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Abstract

Curriculum Data Augmentation (CDA) im-
proves neural models by presenting synthetic
data with increasing difficulties from easy to
hard. However, traditional CDA simply treats
the ratio of word perturbation as the difficulty
measure and goes through the curriculums only
once. This paper presents PCC: Paraphrasing
with Bottom-k Sampling and Cyclic Learning
for Curriculum Data Augmentation, a novel
CDA framework via paraphrasing, which ex-
ploits the textual paraphrase similarity as the
curriculum difficulty measure. We propose a
curriculum-aware paraphrase generation mod-
ule composed of three units: a paraphrase can-
didate generator with bottom-k sampling, a
filtering mechanism and a difficulty measure.
We also propose a cyclic learning strategy that
passes through the curriculums multiple times.
The bottom-k sampling is proposed to generate
super-hard instances for the later curriculums.
Experimental results on few-shot text classifica-
tion as well as dialogue generation indicate that
PCC surpasses competitive baselines. Human
evaluation and extensive case studies indicate
that bottom-k sampling effectively generates
super-hard instances, and PCC significantly im-
proves the baseline dialogue agent.

1 Introduction

Data augmentation techniques create artificial data
mixed with the original data for improved perfor-
mance. Traditional data augmentation techniques
in the language community include word-level per-
turbation such as synonym replacement, random
insertion, random swap, and random deletion (Wei
and Zou, 2019). Sentence-level techniques such
as Round-trip Translation (Sennrich et al., 2016b)
exploits the use of machine translation models to

∗The work described in this paper is substantially sup-
ported by a grant from the Research Grant Council of the
Hong Kong Special Administrative Region, China (Project
Code: 14200719).

translate the input sentence to another language be-
fore translating back to the source language which
can be essentially treated as a form of paraphrasing.

Curriculum learning presents training instances
in a meaningful order with increasing difficulties
to neural models for a boost in performance. Tradi-
tional curriculum learning (Bengio et al., 2009; Liu
et al., 2018, 2020; Platanios et al., 2019; Xu et al.,
2020a,b; Su et al., 2021) categorizes the original
training instances into different levels of difficul-
ties to be gradually presented to the model where
a core component called difficulty measure, which
is usually defined as a numerical number where a
bigger number indicates a more difficult sample.

Combining the merits of the above two men-
tioned techniques, Curriculum Data Augmentation
(CDA) creates synthetic data with increasing levels
of difficulties to be presented to our neural mod-
els. Existing CDA defines the ratio of the words
perturbation as the difficulty measure for curricu-
lums and a gradual course which increases the diffi-
culty of curriculums when the training loss plateaus
(Wei et al., 2021), which then ends when the most
challenging curriculum ends. Although existing
CDA is effective, yet there are several disadvan-
tages. First, it employs word-level perturbation.
This superficial operation keeps the augmentation
to have a similar sentence structure as the original
one. Next, it employs random insertion, random
swap, and random deletion for augmentation. Al-
though this can be durable as for text classification
(Wei et al., 2021), this is not suitable for generation
tasks, particularly when many words are perturbed,
which can even easily break the sentence grammar.
Third, it uses a gradual course that only enters each
level of difficulty once. A typical problem in neu-
ral network training called catastrophic forgetting
(Kirkpatrick et al., 2017) can potentially happen in
such a course, where the model might undesirably
gradually forget some early learned knowledge.

To mitigate the problems of word-level perturba-
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tion, we propose that paraphrasing can be a source
of data augmentation, which provides diverse and
grammatically correct augmentation. However, it
is non-trivial to utilize paraphrase augmentation
in a curriculum setting. Inspired by the funda-
mental linguistic concept of mutual implication
(Boghossian, 1994; Peregrin, 2006), we treat two
sentences as a pair of paraphrases if they can in-
fer each other. For example, ‘I am glad to help
you.’ and ‘Let me help you out!’ can be a pair
of paraphrases, which provides a diverse change
of the sentence structure suitable for the curricu-
lum setting. We also employ textual similarity for
our difficulty measures for the curriculum. Higher
scores indicate that two sentences are more textu-
ally similar to each other. Specifically, we treat
pairs with lower scores as more difficult instances
to be presented in later curriculums. We propose
a paraphrase candidate generator integrated with
bottom-k sampling. Traditional sampling methods
such as top-k sampling (Fan et al., 2018) and top-p
(Holtzman et al., 2020) sampling tend to generate
easier paraphrases that have relatively high simi-
larity scores. We propose bottom-k sampling to
generate super-hard paraphrases for the later harder
curriculums by pruning the most probable words.1

This leads the generation towards a more grammat-
ically and lexically diverse paraphrase sampling
space with low textual similarity.

To mitigate catastrophic forgetting, we propose
to incorporate cyclic learning to pass through the
curriculums multiple times.

In summary, our proposed framework, called
PCC: Paraphrasing with Bottom-k Sampling and
Cyclic Learning for Curriculum Data Augmenta-
tion, makes three contributions:

• We exploit the use of paraphrasing with mu-
tual implication as a data augmentation source
in curriculum learning.

• To generate mutual implicative paraphrases,
we propose a curriculum-aware paraphrase
generation module composed of three units,
namely, a paraphrase candidate generator with
bottom-k sampling for generating super-hard
instances, a filtering mechanism, and a diffi-
culty measure using textual similarity.

• We propose cyclic learning to enter each cur-
riculum multiple times.

1Note that we still use a combination of top-k and top-p
sampling for generating easier curriculums.

