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Abstract

Feature attribution scores are used for explain-
ing the prediction of a text classifier to users
by highlighting a £ number of tokens. In this
work, we propose a way to determine the num-
ber of optimal k tokens that should be dis-
played from sequential properties of the at-
tribution scores. Our approach is dynamic
across sentences, method-agnostic, and deals
with sentence length bias. We compare agree-
ment between multiple methods and humans
on an NLI task, using fixed £ and dynamic
k. We find that perturbation-based methods
and Vanilla Gradient exhibit highest agreement
on most method—-method and method—human
agreement metrics with a static k. Their ad-
vantage over other methods disappears with
dynamic ks which mainly improve Integrated
Gradient and GradientXInput. To our knowl-
edge, this is the first evidence that sequential
properties of attribution scores are informative
for consolidating attribution signals for human
interpretation.

1 Introduction

Feature attribution scores are a glimpse behind the
scenes of neural models, or at least that is the
promise. Various interpretability methods have
been developed that can generate attribution scores
to interpret the degree to which a language model’s
features (tokens) contributed to the predicted label.
Howeyver, attribution values from different methods
can vary considerably even on the same instance
(Madsen et al., 2022, i.a.). Contradictory interpreta-
tions cast doubts on their usefulness and reliability
in a practical setting.

When comparing attribution methods, the focus
commonly lies on assessing agreement with hu-
man explanations (often referred to as plausibility
(Jacovi and Goldberg, 2020)) and on agreement be-
tween methods (Neely et al., 2022; Krishna et al.,
2022). However, the evaluation procedures have
not been standardised yet and varying influential
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Figure 1: Dynamic k versus fixed &k (Vanilla Gradient).

factors such as the exact task, data, and model
have led to contradictory conclusions. For exam-
ple, Attanasio et al. (2022) find that perturbation-
based methods better agree with human preferences
than gradient-based methods, while Atanasova et al.
(2020) report the reverse tendency.

A factor that may also influence results but has
been largely understudied is the impact of the cho-
sen number of k most salient tokens that are taken
into consideration. Previous analyses either use a
fixed value of k or determine the most salient to-
kens based on a fixed threshold for the attribution
values. A clear drawback of using a fixed num-
ber of k£ is that it can result in excluding tokens
with scores close to the top-k and including tokens
with low scores, disregarding significant score gaps
with truly important tokens. Jesus et al. (2021) set
k to a fixed value of six and examine the effect of
visualizing the most salient features on decision-
making accuracy, time, and agreement for a fraud
analysis task. Bastings et al. (2022) set k to the
low fixed values of 1 and 2 as their analysis focuses
on the identification of specific shortcut cues in a
closed experimental setup. Camburu et al. (2019)
determine k using a fixed threshold and identify
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tokens as salient if their attribution is > 0.1. When
visualizing attributions to users, they use constant
values of k (5 and 10). Absolute attribution scores
tend to decrease for sentences with a larger number
of tokens which is not captured by their threshold-
based approach. Krishna et al. (2022) determine &
as a 1/4 fraction of the average sentence length in
the data and setitto 11.

As token-level agreement generally increases the
closer k gets to the number of tokens in a sentence
(see Appendix C for a visualisation of the sentence
length bias), the evaluation of attribution methods
is clearly top-k dependent. Li et al. (2020) indicate
that intrinsic model evaluation is generally sensi-
tive to different values of k but do not measure its
effect on agreement. Both Neely et al. (2022) and
Krishna et al. (2022) find consistent disagreement
between attribution methods, but do not account
for the influence of &.!

Contributions In this paper, we systematically
explore the role of k on the observed method-
method agreement and method—human agreement
for extracting explanations for a natural language
inference task. For this purpose, we develop the
new metric agreement@k. We propose to deter-
mine k dynamically for each method and each in-
stance based on the sequential properties of the
attribution profile. Our approach is inspired by
methods for event detection and detects attribution
peaks in a method-agnostic fashion that circum-
vents the sentence-length bias by allowing different
values of k for each instance. We find that:

» agreement at the token level is sensitive to dif-
ferent values of k£ and the effect varies across
attribution methods;

* determining k with respect to attribution pro-
files consolidates the disagreement between at-
tribution methods, in particular for Integrated
Gradient and GradientXInput.

We take a novel perspective on human attribution
evaluation by interpreting it as a ranking task.

2 Experimental Setup

We fine-tune a model on a natural language in-
ference task and analyze the agreement between
feature attribution methods.

TAll analyses are available at: https://github.com/
jbkamp/repo-Dynamic-K.

