) 72.0 (0.3)

LLaMA-33B VANILLA (3-psg) 58.8 (4.3) 6.2 (0.0) 9.3 (3.0) 12.1 (4.2) 16.9 (0.2) 60.0 (1.3)

w/ RERANK 65.9 (2.5) 6.0 (0.7) 22.5 (5.2) 26.1 (6.9) 17.5 (0.4) 61.0 (1.2)

LLaMA-33B SUMM (10-psg) 23.3 (2.0) 3.0 (0.2) 6.2 (0.5) 8.2 (0.7) 7.5 (0.4) 26.2 (2.3)

LLaMA-33B SNIPPET (10-psg) 53.2 (4.0) 7.4 (1.3) 13.7 (0.5) 15.1 (0.4) 14.4 (1.7) 53.3 (8.5)

LLaMA-33B ORACLE (3-psg) 63.7 (2.8) 11.4 (0.5) 11.9 (2.6) 15.4 (3.6) 17.9 (0.2) 61.7 (2.6)

Oasst-33B VANILLA (3-psg) 46.8 (7.6) 9.5 (0.2) 16.0 (2.5) 21.6 (3.5) 18.6 (0.3) 67.8 (1.5)

w/ RERANK 52.1 (6.1) 8.5 (0.5) 34.4 (2.9) 41.5 (2.5) 18.2 (0.3) 67.0 (1.5)

Oasst-33B SUMM (10-psg) 24.8 (2.8) 3.9 (0.3) 12.3 (0.2) 16.3 (0.3) 9.1 (0.3) 31.6 (1.5)

Oasst-33B SNIPPET (10-psg) 50.7 (4.6) 10.7 (1.2) 25.8 (3.3) 26.7 (2.3) 17.8 (1.8) 69.6 (8.6)

Oasst-33B ORACLE (3-psg) 50.7 (12.1) 15.8 (0.1) 20.8 (2.8) 28.0 (3.2) 19.4 (0.1) 70.3 (1.1)

LLaMA-2-7B-Chat VANILLA (5-psg) 27.8 (3.0) 10.9 (0.2) 19.8 (1.2) 15.0 (1.4) 20.5 (0.2) 87.8 (8.1)

LLaMA-2-13B-Chat VANILLA (5-psg) 34.7 (1.5) 13.4 (0.4) 17.3 (1.3) 15.8 (1.4) 20.9 (0.2) 88.3 (6.3)

LLaMA-2-70B-Chat VANILLA (5-psg) 38.6 (4.8) 12.8 (1.0) 38.3 (2.4) 37.9 (1.9) 21.3 (0.1) 110.8 (5.6)

Table 21: ELI5 full results.
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Read the original question and passage, and generate 3 additional claims that are supported by the
passage and answer the question.

Original question: What’s the difference between Shia vs. Sunni Islam?
Passage: The main difference between Shia and Sunni Muslim is related to ideological heritage and
issues of leadership. This difference is first formed after the death of the Prophet Muhammad in 632
A.D. The ideological practice of the Sunni branch strictly follows Prophet Muhammad and his
teachings, while the Shia branch follows Prophet Muhammad’s son-in-law Ali. Nowadays, Sunni and
Shia are the major branches of Islam.
Claim 1: The major branches of Islam are Sunni and Shia.
Claim 2: Prophet Muhammad died in 632 A.D.
Claim 3: The ideological practice of the Sunni branch strictly follows Prophet Muhammad and his
teachings.

Original question: What causes Bi-polar disorder?
Passage: Bipolar disorder is an emotional disorder that causes extreme mood swings between
excitement and depression. The spectrum of mood swing may span from days to months. We are still not
certain of the exact factors that cause such disorder, but genetics is considered a major factor.
Claim 1: One symptom of Bi-polar disorder is extreme mood swings between excitement and depression.
Claim 2: Genetics could be one of the major factors that causes Bi-polar disorder.
Claim 3: The mood swing from Bi-polar disorder can last days to months.

