
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 6385–6398
December 6-10, 2023 ©2023 Association for Computational Linguistics

Can You Follow Me?
Testing Situational Understanding in ChatGPT

Chenghao Yang
University of Chicago

chenghao@uchicago.edu

Allyson Ettinger
Allen Institute for AI

allysone@allenai.org

Abstract
Understanding sentence meanings and updat-
ing information states appropriately across
time—what we call “situational understanding”
(SU)—is a critical ability for human-like AI
agents. SU is essential in particular for chat
models, such as ChatGPT, to enable consis-
tent, coherent, and effective dialogue between
humans and AI. Previous works have identi-
fied certain SU limitations in non-chatbot Large
Language models (LLMs), but the extent and
causes of these limitations are not well under-
stood, and capabilities of current chat-based
models in this domain have not been explored.
In this work we tackle these questions, propos-
ing a novel synthetic environment for SU test-
ing which allows us to do controlled and sys-
tematic testing of SU in chat-oriented models,
through assessment of models’ ability to track
and enumerate environment states. Our envi-
ronment also allows for close analysis of dy-
namics of model performance, to better under-
stand underlying causes for performance pat-
terns. We apply our test to ChatGPT, the state-
of-the-art chatbot, and find that despite the fun-
damental simplicity of the task, the model’s per-
formance reflects an inability to retain correct
environment states across time. Our follow-up
analyses suggest that performance degradation
is largely because ChatGPT has non-persistent
in-context memory (although it can access the
full dialogue history) and it is susceptible to hal-
lucinated updates—including updates that arti-
ficially inflate accuracies. Our findings suggest
overall that ChatGPT is not currently equipped
for robust tracking of situation states, and that
trust in the impressive dialogue performance
of ChatGPT comes with risks. We release
the codebase for reproducing our test environ-
ment, as well as all prompts and API responses
from ChatGPT, at https://github.com/
yangalan123/SituationalTesting.

1 Introduction

Understanding the meaning of language inputs
and their impact on information states is essen-

tial for building a communicative human-like AI
agent (e.g., ChatGPT (OpenAI, 2022)). This ca-
pability requires an agent to know truth con-
ditions (Lewis, 1976; Heim and Kratzer, 1998)
of a given input, and how that input updates
the context over time (Veltman, 1996). For in-
stance, the natural language input “Open BOX-
4, obtain KEY-1” in a game environment should
assert updates “OPENED(BOX-4) = True” and
“OBTAINED(KEY-1) = True” in the agent’s rep-
resentation of the environment state. We describe
this ability as situational understanding (SU), as
the agent needs to ground language in situations
and understand situational changes.

Recent research indicates that despite the tremen-
dous success of Large Language Models (LLMs)
(e.g., GPT-3 (Brown et al., 2020)), these models
still fail to understand situational changes, and can-
not serve as human-like agents to accomplish real-
world tasks. For example, evidence suggests that
models fail to detect sarcasm expressed in under-
lying context (Suzgun et al., 2022), infer incorrect
logic states when context changes in games (Li
et al., 2022) and fail to track entity state changes in
a discourse (Kim and Schuster, 2023). While these
works have shown important limitations in LLMs,
it remains unclear why these models show these
limitations, and there is less work that shows the
extent to which these limitations persist in more
recent, chat-trained models like ChatGPT.

In this work we seek to shed light on both of
these questions. To test the situation tracking abil-
ity of ChatGPT and other chat models, we design
a synthetic environment for controlled testing of
models’ ability to follow instructions and main-
tain consistent understanding of situation states.
We design a multi-stage testing framework, and
include various controls to avoid models relying on
mappings memorized from pre-training rather than
doing real-time state tracking. Our environment al-
lows for flexible testing under different conditions,

6385

https://github.com/yangalan123/SituationalTesting
https://github.com/yangalan123/SituationalTesting

as well as controlled follow-up analyses to enable
closer examination of causal factors.

We apply our tests primarily to ChatGPT, which
we find to outperform other models fine-tuned on
chats. Our results show that ChatGPT’s perfor-
mance reflects a failure to retain coherent and cor-
rect environment states across time, despite the
simplicity of the task and the fact that ChatGPT
has access to the full dialogue history in its in-
put window. Our follow-up analyses suggest that
a major contributor to this degradation is failure
to retain prior states in memory, as well as sus-
ceptibility to spurious hallucinated updates (which
can also contribute to accidentally correct outputs).
Our findings suggest overall that ChatGPT lacks
the ability to track situation state changes robustly.

2 Related work

Situational understanding ability is essential for
building agent-like real-world intelligent systems.
In comprehensive benchmarks, Big-Bench-Hard
(BBH, Suzgun et al. (2022)) finds that for GPT-
family models and PaLM 540B models (Chowd-
hery et al., 2022), even equipped with the state-
of-the-art Chain-of-Thought prompting, still fail
on tasks that require situational information (e.g.,
to detect sarcasm). HELM (Liang et al., 2022)
also points out LLMs can lack state tracking abil-
ity based on evaluation results for 30 models on
bAbI (Weston et al., 2016) environment.

In synthetic and controlled environments, Li
et al. (2021); Andreas (2022); Li et al. (2022) does
probing on BART (Lewis et al., 2020), T5 (Raffel
et al., 2020) and GPT-3 using the SCONE (Long
et al., 2016) and TextGame (Côté et al., 2019)
datasets, and show that these models lack the abil-
ity to track and infer information states. Kim and
Schuster (2023) re-analyze the results in Li et al.
(2021) and find that GPT-3/3.5 and Flan-T5 (Chung
et al., 2022) cannot track entity state changes in a
discourse. Toshniwal et al. (2022) instruct GPT-
2 (Radford et al., 2019) to play chess and find it
difficult to track board states per move.

We build on these previous works in two pri-
mary ways. First, these works mainly use LLMs
as feature extractors (e.g., train probe models over
intermediate representations or final-layer repre-
sentations), and none of them discuss whether situ-
ational understanding limitations still exist in the
recent powerful and widely used ChatGPT system.
We investigate here whether ChatGPT has the crit-

ical underlying situational understanding to gen-
erate coherent, consistent and effective dialogue
(Karttunen, 1969; Kamp et al., 2011; Wu et al.,
2019). Second, tests used in previous work are
susceptible to interference from confounds present
when fine-tuning linear probes, or shortcuts in the
testing environment that can be utilized to bypass
situational understanding tests (Kim and Schuster,
2023). We aim to address some of these concerns
by introducing a number of additional controls in
our tests. Finally, we also carry out a more in-depth
exploration of model update dynamics, to better un-
derstand causes for patterns of performance.

