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Abstract

Large language models have become a vital
component in modern NLP, achieving state of
the art performance in a variety of tasks. How-
ever, they are often inefficient for real-world
deployment due to their expensive inference
costs. Knowledge distillation is a promising
technique to improve their efficiency while re-
taining most of their effectiveness. In this pa-
per, we reproduce, compare and analyze sev-
eral representative methods for task-agnostic
(general-purpose) distillation of Transformer
language models. Our target of study in-
cludes Output Distribution (OD) transfer, Hid-
den State (HS) transfer with various layer
mapping strategies, and Multi-Head Attention
(MHA) transfer based on MiniLMv2. Through
our extensive experiments, we study the effec-
tiveness of each method for various student ar-
chitectures in both monolingual (English) and
multilingual settings. Overall, we show that
MHA transfer based on MiniLMv2 is gener-
ally the best option for distillation and ex-
plain the potential reasons behind its success.
Moreover, we show that HS transfer remains
as a competitive baseline, especially under
a sophisticated layer mapping strategy, while
OD transfer consistently lags behind other ap-
proaches. Findings from this study helped us
deploy efficient yet effective student models
for latency-critical applications.

1 Introduction

Large language models have become a crucial com-
ponent in modern NLP. They have achieved excep-
tional performance on various downstream tasks
(Devlin et al., 2019; Liu et al., 2019; Lewis et al.,
2020) and their capability shows consistent im-
provement with more compute, data, and model
parameters (Kaplan et al., 2020; Brown et al., 2020;
Touvron et al., 2023). On the downside, it is becom-
ing increasingly difficult to deploy such models in
real-world environments due to their inefficiency,

i.e. high computation, memory, latency and storage
costs (Xu and McAuley, 2023).

Knowledge distillation (Hinton et al., 2015) is a
promising technique to overcome this challenge by
transferring the knowledge of the original model
(teacher) to a smaller, more efficient model (stu-
dent). This can be conducted in either task-specific
(Turc et al., 2019; Jiao et al., 2020) or task-agnostic
manner (Sanh et al., 2019; Wang et al., 2020).
The latter only requires distilling a single general-
purpose student which can be directly finetuned on
any downstream task. Due to its high convenience,
we focus on this latter approach in this study.

In recent years, there have been various meth-
ods proposed for task-agnostic distillation of Trans-
former language models. The aim of this paper is
to reproduce, compare and analyze the most rep-
resentative methods in this area. We generally fo-
cus on the architecture-agnostic distillation which
imposes no or minimal restriction on the student
architecture1: the representative methods include
Output Distribution (OD) transfer (Hinton et al.,
2015), Hidden State (HS) transfer based on linear
mapping (Jiao et al., 2020; Mukherjee et al., 2021)
and Multi-Head Attention (MHA) transfer based
on MiniLMv2 (Wang et al., 2021).

For HS transfer, the layer mapping strategy be-
tween teacher and student layers plays a signifi-
cant role in overall performance, however, the op-
timal strategy remains unknown or controversial
(Sun et al., 2019; Wu et al., 2020; Ko et al., 2023).
Therefore, we explore a diverse range of strategies
to empirically evaluate each technique.

For MHA transfer, the MiniLMv2 approach has
been shown to achieve state-of-the-art performance,
however, there is relatively little understanding be-
hind its success. Therefore, we develop a novel
variant named DirectMiniLM which is useful for

1By architecture-agnostic, we mean that the student and
teacher can have different architectural parameters (e.g. num-
ber of layers, attention heads, hidden state size, etc).
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Figure 1: A high-level illustration of (a) the Transformer architecture and (b-d) representative distillation methods.
(b-d) denote Output Distribution (OD), Hidden State (HS), and Multi-Head Attention (MHA) transfer, respectively.
Lines between the student and teacher depict which level of information is transferred in each method.

understanding the effectiveness behind MiniLMv2
both theoretically and empirically.

In contrast to most previous studies, all methods
are reproduced on a single unified codebase for fair
and consistent comparison. We also conduct distil-
lation on 4 different student architectures, reducing
the model size in various dimensions to fit various
parameter and latency budgets. Finally, all experi-
ments are conducted on both monolingual and mul-
tilingual settings, distilled from open-source BERT
(Devlin et al., 2019) and in-house XLM-RoBERTa
(Conneau et al., 2020), respectively.

Through our extensive experiments, we criti-
cally analyze the effectiveness of each distillation
method and provide practical advice for both re-
searchers and practitioners working in this area. In
summary, our key findings are:

• MHA transfer is generally the best option for
various student architectures and language set-
tings. By comparison with DirectMiniLM, we
provide novel insights underlying its success.

• While the effectiveness of HS transfer depends
on the layer mapping strategy, it remains as a
competitive baseline. More sophisticated layer
mapping strategy can provide a boost in perfor-
mance, esp. in the multilingual setting.

• Methods relying on OD transfer consistently lag
behind other methods. This shows that classical
OD distillation can be less effective when dis-
tilling complex language models on a general-
purpose objective.

2 Transformer Language Models

First, we briefly review the standard architecture
of Transformer language models (Vaswani et al.,
2017; Devlin et al., 2019). A Transformer consists
of a stack of L Transformer layers, where each
layer comprises two sub-layers: a Multi-Head At-
tention (MHA) layer followed by a fully connected

Feed-Forward (FF) layer (Figure 1, (a)).
Formally, let x denote the input sequence, dh

the hidden state size, and Hi ∈ R|x|×dh the hid-
den state of the ith Transformer layer (H0 denotes
the input sequence embeddings). Given Hi, the
MHA layer first computes the query, key, and value
mappings Qi,a, Ki,a, Vi,a for each attention head
a ∈ [1, Ah], which are combined to obtain the at-
tention head output Oi,a:

Qi,a = HiWQ,i,a (1)

Ki,a = HiWK,i,a (2)

Vi,a = HiWV,i,a (3)

Oi,a = softmax(
Qi,aK

T
i,a√

dk
)Vi,a (4)

Here, dk denotes the attention head size (typically
set to dh

Ah
) and WQ,i,a,WK,i,a,WV,i,a ∈ Rdh×dk

are the learnt weight matrices. The output of the
MHA layer is the concatenation of Oi,a, namely
MHA(Hi) =

⊕Ah
a=1Oi,a.

Next, the MHA layer output is followed by a
position-wise FF layer with an intermediate size
of df and a non-linear activation (we use GELU
(Hendrycks and Gimpel, 2016) in all models). The
hidden state of the next Transformer layer is com-
puted as Hi+1 = FF(MHA(Hi)).2

Finally, to predict the output distribution over the
entire vocabulary V , a linear layer WO ∈ Rdh×|V |
is applied on top of the last hidden state to compute
the logits z = HLWO ∈ R|x|×|V |. The output dis-
tribution can be obtained by applying the softmax
function over z, denoted as softmax(z).

Throughout this paper, we assume that both the
student and teacher are Transformer language mod-
els with LS and LT layers, respectively.

