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Abstract

We investigate the effect of sub-word tokeniza-
tion on representations of German noun com-
pounds: single orthographic words which are
composed of two or more constituents but often
tokenized into units that are not morphologi-
cally motivated or meaningful. Using variants
of BERT models and tokenization strategies
on domain-specific restricted diachronic data,
we introduce a suite of evaluations relying on
the masked language modelling task and com-
positionality prediction. We obtain the most
consistent improvements by pre-splitting com-
pounds into constituents.

1 Introduction

Contextual word embedding models such as BERT
(Devlin et al., 2019) have opened up exciting av-
enues in computational lexical semantics. But
since their vocabulary size is limited, these models
rely on sub-word tokenization, potentially splitting
words into smaller units that are not morphologi-
cally or semantically motivated. This linguistically
counter-intuitive mechanism does not seem to be
detrimental, at least judging by the models’ success
on downstream tasks.

We challenge this assumption by investigating a
type of linguistic structure where it is especially im-
portant for sub-word representations to be meaning-
ful. Specifically, we vary and analyze BERT repre-
sentations of German noun compounds.1 These are
conventionally represented as a single orthographic
word (e.g. Zitronensaft ‘lemon juice’) with two
clearly identifiable constituents (Zitrone ‘lemon’
and Saft ‘juice’). But BERT would tokenize our
example as [Zit, ##ronen, ##sa, ##ft], ignoring
both constituents and instead including semanti-
cally unrelated sub-word fragments which occur
in a highly diverse set of also irrelevant contexts.

1We focus our investigation on the subset of noun-noun
compounds for simplicity.

Moreover, these suboptimal representations are es-
pecially problematic in under-resourced settings,
where a compound may only occur a few times.

This study aims to identify the most robust BERT
representations of German compounds by experi-
menting with variants derived from the base and
re-trained models using three tokenization strate-
gies: the default tokenizer, a re-trained tokenizer,
and pre-splitting compounds into their constituents.
We evaluate on (i) the model’s likelihood of predict-
ing a compound in the masked language modelling
task, additionally using the semantic relatedness
of these predictions to the target compound as de-
fined by GermaNet paths; and (ii) the correlation of
model-internal measures of compound–constituent
similarity with human compositionality ratings. In
order to maximally enforce the need for robust
representations, we run the experiments2 on a di-
achronic corpus as a notoriously restricted type
of data. The most consistent improvements are
obtained when compounds are pre-split into con-
stituents; as a simple but efficient preprocessing
step, this has direct implications for contextual rep-
resentations of other types of complex words.

2 Prior Work

Impact of tokenizers on contextual embeddings
Rust et al. (2021) and Agarwal et al. (2023) eval-
uated multilingual contextual language models on
downstream tasks such as question answering and
event detection. They noted that a lack of represen-
tation of some languages in the tokenizer vocabu-
lary for models like multilingual-BERT hurts the
performance, but that this effect can be mitigated
with a monolingual tokenizer (Rust et al., 2021)
or learning a function to aggregate sub-word to-
kens and to compensate for the relatively higher
fragmentation of tokens in under-represented lan-
guages (Agarwal et al., 2023). These works were

2Our code is available at https://gitlab.com/cjenk/
representations-composition.
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an important step toward addressing the negative
effect that sub-word-tokenization can have on se-
mantic representation, going beyond the approach
by Devlin et al. (2019) to use the first sub-word
token as the representation of a longer sequence.

Semantic representation in contextual embed-
dings Shwartz and Dagan (2019) found contex-
tualized embeddings to be more successful than
static embeddings as a basis for classification tasks
involving detecting semantic differences from the
typical meaning of several kinds of multi-word
expressions. Ethayarajh (2019) explored the geom-
etry of contextual vector spaces, showing that ran-
domly selected words’ vector representations are
more similar (via cosine similarity) than would be
expected if the vectors were distributed uniformly.
They also found that vector representations formed
from later layers were more context-specific, and
those from earlier layers functioned better when
used to create static representations. These works
will inform our baseline expectations for forming
contextual semantic representations.

3 Resources

Here we describe our corpus of historical German
texts used to train and adapt semantic representa-
tions, human compositionality ratings of German
compounds, and the lexical taxonomy GermaNet.

Deutsches Textarchiv – DTA The DTA (Berlin-
Brandenburgischen Akademie der Wissenschaften,
2022) is a diachronic, curated selection of Ger-
man texts of various genres. We use a portion of
the corpus (1814–1900) to train and fine-tune our
models. We rely on the orthographically modern-
ized, normalized, lemmatized versions of the texts
made available in the DTA. All of ≈4M sentences
(≈89M tokens) were shuffled, and 10% were held
out as evaluation data.