3 Building a Situational Testing
Environment

What we want to test is models’ ability to pro-
cess situational changes conveyed by language in-
puts, and to maintain internal representations of
the corresponding situation states. To test this,
we use a synthetic box-moving environment like
TextGame (Li et al., 2021), where we have full
access to underlying game states, but eliminate
complicated reward pursuing and route branching.
Having this kind of full-information synthetic en-
vironment is helpful to test models’ evolving un-
derstanding of environment states as the input de-
scribes progressively more situational changes.

3.1 Environment Setup

The environment includes two basic components:

1. Instructions. Instructions directed to an
agent, defining the agent’s quest and provid-
ing information about the environment. As
we will describe below, this component also
sometimes contains explanations of the mean-
ings of non-language functors and arguments
to be used in the output.

2. Steps and queries. Descriptions of steps
taken by the agent, followed by a query that
prompts for enumeration of all relevant en-
vironment states after the action is taken.
Queries and answers to the queries take the
format of sets of logical representations of
states with corresponding truth values.

In our tests, the input provided to the model
includes the task instructions, along with n few-
shot Step-Query-Answer examples to demonstrate
the task. In the zero-th step, we define the step

6386

as “Do nothing” and provide in the Answer the
full set of correct truth values as an initialization.
The n few-shot Step-Query-Answer examples are
then followed by a series of Steps without Query-
Answer components, followed by a Test Step and
Test Query that the model is expected to complete
with the full enumeration of environment states
that hold after that step is taken. An example of our
environment format, to be further explained below,
is shown in Example 1.

1 Instructions: As an agent, you need to find
the way to go out of this quest.

Currently, there are several boxes in
front of you and there is a key inside
each box. You can use only one of these
keys to open the door and finish this

quest. There are 5 boxes and 5 keys
here. Boxes are identified as jqC−X and
Keys are identified as bsS−X.

NvSWxzvJb(jqC−2)=True means that jqC−2
has been opened. B(bsS−3)=True means
that bsS−3 has been obtained. NvSWxzvJb
(jqC−2)=False means that jqC−2 has not
been opened. B(bsS−3)=False means that
bsS−3 has not been obtained.

2 Step−0: Initialization. Do nothing.
3 Question: NvSWxzvJb(jqC−0)=?...B(bsS−0)=?B(

bsS−1)=?...
4 Answer: NvSWxzvJb(jqC−0)=False...B(bsS−0)=

False...
5 Step−1: Open jqC−3 and retrieve bsS−2.
6 Question: NvSWxzvJb(jqC−0)=?...

Example 1: Running example of our test environment.

For the experiments below, we set the number
of boxes and keys to 10. This corresponds to a
total of 20 environment states (boxes and keys have
separate states) to be enumerated after each step.
We sample the number of steps randomly from a
uniform distribution U(1, 10). We then keep in-
structions almost entirely the same across samples,
except that in the Synthetic Language settings (see
Section 3.2) the state predicates are defined ran-
domly and therefore vary between samples (e.g.,
in one instance we use NvSWxzvJb(jqC-0)=True to
refer to the box jqC-0 having been opened, while
in another instance we use Abc(bb-0)=True to rep-
resent the box bb-0 having been opened).

3.2 Robustness Checks for State Tracking

Synthetic language When testing models’ abil-
ity to map to logical representations of environment
states, a concern with using language-based logi-
cal symbols (such as OPENED(BOX-4)) is that the
models may be able to leverage pre-training on
similar language-based logical symbols, or sim-
ply copy from the input language describing the

actions, without needing to convert to abstract sit-
uation states. To control for this possibility, in
addition to using natural language (NL) functors
and arguments for our environment states, we also
adopt settings in which synthetic language (SL)
is used to specify the functors and arguments of
the environment states. This allows us to disen-
tangle our target task from pattern memorization
and copying capabilities, better ensuring that mod-
els must rely on a combination of the instructions
and the changes caused by the actions taken. To
build synthetic functors and arguments, we use ran-
domly selected ASCII characters. The length for
each functor or argument is a random sample from
U(1, 10). In the instructions, we include expla-
nations of the meanings of these synthetic func-
tors and arguments. An example of our synthetic
language setting is shown in Example 1 (example
instructions from our NL setting can be seen in
Example 2 and Example 3). To counteract ran-
domness effects and reduce any bias from specific
synthetic language, for each test case (an instance),
we generate a different set of synthetic functors and
arguments.

Counterintuitive instructions To further control
for potential memorization of mappings between
language and logical states from pre-training, we
include one additional manipulation involving what
we call counterintuitive instruction. In counterin-
tuitive instruction settings, the instructions define
mappings that reverse the standard usage of logi-
cal statements and truth values. The two versions
we use are counterintuitive output format (Exam-
ple 2), and counterintuitive language instruction
(Example 3). These manipulations draw on the
tradition of negation testing (McCoy et al., 2019;
Ribeiro et al., 2020; Hossain et al., 2020; Ravichan-
der et al., 2022), and allow us to further disentangle
pre-training memorization from understanding of
our particular instructions.1

3.3 Evaluation Metrics

We mainly evaluate models’ success in our syn-
thetic environment by measuring two metrics:
State-EM, and Step-EM.

State-EM is the proportion of all predicted

1There are other possible perturbations that we can do,
such as adding a distractor at each step (Appendix A) or apply-
ing synthetic language only on functors / only on arguments
(Appendix B). For simplicity, we omit the discussion of other
perturbation types and only focus on the two robustness checks
explained in this section.

6387

7 Instructions: ... OPENED(BOX−3)=False
means that BOX−3 has been opened.
OBTAINED(KEY−1)=False means that KEY
−1 has been obtained. OPENED(BOX−3)=
True means that BOX−3 has not been
opened. OBTAINED(KEY−1)=True means
that KEY−1 has not been obtained.

Example 2: CounterIntuitive Output Format

8 Instructions: ... OPENED(BOX−3)=True
means that BOX−3 has Not been opened
. OBTAINED(KEY−1)=True means that
KEY−1 has Not been obtained. OPENED(
BOX−3)=False means that BOX−3 has
not been opened. OBTAINED(KEY−1)=
False means that KEY−1 has not been
obtained.