Data We use the e-SNLI dataset with the default
split of 549,361 instances for training, 9,842 for
development, and 9,824 for testing (Camburu et al.,
2018). Each instance consists of a premise, a hy-
pothesis, and an output label that indicates the se-
mantic relation between the premise and the hy-
pothesis: contradiction, entailment, neutral. Each
premise is paired with three hypotheses (one for
each label) to obtain balanced classes. Instances
span 21 tokens on average (5-113). 6,325 anno-
tators highlighted tokens that they found most im-
portant to explain the gold label (avg. number of
highlighted tokens: 443). We used the dev and test
instances which were annotated by at least three
annotators (we used dev for exploration, and test
for our experiments).

Backbone Model We fine-tune DistilBERT
(Sanh et al., 2019) using ten different random seeds
and select the median model, i.e., the model with
the least variation in attribution profiles compared
to the other nine models, for further analysis.” The
model yields a performance of 0.89 F1 on both the
dev and test set.

Feature Attribution We use the Ferret package
v0.4.1 (Attanasio et al., 2023) to calculate attri-
butions using the gradient-based methods Vanilla
Gradient (Simonyan et al., 2014) and Integrated
Gradient (Sundararajan et al., 2017), and the
perturbation-based methods Partition SHAP (Lund-
berg and Lee, 2017) and LIME (Ribeiro et al.,
2016). For the gradient-based methods, we use
both the plain gradients and the gradientXInput
version for which the gradient is multiplied by the
input token embeddings (Shrikumar et al., 2017).
Hence, we examine a total of six methods.

Evaluation Recent studies evaluate feature attri-
butions as a ranking task. Atanasova et al. (2020)
calculate the mean average precision (MAP) com-
pared to human labels and Bastings et al. (2022)
restrict the evaluation to the top k ranks (MAP@k)
but it remains an open question how k is selected.

An attribution method A assigns an attribution
vector a = {ay, ag, ...,a,} to a sentence consist-
ing of tokens s = {wy, wa, ..., w,} so that each
a; indicates the salience of token w; for the pre-
dicted output label. We determine the fopk, =
{t1, 12, ..., tx} by selecting the k tokens with the
highest attribution values. We propose a new metric

2See Appendix A for implementation details on the model
selection.
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Figure 2: Mean agreement @k for pairs of attribution methods (left) and between methods and humans (right).

for comparing m attribution methods Ay, ..., A,
by calculating sentence-level agreement@ k based
on token relevance. Relevance for a token w; is
determined by the ratio of methods that include the
token in the fopk. A high relevance score indicates
that a token is assigned high attribution by many of
the compared methods.

Aj=1
Relevance r(w;) = (1)
m
> r(wi)
Agreement@Fk(s;) = nwl:l )
> fr(wi) >0

This way, tokens not included in the top-k se-
lection of any method are assigned a relevance
score of zero and are not considered in the cal-
culation of agreement@k. This approach avoids
artificially inflating the agreement@#£ score by hav-
ing high agreement on non-relevant tokens. The
agreement@fk for a dataset of sentences D =
{s1,82,...,84} is computed by averaging the
sentence-level agreement @k scores.

d
> agreement@Fk(s;)

s;i=1

Agreement@Qk (D) = 3)

d

We evaluate our experiments comparing mean
agreement@k between the six attribution methods
on the test data of e-SNLI.

3 Agreement at Fixed &

We compare attribution methods with each other
and with human labels and analyze the role of k.

Method-Method Agreement We identify three
groups of mean agreement@Fk across pairs of at-
tribution methods in Figure 2a. The agreement
between Partition SHAP-LIME clearly stands out
(yellow line), in particular for small k. All com-
parisons involving Integrated Gradient or Gradient-
XInput end up in the group with the least agree-
ment (purple lines) and the remaining pairs obtain
medium-level agreement (green lines). Agreement
increases for bigger k£ for pairs of methods with
low to medium agreement. Our results contrast pre-
vious work which identified higher pairwise agree-
ment between gradient-based methods compared to
perturbation-based methods (Krishna et al., 2022).

Method—-Human Agreement We calculate to-
ken relevance for the three human annotators as
the ratio of annotators who selected the token,
therefore in the range [0,.33,.67,1]. When we
compare the attribution methods to human anno-
tations, we find that the two perturbation-based
methods lead to higher agreement than the gradient-
based ones (Figure 2b) and that higher values of
k generally lead to better agreement. Our findings
are partly in line with Attanasio et al. (2022) in
that perturbation-based methods are more plausi-
ble than most gradient-based methods, and partly
with Atanasova et al. (2020) for finding that Vanilla
Gradient agrees more with human rationales than
perturbation-based methods which in turn agree
more with human than most of the other gradient-
based methods. We contrast Ding and Koehn
(2021) who find higher plausibility for Integrated
Gradient over Vanilla Gradient. While consistency
in performance across studies sheds light on the
interrelatedness between methods, it is important
to exercise caution when generalizing evaluation
results across different models, datasets, and tasks.
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4 Dynamic Top-k Estimation

We have seen that the value of £ has a strong
influence on the agreement between methods.
Perturbation-based methods are more in line with
human annotations for smaller settings of k£ while
the attribution profiles of gradient-based methods
require relatively larger settings of k to obtain a
similar reflection of human preferences. We pro-
pose to determine the number of k salient tokens
dynamically based on the attribution profiles of the
methods.