Human compositionality ratings Composition-
ality ratings measure the degree to which the com-
pound’s head or modifier constituents contribute to
the meaning of the compound, in our case ranging
from 1 (totally unrelated to compound meaning) to
6 (fully accounts for compound meaning). We rely
on the ratings for German noun-noun compounds
in the GhoSt-NN dataset (Schulte im Walde et al.,
2016), but exclude any compound occurring fewer
than 20 times in our training data, leaving 185
noun-noun compounds as our set of test items.

bert-base-german-cased3 This model was used
as a basis for fine-tuning on in-domain data
from DTA. It was originally trained on German
Wikipedia, OpenLegalData,4 and news articles of
unknown provenance. Outside of quotations from
older, famous works, there should be minimal over-
lap between this pretraining data and data from
DTA.

GermaNet is a taxonomy of ‘synsets’, sets of
one or more words that are synonymous (Hamp
and Feldweg, 1997; Henrich and Hinrichs, 2010).
The primary connection between synsets of nouns
is established by hypernymy and hyponymy rela-
tionships. Paths and distances in this network can
be used as a measure of semantic distance (Kim
and Baldwin, 2013; Tahmasebi and Risse, 2017).

4 System Configurations

Table 1 provides an overview of our representation
variants. We evaluate bert-base-german-cased
with a range of tokenizer and preprocessing con-
figurations described below. For type-level repre-
sentations, we also use word2vec (Mikolov et al.,
2013).

Configuration Pre-Train DTA Re-Train Split
base V X X X

base-ft-DTA V V X X
voc-rt-DTA X V V X

split X V V V

Table 1: BERT model configurations. V: presence,
X: absence.

Re-training or fine-tuning BERT configurations
base and base-ft-DTA use the base tokenizer vo-
cabulary, while voc-rt-DTA and split re-train
the tokenizer.5 All configurations other than the
base BERT model are trained on DTA data. The
base-ft-DTA configuration retains the base tok-
enizer’s vocabulary, so its training on DTA data
constitutes fine-tuning of the base model.

Aggregating layer and token representations
Following the suggestion of Schlechtweg et al.
(2020), we vary which slices of the BERT embed-
ding layers are used as a representation of a token,
taking the sum of either the first, middle, or last
four layers (out of 12). Following Montariol et al.

3https://www.deepset.ai/german-bert
4http://openlegaldata.io/research/2019/02/19/

court-decision-dataset.html
5Changes to the model’s tokenizer vocabulary necessitate

learning word embeddings from scratch.
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Compound Base Tokenizer Re-Trained Tokenizer Split Tokens
Geschmackssache (matter of taste) Geschmack + ##ss + ##ache Geschmack + ##ssache Geschmack + Sache
Zitronensaft (lemon juice) Zit + ##ronen + ##sa + ##ft Zitrone + ##ns + ##aft Zitrone + Saft
Schauspiel (play [theater]) Schauspiel Schauspiel schauen + Spiel
Traumbild (vision [imagined]) Traum + ##bild Traum + ##bild Traum + Bild

Table 2: Example noun compounds and their tokenizations.

(2021), we average their representations to com-
bine the representations of several tokens, whether
they are whole-word or sub-word tokens.

Training settings All BERT models (other than
the original base configuration) were run for 5
epochs over the training data, with a learning rate of
5e-5, using a single Nvidia GeForce RTX A6000
GPU, running for approximately 54 hours. Train-
ing on DTA data used default settings from De-
vlin et al. (2019) (masking 15% of tokens, 768-
dimensional hidden layer, vocabulary of 30k), with
a maximum sequence length of 128 tokens. The
word2vec models were trained over 5 epochs, with
a minimum term count of 1 and no limit on the
vocabulary size, with all other parameters set to
default values, using the gensim Python package
v.4.3.1 (Řehůřek and Sojka, 2010).

Compound pre-processing The split configu-
rations for BERT and word2vec perform compound
splitting as pre-processing before training. We use
the SimpleCompoundSplitter (Weller-Di Marco,
2017), which relies on word frequency (at the level
of whitespace-delimited tokens) and part-of-speech
tags from the training corpus. We conducted a post-
hoc evaluation of the splitter using a list6 of nomi-
nal compounds from GermaNet. We adopted the
formulations of precision:

correct split

correct split + wrong split

and recall:

correct split

correct split + wrong split + not split

as defined by Weller-Di Marco (2017), and ob-
tained a precision of 0.69 and a recall of 0.64. This
reduced performance in comparison to the preci-
sion of 0.92 and recall of 0.91 in Weller-Di Marco
(2017) reflects the smaller size of the data that we
used to train the splitter (they used ≈1.5 billion
tokens to our ≈89 million), as well as the inclusion
of many modern terms in the test set used.