Example 3: Counter-Intuitive Language Instruction

Figure 1: Counter-Intuitive Task Definition Examples

states that match the expected states. This metric
is useful to check to what extent the model devel-
ops correct partial understanding in response to
situational changes.

State-EM =
#(Matched States)
#(Queried States)

(1)

Step-EM is a stricter metric than State-EM. It is
the proportion of steps for which the full set of pre-
dicted states at that step have an exact match with
the expected states, including all the truth values
and the number of predicted states. This allows us
to check whether the model can maintain consis-
tent and coherent understanding over situational
changes. This metric is also important given the
sparsity of updates at each step, to ensure that mod-
els cannot achieve strong performance simply by
copying previous states.

Step-EM =

{
1 if Matched States=Ground Truth States

=Predicted States

0 otherwise
(2)

We illustrate the computation of these two met-
rics for the following simplified case (2 boxes and
keys, synthetic language, no counterintuitive in-
structions):

9 [Instructions and some previous steps]
10 Question: NvSWxzvJb(jqC−0)=? B(bsS−0)=?

NvSWxzvJb(jqC−1)=? B(bsS−1)=?
11 Correct answer: NvSWxzvJb(jqC−0)=True, B(

bsS−0)=False, NvSWxzvJb(jqC−1)=False, B
(bsS−1)=False

12 Model Answer: NvSWxzvJb(jqC−0)=True, B(bsS
−0)=True, NvSWxzvJb(jqC−1)=False, B(bsS
−1)=False

Example 4: Example for Metrics Computation
State-EM in this case is 3/4 = 75% (only 3 out

of 4 states are correct), while Step-EM is 0 because
the step contains a incorrect state.

When computing these metrics, we find that at
times the generated output does not strictly fol-
low the given format from the in-context samples.
Therefore, we use regular expressions to extract the

truth values and corresponding states from model
outputs. Details can be found in Appendix D.

Existence of Shortcuts It is clear that simple
string automata plus a status tracking table should
already be sufficient to solve every instance of our
tasks. However, the simplicity of the task is part of
its value: if models have a basic capacity to track
and maintain environment states, this task should
be straightforward. Nonetheless, we will see in the
experiments below that ChatGPT still struggles to
solve these tasks reliably, despite the existence of
such simple solutions, indicating the presence of
fundamental limitations in this class of capability.

3.4 Discussion: Synthetic Environment as
Simulation for Real-World Application

At its core, our synthetic environment is a simpli-
fied simulation for real-world state-tracking tasks
(usually in the form of slot-filling), a critical ca-
pability of dialogue systems / chatbots (Williams
et al., 2014; Henderson et al., 2014; Wu et al.,
2019). By prompting the model to update states,
we are gradually giving the model more contex-
tual information and testing whether ChatGPT, the
state-of-the-art chatbot model, can closely follow
users’ prompts and keep track of the full interaction
history.

Our work has important potential implications
as the usage of LLMs continues to proliferate. In-
structing LLMs to remember many initial states,
operate over synthetic languages, and keep track
of interaction history can be seen as an important
step in eventually teaching a highly-capable agent
to follow social norms and policies. Our initial
set of environment states is similar to establishing
basic rules about dos-and-don’ts at the beginning
of human-AI conversations. The usage of synthetic
languages is likewise similar to teaching AI agents
about specific tones or styles of communication, ter-
minologies, jargon, or perhaps even low-resource
languages. Analyzing whether the model can keep

6388

track of environment states can allow us to draw
conclusions about the model’s ability to follow in-
structions or rules. In this sense, our work also
has implications with respect to recent trends of
Constitutional AI or Rule-based/Principle-driven
models (Bai et al., 2022; OpenAI, 2023; Sun et al.,
2023), in which human social rules (“constitution”)
are explicitly written at the beginning of a prompt
to align AI agents’ behavior to human values. Our
initial environment states are like constitution poli-
cies that AI agents should obey. The steps and
queries in our environments are reminiscent of a
situation in which certain policies can be allowed
to be updated with user permission. For example,
initially an AI agent may be programmed to try its
best to answer every question and disallow overly
conservative responses like refuse-to-answer—but
under certain situations, the user could update with
permission to the agent to refuse to answer for pri-
vacy, fairness or other social reasons.

As we will see in the experiments below, when
more interactions occur, the model will gradually
lose track of states, propagate errors, and even
generate hallucinations, despite all updates falling
within the input window. By design, a super-
capable AI agent like ChatGPT should have the
ability to read and use all information within the
input window—but our results suggest that this is
not the case. Our research thus calls for further
study, and for caution when implementing a Con-
stitutional AI approach.

4 Experiments: testing model sensitivity
to instructions and situation change

We use our environment to test ChatGPT in its
ability to track situation changes, and we report
the results below. We also compare against the
performance of additional chat models, which we
find to underperform ChatGPT. Those results can
be found in Appendix E.

We try 2-shot, 3-shot and 5-shot settings (in
which 2, 3 and 5 example steps with enumerated
states are provided). We use 50 samples with the
number of additional steps randomly sampled from
{1, . . . , 10 − #(num-shots)} for each setting. We
follow the official OpenAI cookbook2 to prepare
the request and parse the response when interacting
with ChatGPT API. Details are in Appendix C.

2https://github.com/openai/
openai-cookbook/tree/main

4.1 Results

Results for these tests on ChatGPT are shown in
Table 1. We can see a number of patterns.

Failures on Step-EM Under normal instructions,
though the model achieves high State-EM (i.e.,
90%), the Step-EM is generally much lower (up
to 70% lower in 2-shot and 40 − 50% lower in 5-
shot). This indicates that although models are able
to take advantage of the sparsity of the updates to
get a majority of states correct, they are much less
successful in accurately characterizing the entire
environment state at a given step. As we will see
in Section 5.2 State-EM may also be skewed by
accidentally-correct states, and should in general
be interpreted with some caution.

ChatGPT has limited capability to understand
and follow counterintuitive instruction. From
Table 1, we see that applying our counterintuitive
instruction manipulation leads to significantly de-
graded performance. Especially on Step-EM, per-
formance in most settings is 10 − 20%, which is
much worse than with normal instructions (> 20%,
or even > 30% in most cases). This suggests that
the model is indeed to some extent relying on stan-
dard language-to-logic mapping from pre-training,
rather than fully understanding the instructions.