Experimental results indicate that PCC surpasses
competitive baselines on few-shot text classifica-
tion as well as dialogue generation. Human evalu-
ation indicates that bottom-k sampling effectively
generates grammatically and lexically rich para-
phrases, and PCC significantly improves our base-
line dialogue agent. To our best knowledge, this is
the first time to apply CDA on a generation task.

Takeaway Overall, we present the effectiveness
of paraphrasing as a curriculum data augmentation
technique. The use of cyclic learning and bottom-k
sampling further boosts performance. With some
modifications, future works can treat PCC as a
data augmentation framework and adapt it to other
downstream tasks. Future works can also leverage
bottom-k sampling in generating textual outputs
that are grammatically and lexically rich.

2 Related Work

2.1 Data Augmentation
Existing textual data augmentation techniques can
be broadly categorized into two streams: word-
level and sentence-level augmentation.

For word-level augmentation, well-known op-
erations includes synonym replacement (Zhang
et al., 2015a), random insertion, random deletion
and random swap (Wei and Zou, 2019). In con-
trast to dictionary-based synonym replacement, an-
other stream of works randomly replace words with
masks and employs BERT models for predicting
the words as a source of augmentation that exploits
the contexts (Wu et al., 2019; Cai et al., 2020).

For sentence-level augmentation, Round-trip
Translation (Sennrich et al., 2016b) augments trans-
lation pairs by translating from the source language
into the target language, and back to the source lan-
guage with two machine translation models. Gao
et al. (2020) proposes to use paraphrases as a source
of augmentation in task-oriented dialogue gener-
ation. It has also been proposed to retrieve from
unpaired corpora as a source of augmentation in
the dialogue community (Zhang et al., 2020a). An-
other stream of work edits the retrieved dialogue
response for better generation (Cai et al., 2019a,b),
which can be treated as a form of indirect augmen-
tation. The closest work to ours is Gao et al. (2020),
where theirs does not employ curriculum learning.

2.2 Curriculum Learning
While traditional curriculum learning sorts
the training samples in an order of increasing
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Algorithm 1: Paraphrasing with Bottom-k Sampling
and Cyclic Learning for Curriculum Data Augmen-
tation (PCC)

Input: Dataset D for the downstream task;
Output: Trained downstream task model;

1 For the entire dataset D, invoke the curriculum-aware
paraphrase generation module with D and cache the
augmentation results D̄ for training purpose;

2 while not the end of training do
3 Set difficulty level l to 0 at the start of a cycle;
4 while not the end of current cycle do
5 while not the end of current curriculum do
6 Uniformly sample the next batch of

training instance S;
7 Invoke the curriculum-aware

paraphrase generation module for
each training instance in S to retreive
a batch of training augmentation T
with difficulty level l.;

8 Invoke the task-specific model trainer
to train the downstream task model
with the training augmentation T ;

9 end
10 Increase l by 1 to the next level at the end of

current curriculum;
11 end
12 end

difficulties (Bengio et al., 2009; Weinshall et al.,
2018; Su et al., 2021), our method follows the
other stream of works that applies transformation
on the original data with dedicated difficulty level
(Korbar et al., 2018; Ganesh and Corso, 2020; Wei
et al., 2021). The closest work to ours is Wei et al.
(2021). Their work does not consider paraphrasing
and focuses on text classification only.

3 Our Proposed Framework

3.1 Background of Curriculum Data
Augmentation (CDA)

Existing CDA (Wei et al., 2021) varies the word-
level perturbation ratio to achieve different levels
of difficulties under curriculum learning with sim-
ple word perturbation strategies such as synonym
replacement, random insertion, swap, and deletion.
As illustrated in Figure 1, such simple word pertur-
bation strategies create problematic instances that
break the sentence grammar, which can hamper
the model performance. There are two common
CDA strategies. One is called two-stage curricu-
lum, which uses a fixed perturbation ratio for a
single curriculum as the second stage after train-
ing with the original data. The other one is called
gradual curriculum. It uses different ratios for a
number of (typically 5) curriculums with increas-
ing difficulties. However, such a learning strategy

Algorithm 2: Curriculum-aware Paraphrase Genera-
tion Module

Input: A single training instance with textual input x;
difficulty level l;

Output: Cache the generated paraphrases into D̄ or
retrieve an augmented training instance x̄;

1 if a cached augmentation exists then
2 Retrieve x̄ that corresponds to x with the

difficulty measure d = l;
3 else
4 Invoke the paraphrase candidate generator

integrated with bottom-k sampling to generate a
bag of paraphrase candidates for x;

5 Invoke the mutual implication classifier for each
paraphrase candidate to obtain corresponding
binary indicator against the input sentence;

6 Calculate the textual similarity for each
paraphrase candidate against the input;

7 Filter the generated paraphrase candidates with
the mutual implication and the textual similarity
using Equation 3;

8 Assign a difficulty measure d to the filtered
paraphrases with Equation 4;

9 Cache the augmentation results into D̄ ;
10 end

ends after passing through all the curriculums only
once, and catastrophic forgetting can happen.

3.2 Our Proposed PCC

We propose curriculum data augmentation with
paraphrase augmentation known as Paraphrasing
with Bottom-k Sampling and Cyclic Learning for
Curriculum Data Augmentation (PCC). Algorithm
1 depicts an overview of the whole PCC framework.
At the start of training, we generate cached train-
ing augmentation for the entire dataset with our
proposed curriculum-aware paraphrase generation
module. Thereafter, we begin with the easiest cur-
riculum. For each training instance, we retrieve the
cached augmentation that has an equivalent diffi-
culty measure with the current difficulty level. We
then invoke the task-specific model trainer to train
the downstream task model with the retrieved train-
ing augmentation. At the end of each curriculum
difficulty level, we increase the difficulty level to
advance to the next harder curriculum. In case it
hits the end of the most difficult curriculum, we set
the difficulty level to the easiest to start a new cycle.
We propose such a cyclic learning strategy for miti-
gating potential catastrophic forgetting. In order to
retrieve paraphrasing augmentation with appropri-
ate difficulty measures, we propose a curriculum-
aware paraphrase generation module.
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Figure 1: An illustrated example for our PCC model
compared to existing CDA for dialogue generation. The
original sentence is ‘I am glad to help you.’