2Both MHA and FF sub-layers have a residual connection
(He et al., 2016) and are followed by layer normalization (Ba
et al., 2016), which are omitted for brevity.
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3 Distillation Methods

Next, we introduce the representative task-agnostic
distillation methods illustrated in Figure 1, (b-d).
For Multi-Head Attention (MHA) transfer, we con-
sider two approaches: MiniLMv2 and its novel
variant DirectMiniLM. For a survey of advanced
methods and topics we could not cover in this study,
please refer to Appendix A.

Output Distribution (OD) Transfer The output
distribution of the teacher contains useful infor-
mation on the relative probabilities of plausible
(even if incorrect) predictions (Hinton et al., 2015).
In OD transfer, the student is trained to replicate
the teacher’s output distribution. This is achieved
by optimizing the following loss function, where
zS , zT denote the student/teacher logits, CE(.) the
cross entropy loss and T the output temperature:

LOD = T 2 · CE
(
softmax

(zT
T
)
, softmax

(zS
T
))

(5)

Hidden State (HS) Transfer Transformer lan-
guage models progressively learn useful and gen-
eralizable features layer by layer. In HS transfer,
the student is trained to predict such useful features
represented in the teacher’s hidden states.

Formally, each student layer is mapped to a set
of teacher layers to be predicted. Let φ(i) denote
the set mapped from the ith student layer, where
∅ ⊆ φ(i) ⊆ [1, LT ]. For each j ∈ φ(i), the hid-
den state of the ith student layer HS

i ∈ R|x|×dSh
is linearly transformed to predict the hidden state
of the jth teacher layer HT

j ∈ R|x|×dTh .3 This is
represented by the following loss function, where
Wj

i ∈ RdSh×dTh denotes the linear transformation
weight and MSE(.) the mean squared error loss:

LHS =
LS∑

i=1

∑

j∈φ(i)
MSE

(
HS
i W

j
i ,H

T
j

)
(6)

One open problem in this approach is the choice
of layer mapping strategy φ. We conduct extensive
experiments to compare a diverse range of strate-
gies, which will be discussed in §4.

MiniLMv2 The MHA layer is a key component
in Transformer language models which controls the
long-range dependencies and interactions within
input texts. MiniLMv2 (Wang et al., 2021) is an

3Note that dSh and dTh are the student and teacher hidden
state sizes which can take different values.

effective method to deeply transfer this module
while allowing different number of attention heads
ASh and ATh for the student and teacher. Their main
idea is to distil the attention relation matrices (Q-Q,
K-K and V-V) obtained by first concatenating the
query (Q), key (K), and value (V) mappings from
all attention heads and re-splitting them into the
same number of attention relation heads Ar.

Formally, let AS
Q,i,a,A

S
K,i,a,A

S
V,i,a ∈ R|x|×dSr

denote the concatenated and re-split queries, keys,
and values for the ith student layer, where a ∈
[1, Ar] and dSr =

dSh
Ar

. For instance,
⊕AS

h
a=1Q

S
i,a =⊕Ar

a=1A
S
Q,i,a, i.e. original queries from ASh atten-

tion heads are simply concatenated and then re-
split into Ar matrices. We use the same notation
for the jth teacher layer, AT

Q,j,a,A
T
K,j,a,A

T
V,j,a ∈

R|x|×dTr , where dTr =
dTh
Ar

. Then, the loss function
of MiniLMv2 can be defined as follows:

LMHA =
∑

α∈{Q,K,V }

Ar∑

a=1

CE
(
RT
α,j,a,R

S
α,i,a

)
(7)

RT
α,j,a = softmax

(AT
α,j,aA

T T
α,j,a√

dTr

)
(8)

RS
α,i,a = softmax

(AS
α,i,aA

S T
α,i,a√

dSr

)
(9)

Here, RT
α,j,a,R

S
α,i,a ∈ R|x|×|x| denote the atten-

tion relation matrices which are computed based
on the matrix products of AT

α,i,a,A
S
α,i,a in eq. (8),

(9), respectively. Intuitively, this aims to transfer
the teacher’s queries (Q), keys (K) and values (V)
in a somewhat indirect way through their matrix
products (Q-Q, K-K and V-V).

However, there is minimal justification for why
this method works effectively. It is also difficult
to directly compare the method against HS trans-
fer since the losses are computed differently. To
better understand MiniLMv2, we propose its novel
variant named DirectMiniLM for our analysis.

DirectMiniLM In DirectMiniLM, we aim to
transfer the teacher’s Q/K/V mappings more di-
rectly through the linear transformation of the stu-
dent’s ones, just as we did in HS transfer. Specifi-
cally, we use the following loss function with the
linear transformation Wα,a ∈ RdSr×dTr :

LDirect
MHA =

∑

α∈
{Q,K,V }

Ar∑

a=1

MSE
(
AS
α,i,aWα,a,A

T
α,j,a

)

(10)

22



DirectMiniLM is important in two aspects. First,
this approach is directly comparable to HS trans-
fer based on eq. (6) with the only difference in
which information you transfer: the hidden states
HT
i → HS

j or the Q/K/V mappings AT
α,i,a →

AS
α,j,a. From this comparison, we can quantify the

precise advantage of transferring each knowledge
in an apples-to-apples manner.

Second, DirectMiniLM is also closely relevant to
MiniLMv2: if we constrain Wα,a to be orthogonal
(i.e. Wα,aW

T
α,a = I) and take the matrix product

for each term within the MSE loss in eq. (10), we
obtain the following loss function:

∑

α∈
{Q,K,V }

Ar∑

a=1

MSE
(
AS
α,i,aA

S T
α,i,a,A

T
α,j,aA

T T
α,i,a

)

(11)
This loss closely resembles MiniLMv2 from eq. (7)
with a minor difference of using MSE loss instead
of CE loss with softmax. Therefore, DirectMiniLM
with certain constraints naturally corresponds to
MiniLMv2. The major difference is in whether
AT
α,i,a is transferred directly (with linear mappings)

or indirectly (with relation matrices): by comparing
these two approaches, we can precisely quantify
the advantage of each optimization technique.

4 Experimental Setup

We explore the task-agnostic knowledge distillation
methods under two settings:4

1. Monolingual Distillation: We train English
students using the open-source BERT (Devlin
et al., 2019) as the teacher. These models are
distilled on the same corpus used for pretrain-
ing BERT, i.e., English Wikipedia (Devlin et al.,
2019) and BookCorpus (Zhu et al., 2015).

2. Multilingual Distillation: We train multilingual
students using our in-house XLM-RoBERTa
(Conneau et al., 2020) as the teacher, and distill
on the CC100 dataset (Conneau et al., 2020),
which consists of data in more than 100 lan-
guages. We only use a small subset of the cor-
pus to conduct our experiments within a reason-
able computation budget while maintaining the
language-wise distribution.

In both settings, we use the Base (12 layer) archi-
tecture for the teacher, as shown in Table 1. For

4Note that we limit our study to encoder-only models and
leave the distillation of decoder-only (Radford et al., 2019) or
encoder-decoder (Lewis et al., 2020) models as future work.

more details on each distillation setup (e.g. hyper-
parameters), please refer to Appendix B.