Despite this inconsistency, the model still shows
some success with the negation or the new rule with
flipped truth values, as it still manages to achieve
70 − 80% State-EM. Though the State-EM values
should be taken with caution, these accuracies are
substantially stronger than would be expected from
random guessing (50%) or completely ignoring the
rule (0%), suggesting some level of capability in
making use of the counterintuitive instructions.

Effects of synthetic language Use of synthetic
language affects model performance, but not al-
ways in the predicted directions. Though perfor-
mance is occasionally worse with synthetic lan-
guage, it is more often better than with natural lan-
guage. This suggests that the use of synthetic lan-
guage may at times help the models to detach from
unhelpful biases from pre-training, and rely more
robustly on the in-context information. This fol-
lows the analysis presented in Liang et al. (2022).

More in-context samples do not necessarily help.
We also see that even if we are already providing
answers for approximately 50% of states (consider-
ing that we only have 10 boxes and 10 keys in the

6389

https://github.com/openai/openai-cookbook/tree/main
https://github.com/openai/openai-cookbook/tree/main

Normal Instruction Step-EM / State-EM

2-shot 3-shot 5-shot

NL Functor + NL Argument 22%/92% 34%/93% 36%/95%
SL Functor + SL Argument 19%/92% 22%/93% 52%/96%

Counter-Intuitive Instruction (On NL)

NL Functor + NL Argument 10%/77% 6%/75% 0%/84%
SL Functor + SL Argument 13%/89% 20%/90% 12%/90%

Counter-Intuitive Instruction (Truth Values Switching)

NL Functor + NL Argument 6%/72% 2%/69% 2%/79%
SL Functor + SL Argument 19%/85% 14%/87% 12%/89%

Table 1: Experiment results on ChatGPT Robustness check for state tracking in 10-box environment. Metrics here
are presented in the format of “Step-EM / State-EM”. We use 50 samples for each experiment setting.

environment, and each step will change exactly two
states permanently within the dialog), the model
does not make improvement in most cases.

5 Analysis of model performance

In the previous section we tested the capacity of
ChatGPT in tracking and enumerating states within
our environment, and we found that the model
showed clear limitations. In this section, we an-
alyze model performance further, to better under-
stand the source of these limitations.

5.1 Tracing Errors: State Tracking over Steps

To understand why ChatGPT shows relatively poor
performance, a straightforward way is reusing the
instances created in Section 4, but querying for the
environment states after each intermediate step to
see where the errors emerge. Specifically, rather
than only querying after the final step, we make
queries at all steps (excluding “Step-0”), includ-
ing those within the in-context example window
(for querying each step s in the in-context example
window, in-context demonstrations of environment
states are given only through step s − 1). We evalu-
ate State-EM and Step-EM at every step. We refer
to this test as Intermediate State Probing.

Potential confounder: state complexity When
interpreting performance trajectory across increas-
ing numbers of steps, a potential confounder is that
performance may degrade simply because the set
of environment states has become more complex,
and not because there are too many steps of updates
involved. To investigate this possibility, we also
run a test in which we compress and skip k of the
early steps, and initialize in the state that would
have resulted from those steps. We then test the
trajectory of model performance on the subsequent

n steps. If performance after n steps in this set-
ting is comparable to performance after k + n steps
in the previous setting, this will suggest that the
degradation is indeed due to the complexity of the
environment states. If, however, performance after
n steps in this setting is substantially better than
performance at k + n steps in the prior analysis,
this suggests that the degradation in performance
is due to failure to handle the growing number of
steps.

Normal Initialization
Step-EM / State-EM

2-shot 5-shot

NL Functor + NL Argument 22% / 92% 36% / 95%
SL Functor + SL Argument 19% / 92% 52% / 96%

Compressed Initialization

NL Functor + NL Argument 46% / 95% 60% / 97%
SL Functor + SL Argument 48% / 95% 54% / 97%

Table 2: Compressed Initialization Testing experiment
results for 10-box environment on ChatGPT. Metrics
here are shown in the format of "Step-EM/State-EM".
We use 50 samples with various number of steps for
experiments.

The experiment results for the Intermediate State
Probing and Compressed Initialization Test are
shown in Figure 2 and Table 2, respectively. From
these results we make the following observations:

Degraded performance over steps. We see in
Figure 2 that with increasing number of situational
changes, both State-EM and Step-EM degrade.
This degradation is particularly true for Step-EM,
which decreases dramatically as steps increase.

State complexity does not explain the degrada-
tion. Additionally, we see in Table 2 that skipping
steps and starting with more complex initialization
leads to improved performance, indicating that the

6390

1 2 3 4 5 6 7 8 9
Steps

0.00

0.25

0.50

0.75

1.00
Ac

c

In-Context Testing

Intermediate State Probing (2-shot)

Step-EM (SL)
State-EM (SL)

Step-EM (NL)
State-EM (NL)

(a) 2-shot

1 2 3 4 5 6 7 8 9
Steps

0.00

0.25

0.50

0.75

1.00

Ac
c

In-Context Testing

Intermediate State Probing (5-shot)

Step-EM (SL)
State-EM (SL)

Step-EM (NL)
State-EM (NL)

(b) 5-shot

Figure 2: Results for Intermediate State Probing. Purple vertical lines indicate where in-context demonstrations (for
steps prior to the test step) end.

Update at Step T

Error State
at T-1

…..

Previous
Updates

Correct State
at T-1

(Untouched) Error State
at T-1

(Untouched) Correct State
at T-1

Update at Step T

States at TStates at T-1

Dirty Read (DR)

Hallucinated Updates,
Accidentally Correct (HU-AC)

Dirty Write (DW)

Void Action (VA)

Not Following Updates (NFU)

Correct Update (CU)

Maintain Correctness (MC)

Hallucinated Updates,
Incorrect Outcome (HU-IO)

Error
Propagation

(EP)

1

2

3

4

5

6

7

8

Category ID

Figure 3: Diagram for fine-grained error analysis

degradation across steps is not attributable to state
complexity alone.