Sample No. Sample Text Sim. Score

1) I am glad to assist you. 0.888

2) Let’s help you. I am glad to help
you.

0.619

3) Thank you for contacting me. I
am glad to help you.

0.371

4) It is now my pleasure to help you. −0.038

5) Let me help you out! −0.265

6) Thank you for your question. −0.506

Table 1: Paraphrases with mutual implication for an
input ‘I am glad to help you.’

3.2.1 Curriculum-aware Paraphrase
Generation Module

Algorithm 2 depicts the curriculum-aware para-
phrase generation module. Three components are
designed, namely, a paraphrase candidate genera-
tor integrated with a bottom-k sampling strategy,
a filtering mechanism, and a difficulty measure.
The paraphrase candidates are generated and then
passed to the filtering mechanism. Finally, the fil-
tered paraphrases are assigned a difficulty measure
which represents to which curriculum difficulty
level the augmentation belongs.

Paraphrase Candidate Generator with Bottom-
k Sampling In order to generate mutual implica-
tive paraphrases for the purpose of curriculum
data augmentation, we adopt a Seq2Seq (Sutskever
et al., 2014) generator which receives an input sen-
tence x and generates the paraphrases x̄ in an au-
toregressive manner (Nighojkar and Licato, 2021).
During training, the paraphrase candidate generator

is trained by maximising the following likelihood:

P (x̄ | x) =
T∏

t=1

P (x̄t | x̄1, ..., x̄t−1, x),

where T represents the token length of the para-
phrase and xt represents the word at the position t
that has been inferenced.

Traditional sampling methods such as top-k sam-
pling (Fan et al., 2018) and top-p sampling (Holtz-
man et al., 2020) sample the next token to be pre-
sented in the output from the most probable vocab-
ularies that dominate the probability distribution.
For example, at the i-th timestep during inference,
top-k sampling samples the next token x̄i from the
most probable k words with the distribution:

Px̄i∈V(k)(x̄i | x̄1, ..., x̄i−1, x), (1)

where V(k) represents the most probable k words.
However, they are not suitable for generating super-
hard instances, i.e., their output paraphrases tend to
be textually similar to the original input sentence.2

To avoid coping the words and unearth the super-
hard paraphrases to be used in later curriculums,
we propose bottom-k sampling3 which excludes
a small set of dominating words for the sampling
process. Note that we still use the combination of
top-k and top-p sampling to generate easier sam-
ples for earlier curriculums. Formally, bottom-k
modifies the distribution in Equation 1 to:

Px̄i∈V\V(k)(x̄i | x̄1, ..., x̄i−1, x), (2)

where V represents the whole vocabulary. Then,
at each time step, we sample the next token with
the rescaled distribution in Equation 2. We apply
bottom-k for the first N steps of the generation be-
fore fallback to top-k and top-p. Bottom-k tends to
generate paraphrases with lower textual similarity.
For example, given an input of ‘I like to remodel
homes’, existing sampling methods can generate an
output ‘Renovations in property I like to remodel
homes’. In contrast, bottom-k sampling generates
‘Is this what I want to see? Renovating homes are
the best choices I have ever had.’ where the latter
one has a higher difficulty measure. Appendix F
presents an extensive analysis.

2We found that top-k and top-p sampling tend to copy
dominating words from the input into the paraphrases. This
is also the reason why we prefer bottom-k over bottom-p, as
we would like to effectively prevent from coping dominating
words. Appendix F presents a detailed analysis.

3We give it such a name to make it catchy. It does not
sample from the bottom k words. It samples from the bottom
|V| − k words where V represents the whole vocabulary.
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Paraphrase Filtering The inferential properties
or mutual implication (MI) has been argued as a
form of equivalent meaning (Boghossian, 1994;
Peregrin, 2006), i.e., each sentence should entail
each other to be ‘paraphrases’. To support cur-
riculum data augmentation, we exploit mutual im-
plicative paraphrases for grammatical and lexical
richness. Algorithm 2 (Lines 5, 6, and 7) depicts
the filtering mechanism we propose to generate MI
paraphrases. In order to determine the MI rela-
tionship between a pair of paraphrase (x, x̄), we
adopt a pre-trained MI classifier M(·, ·) to calcu-
late a binary indicator M(x, x̄). Here, non-MI
paraphrases have a score of 0 and MI paraphrases
have a score of 1. We also adopt a pre-trained
model G(·, ·) to evaluate the textual similarity score
of the paraphrases as G(x, x̄). Here, paraphrases
with lower similarity scores are treated as gram-
matically and lexically less similar to the original
input sentence. We filter the paraphrase x̄i based
on these two scores:

M(x, x̄i)+(1−M(x, x̄i))1(G(x, x̄i) ≥ β). (3)

In the formula above, β is a threshold for textual
similarity. Here, a paraphrase with a positive mu-
tual implication has a binary output of 1, i.e., it is
preserved regardless of its textual similarity score.
A paraphrase with a negative mutual implication
but high textual similarity also has a binary out-
put of 1, meaning it is preserved as well. In this
way, MI paraphrases can be produced. We preserve
highly similar paraphrases classified as non-MI,
which is a misclassification by the classifier.4 All
paraphrases that are non-MI with low textual simi-
larity have a binary output of 0, meaning we discard
those paraphrases. After the filtering, a difficulty
measure is computed for each paraphrase.5