Student Models To conduct a strong comparison
of the representative knowledge distillation meth-
ods, we train 4 students of varying architectures
and latency/parameter budgets. A summary of the
student architectures, with their parameters and
latency of inference, are shown in Table 1.

Our largest student is a 6 layer model that fol-
lows the same architecture as DistilBERT (Sanh
et al., 2019). We also use the 6 layer model used
in Mukherjee et al. (2021), which has a smaller
hidden size than the teacher. Our smaller 4 and 3
layer students were obtained as recommendations
from a Neural Architecture Search process (Trivedi
et al., 2023) to find good student architectures for
distillation from the XLM-RoBERTa teacher, con-
ditioned to minimize the latency on CPU. Please
refer to Appendix C for more details.

Layer Mapping Strategies The layer mapping
strategy φ is a parameter that needs to be consid-
ered for both HS and MHA transfer. For HS trans-
fer, we explore the following three settings:

1. Single Mapping: We only distil the last (LT th)
teacher layer into the last student layer, which
has been shown to be a simple yet competitive
baseline (Ko et al., 2023).

2. 1-to-1 Mapping: Prior work shows that map-
ping not only the last layer but also the inter-
mediate layers improves distillation (Sun et al.,
2019). In 1-to-1 mapping, we distil one teacher
layer into each student layer by choosing:

• Last LS teacher layers, i.e. φ(i) = {LT −
LS + i} (i ∈ [1, LS ]). Empirically, last
teacher layers capture more high-level (e.g.
semantic) knowledge in their representations
(Tenney et al., 2019; Jawahar et al., 2019).

• A Uniform selection of teacher layers which
chooses every kth teacher layer, i.e. φ(i) =
{ki}, where k = dLT /LSe.5 This method
can also transfer the lower teacher layers,
which empirically captures local (e.g. syn-
tactic) knowledge (Tenney et al., 2019).

3. 1-to-N Mapping: Some works even show that
mapping each student layer to multiple teacher
layers can avoid the loss of information and fa-
cilitate student learning (Wu et al., 2020; Pass-
ban et al., 2021). For 1-to-N Mapping, we ex-

5This strategy is used in DistilBERT (Sanh et al., 2019)
and also known as the "skip" strategy (Sun et al., 2019).
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Model Architecture Monolingual Multilingual Monolingual Latency Multilingual Latency
Params Params GPU CPU GPU CPU

6L-DistilBERT 6, 12, 768, 3072 66 234 5.98 (0.03) 33.28 (0.09) 6.01 (0.06) 34.02(0.06)
6L 6, 12, 384, 1536 23 106 5.69 (0.02) 11.98 (0.07) 5.99 (0.07) 12.52 (0.06)
4L 4, 12, 576, 768 27 153 3.66 (0.01) 9.53 (0.04) 3.98 (0.02) 9.66 (0.05)
3L 3, 12, 384, 1024 16 100 3.02 (0.01) 5.41 (0.08) 3.25 (0.01) 6.01 (0.06)

Teacher 12, 12, 768, 3072 110 277 8.69 (0.08) 64.91 (0.61) 9.47 (0.01) 66.31 (0.57)

Table 1: Model Architectures displayed as [L, Ah, dh, df ]. All parameters are in millions, with the difference
in the monolingual and multilingual parameters due to the vocabulary sizes (30K for monolingual and 252K for
multilingual). All latencies are in milliseconds, measured over 5 runs, with standard deviation in parenthesis.

Distillation Method Layer Mapping Strategies
Single: LT th

HS Transfer 1-to-1: Last, Uniform
1-to-N: Uniform-Cons., Uniform+Last

MHA Transfer Single: LT th, (LT−1)th, (LT−2)th

Table 2: Layer mapping strategies explored in each
distillation method. The same strategies are explored
for MiniLMv2 and DirectMiniLM in MHA Transfer.

plore the following choices of teacher layers:
• A uniform selection of k consecutive layers

(Uniform-Cons.), i.e. φ(i) = [k(i− 1), ki],
where k = dLT /LSe. This avoids the loss
of information since all teacher layers are
mapped to at least one student layer.

• Combining the Uniform and Last strategies
from the 1-to-1 mapping (Uniform+Last).
This selects 2 teacher layers per student layer
based on each 1-to-1 strategy, expecting to
take the best out of both approaches.

For MHA transfer, we always take the single
mapping strategy and distill a single teacher layer
into the last student layer, following Wang et al.
(2021). Specifically, we experiment with the last
three teacher layers as a choice for distillation for
both MiniLMv2 and DirectMiniLM. Table 2 sum-
marizes our layer selection options.

While OD transfer can be conducted from
scratch, we found this converges slowly and does
not perform competitively.6 Therefore, we take the
style of multi-stage distillation (Mukherjee et al.,
2021) and conduct OD transfer after HS transfer,
using the distilled checkpoint from HS transfer.
This approach converges much faster with better
final performance, hence we take this approach as
the representative OD transfer method.

6Our 6L monolingual student takes 49 hours on 30 V100
GPUs to reach acceptable performance, while the same model
achieves better scores in only 10.5 hours when initialized from
the HS transferred checkpoint.

5 Evaluation and Results

For both our monolingual and multilingual models,
we measure performance on the English GLUE
Benchmark (Wang et al., 2019) and report the av-
erage score of all tasks (without CoLA7). For mul-
tilingual models, we provide evaluations on the
XNLI dataset (Conneau et al., 2018), a set of in-
ference tasks which evaluates the model’s perfor-
mance on 15 languages after being finetuned on
only English training data. We report the average
score of all languages for XNLI.

Table 3 summarizes the performance of each
distillation method on 4 student architectures. For
detailed evaluations of each method based on the
best configuration, please refer to Appendix D.
We also provide a comparison against DistilBERT
(Sanh et al., 2019), a representative architecture-
constrained method, in Appendix E.

HS Transfer From Table 3, we can verify that
the performance of HS transfer varies with different
layer mapping strategies, and no strategy dominates
the others in all settings. In the monolingual setting,
we found that the single mapping strategy performs
competitively, which is in line with the findings of
Ko et al. (2023). However, in the multilingual set-
ting, more sophisticated 1-to-N strategies generally
show superiority over the simpler baselines. This
indicates that more supervision from the teacher
can be helpful (and at worst harmless), hence we
advocate for the adoption 1-to-N strategies, esp. in
the challenging multilingual distillation.