More in-context demonstration mitigates degra-
dation. In Section 4 we found that providing
more in-context samples does not cause a sig-
nificant improvement in the performance of the
model at the final Test Query. With intermediate
probing we gain a finer-grained picture of the im-
pacts of number of in-context samples across steps.
First, we see that when prompting with more in-
context samples (5-shot vs 2-shot), there is less
rapid degradation in model accuracy after the end
of the in-context window. In the 2-shot (Figure 2a)
case, at Step-3 (the second step preceded by a non-
demonstration step), Step-EM quickly drops from
60% to 40%. By contrast, in 5-shot (Figure 2b),
at Step-6, ChatGPT can still maintain a Step-EM
value of 60%. This suggests that having more in-
context samples does strengthen models’ accuracy

in tracking state changes—but only temporarily or
over a limited number of steps.

Though we see that having more demonstra-
tions can mitigate degradation after the demon-
strations end, when we look within the in-context
sample window itself, we see that on steps that
directly follow in-context demonstrations (Step-1
for 2-shot, Step-1,2,3,4 for 5-shot), the model’s
performance does not monotonically increase in
response to the accumulating demonstrations. A
similar phenomenon is also discovered in other few-
shot reasoning benchmark works (Suzgun et al.,
2022; Liang et al., 2022), despite the fact that in
traditional fine-tuning, usually, more training in-
stances yield better generalization ability. This
suggests that although adding more demonstrations
can briefly mitigate loss of accuracy, it does not
straightforwardly translate to gains in accuracy.

6391

2 3 4 5 6 7 8 9
Steps

0.0

0.5

1.0

1.5

2.0
Ty

pe
 o

cc
ur

re
nc

e
Analysis for Incorrect Predictions

DR DW NFU HU (IO)
(a) Analysis for Incorrect outcome, 2shot, SL

2 3 4 5 6 7 8 9
Steps

0.0

0.5

1.0

1.5

2.0

Ty
pe

 o
cc

ur
re

nc
e

Analysis for Correct Predictions

15.5

16.0

16.5

17.0

17.5

#(
M

ai
nt

ai
n

Co
rre

ct
 B

el
ie

f S
ta

te
s)

HU (AC) VA CU MC
(b) Analysis for Correct outcome, 2shot, SL

2 3 4 5 6 7 8 9
Steps

0.0

0.5

1.0

1.5

2.0

Ty
pe

 o
cc

ur
re

nc
e

Analysis for Incorrect Predictions

DR DW NFU HU (IO)
(c) Analysis for Incorrect outcome, 2shot, SL + Counter-
Intuitive Instruction (On NL)

2 3 4 5 6 7 8 9
Steps

0.0

0.5

1.0

1.5

2.0

Ty
pe

 o
cc

ur
re

nc
e

Analysis for Correct Predictions

14

15

16

17

#(
M

ai
nt

ai
n

Co
rre

ct
 B

el
ie

f S
ta

te
s)

HU (AC) VA CU MC
(d) Analysis for Correct outcome, 2shot, SL + Counter-Intuitive
Instruction (On NL)

Figure 4: Fine-Grained Error Analysis for Logical Inconsistency

Interim discussion These patterns of degrada-
tion over time occur, in both NL and SL settings,
despite the fact that ChatGPT can read the full
dialogue in its input window. This suggests that
ChatGPT cannot effectively utilize the full infor-
mation in its input window, and that claims about
maximum input length capabilities (e.g., ChatGPT
can model 4k tokens as introduced in the official
announcement (OpenAI, 2022)) should be taken
with a grain of salt.

5.2 Fine-grained analysis of update patterns

In the above section, we studied the trajectory
of model performance as the number of steps in-
creases, finding evidence that ChatGPT degrades
in state tracking with increased number of steps. In
this section, we do a finer-grained analysis of the
update dynamics in these experiments, in order to
examine more closely the causal factors leading to
both erroneous and accurate predictions. For the
purpose of this analysis, we define categories of
state transitions, summarized in Figure 3. These
categories allow us to analyze the relationships
between states at the analyzed step and the corre-
sponding prior state, both when updates should be
made to those states and when they should not.

The experiment results are shown in Figure 4
(we only show 2-shot SL, for reasons of space).

Examining first the patterns for states in which
models make incorrect predictions, we see that
the rise in errors is driven by states that should be
untouched at that step. We see that as steps in-
crease there are rapid increases in both Dirty Read
(DR) transitions, where models retain a previous er-
ror, and Hallucinated Update (HU-IO) transitions,
where models change a state from correct to incor-
rect despite there being no change to that state in
the step description. These patterns indicate that
the rise in errors over time can be attributed both to
retention and propagation of errors from previous
steps, but also to failures in retaining the memory
of a previous step that should not change.

Examining now the transitions associated with
correct model predictions, we see that over time
there is noteworthy decrease in Correct Update
(CU) cases—however, there is a much more dra-
matic decrease in Maintain Correctness (MC) cases,
indicating that the model increasingly fails to retain
the memory of previously correct states. Over time
we also see, particularly in the case of counterin-
tuitive instructions, a rise in Accidentally Correct
(HU-AC) cases, in which the model switches from

6392

an incorrect state back to the correct state, despite
the fact that no update to that state was described
in the step. Both of these patterns are indicative of
memory limitations and susceptibility to random
noise in changes to enumerated states.

These results yield several conclusions:

ChatGPT has non-persistent in-context mem-
ory. A recurring observation above is that many
of the model errors that increase over time can
be attributed to limitations in retaining states in
memory—and in fact, some states marked as cor-
rect also reflect accidental correctness arising due
to similar failures to retain prior states.

States can also be retained, but potentially by
chance. In addition to memory retention failures,
we also see propagation of errors between steps—
which in theory is indicative of successful memory
retention, by contrast to the retention failures cited
above. However, considering the prevalence of
hallucinated updates, and the limited options for
state values, we can expect that at least some of
these retained updates in fact occur by chance.

Couterintuitive instruction exacerbates non-
robust behavior. As we mentioned above, the
drop in correct CU updates is more dramatic—
and the rise in spurious correct updates HU more
substantial—in the case of counterintuitive instruc-
tions. This suggests that the inability of the model
to rely on memorized language-to-logic mappings
generally reduces the model’s ability to execute
and maintain correct state updates.

6 Conclusion

In this paper, we propose a novel synthetic test-
ing environment for testing situational understand-
ing capabilities, which we apply to test ChatGPT,
the state-of-the-art chatbot. We instruct ChatGPT
to process a series of sparse environment updates
across time in a dialogue history. With careful en-
vironmental designs, we reduce the possibility of
data contamination and other artifacts typically in-
troduced by traditional probing methods. We find
that despite the simplicity of our task, and even with
ChatGPT having full access to the complete dia-
logue history within the input window, the model
fails to retain coherent and correct environment
states over time. Further analysis suggests that this
failure is largely because ChatGPT does not have
persistent in-context memory, and is susceptible to

hallucinated updates. These findings indicate over-
all that ChatGPT does not have robust situational
state tracking ability.