Difficulty Measure Recall that for a pair of para-
phrase (x, x̄), we adopt a pre-trained textual simi-
larity model G(·, ·) to calculate its similarity score
as G(x, x̄). BLEURT (Sellam et al., 2020) score, a
BERT-based pre-trained model, is employed as the
textual similarity model G(·, ·). Here, paraphrases

4We postulate it as a flaw introduced by the imbalanced
training data with a larger portion of paraphrases that tends to
be textually unsimilar against the original sentence. We found
in our early experiments that removing these easier examples
obviously degrades the results for COVID-Q from 51.7 to
50.0. Furthermore, ignoring non-MI easy examples prevents
PCC from collecting enough augmentation for AMZN.

5As in Appendix A, we use an off-the-shelf paraphrase
generator and MI classifier in our experiments.

with lower similarity scores are treated as more dif-
ficult instances with higher difficulty measures. For
further illustration, we present 6 samples generated
from our model in Table 1 with descending order
sorted on the similarity scores. Here, the similarity
scores decently represent the grammatical and lexi-
cal difference between the paraphrases candidates,
and the mutual implicative paraphrase candidates
are grammatically (Sample 2, 3, 4, 5, and 6) and
lexically (Sample 1, 2, 3, 4, 5, and 6) rich.

As the distribution of the similarity scores for the
paraphrases varies for different inputs, we compute
the difficulty measure for a paraphrase x̄i with its
rank in a sorted list of similarity scores, denoted
as sort(·), in descending order among a bag of
paraphrase candidates X :

di = ⌈C × sortx̄i∈X (G(x̄i, x))
|X | ⌉, (4)

where C represents the total number of curriculum
difficulty levels we define, and |X | represents the
total number of paraphrase candidates we have.
Here, the paraphrase x̄j with the highest similarity
score, i.e., G(x, x̄j) = maxx̄i∈X (G(x̄i, x)), has a
rank of 1, therefore, dj = 1. The paraphrase x̄k
with the lowest similarity score, i.e., G(x, x̄k) =
minx̄i∈X (G(x̄i, x)), has a rank of |X |, thus dk =
C. Consequently, a larger rank indicates that the
paraphrase is more grammatically and lexically
different than the original input, and thus belongs
to a harder curriculum. We set di = 0 as the easiest
difficulty level for the original data.

3.2.2 Cyclic Curriculum Data Augmentation
Wei et al. (2021) proposed curriculum data augmen-
tation with a gradual course. The training ends after
passing the curriculums once. We found that a typ-
ical problem called catastrophic forgetting (Kirk-
patrick et al., 2017) can hamper the performance
during such a gradual course, meaning that the
model can gradually forget the knowledge learned
in an easier course. The augmentation for later cur-
riculums is a subtask of an easier curriculum and
can have lexical overlaps. Formally, the input sam-
ples xt+1 can have overlapping lexical xti which
are the same as xtj , where t and t+ 1 represent the
curriculum difficulty levels, and i and j represent
the word positions in the sentence. Due to catas-
trophic forgetting, the model can forget what it has
learned earlier. Hence, we propose cyclic learning
as shown in Algorithm 1 to inform the model which
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skills would be useful later before retrospecting to
easier curriculums with lower difficulties.

4 Experimental Setup

In our experiments, we define six curriculums rang-
ing from 0 to 5. 0 represents the original data, and
1 and 5 represent the easiest and the most difficult
curriculum respectively.6

4.1 Few-shot Text Classification Task
For the downstream application task for our experi-
ments, we follow Wei et al. (2021) to conduct the
task of few-shot, highly multi-class text classifica-
tion (Gupta et al., 2014; Kumar et al., 2019), which
typically has a large number of classes with only a
few samples for each of the class. We use triplet
loss, a loss computed with three elements, namely,
an anchor a, a positive sample p, and a negative
sample n. It origins from the vision community
(Schroff et al., 2015), which was later applied to
language tasks (Ein Dor et al., 2018; Lauriola and
Moschitti, 2020), suitable for the few-shot setting.
Precisely, the learning objective is defined as:

L = D(a, p)−D(a, n) + γ,

where D represents a distance measure that com-
putes the distance between the input encodings. γ
represents the margin between the positive and neg-
ative samples. We use BERT-based (Devlin et al.,
2019) pooled sentence encodings as the input into
a two-layer triplet network (Schroff et al., 2015).

Three datasets for the text classification task are
used in our experiments, namely, HUFFPOST
(Misra, 2018; Misra and Grover, 2021), COVID-
Q (Wei et al., 2020), and AMZN (Yury, 2020).
For space reasons, we leave their detailed dataset
description in Appendix B.

4.2 Dialogue Generation Task
The second downstream task for our experiments
is open-domain dialogue generation. We adopt a
Seq2Seq neural network (Sutskever et al., 2014)
which receives a text concatenation of prepended
knowledge k and dialogue context c and gener-
ates the dialogue response r in an autoregressive
manner (Radford, 2018). We train our dialogue
generator by maximising the following likelihood:

P (r | k, c) =
T∏

t=1

P (rt | r1, ..., rt−1, k, c),

6We release the code and resource at https://github.
com/HongyuanLuke/PCC.

where T represents the length of the generated dia-
logue response and rt represents the word at the po-
sition t that has been inferenced. Typical prepended
knowledge include personal traits (Zhang et al.,
2018) and movie description (Zhou et al., 2018).
We use DialoGPT (Zhang et al., 2020b) for param-
eter initialization for PCC.