OD Transfer As mentioned in §4, we initialize
the model from the HS transferred checkpoints with
each layer mapping strategy. Interestingly, we see a
slight degradation in performance on downstream
tasks compared to only HS transfer, with a signifi-

7Distilled models often perform poorly on CoLA: We hy-
pothesize this is because CoLA is the only syntactic task in
the benchmark as opposed to the other semantic tasks (Xu
et al., 2022). We include the results of CoLA in Appendix D.
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Distillation
Method

Layer Avg. GLUE (Monolingual) Avg. GLUE (Multilingual) Avg. XNLI (Multilingual)
Mapping 6L-

6L 4L 3L
6L-

6L 4L 3L
6L-

6L 4L 3LStrategy DistilBERT DistilBERT DistilBERT

LT
th 84.1 79.4 80.2 78.9 80.8 77.1 78.0 74.7 56.2 55.1 51.6 50.6

Last 83.2 80.4 79.3 77.7 81.7 77.0 78.3 72.6 63.1 61.0 60.3 54.4
HS Transfer Uniform 82.9 80.6 79.6 76.6 81.6 78.2 78.3 73.5 59.9 59.9 59.7 59.9

Uniform-Cons. 83.9 80.6 80.6 77.7 82.4 78.8 78.0 75.9 65.5 62.2 60.4 58.6
Uniform+Last 84.1 80.4 80.4 77.7 83.1 78.7 79.2 75.0 67.0 62.7 62.5 57.9

LT
th 84.1 78.1 79.4 76.6 78.5 75.1 75.2 67.9 50.5 48.2 51.6 43.8

OD Transfer Last 83.1 80.4 79.3 76.4 80.7 76.9 76.1 69.8 62.6 57.0 54.1 42.7
(init. from Uniform 83.4 79.8 79.8 77.1 79.9 78.0 77.9 65.4 60.4 54.1 52.0 42.8

HS Transfer) Uniform-Cons. 83.7 80.3 79.5 76.7 81.7 78.7 76.4 70.1 63.1 61.0 56.5 48.2
Uniform+Last 84.1 80.5 79.9 77.1 82.1 78.4 76.4 72.3 66.0 60.9 60.0 48.6

MiniLMv2
LT

th 84.2 81.9 79.9 77.6 82.3 80.1 79.3 74.4 67.0 66.7 63.1 59.3
(LT−1)th 84.2 82.5 80.0 78.2 83.1 81.0 80.2 75.8 69.1 67.5 65.6 62.0
(LT−2)th 84.4 82.2 80.7 78.3 82.9 80.5 78.3 73.4 67.5 66.9 63.5 61.5

DirectMiniLM
LT

th 84.0 81.3 79.7 78.2 83.2 80.8 79.0 75.1 66.3 66.1 64.7 60.7
(LT−1)th 84.4 81.7 79.6 78.0 81.9 81.1 80.3 73.8 66.9 65.9 64.8 61.0
(LT−2)th 84.3 81.7 80.4 78.3 83.4 80.9 79.7 75.6 66.3 64.8 65.4 60.5

Teacher 85.5 84.8 70.9

Table 3: Performance of the representative distillation methods evaluated on avg. GLUE and XNLI. Results based
on the best layer mapping strategy for each method is underlined, and the best overall result is shown in bold.

cant loss observed for smaller students. This indi-
cates that learning effective representations from
the output distribution signals is difficult, especially
for students with lower capacity. Moreover, given
how computationally expensive OD transfer can
be, HS transfer is a cheaper and more effective
alternative for knowledge transfer.

MHA Transfer For both MiniLMv2 and Direct-
MiniLM, we found distilling the upper-middle
teacher layer, i.e. (LT−1)th or (LT−2)th strategy,
led to the best performance, in line with the orig-
inal findings of Wang et al. (2021). Importantly,
we found that both MHA transfer methods gener-
ally outperform HS transfer, which points to the
benefit of transferring the Q/K/V knowledge over
the hidden state knowledge. This is consistent with
the latest comparative study by Wang et al. (2023),
although they only evaluate on the 6L-DistilBERT
architecture in the monolingual setting.

We also note that MiniLMv2 and DirectMiniLM
perform equivalently, with the notable exception
on XNLI. We attribute this to two factors:
1. MiniLMv2 transfers relational representations

conditioned on the whole input, while Direct-
MiniLM transfers absolute position-wise rep-
resentations. The former may be more seman-
tically informative, as the contextual represen-
tations often exhibit rich relational structures
(Park et al., 2021; Liu et al., 2022a).

2. DirectMiniLM requires learning the linear trans-
formation weight Wα,a, while MiniLMv2 does
not incur any additional parameters.

From these observations, we generally expect
MiniLMv2 to be the best distillation method and
have adopted it in our latency-critical applications.8

However, DirectMiniLM performs comparably and
provides meaningful insights on the benefit of each
optimization technique, which can be useful for
debugging and analyzing MiniLMv2. Therefore,
we recommend its comparison for both reseachers
and practitioners in future studies.

6 Conclusion

This study critically analyzes the representative
methods for task-agnostic distillation of language
models. Specifically, we compare Output Distri-
bution (OD), Hidden State (HS), and Multi-Head
Attention (MHA) transfer for different student ar-
chitectures, language settings, and layer mapping
strategies. Through our extensive experiments, we
show that MHA transfer based on MiniLMv2 is the
best option across many settings, followed by HS
transfer with sophisticated 1-to-N mapping strate-
gies. Meanwhile, we did not find OD transfer to
be an effective alternative. Finally, we propose Di-
rectMiniLM to demistify the precise advantage of
the indirect (i.e. relation matrix based) optimiza-
tion technique proposed in MiniLMv2. Overall,
we hope this study will be a useful guide for both
researchers and practitioners working in this area.

8Specifically, the 4L monolingual and multilingual stu-
dents with 7x speedup on CPU have been deployed for various
NLP applications, such as entity extraction, document classifi-
cation and relation detection, while maintaining 93% of the
teacher’s performance on average (Trivedi et al., 2023).

25



References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin,
Xin Jiang, Qun Liu, Michael Lyu, and Irwin King.
2021. BinaryBERT: Pushing the limit of BERT
quantization. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 4334–4348, Online. Association for
Computational Linguistics.

Matan Ben Noach and Yoav Goldberg. 2020. Com-
pressing pre-trained language models by matrix de-
composition. In Proceedings of the 1st Confer-
ence of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 884–889, Suzhou, China. Associa-
tion for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-
Jui Hsieh. 2021. Drone: Data-aware low-rank com-
pression for large nlp models. In Advances in Neural
Information Processing Systems, volume 34, pages
29321–29334. Curran Associates, Inc.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale.

Alexis Conneau, Guillaume Lample, Ruty Rinott, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In International Conference on
Learning Representations.

Md Akmal Haidar, Nithin Anchuri, Mehdi Reza-
gholizadeh, Abbas Ghaddar, Philippe Langlais, and
Pascal Poupart. 2022. RAIL-KD: RAndom interme-
diate layer mapping for knowledge distillation. In
Findings of the Association for Computational Lin-
guistics: NAACL 2022, pages 1389–1400, Seattle,
United States. Association for Computational Lin-
guistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Aref Jafari, Mehdi Rezagholizadeh, Pranav Sharma,
and Ali Ghodsi. 2021. Annealing knowledge distil-
lation. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pages 2493–2504,
Online. Association for Computational Linguistics.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure
of language? In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3651–3657, Florence, Italy. Associa-
tion for Computational Linguistics.