Our proposed synthetic environment and the find-
ings that it generates can have noteworthy real-
world implications. First, it can diagnose the po-
tential limitations of current chatbot systems in
multi-round interactions. Second, our findings also
reflect a potential problem for the model’s ability
to follow instructions and remain consistent with
rules/norms established in its context, which is es-
pecially important for responsible AI safety and
human-AI alignment research.

Acknowledgements

We are grateful for the insightful discussion with
Chih-chan Tien (UChicago), Kanishika Misra (UT
Austin), Hao Zhu (CMU) and Zhaofeng Wu (MIT)
at the early stage of this work (names are not listed
in particular order). We also thank the anonymous
EMNLP reviewers and chairs for providing insight-
ful and constructive feedback to make this work
more solid.

Limitations

In this work, we propose a controlled synthetic
environment to investigate ChatGPT’s situational
understanding ability. While we believe our syn-
thetic environment has important real-world impli-
cations, as we discussed in Section 3.4, for certain
real-world applications our findings may not apply.
Another limitation is that we only focus on the eval-
uation of ChatGPT as the state-of-the-art chatbot
model (at least in terms of mainstream media cov-
erage). There are other commercial chatbot mod-
els that could show stronger performance on our
tasks, as they may have more complicated system
designs (e.g., multi-module systems as in Blender-
Bot 3 (Shuster et al., 2022)) that could be better
at dealing with multi-round dialogue history and
extremely long inputs. As we do not have sufficient
budget or open access to test many such systems,
we leave a comprehensive benchmark evaluation
of situational understanding ability for Chat-Tuned
LLMs for future work. Our experiments closely fol-
low the OpenAI official cookbook for interacting
with ChatGPT, but it is possible that there could be
more optimal prompts to fully unlock the capability
of ChatGPT.

There are many other synthetic environments
like TextWorld (Côté et al., 2019) that may be pro-

6393

grammed to do situational testing as in our work
(though it may not be easy to assert full controls),
and it is would be interesting to establish whether in
different environments we can still draw the same
conclusions. Our work mainly focuses on our pro-
posed environment as a case study, but we plan
to extend our testing framework to other environ-
ments in the future.

References
Jacob Andreas. 2022. Language models as agent mod-

els. In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 5769–5779, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022. Constitutional AI:
Harmlessness from AI feedback. ArXiv preprint,
abs/2212.08073.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing GPT-4 with 90%* Chat-
GPT quality.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. ArXiv preprint,
abs/2204.02311.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
ArXiv preprint, abs/2210.11416.

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,

Matthew Hausknecht, Layla El Asri, Mahmoud
Adada, et al. 2019. Textworld: A learning environ-
ment for text-based games. In Computer Games:
7th Workshop, CGW 2018, Held in Conjunction with
the 27th International Conference on Artificial In-
telligence, IJCAI 2018, Stockholm, Sweden, July
13, 2018, Revised Selected Papers 7, pages 41–75.
Springer.

I. Heim and A. Kratzer. 1998. Semantics in Genera-
tive Grammar. Blackwell Textbooks in Linguistics.
Wiley.

Matthew Henderson, Blaise Thomson, and Jason D.
Williams. 2014. The second dialog state tracking
challenge. In Proceedings of the 15th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue (SIGDIAL), pages 263–272, Philadelphia,
PA, U.S.A. Association for Computational Linguis-
tics.

Md Mosharaf Hossain, Antonios Anastasopoulos, Ed-
uardo Blanco, and Alexis Palmer. 2020. It’s not
a non-issue: Negation as a source of error in ma-
chine translation. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3869–3885, Online. Association for Computational
Linguistics.

Hans Kamp, Josef Van Genabith, and Uwe Reyle. 2011.
Discourse representation theory. Handbook of Philo-
sophical Logic: Volume 15, pages 125–394.

Lauri Karttunen. 1969. Discourse referents. In Inter-
national Conference on Computational Linguistics
COLING 1969: Preprint No. 69: Collection of Ab-
stracts of Papers, Sånga Säby, Sweden.

Najoung Kim and Sebastian Schuster. 2023. Entity
tracking in language models. In Proc. of ACL, Lo-
cation of the conference. Association for Computa-
tional Linguistics.

Henry Kučera and Winthrop Nelson Francis. 1967.
Computational analysis of present-day American En-
glish. Brown university press.

David Lewis. 1976. General semantics. In Montague
grammar, pages 1–50. Elsevier.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proc. of ACL, pages 7871–7880, On-
line. Association for Computational Linguistics.

Belinda Z. Li, Maxwell Nye, and Jacob Andreas. 2021.
Implicit representations of meaning in neural lan-
guage models. In Proc. of ACL, pages 1813–1827,
Online. Association for Computational Linguistics.

Belinda Z Li, Maxwell Nye, and Jacob Andreas. 2022.
Language modeling with latent situations. ArXiv
preprint, abs/2212.10012.

6394

https://aclanthology.org/2022.findings-emnlp.423
https://aclanthology.org/2022.findings-emnlp.423
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2210.11416
https://link.springer.com/chapter/10.1007/978-3-030-24337-1_3
https://link.springer.com/chapter/10.1007/978-3-030-24337-1_3
https://books.google.com/books?id=jAvR2DB3pPIC
https://books.google.com/books?id=jAvR2DB3pPIC
https://doi.org/10.3115/v1/W14-4337
https://doi.org/10.3115/v1/W14-4337
https://doi.org/10.18653/v1/2020.findings-emnlp.345
https://doi.org/10.18653/v1/2020.findings-emnlp.345
https://doi.org/10.18653/v1/2020.findings-emnlp.345
https://link.springer.com/chapter/10.1007/978-94-007-0485-5_3
https://aclanthology.org/C69-6902
https://arxiv.org/abs/2305.02363
https://arxiv.org/abs/2305.02363
https://www.jstor.org/stable/1263890
https://www.jstor.org/stable/1263890
https://www.sciencedirect.com/science/article/pii/B9780125458504500000
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.143
https://doi.org/10.18653/v1/2021.acl-long.143
https://arxiv.org/abs/2212.10012

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2022. Holistic evaluation of language
models. ArXiv preprint, abs/2211.09110.