Original question: How do we hear differences in sound besides volume and pitch?
Passage: Pitch refers to the frequency of soundwave, and volumn refers to the amplitude of the
soundwave. Besides volumn and pitch, we can also tell the difference between sounds based on the
tone of sound. For example, we can differentiate the sound of different instruments based on the
tone of the sounds.
Claim 1: Volume of sound is the amplitude of the soundwave.
Claim 2: Pitch is the frequency of soundwave.
Claim 3: We can use the tone of the sounds to differentiate the sound of different instruments.

Original question: How are we able to discern whether a sound is coming from in front of us or
behind us?
Passage: There are multiple explanations for why we can localize sounds. One explanation is that
sounds travelling to the corresponding side of one’s ear will be slightly louder. Another
explanation is that there is a slight difference in the hitting time to one’s left and right ear
based on the sound’s direction. However, these explanation means that when a sound is exactly in
front of someone or exactly behind someone, he or she can not tell the difference.
Claim 1: We can localize sounds by recognizing that the sound travelling to the corresponding side
of one’s ear will be slightly louder.
Claim 2: We can also localize sounds by recognizing the difference in hitting time to one’s left and
right ear based on the sound’s direction.
Claim 3: We cannot tell the difference between a sound that is exactly in front of us or exactly
behind us.

Table 22: Prompt used to generate the sub-claims for ELI5 questions. Blue text is model generation. Brown text
is the ELI5 example that we want to generate sub-claims for. We construct the prompt by manually writing the
sub-claims for three questions from the training set.

Instruction: Write an accurate, engaging, and concise answer for the given question using only
the provided search results (some of which might be irrelevant) and cite them properly. Use an
unbiased and journalistic tone. Always cite for any factual claim. When citing several search
results, use [1][2][3]. Cite at least one document and at most three documents in each sentence.
If multiple documents support the sentence, only cite a minimum sufficient subset of the
documents.

Table 23: Instruction for VANILLA.

Instruction: Write a high-quality answer for the given question using only the provided search
results and cite them properly using [1][2][3].

Table 24: Short instruction for VANILLA.
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Summarize the following document within 50 words with the question of interest "{QUESTION}"
Return "irrelevant" if the document is irrelevant to the question. Try to keep all the important
dates, numbers, and names.

Title: {TITLE}
Text: {TEXT}
Summary:

Table 25: Prompts for SUMM.

Given the follow passage and the question "{QUESTION}", extract a useful span from the passage
that can answer the question. Resolve all the coreference issues to make the extracted span
understandable standalone. If the passage is not helpful for answering the question, return
"irrelevant".

Title: {TITLE}
Text: {TEXT}
Extracted span:

Table 26: Prompts for SNIPPET.

Instruction: Write an accurate, engaging, and concise answer for the given question using only
the provided search results and cite them properly. Use an unbiased and journalistic tone.
Always cite for any factual claim.
You are provided summaries/snippets of the search results. You can use "Check: Document [1][2]"
to check the corresponding full documents (you should only check relevant documents and you can
at most check 3 documents at a time) and use "Output:" to output a sentence in the answer. In the
answer, cite properly by using [1][2][3]. Cite at least one document and at most three documents
in each sentence. If multiple documents support the sentence, only cite a minimum sufficient
subset of the documents. Use "End" to end the generation.

<Retrieve for question “...”>

<Get summaries/snippets for the passages and delete those that are “irrelevant”>
Document [1](Title: ...) {SUMMARY OR SNIPPET}
...

Question: When did US break away from England?

Check: Document [1][2]
Document [1] {FULL TEXT}
Document [2] {FULL TEXT}
Output: The United States ... [1] ... [2].
<Remove the full text of [1][2] from context>
Check: Document [3]
Document [3] {FULL TEXT}
Output: The Treaty of Paris ... [3].
<Remove the full text of [3] from context>
End.

Table 27: An example for INTERACT.

Instruction: Write an accurate, engaging, and concise answer for the given question using only
the provided search results and cite them properly. Use an unbiased and journalistic tone.
Always cite for any factual claim.
You can use "Search: key words" to check the most relevant document’s full text and use
"Output:" to output a sentence in the answer. In the answer, cite properly by using [1][2][3].
Cite at least one document and at most three documents in each sentence. If multiple documents
support the sentence, only cite a minimum sufficient subset of the documents. Use "End" to end
the generation.