Xiaoqi Jiao, Huating Chang, Yichun Yin, Lifeng Shang,
Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and
Qun Liu. 2021. Improving task-agnostic bert distil-
lation with layer mapping search. Neurocomputing,
461:194–203.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4163–4174, Online. Association for Computational
Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
2020. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W
Mahoney, and Kurt Keutzer. 2021. I-bert: Integer-
only bert quantization. In International conference
on machine learning, pages 5506–5518. PMLR.

26

https://doi.org/10.18653/v1/2021.acl-long.334
https://doi.org/10.18653/v1/2021.acl-long.334
https://aclanthology.org/2020.aacl-main.88
https://aclanthology.org/2020.aacl-main.88
https://aclanthology.org/2020.aacl-main.88
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f56de5ef149cf0aedcc8f4797031e229-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f56de5ef149cf0aedcc8f4797031e229-Paper.pdf
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1809.05053
http://arxiv.org/abs/1809.05053
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://doi.org/10.18653/v1/2022.findings-naacl.103
https://doi.org/10.18653/v1/2022.findings-naacl.103
https://doi.org/10.18653/v1/2021.eacl-main.212
https://doi.org/10.18653/v1/2021.eacl-main.212
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372


Jongwoo Ko, Seungjoon Park, Minchan Jeong, Sukjin
Hong, Euijai Ahn, Du-Seong Chang, and Se-Young
Yun. 2023. Revisiting intermediate layer distillation
for compressing language models: An overfitting
perspective. In Findings of the Association for Com-
putational Linguistics: EACL 2023, pages 158–175,
Dubrovnik, Croatia. Association for Computational
Linguistics.

François Lagunas, Ella Charlaix, Victor Sanh, and
Alexander Rush. 2021. Block pruning for faster
transformers. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 10619–10629, Online and Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Jianquan Li, Xiaokang Liu, Honghong Zhao, Ruifeng
Xu, Min Yang, and Yaohong Jin. 2020. BERT-
EMD: Many-to-many layer mapping for BERT com-
pression with earth mover’s distance. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
3009–3018, Online. Association for Computational
Linguistics.

Kevin J Liang, Weituo Hao, Dinghan Shen, Yufan
Zhou, Weizhu Chen, Changyou Chen, and Lawrence
Carin. 2021. Mix{kd}: Towards efficient distillation
of large-scale language models. In International
Conference on Learning Representations.

Kaiyuan Liao, Yi Zhang, Xuancheng Ren, Qi Su,
Xu Sun, and Bin He. 2021. A global past-future
early exit method for accelerating inference of pre-
trained language models. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2013–2023, Online.
Association for Computational Linguistics.

Chang Liu, Chongyang Tao, Jiazhan Feng, and
Dongyan Zhao. 2022a. Multi-granularity structural
knowledge distillation for language model compres-
sion. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1001–1011, Dublin, Ire-
land. Association for Computational Linguistics.

Chang Liu, Chongyang Tao, Jianxin Liang, Tao Shen,
Jiazhan Feng, Quzhe Huang, and Dongyan Zhao.
2022b. Rethinking task-specific knowledge distilla-
tion: Contextualized corpus as better textbook. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages

10652–10658, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. FastBERT: a self-
distilling BERT with adaptive inference time. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6035–
6044, Online. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Xinge Ma, Jin Wang, Liang-Chih Yu, and Xuejie
Zhang. 2022. Knowledge distillation with reptile
meta-learning for pretrained language model com-
pression. In Proceedings of the 29th International
Conference on Computational Linguistics, pages
4907–4917, Gyeongju, Republic of Korea. Interna-
tional Committee on Computational Linguistics.

Yihuan Mao, Yujing Wang, Chufan Wu, Chen Zhang,
Yang Wang, Quanlu Zhang, Yaming Yang, Yunhai
Tong, and Jing Bai. 2020. LadaBERT: Lightweight
adaptation of BERT through hybrid model compres-
sion. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 3225–
3234, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang
Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. 2020. Improved knowledge distil-
lation via teacher assistant. In Proceedings of
the AAAI conference on artificial intelligence, vol-
ume 34, pages 5191–5198.

Subhabrata Mukherjee, Ahmed Hassan Awadallah, and
Jianfeng Gao. 2021. Xtremedistiltransformers: Task
transfer for task-agnostic distillation. arXiv preprint
arXiv:2106.04563.

Geondo Park, Gyeongman Kim, and Eunho Yang.
2021. Distilling linguistic context for language
model compression. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 364–378, Online and Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Peyman Passban, Yimeng Wu, Mehdi Rezagholizadeh,
and Qun Liu. 2021. Alp-kd: Attention-based layer
projection for knowledge distillation. In Proceed-
ings of the AAAI Conference on artificial intelli-
gence, volume 35, pages 13657–13665.

27

https://aclanthology.org/2023.findings-eacl.12
https://aclanthology.org/2023.findings-eacl.12
https://aclanthology.org/2023.findings-eacl.12
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.emnlp-main.242
https://doi.org/10.18653/v1/2020.emnlp-main.242
https://doi.org/10.18653/v1/2020.emnlp-main.242
https://openreview.net/forum?id=UFGEelJkLu5
https://openreview.net/forum?id=UFGEelJkLu5
https://doi.org/10.18653/v1/2021.naacl-main.162
https://doi.org/10.18653/v1/2021.naacl-main.162
https://doi.org/10.18653/v1/2021.naacl-main.162
https://doi.org/10.18653/v1/2022.acl-long.71
https://doi.org/10.18653/v1/2022.acl-long.71
https://doi.org/10.18653/v1/2022.acl-long.71
https://aclanthology.org/2022.emnlp-main.729
https://aclanthology.org/2022.emnlp-main.729
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/2022.coling-1.435
https://aclanthology.org/2022.coling-1.435
https://aclanthology.org/2022.coling-1.435
https://doi.org/10.18653/v1/2020.coling-main.287
https://doi.org/10.18653/v1/2020.coling-main.287
https://doi.org/10.18653/v1/2020.coling-main.287
https://doi.org/10.18653/v1/2021.emnlp-main.30
https://doi.org/10.18653/v1/2021.emnlp-main.30


Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAI blog, 1(8):9.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low
precision quantization of bert. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8815–8821.

Wonchul Son, Jaemin Na, Junyong Choi, and Wonjun
Hwang. 2021. Densely guided knowledge distilla-
tion using multiple teacher assistants. In Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision, pages 9395–9404.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4323–4332, Hong Kong, China. Association for
Computational Linguistics.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2158–2170, Online. Association for Computa-
tional Linguistics.

Marzieh Tahaei, Ella Charlaix, Vahid Nia, Ali Gh-
odsi, and Mehdi Rezagholizadeh. 2022. Kronecker-
BERT: Significant compression of pre-trained lan-
guage models through kronecker decomposition and
knowledge distillation. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2116–2127, Seattle,
United States. Association for Computational Lin-
guistics.