Reginald Long, Panupong Pasupat, and Percy Liang.
2016. Simpler context-dependent logical forms via
model projections. In Proc. of ACL, pages 1456–
1465, Berlin, Germany. Association for Computa-
tional Linguistics.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proc. of ACL,
pages 3428–3448, Florence, Italy. Association for
Computational Linguistics.

OpenAI. 2022. Introducing ChatGPT. Accessed: 2023-
04-24.

OpenAI. 2023. GPT-4 technical report. ArXiv preprint,
abs/2303.08774.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Abhilasha Ravichander, Matt Gardner, and Ana Maraso-
vic. 2022. CONDAQA: A contrastive reading com-
prehension dataset for reasoning about negation. In
Proc. of EMNLP, pages 8729–8755, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Behav-
ioral testing of NLP models with CheckList. In Proc.
of ACL, pages 4902–4912, Online. Association for
Computational Linguistics.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H Chi, Nathanael Schärli,
and Denny Zhou. 2023. Large language models can
be easily distracted by irrelevant context. In Inter-
national Conference on Machine Learning, pages
31210–31227. PMLR.

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju,
Eric Michael Smith, Stephen Roller, Megan Ung,
Moya Chen, Kushal Arora, Joshua Lane, et al. 2022.
Blenderbot 3: A deployed conversational agent that
continually learns to responsibly engage. ArXiv
preprint, abs/2208.03188.

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin
Zhang, Zhenfang Chen, David Cox, Yiming Yang,
and Chuang Gan. 2023. Principle-driven self-
alignment of language models from scratch with
minimal human supervision. ArXiv preprint,
abs/2305.03047.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022. Challenging BIG-Bench tasks
and whether chain-of-thought can solve them. ArXiv
preprint, abs/2210.09261.

Shubham Toshniwal, Sam Wiseman, Karen Livescu,
and Kevin Gimpel. 2022. Chess as a testbed for
language model state tracking. In Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI, 2022,
Thirty-Fourth Conference on Innovative Applications
of Artificial, Intelligence, IAAI 2022, The Twelveth
Symposium on Educational Advances, in Artificial
Intelligence, EAAI 2022 Virtual Event, February 22, -
March 1, 2022, pages 11385–11393. AAAI Press.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. ArXiv preprint,
abs/2302.13971.

Frank Veltman. 1996. Defaults in update semantics.
Journal of philosophical logic, 25(3):221–261.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomás Mikolov. 2016. Towards AI-Complete ques-
tion answering: A set of prerequisite toy tasks. In
Proc. of ICLR.

Jason D Williams, Matthew Henderson, Antoine Raux,
Blaise Thomson, Alan Black, and Deepak Ramachan-
dran. 2014. The dialog state tracking challenge series.
AI Magazine, 35(4):121–124.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-
Asl, Caiming Xiong, Richard Socher, and Pascale
Fung. 2019. Transferable multi-domain state gener-
ator for task-oriented dialogue systems. In Proc. of
ACL, pages 808–819, Florence, Italy. Association for
Computational Linguistics.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
LLM-as-a-judge with MT-Bench and chatbot arena.

6395

https://arxiv.org/abs/2211.09110
https://arxiv.org/abs/2211.09110
https://doi.org/10.18653/v1/P16-1138
https://doi.org/10.18653/v1/P16-1138
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2303.08774
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2022.emnlp-main.598
https://aclanthology.org/2022.emnlp-main.598
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://proceedings.mlr.press/v202/shi23a.html
https://proceedings.mlr.press/v202/shi23a.html
https://arxiv.org/abs/2208.03188
https://arxiv.org/abs/2208.03188
https://arxiv.org/abs/2305.03047
https://arxiv.org/abs/2305.03047
https://arxiv.org/abs/2305.03047
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://ojs.aaai.org/index.php/AAAI/article/view/21390
https://ojs.aaai.org/index.php/AAAI/article/view/21390
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://link.springer.com/article/10.1007/BF00248150
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2558/0
https://doi.org/10.18653/v1/P19-1078
https://doi.org/10.18653/v1/P19-1078
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685

A Distractor on Action

In addition to instruction understanding, the model
should also learn to correctly understand and select
key information every time a new step is taken. To
examine the robustness of this capability, in addi-
tion to the inclusion of normal step descriptions,
we also include distractor conditions (Shi et al.,
2023), in which we add one randomly selected sen-
tence from the Brown Corpus (Kučera and Francis,
1967) as a distractor. An example of applying such
distractor is shown in Example 5. The experiment
results are shown in Table 3.

13 Step−1: Open jqC−3 and retrieve bsS−2. It
is a nice day!

14 Question: NvSWxzvJb(jqC−0)=False...

Example 5: Action Distractor Example

Normal Instruction
Step-EM / State-EM

2-shot 5-shot

NL Functor + NL Argument 22% / 92% 36% / 95%
Synthetic Functor + Synthetic Argument 19% / 92% 52% / 96%

Actions w/ Distractor

NL Functor + NL Argument 18% / 91% 44% / 96%
Synthetic Functor + Synthetic Argument 34% / 93% 50% / 96%

Table 3: Action understanding experiment results for 10-
box environment on ChatGPT. Metrics here are shown
in the format of "Step-EM/State-EM". We use 50 sam-
ples with various number of steps for experiments.

From Table 3, we can see after adding distrac-
tors, the State-EM performance does not degrade
as much as in counter-intuitive instructions, though
Step-EM performance degrades a bit (but not con-
sistently). These findings hold both in NL and
synthetic languages. This suggests that ChatGPT
does have the ability to understand the interaction
happened at each step and can pick out useful in-
formation.

We also see that when adding distractors on ac-
tions, within the 2-shot condition, Step-EM in syn-
thetic language environment is better than the one
in NL environment. This is probably because the
usage of synthetic language helps the model better
distinguish useful information as they look very
different from synthetic languages. However, when
there are more in-context samples, the model will
gradually learn to extract useful information at each
step and the usage of synthetic language does not
help that much.

B Partial Usage of Synthetic Languages

We can do a more fine-grained usage of synthetic
langauges – we can choose to apply only on func-
tors (e.g., “Opened”) or arguments (e.g., “BOX-1”).
The full set of experiment results is shown in Ta-
ble 4. We notice that the results are very similar
to the full usage of synthetic languages so to save
space, we move the results in Appendix.