Inspired by event detection in time series (Taylor
(2000), Palshikar et al. (2009), e.g.), we consider at-
tribution profiles as sequences of token-level scores
that indicate the local presence or absence of a
peak. Each peak is a point in the sequence (i.e., the
sentence) to which the model attributed a higher
salience compared to neighboring points. We apply
peak detection based on local maxima in the attri-
bution profile to estimate a k that is dynamic across
method—instance combinations. The attribution
profile of each individual method thus serves as the
indicator of its peaks. A local maximum is defined
as a point x; in a sequence such that it is greater
than both its immediate left neighbor, x;_1, and its
immediate right neighbor, z;,;. We additionally
enforce the constraint that x; needs to be higher
than the mean attribution of the sequence, corre-
sponding to above-average model behavior. With
our dynamic k approach, we favor relative differ-
ences in attribution values over absolute thresholds
for identifying the top-k tokens. Figure 3 shows
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Figure 3: Mean agreement@k: dynamic &k (bottom
left) and difference (top right) compared to fixed human
average k = 4. The brighter the color, the higher the
agreement.

that when determining & dynamically, the agree-
ment of Integrated Gradient and GradientXInput
with the other methods increases. We find that dy-
namic k indeed varies across instances and across
methods. For example, attributions by Partition
SHAP leads to fewer local maxima and therefore to
lower values for dynamic k (4.511.7 on average)
compared to IntegratedGradient (7.3+2.6). We
note that these ranges are close to human prefer-
ences for k£ on the NLI task (443).

5 Further Insights

We briefly discuss complementary insights to the
main results, as well as two examples of dynamic
k on instances from the dataset.

Average Human Preference Human annotations
of token-level explanations were available for this
task and we compared the effect of dynamic k to
the average number of annotations. However, these
types of annotations are expensive, which often
leads to selecting a fixed k. Normally, a valid ap-
proach is choosing a fixed k that is close to the av-
erage number of annotated tokens per sentence, as
the resulting ranges of dynamic k for our methods
reflected. In absence of annotations, this average
number is unknown.

Dynamic £ highlights the implications of choos-
ing a fixed & that deviates from the average. We ob-
serve a clear distinction between lower and higher
than average for GradientXInput and for Integrated
Gradient. Table 1 reports the improvement on mean
agreement@k by the dynamic approach over fixed
values. Generally, the lower fixed k, the more im-
provement we observe. For k > 5 there is no
improvement.

k= 1 2 3 4 )

Grad XI +.10 +.08 +.05 +.02 +.01
IntGrad +.01 +.04 +.02 +.01 +.00

Table 1: Absolute difference on mean agreement@k by
dynamic k over fixed & (GradientXInput and Integrated
Gradient). Summed method-method agreement scores
are reported. Dynamic k is compared to different values
of fixed k € [1,2,3,4,5].

This further suggests that, in the absence of human
annotations, dynamic k£ may provide an estimate of
the average human preference for k.

Peaks as Signals We analyse two examples to
better understand the dynamic & approach. Figures

6193



1 and 4 show the application of dynamic k versus
fixed k set to 3, 5, and 7 for two different methods.
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Figure 4: Dynamic k versus fixed k (Integrated Gradi-
ent).

In Figure 1, dynamic k highlights the same top
three tokens that have been selected by fixed &,
namely reading, paper and argue. Tokens that are
only selected by k = 5 and k = 7 are not included
as they do not form peaks in the attribution profile.

Figure 4 illustrates differences in the attribution
patterns captured by fixed k£ and dynamic k. While
fixed k selects any tokens in descending order of
attribution score, dynamic k captures signals. It
highlights two peaks that were not captured by
fixed k (due to their lower absolute values) because
they stand out relative to the surrounding tokens.
Signals can be described as tokens that represent
a salient part or phrase in the sentence beyond the
token level (e.g. a man in a suit; a lady). By
focusing on signals, dynamic k skips tokens with
a relatively high score but that can be attributed to
the same signal of a neighboring salient token.

6 Discussion and Conclusion

Attribution methods disagree on the salience of to-
kens. Our analyses show that the observed level of
agreement is sensitive to the number of k tokens
taken into consideration. We propose a dynamic &
that can be directly applied to any attribution pro-
file. In contrast to fixed k, it takes local relative
differences of the attribution values into account.
Our analyses with dynamic & indicate that different
attribution methods capture varying degrees of at-
tribution scope. Determining dynamic &k purely on
attribution profiles yields a level of plausibility that
is comparable to determining the average human

preference for k£ and is therefore a viable alternative
in the absence of task-specific human data. Further-
more, as dynamic k is estimated for each instance
separately, it can account for sentence length bias.