6We used version 13.0, which was the closest available
version to the list used by Weller-Di Marco (2017).

5 Evaluation

Here we present our two evaluation perspectives:
the in-context masked-language-model prediction
of target compounds, and the decontextualized ex-
ploration of how the compounds and constituents
are represented in each model’s embedding space.

5.1 Masked Language Model (MLM) Task

If a BERT model has learned an adequate represen-
tation of a target compound, we expect it to gener-
ate (a subpart of) that compound as a mask-filler in
an appropriate context. For each target compound,
we extract its occurrences from the DTA evaluation
data and construct query sentences by replacing the
compound token with a number of [MASK] tokens.
This number corresponds to the number of tokens
in which the compound would be split by that con-
figuration’s tokenizer (see examples in Table 2).
We then compute two evaluation metrics by (i) di-
rectly comparing the predictions against the targets
and (ii) characterizing their semantic relatedness
based on an external linguistic resource.

Directly predicting compounds We take the top
10 predictions7 for each mask token (predicted si-
multaneously), and match each with the nth sub-
word token of the target compound (e.g. for Zitro-
nensaft, the base tokenizer yields n = 4). A partial
match is formed if any of the n mask predictions
contains the nth sub-token of the target compound
(accuracy by dividing by the total number of mask
tokens predicted), and a full match is formed if all
n mask predictions contain matching sub-tokens of
the target compound (accuracy by dividing by the
total number of compounds in the evaluation data).

GermaNet scoring of MLM predictions All
possible combinations of predicted tokens from
the MLM task evaluation (limited to the top five
predictions for each mask token due to the combi-
natorial complexity of the operation) are queried
in GermaNet, and are semantically compared us-
ing the path similarity measure (Wu and Palmer,

7This threshold is arbitrary.
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1994), yielding a score from 0.0 (no path possible)
to 1.0 (exactly matching synsets) against the synset
representing the compound as a whole. To form
queries from our model outputs, we combine sub-
word-tokenized continuation tokens with the pre-
ceding token(s), remove all ## symbols and query
each word separately. When a word is included
in multiple synsets, the maximum similarity score
is chosen; scores from multiple-word phrases are
summed. Lemmatization using spaCy8 is applied if
a candidate word is not initially found in GermaNet.
The path similarity scores are averaged over only
the number of words successfully queried in Ger-
maNet. A separate precision measure is provided
to quantify the proportion of queried words that did
not return any result in GermaNet.

Results Table 3 shows that the split and the
base-ft-DTA configurations performed best on the
MLM prediction task, with comparable scores in
the partial and full match conditions. There was
little variance across configuration scores in the
GermaNet path similarity measure. There was,
however, a wider spread in precision scores, favor-
ing the two configurations with re-trained tokenizer
vocabularies (voc-rt-DTA and split).

Configuration Prediction GermaNet
Partial Full Path Sim Prec.

base 0.06 0.02 0.37 0.11
base-ft-DTA 0.23 0.15 0.37 0.24
voc-rt-DTA 0.10 0.07 0.35 0.40
split 0.26 0.11 0.36 0.52

Table 3: MLM task evaluations over the four prepro-
cessing / tokenizer configurations.

Discussion The poor performance of the base
BERT configuration across tasks confirms the
need for training on in-domain data in a low-
resource scenario. But exposure to in-domain data
while still using the default tokenization strategy
(voc-rt-DTA) was not sufficient for the MLM pre-
diction, and neither was exposure to in-domain data
without re-training the vocabulary (base-ft-DTA)
for matches with the GermaNet vocabulary. The
most successful split configuration seems to
make effective use of the limited training data via
the granularity of tokens enabled by the compound
splitting. We attribute this top performance to the
reduction in the number and to the meaningfulness
of pieces that target compounds are broken into,

8https://spacy.io/models/de v.3.5.0 and using the
de_core_news_sm model

since the compound-splitter almost always outputs
tokens that are not further split by the re-trained
tokenizer. The limitation to hyper- and hyponym
links between synsets, as well as the selection of
maximum similarity scores when more than one
synset is available for a given word could both have
contributed to a flattening of scores.

5.2 Vector Similarity and Human Ratings

A robust representation of a compound should
be positioned in a vector space near to semanti-
cally related terms. We assess this goal based on
the proximity of compounds to their constituents,
which should be higher for more compositional
compounds. Since compositionality prediction is
usually addressed as a type-level task (i.e. collaps-
ing the potentially multiple senses of a word into
a single representation), we compare our BERT
representations against word2vec representations.
We compute cosine scores for all compound-head
and compound-modifier pairs, and evaluate them
against the compositionality ratings mentioned
above, using Spearman’s rank-order correlation co-
efficient ρ. We report results with p ≤ 0.05.