C Interaction with OpenAI API and
Prompt Format

According to the official OpenAI cookbook,3 to
send requests to ChatGPT, it is advised to first add
a “system message” to ChatGPT (We use “You
are a helpful assistant” as this is one of the most
used system messages). Then there are two typical
ways 4 to send the prompt, if it contains in-context
samples:

Traditional Format Just put all your prompt
contents in one-round interaction (as in prompt-
ing GPT-3-Davinci series models), as shown in
Example 6:

15 response = openai.ChatCompletion.create(
16 model=...,
17 messages=[
18 {"role": "system", "content": "You

are a helpful assistant."},
19 {"role": "user", "content": "[

Instruction + In−Context Samples]"},
20],
21 ...,
22)

Example 6: Traditional Input Format

Faked Multi-Round Format Another way is to
synthesize a fake multi-round conversation and pre-
tend the answers for in-context samples are gener-
ated by ChatGPT, as shown in Example 7:

23 response = openai.ChatCompletion.create(
24 model=...,
25 messages=[
26 {"role": "system", "content": "You

are a helpful assistant."},
27 {"role": "user", "content": "[

Instruction]"},
28 {"role": "user", "content": "[

Sample−1−Input]"},
29 {"role": "assistant", "content": "[

Sample−1−Ground−Truth−Answer]"},

3https://github.com/openai/
openai-cookbook/blob/main/examples/How_
to_format_inputs_to_ChatGPT_models.ipynb

4As of the time the project is initialized. OpenAI may
change a bit in the documentation and examples in the GitHub
repository.

6396

https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb

Normal Instruction Step-EM / State-EM

2-shot 3-shot 5-shot

NL Functor + NL Argument 22%/92% 34%/93% 36%/95%
Synthetic Functor + NL Argument 14%/90% 20%/93% 30%/94%
NL Functor + Synthetic Argument 44%/95% 30%/94% 74%/98%
Synthetic Functor + Synthetic Argument 19%/92% 22%/93% 52%/96%

Counter-Intuitive Instruction (On NL)

NL Functor + NL Argument 10%/77% 6%/75% 0%/84%
Synthetic Functor + NL Argument 18%/88% 10%/88% 14%/90%
NL Functor + Synthetic Argument 20%/81% 10%/78% 8%/88%
Synthetic Functor + Synthetic Argument 13%/89% 20%/90% 12%/90%

Counter-Intuitive Instruction (Truth Values Switching)

NL Functor + NL Argument 6%/72% 2%/69% 2%/79%
Synthetic Functor + NL Argument 10%/85% 10%/84% 6%/87%
NL Functor + Synthetic Argument 8%/71% 8%/73% 0%/83%
Synthetic Functor + Synthetic Argument 19%/85% 14%/87% 12%/89%

Table 4: Experiment results on ChatGPT Robustness check for state tracking in 10-box environment. Metrics
here are presented in the format of “Step-EM / State-EM”. We use 50 samples with various number of steps for
experiments.

30 {"role": "user", "content": "[
Sample−2−Input]"},

31 {"role": "assistant", "content": "[
Sample−2−Ground−Truth−Answer]"},

32 ...
33],
34 ...,
35)

Example 7: Faked Multi-Round Input Format

We do a prior study on experimenting with these
two formats and find they give pretty similar Step-
EM and State-EM performance in fully NL and
fully Synthetic Language settings (usually the per-
formance difference is less than 5%). But faked
multi-round format would insert many more tokens
(leading to a higher cost) in the requests and can
make the OpenAI server reject to respond, leading
to low response rates. Therefore, to save budgets,
in the main text of the paper, we only report the
results using the traditional format. Another reason
is that to see how much our findings on ChatGPT
can generalize to other models, we also replicate
some of our experiments when comparing with
other models in Appendix E. Some models there
may not support faked multi-round input format.

For response parsing, we just follow the instruc-
tion to parse the JSON-style response described in
the same notebook and obtain the model output.
For decoding parameters, we just follow default
OpenAI API setting.

Normal Instruction
State-EM, 2-shot

ChatGPT Text-Davinci-003

NL Functor + NL Argument 92% 96%
Synthetic Functor + NL Argument 90% 94%
NL Functor + Synthetic Argument 95% 94%
Synthetic Functor + Synthetic Argument 92% 88%

Table 5: Experiment Results Comparing ChatGPT and
Davinci-003. Metrics here are State-EM. We use 50
samples with 2-shot setting and various number of steps
for experiments.

D Post-Processing to Extract Answers
from OpenAI API Responses

We note that ChatGPT can return answers not
strictly follow the given format. So we do a light-
weight postprocessing mainly using regular expres-
sions to make sure we parse ChatGPT results appro-
priately. Specifically, we first clean out the space
and newline characters at the beginning and end of
the answer. We then use the following regular ex-
pression to match all logical statements and extract
groups of functors, arguments and truth values:

36 ([a−zA−Z0−9]+)\(([a−zA−Z0−9]+−\d)\)=(
True|true|False|false)

E Comparison with other models

To clarify whether our observations can be gen-
eralized to other popular models, we choose one
strong open-sourced competitor chatbot (according
to ChatArena (Zheng et al., 2023)): Vicuna-13b—
and we also compare against the performance of
GPT-3-davinci-003 (it is believed that ChatGPT is
a variant fine-tuned over GPT-3).

6397

Comparison between Vicuna-13B On
ChatArena (Zheng et al., 2023), Vicuna-
13B (Chiang et al., 2023) is voted to be the
most close-to-ChatGPT chat models based on
LLAMA (Touvron et al., 2023). We feed the same
input to Vicuna and find the outputs are hard to
parse and often incomplete. Even when there are
no counter-intuitive instructions and we give 5
in-context samples, the best observed State-EM
(in SL environment) is only 32%. Compared
with ChatGPT (94%), there seems a big gap on
the capability of situational understanding for
open-source models.

Comparison between GPT-3.5 and ChatGPT
Due to the budget limit and context length limit of
GPT-3.5, we only compare ChatGPT performance
with GPT-3.5 (Davinci-003) on 2-shot. The experi-
ment results are in Table 5. We can see Davinci-003
achieves a similar performance as ChatGPT.

6398