Table 28: Instruction for INLINESEARCH.

Instruction: Write an accurate, engaging, and concise answer for the given question. Use an
unbiased and journalistic tone.

Table 29: Instruction for CLOSEDBOOK.

6486



Instruction: Write an accurate, engaging, and concise answer for ...

Document [1](Title: How to Treat and Prevent Food Poisoning - MsPrepper) just a typical gastro
upset. Salmonella is most commonly caused by eating undercooked or raw foods like eggs or meat.
You know how your mom always warned you not to eat raw cookie dough? This is why. Most people do
eat cookie dough and they are fine, but salmonella is a risk. If you do contract salmonella, you
could start to feel bad within in a couple of hours after eating contaminated food, and sometimes
it could take a day or two. Common symptoms are nausea and vomiting, loose stools (sometimes
bloody), flu like symptoms, and stomach cramps. To treat
Document [2](Title: FDA Issues Warning About Eating Raw Cookie Dough, But Not For Salmonella
Risks) FDA Issues Warning About Eating Raw Cookie Dough, But Not For Salmonella Risks Used to
licking the spoon or placating yourself with full-on chunks of raw cookie dough? The Food and
Drug Administration issued a warning on Tuesday that strongly advises against continuing the
habit. The agency asserted that consuming raw batter of any kind, whether for bread, cookies or
pizza, could make a person sick. While you may have been warned in the past against eating raw
dough due to the risk of contracting salmonella from raw eggs, the FDA is citing raw flour as the
culprit for a
Document [3](Title: It’s Probably OK to Eat Raw Cookie Dough — As Long As You’re Smart About It -
The Crux - Very Top Secret Information) First, when most people think about health risks and
cookie dough, they think about raw egg. Eggs can be contaminated with salmonella bacteria, and
food safety recommendations encourage people to cook eggs until the white and yolk are firm in
order to kill any bacteria. However, anyone making cookies can do things to reduce this risk by
using pasteurized egg products. When my kids and I make cookie dough, we never use regular eggs.
Instead, we use shell eggs that have been pasteurized to kill any harmful bacteria without
actually cooking the egg itself. (A great public health innovation, if
Document [4](Title: How Dangerous Is It to Eat Raw Cookie Dough? | Men’s Health) Can Eating Raw
Cookie Dough Really Make You Sick? Scientists reveal the truth about this supposedly dangerous
delicacy By Katherine Dempsey There are few things more tempting in life than eyeing a bowl of
cookie dough and deciding whether or not to stick your finger in for a scoop. It’s a bit like
playing Russian roulette. You could get lucky and enjoy the delicious dough without conseqence,
but there’s always the risk of getting serously sick with a food-borne illness. That’s because
multiple ingredients within the dough could be contaminated by pathogens such as Salmonella and
E. coli, says Soohyoun
Document [5](Title: How Dangerous Is It to Eat Raw Cookie Dough? | Men’s Health) is usually
pasteurized, so it’s not likely that the egg would make you sick. However, other ingredients in
the dough could potentially harbor pathogens. Experts say that a prime suspect in a 2009 E. coli
outbreak linked to prepackaged cookie dough was actually the flour. Nuts and chocolate have also
been linked to Salmonella outbreaks. Bottom line: You’re better off skipping raw cookie dough.
At least you’ll have killer cookies as a consolation. The article How Bad Is It To Eat Raw Cookie
Dough? originally ran on Prevention.com The 9 Foods Most Likely to Make You Sick Mmm, Just Don’t
...

Question: Why is it bad to eat cookie dough for risk of salmonella but things like Cookie Dough
Bites are ok?
Answer: Raw cookie dough is not recommended to be eaten due to the risk of salmonella [1][2].
Eating raw flour is also a risk for food poisoning [2]. The egg in cookie dough is usually
pasteurized, so it’s not likely that the egg would make you sick, but other ingredients in the
dough could potentially harbor pathogens [4][5]. However, prepackaged cookie dough like Cookie
Dough Bites is safe to eat because the dough is made with pasteurized egg products and
heat-treated flour [2][3]..

Ground truth claims:
1. Cookie Dough Bites are safe to eat since they do not contain eggs.
2. Salmonella is a bacteria found in eggs.
3. Eating raw cookie dough carries the risk of salmonella infection.