Weiting Tan, Kevin Heffernan, Holger Schwenk, and
Philipp Koehn. 2023. Multilingual representation
distillation with contrastive learning. In Proceed-
ings of the 17th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 1477–1490, Dubrovnik, Croatia. Association
for Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Aashka Trivedi, Takuma Udagawa, Michele Merler,
Rameswar Panda, Yousef El-Kurdi, and Bishwaran-
jan Bhattacharjee. 2023. Neural architecture search
for effective teacher-student knowledge transfer in
language models. arXiv preprint arXiv:2303.09639.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations.

Jue Wang, Ke Chen, Gang Chen, Lidan Shou, and Ju-
lian McAuley. 2022. SkipBERT: Efficient inference
with shallow layer skipping. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
7287–7301, Dublin, Ireland. Association for Com-
putational Linguistics.

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong,
and Furu Wei. 2021. MiniLMv2: Multi-head self-
attention relation distillation for compressing pre-
trained transformers. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 2140–2151, Online. Association for Computa-
tional Linguistics.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. In Advances in Neural
Information Processing Systems, volume 33, pages
5776–5788. Curran Associates, Inc.

Xinpeng Wang, Leonie Weissweiler, Hinrich Schütze,
and Barbara Plank. 2023. How to distill your BERT:
An empirical study on the impact of weight initiali-
sation and distillation objectives. In Proceedings of
the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 1843–1852, Toronto, Canada. Association for
Computational Linguistics.

Yimeng Wu, Peyman Passban, Mehdi Rezagholizadeh,
and Qun Liu. 2020. Why skip if you can combine: A
simple knowledge distillation technique for interme-
diate layers. In Proceedings of the 2020 Conference

28

https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2022.naacl-main.154
https://doi.org/10.18653/v1/2022.naacl-main.154
https://doi.org/10.18653/v1/2022.naacl-main.154
https://doi.org/10.18653/v1/2022.naacl-main.154
https://aclanthology.org/2023.eacl-main.108
https://aclanthology.org/2023.eacl-main.108
https://doi.org/10.18653/v1/P19-1452
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/2022.acl-long.503
https://doi.org/10.18653/v1/2022.acl-long.503
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2023.acl-short.157
https://aclanthology.org/2023.acl-short.157
https://aclanthology.org/2023.acl-short.157
https://doi.org/10.18653/v1/2020.emnlp-main.74
https://doi.org/10.18653/v1/2020.emnlp-main.74
https://doi.org/10.18653/v1/2020.emnlp-main.74


on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1016–1021, Online. Associa-
tion for Computational Linguistics.

Yimeng Wu, Mehdi Rezagholizadeh, Abbas Ghaddar,
Md Akmal Haidar, and Ali Ghodsi. 2021. Universal-
KD: Attention-based output-grounded intermediate
layer knowledge distillation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7649–7661, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022.
Structured pruning learns compact and accurate
models. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1513–1528, Dublin,
Ireland. Association for Computational Linguistics.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin.
2021. BERxiT: Early exiting for BERT with better
fine-tuning and extension to regression. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 91–104, Online. Association for
Computational Linguistics.

Canwen Xu and Julian McAuley. 2023. A survey on
model compression and acceleration for pretrained
language models. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pages
10566–10575.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,
and Ming Zhou. 2020. BERT-of-theseus: Com-
pressing BERT by progressive module replacing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7859–7869, Online. Association for Computa-
tional Linguistics.

Dongkuan (DK) Xu, Subhabrata Mukherjee, Xiaodong
Liu, Debadeepta Dey, Wenhui Wang, Xiang Zhang,
Ahmed Awadallah, and Jianfeng Gao. 2022. Few-
shot task-agnostic neural architecture search for dis-
tilling large language models. In Advances in
Neural Information Processing Systems, volume 35,
pages 28644–28656. Curran Associates, Inc.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing-NeurIPS Edi-
tion (EMC2-NIPS), pages 36–39. IEEE.

Minjia Zhang, Niranjan Uma Naresh, and Yuxiong
He. 2022. Adversarial data augmentation for task-
specific knowledge distillation of pre-trained trans-
formers. Proceedings of the AAAI Conference on
Artificial Intelligence, 36(10):11685–11693.

Wangchunshu Zhou, Canwen Xu, and Julian McAuley.
2022. BERT learns to teach: Knowledge distil-
lation with meta learning. In Proceedings of the

60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
7037–7049, Dublin, Ireland. Association for Com-
putational Linguistics.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In 2015 IEEE International Con-
ference on Computer Vision (ICCV), pages 19–27.

A Related Work

MobileBERT (Sun et al., 2020) is an effective tech-
nique to compress BERT into a specially designed
student with a bottleneck architecture. In BERT-
of-Theseus (Xu et al., 2020), the modules of the
teacher are progressively replaced with smaller
ones to improve efficiency. However, these ap-
proaches constrain the architecture of the students.
In contrast, we focus on the architecture-agnostic
distillation methods for better flexibility.

Improvements on distillation objectives are also
made, e.g. transferring the relational, structural
or holistic representations of the language models
may provide more useful signals for students (Park
et al., 2021; Liu et al., 2022a; Tan et al., 2023).
When the transfer set is limited, various methods
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the teacher and student, previous works proposed
scheduled annealing in OD transfer (Jafari et al.,
2021), multi-stage distillation with intermediate-
sized teacher assistants (Mirzadeh et al., 2020; Son
et al., 2021), and meta-learning to optimize the
teacher for student distillation (Zhou et al., 2022;
Ma et al., 2022). We leave the exploration of such
advanced techniques as future work.

Layer mapping strategies for HS transfer have
also been studied extensively. Jiao et al. (2021)
proposed an evolutionary search process to obtain
the optimal layer mapping for specific downstream
tasks. Li et al. (2020) applied Earth Mover’s Dis-
tance to prioritize mappings with smaller cost (i.e.
distillation loss). The attention mechanism can also
be applied to map student layers to similar teacher
layers, where the similarity is computed based on
the cosine similarity (Passban et al., 2021) or the
predictions of internal classifiers (Wu et al., 2021).
Finally, random mapping has been shown to work
surprisingly well, potentially working as a regu-
larizer to prevent overfitting (Haidar et al., 2022).
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In this study, we focus instead on the carefully de-
signed and easily applicable heuristic strategies.

Finally, there are different approaches to reduc-
ing the inference costs of large language models,
such as quantization (Zafrir et al., 2019; Shen et al.,
2020; Kim et al., 2021; Bai et al., 2021), pruning
(Fan et al., 2020; Lagunas et al., 2021; Xia et al.,
2022), early exit mechanisms (Liu et al., 2020; Xin
et al., 2021; Liao et al., 2021; Wang et al., 2022),
and matrix decomposition (Ben Noach and Gold-
berg, 2020; Mao et al., 2020; Chen et al., 2021;
Tahaei et al., 2022). Many of these approaches are
complementary to our distillation methods and can
be combined for further efficiency.