Results Table 4 shows correlations between com-
positionality ratings and cosine scores comparing
compound and head vector representations, which
were most strongly rank-correlated for the base
BERT model using the last segment of hidden lay-
ers. Of the configurations that were trained on
in-domain data, the split configuration (using the
first segment of hidden layers) shows the strongest
correlation. No other configuration had signifi-
cant correlations, including all of the compound-
modifier comparisons.

BERT Configuration Layer Constituent ρ
base last head 0.368
split first head 0.313
base first head 0.288

base-ft-DTA last head 0.287
split mid head 0.282
base mid head 0.261
split last head 0.232

Table 4: Cosine similarity between BERT compound
and constituent vectors ∼ compositionality ratings.

The word2vec unsplit configurations (Table 5)
obtained overall stronger correlations between
vector similarities and compositionality ratings
than any of the BERT configurations, for both
compound-head and compound-modifier pairings.
Regarding the split configurations, the word2vec
split configuration was weaker than the strongest
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word2vec Configuration Constituent ρ
unsplit head 0.525
unsplit modifier 0.371

split head 0.207

Table 5: Cosine similarity between word2vec compound
and constituent vectors ∼ compositionality ratings.

split configuration from the BERT models.

Discussion As the reference embeddings that are
correlated with compositionality ratings in this eval-
uation are decontextualized, it was expected to
observe stronger correlations from the word2vec
models, since they have far fewer parameters to
estimate. The stronger correlation observed from
the base BERT models may be attributable to the
larger size of the pre-training data (24× the DTA
training data). That we observe the strongest base
correlation using the last four layers aligns with
what we would expect, cf. Ethayarajh (2019), that
representations derived from later layers are more
context-specific. We conjecture that the opposite
trend seen in the split configuration, where the
performance declines from the first to mid to last
layers, can be attributed to the lower rate of sub-
word fragmentation there, obviating the benefit of
the greater context-specificity of the last layers.

From the configurations trained on DTA, the
stronger correlations observed from the split con-
figurations may be due to situations where the
compound was correctly split and is also highly
compositional with respect to its head, since the
vector of the compound only differs from the vec-
tor of the head constituent by being averaged
with the modifier’s vector. For example, for
Traumbild ‘vision’ (‘dream’ + ‘image’), the co-
sine similarity calculation in the split configu-
ration is cos(avg(

−−−−→
Traum,

−−→
Bild),

−−→
Bild) (rather

than
−−−−−→
##bild, as in the other configurations). The

average compositionality rating with respect to the
head constituent for our test compounds is 4.21
(slightly compositional), which may have been ad-
vantageous for the split configuration, per the
example above.

6 Conclusion

We endeavored to investigate the effects of sub-
word tokenization on the semantic representation
of German noun compounds with contextualized
embedding models, using the contrasting perspec-
tives afforded by an in-context and a decontextu-
alized evaluation. Splitting compounds prior to
training BERT embeddings resulted in better in-

context performance, thus meeting or surpassing
the fine-tuned base model, while making more ef-
fective use of limited training data. Furthermore,
the split model’s higher performance compared
with the voc-rt-DTA model suggests an advantage
for this pre-processing approach in data-limited set-
tings, as both of these models were only trained
on the DTA data. In the decontextualized evalua-
tion, word2vec models surpassed all BERT models,
where the base model had the best performance,
and the split model was competitive with the fine-
tuned model. It remains to be seen whether the
advantages of splitting compounds would remain if
this technique was applied over the full pre-training
of German BERT, but overall, we recommend pay-
ing closer attention to tokenizer granularity in lim-
ited data contexts.

Limitations

Our analysis is limited to a single language: Ger-
man. Languages like English exhibit similar pat-
terns of noun-noun compound formation, albeit
more often written in open (space-separated) or
hyphenated forms, while languages that are less
typologically similar may use other constructions
(e.g. the noun-preposition-noun pattern seen in Ro-
mance languages) to productively combine nouns.
These other orthographic or grammatical patterns
would likely affect the relative importance of our
conclusions.

The comparisons between models with and with-
out pre-split compounds would have benefited from
an additional configuration, i.e., applying com-
pound splitting to the full German BERT training
set, and training that model from scratch. But the
full set of training data is not immediately avail-
able, and the computational requirements would be
excessive.

Lastly, the two perspectives offered by our eval-
uations (in-context and decontextualized) should
only be interpreted from a complementary perspec-
tive; when considered alone, they each have inher-
ent limitations. In-context performance may lack
generalizability to out-of-domain data, and decon-
textualized representations are to some degree at
odds with the initial model training (where target
compounds always occur in some context).
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