Table 30: ELI5 example 1.
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Instruction: Write an accurate, engaging, and concise answer for ...

Document [1](Title: Is Snapchat really worth $19 billion? - CSMonitor.com) reporting that the Los
Angeles-based company is aiming to raise $500 million at a valuation of $16 billion to $19 billion,
making it the third most highly valued tech start-up backed by venture capitalists. The Chinese
handset maker Xiaomi is valued at $45 billion, while Uber is estimated to be valued at about $40
billion, according to data from CB Insights. Read MoreVC investment hits $86B thanks to Uber, Xiaomi
Snapchat was valued at $10 billion in August, according to a Dow Jones report. Some of its investors
from previous rounds include Benchmark, Lightspeed Venture Partners and Kleiner Perkins Caufield
Document [2](Title: What Are Venture Capital Investments? – DollarsAndSense.my) Ever wondered how
highly valued technology giants like Google and Facebook were able to grow so fast and pay their
employees so well in such a short amount of time, or how still growing start-ups like Uber are able
to lose 1.2 billion US dollars in just the first half of this year alone and still command a
valuation upwards of 50 billion US dollars? The answer lies with a special category of investment
activity known as venture capital. Venture capitalists are professional investors who invest in a
number of highly scalable high-risk technology ventures hoping to make a multi-fold
Document [3](Title: Opinion | What Dara Khosrowshahi Must Do to Save Uber - The New York Times) at a
discount. These are troubling signs. Every start-up must one day fulfill the market’s demand that
it turn a profit, but Uber has never figured out how to do that. While ride sharing in some form
will probably survive, it’s more likely that without some drastic changes, Uber won’t be around in
three to five years. Mr. Khosrowshahi must avoid the mistakes of his predecessor by accepting that
“pivots” (Silicon Valley-speak for the desperate changes troubled companies make to reassure their
venture capitalist funders) are not the answer. None of the pivots Mr. Kalanick tried — like
on-demand delivery
Document [4](Title: Snapchat raising funding round at $19 billion valuation: Report) Snapchat
raising funding round at $19 billion valuation: Report The mobile messaging app Snapchat is said to
be seeking funding at a $19 billion valuation, according to a report, citing a person with knowledge
of the matter. Bloomberg is reporting that the Los Angeles-based company is aiming to raise $500
million at a valuation of $16 billion to $19 billion, making it the third most highly valued tech
start-up backed by venture capitalists. The Chinese handset maker Xiaomi is valued at $45 billion,
while Uber is estimated to be valued at about $40 billion, according to data from CB Insights.
Document [5](Title: Unicorns And Wall Street | MoneyTips) not start showing profits soon. Even Uber,
with its massive $62-billion-plus valuation, will test investor’s patience if it does not start
showing signs of a profit in the next few years. Cracks are starting to show in terms of pre-IPO
devaluations. Dropbox and Snapchat have seen a nearly one-quarter drop in their pre-IPO valuations,
while Square’s pre-IPO value has dropped by approximately one-third. Larger investors and venture
capitalists are sending a message to the unicorns: Outline a solid path to profits and start
producing them soon, or expect your valuation to be slashed. Diving ahead with an IPO is not
...

Question: How are firms like snapchat, uber etc valued so highly while still not making a profit? Do
venture capitalists not expect some form of repayment within a number of years?
Answer: Venture capitalists invest in a number of highly scalable high-risk technology ventures
hoping to make a multi-fold return on their investment in a short amount of time [2]. Highly valued
companies like Snapchat, Uber, and Xiaomi are able to grow so fast and command high valuations
because they have the potential to generate significant revenue in the future [2][4]. Venture
capitalists expect a return on their investment within a number of years, but they also invest in the
long-term potential of the company [2]. It is important to note that every start-up must eventually
turn a profit, but some start-ups like Uber have not yet figured out how to do that [3][5].

Ground truth claims:
1. Firms like Snapchat and Uber need to establish their brand and amass users before introducing
ads.
2. Introducing ads too early can deter potential users.
3. Uber is reinvesting a lot of money to make their service better.

Table 31: ELI5 example 2.
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