Our peak detection method is an intuitive ap-
proach for determining salient tokens based solely
on attribution profiles. It focuses on isolated key
tokens which might not adequately capture human
tendencies of chunking words into phrases. In fu-
ture work, we plan to analyze how our findings
generalize to other task and model conditions and
want to explore alternative methods to dynamically
determine k£ by combining the attribution with lin-
guistic information towards better span-level vi-
sualisations (see Figure 5). This line of research
needs to be closely coupled with cognitive analyses
of human preferences.

Span 3,

Span
Span 2

Figure 5: Towards future research on span-based rele-
vance based on dynamic k.

Limitations

In this study, we encountered certain limitations
that should be taken into account when interpret-
ing the results and when conducting subsequent
research. First, due to pragmatic constraints, we
focused on a single model and a selected set of
attribution methods for comparison, which restricts
the direct generalisation of our findings to meth-
ods outside this set. However, the proposed metric
agreement@ k and the concept of dynamic £ can be
readily applied to evaluate other methods in future
research. The scarce availability of multiple human
rationales at the token level, necessary for creating
human aggregation scores, limited our ability to
expand the scope of this research. Furthermore,
it is worth noting that the aggregation scores in
our study fall within the range of [0,.33,.67,1].
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Consequently, the precision of the overlap between
detected human peaks may be compromised when
the number of annotators is low. The resolution of
ties in these scores was resolved randomly, which
introduces a potential source of improvement and
variability in the results. While these limitations
should be acknowledged, they do not invalidate
the overall contributions of our research. They
provide valuable insights into the effectiveness of
the selected methods and highlight avenues for fu-
ture investigations, such as incorporating additional
datasets.

Ethics Statement

In the field of interpretability, results need to be
communicated with particular caution to avoid an-
thropomorphizing neural models. With respect to
this study, caution should be exercised when inter-
preting findings from attribution methods. Attri-
bution scores cannot be blindly relied upon to pre-
cisely determine model functioning, as they can be
influenced by experimental factors such as task and
model performance. To avoid drawing generalised
conclusions, it is advisable to employ multiple met-
rics when studying feature attribution.
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A Average Pairwise Difference (APD)

The Average Pairwise Difference (APD) indicates
how the sets of attribution scores yielded by dif-
ferent combinations of classification models with
attribution methods differ from one another.

First, it is possible to compute the Average Dif-
ference (AD) between two matrices 7’1 and T2 of
the same size. AD is a measure of dissimilarity
and provides an indication of the overall average
magnitude of differences between the matrices. In
our case, 17’1 and 72 are two attribution matrices
and are constructed by concatenating the vectors of
token-wise attribution scores a = {ay, as, ..., an}
(computed for all / attribution methods A) for each
instance in our dataset of size d, after O-padding
as to maximum sentence length. More precisely,
let T'1 and T'2 be two matrices of size (d * [) X m,
where 7 is the number of sentences in the dataset,
is the number of attribution methods and m is max-
imum sentence length. The AD between matrices
T'1 and T2 is calculated by taking the average of
the element-wise absolute differences between the
corresponding elements of 7'1 and 7'2.

We then construct two attribution matrices and
calculate AD for every pair of runs from the pool
of 10 models each trained with a different random
seed, assigning an APD score to each model by av-
eraging the AD scores for that model’s attribution
matrix in pairwise relation to the other models’ at-
tribution matrices. The model with lowest APD (in
bold in Table 2) was selected for our experiments.

run_# DistilBERT

run_1 0.00613
run_2 0.00620
run_3 0.00611
run_4 0.00599
run_5 0.00606
run_6 0.00628
run_7 0.00614
run_8 0.00595
run_9 0.00604
run_10 0.00621

Table 2: Average Pairwise Difference between attribu-
tion scores produced by different runs trained on 10
different random seeds.

B Fine-tuning and Analysis

The input instances for fine-tuning are premises and
hypotheses concatenated by a single [SEP] token.
We removed 6 instances from the training set where
the hypothesis was missing. The main hyperparam-
eters for our models are the following: 15 training
epochs with early stopping, training batch size of
32, learning rate set to 5e-6, weight decay set to
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0.01 and warmup steps set to 6% of the total. We
found that computing the attributions for a larger
model such as RoBERTa (Liu et al., 2019) takes
significantly longer and aligning the attributions
with human annotated text is less straightforward
for tokenisation reasons. When pre-processing the
human annotations, we assign a 0 score to punctua-
tion characters as they did not receive a dedicated
annotation label.

C Sentence Length Bias
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Figure 6: Sentence length bias on overall agreement be-

tween methods at different values of top-k, for different
groups of instances based on sentence length.
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