B Distillation Setup

We train our monolingual students on the entire
Wikipedia and BookCorpus using the AdamW Op-
timizer (Loshchilov and Hutter, 2019) with β1 =
0.9, β2 = 0.98. For HS and MHA transfer, stu-
dents are trained for 7 epoch with a peak learning
rate (LR) of 5e− 4. For OD transfer, we train for
3 epochs with a peak LR of 3e− 4 after HS trans-
fer. We use a linear LR warmup over the first 5%
of the training steps and then a linear decay. We
use a batch size of 32 with the maximum sequence
length set to 256 and train on 30 V100 GPUs.

For multilingual distillation, we use a small sub-
set of CC-100 containing 7M sentences, which we
found to be sufficient for developing competitive
students. We generally use the same setup as mono-
lingual distillation, except we use the peak LR of
8e− 4 for MHA transfer. Multilingual students are
trained on 2 A100-80GB GPUs.

Finally, the method-specific hyperparameters
(§3) are as follows. For OD transfer, we set the
output temperature T to the default value of 1. For
MiniLMv2, we use Ar > Ah to transfer more
fine-grained knowledge in the Q/K/V mappings:
specifically, we set Ar = 48, which is also used in
Wang et al. (2021). For DirectMiniLM, we found
using Ar = Ah without the orthogonal constraints
on Wα,a led to the best performance and used this
setting throughout our experiments.

C Finding Smaller Student Models

Our smallest students, a 4 layer and a 3 layer model,
were obtained as recommendations from a Neural
Architecture Search process to find good student
architectures for task-agnostic distillation from an
XLM-RoBERTa teacher, conditioned to minimize

the latency of inference on a CPU. Specifically, we
follow the KD-NAS method of Trivedi et al. (2023)
and modify the reward to reduce the distillation
loss LHS defined in Eq. (6), along with the CPU
latency of the student (lat(S)) normalized by the
teacher’s latency (lat(T )):

reward(S) = (1− LHS) ∗
(

lat(S)

0.6 ∗ lat(T )

)−0.06

(12)
Please refer to their original paper for more details.

D Evaluation Results for Best Models

We include detailed results of each distillation
method for the best configuration (i.e. layer map-
ping strategy). Specifically, we show the results of
each GLUE task for monolingual and multilingual
distillation in Table 5 and 6. We show language-
wise performance on XNLI in Table 7. All down-
stream tasks are evaluated on 3 random seeds.

For the sake of efficient evaluation, we did not
conduct expensive grid search for finetuning hyper-
parameters. After some manual tuning, we used
the same LR of 2e− 5 and batch size of 32 for fine-
tuning all models on all tasks. We used 3 epochs of
finetuning for GLUE tasks (except CoLA, where
we used 6 and 10 epochs for monolingual and mul-
tilingual models) and 5 epochs for XNLI.

E Architecture Constrained Distillation:
DistilBERT

DistilBERT (Sanh et al., 2019) is one of the earli-
est and most widely used baseline. This method
comprises (1) layer initialization from the teacher
layers, (2) HS transfer based on cosine similarity
loss, and (3) OD transfer. The first two techniques
restrict the architecture of each student layer to be
identical to the teacher model, which limits our
analysis to the 6L-DistilBERT student architecture.

6L-DsitilBERT Teacher
Avg. GLUE (Monolingual) 82.9 (0.5) 85.5 (0.6)
Avg. GLUE (Multilingual) 79.7 (0.5) 84.8 (0.3)
Avg. XNLI (Multilingual) 61.8 (0.5) 70.9 (0.8)

Table 4: DistilBERT Performance. Average GLUE
scores reported for all tasks w/o CoLA. Average XNLI
scores reported for all languages. Average taken over 3
random seeds with standard deviation in parenthesis.

As shown in the results of Table 4, the perfor-
mance of DistilBERT is generally not competitive
with our distillation methods from Table 3, espe-
cially in the multilingual setting.
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Model Distillation Best GLUE Performance Avg. Avg.
Method Strategy MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE (-CoLA)

6L-DistilBERT

HS Transfer Uniform+Last 82.6 86.2 88.7 90.8 45.9 85.9 89.7 65.1 79.4 (0.5) 84.1 (0.4)
OD Transfer Uniform+Last 82.7 86.5 88.3 91.3 50.8 85.5 89.7 64.4 79.9 (0.3) 84.1 (0.2)
MiniLMv2 (LT−2)th 83.0 86.6 90.1 91.6 53.1 86.7 89.0 64.2 80.5 (0.4) 84.4 (0.3)

DirectMiniLM (LT−1)th 82.9 86.6 90.0 91.4 52.7 86.4 89.0 64.9 80.5 (0.5) 84.4 (0.4)

6L

HS Transfer Uniform-Cons. 78.3 85.0 85.9 90.9 31.2 83.2 84.4 56.3 74.4 (0.4) 80.6 (0.3)
OD Transfer Uniform+Last 79.1 84.6 86.3 89.7 38.6 82.3 83.7 57.9 75.3 (0.6) 80.5 (0.3)
MiniLMv2 (LT−1)th 80.8 84.9 88.0 90.3 36.2 84.5 86.2 62.5 76.7 (0.1) 82.5 (0.1)

DirectMiniLM (LT−1)th 80.0 85.1 87.2 90.9 36.1 83.3 85.9 59.7 76.0 (0.2) 81.7 (0.2)

4L

HS Transfer Uniform-Cons. 77.3 84.9 85.7 90.0 26.9 83.4 83.0 60.1 73.9 (0.4) 80.6 (0.3)
OD Transfer Uniform+Last 78.2 84.6 85.1 90.1 32.2 83.3 83.2 55.1 74.0 (0.2) 79.9 (0.4)
MiniLMv2 (LT−2)th 78.8 83.8 86.0 90.8 30.9 83.0 84.3 58.2 74.5 (0.2) 80.7 (0.3)

DirectMiniLM (LT−2)th 79.0 84.2 85.7 90.0 29.7 82.5 84.9 56.6 74.1 (0.4) 80.4 (0.4)

3L

HS Transfer LT
th 74.3 82.8 84.0 89.4 20.0 80.8 83.4 57.5 71.5 (0.1) 78.9 (0.3)

OD Transfer Uniform+Last 73.8 81.9 83.4 86.6 15.1 78.8 82.7 52.8 69.4 (0.3) 77.1 (0.4)
MiniLMv2 (LT−2)th 75.1 81.9 84.8 87.3 13.3 81.6 82.0 55.1 70.1 (0.4) 78.3 (0.2)

DirectMiniLM (LT−2)th 75.7 82.2 84.0 88.5 16.8 81.0 83.3 53.5 70.6 (0.2) 78.3 (0.3)
Teacher 84.4 88.0 91.5 92.9 57.4 88.0 89.0 64.8 82.0 (0.6) 85.5 (0.6)

Table 5: Monolingual Student GLUE Performance for all tasks. Each row shows performance based on the best
layer mapping strategy. Each score reported as an average over 3 random seeds (standard deviation in parenthesis).