We use PERSONACHAT (CONVAI2, Zhang et al.
2018) as the dataset for dialogue generation, which
is described in Appendix C.

4.3 Baselines for Text Classification

We use the following baselines from existing data
augmentation methods for text classification.

Triplet Loss As described in Section 4.1, an an-
chor, a positive example and a negative example is
selected to construct the loss (Schroff et al., 2015).

Token Substitution It substitutes words with
their WordNet synonyms (Zhang et al., 2015b;
Feinerer and Hornik, 2020).

Pervasive Dropout It uses dropout on words
with probability p = 0.1 (Sennrich et al., 2016a).

SwitchOut It replaces words with uniformly
sampled words (Wang et al., 2018).

Round-trip Translation It translates sentences
into another language before translating back into
the source language (Sennrich et al., 2016b).

Hard Negative Mining + EDA It combines hard
negative mining (Schroff et al., 2015) that chooses
hard negative samples and EDA (Wei and Zou,
2019) that employs synonym replacement, word-
level random insertion, deletion, and swap.

Hard Negative Mining + EDA + Gradual Cur-
riculum It gradually increases the temperature
for EDA augmentation (Wei et al., 2021).

4.4 Baselines for Dialogue Generation

We use the following baselines and data augmenta-
tion methods for dialogue generation.

TransferTransfo A Transformer-based model
fine-tuned on PERSONACHAT (Wolf et al., 2019).

PerCVAE It uses a memory-augmented architec-
ture with a conditional variational autoencoder to
exploit persona information (Song et al., 2019).

DialoGPT It refers to an autoregressive dialogue
generator introduced by Zhang et al. (2020b).
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CDA It refers to the curriculum data augmenta-
tion technique proposed by Wei et al. (2021) using
the augmentation of EDA (Wei and Zou, 2019).

Official & Flatten It refers to the paraphrase aug-
mentation technique that is task-specific to the task-
oriented dialogue generation (Gao et al., 2020). To
adapt it to our task, we use our generated para-
phrase via mutual implication, denoted as Flat-
ten, and the official revised PERSONACHAT para-
phrases, denoted as Official.

Round-trip Translation It translates the input
into another language before translating back (Sen-
nrich et al., 2016b).

4.5 Evaluation Metrics
For the text classification task, we follow Wei et al.
(2021) to use the top-1 accuracy as the metric.

For the dialogue generation task, we use the
word-level F1 score, and we adopt the well-known
sequence evaluation metric BLEU (Papineni et al.,
2002) where we report BLEU-2, BLEU-3 and
BLEU-4. We also adopt another well-known se-
quence evaluation metric, ROUGE, where we re-
port the F-measures for ROUGE-1, ROUGE-2 and
ROUGE-L (Lin, 2004).

To verify our claim that bottom-k sampling gen-
erates grammatically and lexically rich paraphrases,
we adopt Distinct-N (Li et al., 2016; Gao et al.,
2019) with both N ∈ {1, 2, 3} and N ∈ {4, 5, 6}
to measure the lexical and grammatical richness
respectively using the ratio of distinct N -grams
against the total number of N -grams generated.

5 Results and Analysis

5.1 Few-shot Text Classification Results
5.1.1 Main Results
Table 2 presents the results for few-shot text classi-
fication. Among the baselines, Triplet Loss + Grad-
ual Curriculum works the best (Wei et al., 2021).
PCC improves this baseline significantly. All the
models share randomness in data, and our model
is the best on all of the random seeds individually.
Further, our proposed PCC model surpasses the
baselines of Token Substitution, Pervasive Dropout,
SwitchOut and Round-trip Translation significantly.
Without bottom-k, PCC surpasses all the baselines,
and our proposed full model with bottom-k obvi-
ously boosts performance. Appendix G addition-
ally presents an analysis of the improvements as a
function of the number of data augmentations.

Figure 2: A plot of the training loss for the analysis for
cyclic learning. Best viewed in color.

5.1.2 Ablation Study

Table 4 presents the results of our ablation study.
First, removing the MI paraphrase filtering com-
ponent described with Equation 3 obviously de-
grades the results. Replacing bottom-k sampling
with pure sampling also decreases the results. Fur-
thermore, paraphrasing in a random or an inverse
order of decreasing difficulties, i.e., with neither
curriculum learning nor cyclic learning, obviously
deteriorates the results. Therefore, our contribution
is the discovery of paraphrasing as an effective
CDA method rather than using paraphrasing solely
as an augmentation technique. Moreover, using
cyclic learning instead of the gradual curriculum
improves the results when trained with and without
bottom-k sampling. Training the second cycle in an
inversed order of decreasing difficulties degrades
the results both with and without bottom-k.

5.2 Analysis on Cyclic Learning

Figure 2 presents the change of the training loss
during the progress of the training on the task of
text classification on COVID-Q. We observe that
catastrophic forgetting exists as the training loss
spikes when re-entering the curriculums. For the
second time it enters the most difficult curriculum
5, the loss is also further smoothened compared
to the first spike. The spike is also desirable as
described in Wei et al. (2021), indicating that new
instances that are harder to learn are presented and
can help to escape the local minima. These support
the usefulness of our proposed cyclic learning that
can smoothen the gradients, mitigate catastrophic
forgetting, and improve generalization by entering
curriculums multiple times.
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Model HUFFPOST COVID-Q AMZN Average

Triplet Loss (Schroff et al., 2015) 20.9± 1.0 39.7± 1.0 11.6± 0.6 24.1

Triplet Loss + Token Substitution (Zhang et al., 2015b) 22.7± 1.4 43.9± 1.3 12.8± 0.7 26.5

Triplet Loss + Pervasive Dropout (Sennrich et al., 2016a) 23.1± 1.1 43.5± 1.8 13.0± 0.6 26.5

Triplet Loss + SwitchOut (Wang et al., 2018) 22.9± 0.5 41.5± 0.6 12.7± 0.8 25.7

Triplet Loss + Round-trip Translation (Sennrich et al., 2016b) 24.2± 0.7 42.3± 1.0 13.0± 0.4 26.5

Triplet Loss + Hard Negative + EDA (Wei and Zou, 2019) 22.6± 1.8 48.2± 0.9 13.7± 0.9 28.2

↪→ + Gradual Curriculum (Wei et al., 2021) 23.8± 0.9 48.9± 0.9 14.4± 1.5 29.0

PCC with Cyclic Curr. w/o Bottom-k 25.2± 1.5 51.4± 0.8 17.4± 0.7 31.3

PCC with Cyclic Curr. w/ Bottom-k 25.9 ± 1.7 51.7 ± 0.6 18.2 ± 1.0 31.9

Table 2: Results in top-1 accuracy for the downstream task of text classification on three datasets. The best results
are bolded. We report the results averaged from five random seeds for data selection ranging from 0 to 4, which is
the source of the variance here. Our methods report the best performance on all the random data seeds on all the
datasets. A combination of top-k and top-p sampling with k = 120 and p = 0.95 is used for the penultimate row.

Model F1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

TransferTransfo (Wolf et al., 2019) 16.61 ± 0.09 3.16 ± 0.07 1.04 ± 0.03 0.43 ± 0.02 17.69 ± 0.14 3.96 ± 0.08 16.34 ± 0.13

PerCVAE (Song et al., 2019) 14.33 ± 0.12 1.23 ± 0.06 0.20 ± 0.05 0.04 ± 0.01 13.25 ± 0.10 1.62 ± 0.05 12.02 ± 0.10

DialoGPT (Zhang et al., 2020b) 18.58 ± 0.13 5.25 ± 0.08 1.89 ± 0.07 0.66 ± 0.05 18.42 ± 0.13 4.62 ± 0.09 17.23 ± 0.12

DialoGPT + CDA (Wei and Zou, 2019) 18.38 ± 0.10 5.23 ± 0.10 1.84 ± 0.08 0.63 ± 0.02 18.55 ± 0.31 4.63 ± 0.11 17.40 ± 0.30

DialoGPT + Flatten (Gao et al., 2020) 18.21 ± 0.21 5.03 ± 0.18 1.85 ± 0.11 0.65 ± 0.04 17.97 ± 0.34 4.45 ± 0.16 16.84 ± 0.28

DialoGPT + Official (Gao et al., 2020) 18.12 ± 0.11 4.80 ± 0.27 1.78 ± 0.50 0.59 ± 0.60 17.88 ± 0.24 4.38 ± 0.09 16.84 ± 0.20

DialoGPT + RT (Sennrich et al., 2016b) 18.26 ± 0.49 5.10 ± 0.21 1.80 ± 0.20 0.62 ± 0.08 18.32 ± 0.35 4.47 ± 0.18 17.16 ± 0.31

PCC with Cyclic Curr. w/o Bottom-k 18.76 ± 0.20 5.38 ± 0.14 1.99 ± 0.9 0.71 ± 0.06 18.81 ± 0.18 4.75 ± 0.12 17.53 ± 0.12

PCC with Cyclic Curr. w/ Bottom-k 18.80 ± 0.45 5.59 ± 0.17 2.07 ± 0.12 0.76 ± 0.11 19.15 ± 0.16 4.98 ± 0.12 17.89 ± 0.17

Table 3: Results for the downstream task of open-domain dialogue generation on PERSONACHAT, averaged from
three runs. All the metrics attain better quality with higher scores. We denote Round-trip Translation as RT. A
combination of top-k and top-p sampling with k = 120 and p = 0.95 is used for the penultimate row.

Model HUFFPOST COVID-Q AMZN

PCC w/o MI filtering 25.7 ± 1.4 50.2 ± 1.7 16.7 ± 1.1

PCC w/ Pure Sampling 25.8 ± 1.0 49.7 ± 0.9 16.9 ± 0.8

PCC w/ Inverse Curriculum 23.0 ± 1.7 48.5 ± 1.2 15.0 ± 0.5

PCC w/ Random Curriculum 24.0 ± 1.7 48.9 ± 1.5 15.1 ± 0.8

PCC w/ Gradual Curriculum 24.7 ± 1.3 49.6 ± 1.4 16.5 ± 0.7

PCC w/ Inv. Cyc. 24.9 ± 1.2 50.9 ± 1.0 16.5 ± 0.8

PCC w/ Cyc. 25.2 ± 1.5 51.4 ± 0.8 17.4 ± 0.7

PCC w/ Inv. Cyc., Bottom-k 25.3 ± 1.9 51.3 ± 1.1 17.1 ± 1.2

PCC w/ Cyc., Bottom-k 25.9 ± 1.7 51.7 ± 0.6 18.2 ± 1.0

Table 4: Ablation results in top-1 accuracy for the
downstream task of text classification.