Model Distillation Best GLUE Performance Avg. Avg.
Method Strategy MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE (-CoLA)

6L-DistilBERT

HS Transfer Uniform+Last 80.8 86.8 87.9 90.2 32.3 84.7 88.5 62.6 76.7 (0.6) 83.1 (0.3)
OD Transfer Uniform+Last 80.1 86.4 86.2 89.8 33.1 84.1 87.5 60.5 76.0 (1.0) 82.1 (0.5)
MiniLMv2 (LT−1)th 81.3 85.8 88.8 89.6 40.2 85.9 89.3 61.0 77.7 (0.5) 83.1 (0.3)

DirectMiniLM (LT−2)th 81.0 86.4 89.2 89.8 37.8 85.9 90.1 61.7 77.7 (0.7) 83.4 (0.6)

6L

HS Transfer Uniform-Cons. 75.0 82.8 83.0 86.7 16.9 80.8 84.6 58.5 71.1 (0.6) 78.8 (0.4)
OD Transfer Uniform-Cons. 76.2 83.7 83.6 87.5 16.9 78.1 85.0 55.9 71.1 (0.6) 78.7 (0.5)
MiniLMv2 (LT−1)th 78.3 83.7 86.9 89.1 29.2 83.6 85.1 60.3 74.5 (0.5) 81.0 (0.4)

DirectMiniLM (LT−1)th 78.3 84.3 86.1 89.4 25.5 84.5 86.9 58.0 74.1 (0.6) 81.1 (0.5)

4L

HS Transfer Uniform+Last 75.6 83.7 83.8 87.8 18.3 81.2 83.3 59.0 71.6 (0.7) 79.2 (0.5)
OD Transfer Uniform 73.4 83.8 81.2 85.2 17.0 80.0 82.8 58.6 70.3 (0.7) 77.9 (0.7)
MiniLMv2 (LT−1)th 76.8 83.4 85.2 87.6 17.1 83.9 86.0 58.1 72.3 (0.7) 80.2 (0.5)

DirectMiniLM (LT−1)th 77.0 83.6 85.2 88.5 19.2 83.5 85.2 59.1 72.7 (0.6) 80.3 (0.4)

3L

HS Transfer Uniform-Cons. 71.0 80.7 82.1 84.6 11.0 75.8 82.2 54.9 67.8 (0.4) 75.9 (0.4)
OD Transfer Uniform+Last 68.1 79.4 79.7 81.9 2.6 61.5 81.2 54.6 63.6 (0.5) 72.3 (0.6)
MiniLMv2 (LT−1)th 72.7 80.6 83.2 84.6 9.7 70.6 81.7 57.4 67.6 (0.6) 75.8 (0.5)

DirectMiniLM (LT−2)th 72.2 81.2 83.4 84.8 15.9 67.9 82.0 58.0 68.2 (1.1) 75.6 (1.1)
Teacher 84.1 87.9 90.2 91.9 51.7 86.6 91.4 61.4 80.6 (0.3) 84.8 (0.3)

Table 6: Multilingual Student GLUE Performance for all tasks. Each row shows performance based on the best
layer mapping strategy. Each score reported as an average over 3 random seeds (standard deviation in parenthesis).

Model Distillation Best XNLI Performance Avg.Method Strategy ar bg de el en es fr hi ru sw th tr ur vi zh

6L-DistilBERT

HS Transfer Uniform+Last 64.7 69.7 69.6 69.2 80.7 72.0 70.2 64.6 67.7 51.2 65.3 62.5 58.9 70.4 68.6 67.0 (0.4)
OD Transfer Uniform+Last 63.7 69.1 69.4 67.0 78.6 70.7 68.9 60.0 69.0 51.2 65.4 61.9 57.9 68.5 68.8 66.0 (0.6)
MiniLMv2 (LT−1)th 65.5 71.6 72.1 71.5 81.4 75.0 73.5 65.3 70.6 58.1 65.1 67.1 60.9 69.7 69.3 69.1 (0.5)

DirectMiniLM (LT−1)th 63.8 69.4 69.3 68.5 79.2 73.2 71.2 64.1 67.2 55.1 63.9 65.6 59.7 66.6 67.0 66.9 (0.4)

6L

HS Transfer Uniform+Last 59.7 67.2 63.4 65.6 75.9 68.7 66.8 58.3 62.4 48.9 62.7 59.1 53.4 63.2 65.1 62.7 (0.4)
OD Transfer Uniform+Last 55.7 62.6 63.7 59.2 76.5 66.9 63.7 54.1 62.0 45.7 57.9 56.3 51.0 62.8 62.2 61.0 (0.5)
MiniLMv2 (LT−1)th 65.0 69.7 70.4 68.8 80.3 73.1 71.5 62.9 69.3 53.8 65.0 65.7 59.6 69.2 68.0 67.5 (0.5)

DirectMiniLM LT
th 63.2 68.8 70.1 68.1 78.4 70.5 70.0 62.2 66.6 52.4 64.6 64.0 59.1 66.2 66.9 66.1 (0.5)

4L

HS Transfer Uniform+Last 56.9 64.5 66.2 66.3 77.3 68.2 63.9 57.9 63.9 49.2 61.8 59.2 54.0 64.2 64.2 62.5 (0.5)
OD Transfer Uniform+Last 55.7 62.6 63.7 59.2 76.5 66.9 63.7 54.1 62.0 45.7 57.9 56.3 51.0 62.8 62.2 60.0 (0.5)
MiniLMv2 (LT−1)th 62.9 67.5 67.8 68.2 77.8 70.7 68.2 62.4 67.0 51.0 63.6 64.7 57.7 67.2 67.4 65.6 (0.8)

DirectMiniLM (LT−2)th 63.2 68.3 67.9 67.6 78.3 69.7 69.6 63.1 64.9 49.0 64.2 62.4 58.6 67.2 66.3 65.4 (0.7)

3L

HS Transfer Uniform 58.3 63.4 60.5 60.6 74.1 65.6 61.6 56.6 61.4 46.7 57.3 55.9 51.8 61.1 63.1 59.9 (0.5)
OD Transfer Uniform+Last 45.6 52.3 48.7 47.8 69.9 55.0 49.4 42.9 47.3 40.9 46.3 44.4 41.6 49.7 47.8 48.6 (0.5)
MiniLMv2 (LT−1)th 60.0 64.9 63.6 64.3 74.1 66.7 64.2 58.2 61.8 49.4 59.7 60.7 55.3 64.2 62.4 62.0 (0.8)

DirectMiniLM (LT−1)th 57.4 63.0 64.1 63.3 74.3 66.1 65.1 57.2 62.1 46.7 56.7 58.1 55.2 63.6 61.8 61.0 (0.4)
Teacher 69.1 73.2 74.1 72.2 83.4 75.1 73.1 69 71.3 57.3 69.7 67.7 64.1 70.8 73.3 70.9 (0.8)

Table 7: Multilingual Student XNLI Performance for 15 languages. Each row shows performance based on
the best layer mapping strategy. Each score reported as an average over 3 random seeds (standard deviation in
parenthesis).
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