5.3 Dialogue Generation Results

Table 3 presents the results for dialogue generation
on PERSONACHAT. First, we present the results
for competitive baselines, namely TransferTransfo
and PerCVAE. DialoGPT surpasses these two sig-
nificantly. Using CDA on DialoGPT has deteri-
orated BLEU scores, which suggests that using
CDA causes grammatical influence, possibly due
to the random operations that produce undesirable

grammatically incorrect augmentation. We also ob-
serve a large variance with the official paraphrase
provided by PERSONACHAT, possibly due to the
large difference between the manually rephrased
sentences. This indicates easier paraphrases seem
to be essential for PCC to be effective. Also, the
Flatten baseline reported in Table 3 approximates
a random curriculum, which degrades the results.
It leads to a conclusion about the usefulness of the
suggested curriculum. Round-trip Translation (RT)
seems not effective, which is somehow reasonable
as RT was originally designed for machine transla-
tion. PCC achieves the best among all the models,
suggesting its usefulness for dialogue generation.
Appendix D provides in-depth reasonings on the
results. Appendix H presents a human evaluation
of the downstream task of dialogue generation.

5.4 Analysis on Bottom-k Sampling

Table 5 presents the automatic results for bottom-
k sampling on PERSONACHAT. Here, bottom-k
sampling attains the best on Distinct scores with
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Model D1 D2 D3 D4 D5 D6

Pure Sampling 0.187 0.571 0.788 0.881 0.919 0.932

Top-k&p (k=120, p=0.95) 0.145 0.481 0.711 0.826 0.877 0.897

Top-k&p (k=80, p=0.80) 0.125 0.415 0.634 0.762 0.825 0.850

Bot.-k (k=2, N=1) 0.184 0.587 0.824 0.901 0.919 0.925

Bot.-k (k=10, N=1) 0.199 0.630 0.860 0.926 0.940 0.943

Bot.-k (k=2, N=5) 0.223 0.695 0.904 0.945 0.951 0.953

Bot.-k (k=5, N=10) 0.251 0.786 0.950 0.967 0.969 0.970

Bot.-k (k=10, N=15) 0.262 0.851 0.971 0.978 0.979 0.979

Table 5: Automatic results for bottom-k sampling on
PERSONACHAT. D represents the Distinct-N scores.

Criteria PCC w/o Bottom-k PCC w/ Bottom-k

Gramma. Richness 34 66 ‡

Lexical Richness 33 67 ‡

Difficulty 34 66 ‡

Paraphrasing 50 50 †

Table 6: Human evaluation results for bottom-k in
winning percentages. ‡ indicates the results as passing a
two-tailed binomial significance test with p < 0.0001.

lower grams (N ∈ {1, 2, 3}), indicating its lexical
richness. It also attains the best on Distinct scores
with higher grams (N ∈ {4, 5, 6}), indicating its
grammatical richness. This helps to generate super-
hard instances. Note that the setting of bottom-k
sampling employed in PCC with k = 2 and N =
1 already gives the best overall diversity against
previous sampling methods. Further increasing the
value of k and N leads to higher diversity.

5.5 Human Evaluation on Bottom-k Sampling
We hired three experienced annotators who have
degrees relevant to English Linguistics to conduct
an evaluation on bottom-k sampling with PER-
SONACHAT. We present a questionnaire composed
of 800 questions with 200 randomly sampled train-
ing instances with the paraphrases generated with
and without bottom-k sampling to the annotators
to compare model outputs under A/B testing:

• (Grammatical Richness): "Which para-
phrase do you think is more grammatically
different than the original input sentence?"

• (Lexical Richness): "Which paraphrase do
you think is more lexically different than the
original input sentence?"

• (Difficulty): "Which paraphrase is more diffi-
cult to read and understood?"

• (Paraphrasing): "Which one is more like a
mutual implicative paraphrase to the input?"

Table 6 presents the results of our human eval-
uation. The paraphrases generated by PCC with
bottom-k sampling have a significant advantage
in lexical and grammatical richness. Such an ad-
vantage correlates well with the difficulty of the
paraphrases to be understood by human annotators.
Furthermore, bottom-k does not hurt the paraphras-
ing performance compared to the top-k and top-p
sampling. The result of human evaluation veri-
fies our claim that bottom-k generates super-hard
paraphrases with grammatical and lexical richness.
Appendix F presents how bottom-k sampling is su-
perior over previous methods in our scenario with
case studies about the coping mechanism.

6 Conclusions

We propose a novel framework that uses mutual
implicative paraphrasing as a curriculum data aug-
mentation technique. Our proposed curriculum-
aware paraphrase generation module is composed
of three components, a paraphrase candidate gener-
ator with a bottom-k sampling strategy for gener-
ating superhard paraphrases, a paraphrase filtering
mechanism, and a difficulty measure. We propose
a bottom-k sampling strategy to effectively gen-
erate super-hard instances with grammatical and
lexical richness to be used for the later stages in cur-
riculum learning. Moreover, we propose a cyclic
learning strategy that mitigates catastrophic forget-
ting. Experimental results on the task of few-shot
text classification as well as dialogue generation
support our proposed methodology PCC’s useful-
ness, surpassing several competitive baselines.

Limitations

The proposed PCC cost more computational re-
sources than traditional CDA methods. However,
the cost is still affordable. Generating a round-trip
augmentation used as one of the baselines costs
about 1.5 seconds (1x speed) for PERSONACHAT.
In contrast, generating a single paraphrase costs
about 0.40 seconds (3x faster) with PCC on our
machine with a single GPU.

Ethical Statement

We honour and support the EACL Code of Ethics.
The datasets used in this work are well-known and
widely used, and the dataset pre-processing does
not make use of any external textual resource. In
our view, there is no known ethical issue. End-to-
end pre-trained dialogue generators are also used,
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which are subjected to generating offensive context.
But the above-mentioned issues are widely known
to commonly exist for these models. Any content
generated do not reflect the view of the authors.
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A Implementation Details

For text classification, we use the hyper-parameter
settings as in Wei et al. (2021) for the gradual
course, and we refer to their paper for the detailed
settings. For our cyclic learning, we pass through
the curriculums twice. We train the same num-
ber of steps for each curriculum as we did in the
first pass for our second pass, and the remaining
hyper-parameters are kept the same. For Token
Substituion, Pervasive Dropout, SwitchOut, and
Round-trip Translation, we follow Wei et al. (2021)
to use the triplet network as the base model and use
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a two-stage curriculum for those baselines. Follow-
ing Wei et al. (2021), we include 20% original data
whenever augmentation is used.

For dialogue generation, we use DIALOGPT-
SMALL for parameter initialisation. We use a batch
size of 4 and a gradient clip of 0.1. We use vali-
dation patience of 10 based on the validation loss.
We use greedy decoding for all of our experiments.
The above settings apply to all our baselines and
our proposed model fine-tuned on DIALOGPT. We
start to apply the augmentation after 130,000 steps
for data augmentation methods. We train the first,
second, third, fourth, and fifth curriculums with
60,000 steps. For Official, Flatten, and RT, we per-
form a two-stage curriculum as described by Wei
et al. (2021). We set N and k as a small value (typ-
ically N = 1 and k = 2) for bottom-k sampling.
We perform a cyclic repetition for our proposed
method for the same number of steps for each cur-
riculum until early stopped.

During our experiments, we apply data augmen-
tation methods on the entire textual input for text
classification, and we apply data augmentation
methods on the personas traits for persona-based
dialogue generation. We employ an off-the-shelf
pre-trained model for both the paraphrase generator
and the MI classifier (Nighojkar and Licato, 2021).

For all of the datasets, we obtain 20 paraphrases
after filtering, and we assign 4 paraphrases (Wei
et al., 2021) to each of the curriculums we have. We
use 2 paraphrases obtained with bottom-k sampling
for COVID-Q and we use 4 paraphrases obtained
with bottom-k sampling for the remaining datasets.

For our models without bottom-k sampling, we
use 20 paraphrases generated with a combination of
top-k sampling and top-p sampling with k = 120
and p = 0.95 for all of the datasets.

We conduct our experiments for dialogue gener-
ation on the PARLAI platform (Miller et al., 2017).

B Datasets for Text Classification

• The HUFFPOST dataset is composed of 200k
news headlines collected from 2012 to 2018,
which is categorized into 41 classes such
as politics, entertainment, and travel (Misra,
2018; Misra and Grover, 2021). We use all
the classes and a 70% / 30% train / test split by
class (Wei et al., 2021).

• The COVID-Q dataset is composed of 87
classes with several questions per cluster
which ask about the same thing (Wei et al.,

2020). We use the official train / test split with
3 questions per cluster (Wei et al., 2021).

• The AMZN product review dataset (Yury,
2020) categorizes products into given reviews.
We consider the use of 318 ‘level-3’ classes
with at least 6 samples per product.

For the few-shot scenario, we need to set the num-
ber of samples in each class, Nc, to be used to con-
struct the datasets. We use the setting in Wei et al.
(2021) where Nc = 3 for COVID-Q and Nc = 10
for HUFFPOST. We set Nc = 2 for AMZN.

C Dataset for Dialogue Generation

CONVAI2 is an official competition built based
on PERSONACHAT by adding new training exam-
ples as well as a hidden test set. For convenience,
we denote the former as PERSONACHAT in the
remaining of the paper. Since the test set is not
publicly available, we use the official split contain-
ing a training / development split with 8,939 / 1,000
multi-turn dialogues conditioned on 1,155 / 100 per-
sonas respectively. Each persona is composed of
about 4 to 5 persona traits.

D Analysis on Dialogue Generation

Table 3 reports an ablation when we use our PCC
to train the dialogue generator without the use of
bottom-k sampling. The results suggest that us-
ing bottom-k sampling improves all the metrics,
especially the ROUGE scores. Table 8 presents the
distribution of the textual similarity scores for the
paraphrases generated from four methods on PER-
SONACHAT. The official paraphrase (Zhang et al.,
2018) largely differs from the original ones, which
we postulate as the reason for the large variance
observed in Table 3. This also indicates the necces-
sity of the easier samples for curriculum learning.
The Round-trip Translation generates paraphrases
that have higher textual similarity with the input
sentence. Our method without bottom-k sampling
(we use a combination of top-k and top-p sampling
with k = 120 and p = 0.95 here) generates para-
phrases with more evenly distributed scores, with
an average of 0.02. In contrast, bottom-k helps
to generate harder samples while still capable of
generating more easier samples.

E Problematic Cases for EDA

Table 7 presents samples from EDA for a sample
input ‘I am glad to help you.’ with each of the
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Sample Number τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5

i) I equal am glad to help
you.

I am glad help to you. I am gald to happy help
you.

To help you. Glad am to help I you.

ii) I am glad you help to. I am gladiola to help
you.

I am glad to assistance
you.

Help glad am to i you. I am gladiolus to helper
you.

iii) Am glad you. I am glad help you. I am glad you help to. You I gald to help am. I am glad help you.

iv) I am glad to help you. I am glad equal to help
you.

I am glad to help you. I am glad to happy
happy help you.

I am happy to avail
you.

Table 7: Randomly selected cases for an input ‘I am glad to help you.’ using Easy Data Augmentation (Wei and
Zou, 2019). We present recommended temperatures τ ranging from 0.1 to 0.5, with four samples for each τ .

Model [0.5, [0, 0.5) (−0.5, 0) ,−0.5] Avg.

Official Paraphrases 1% 14% 33% 52% −0.46

Round-trip Translation 25% 52% 17% 6% 0.23

PCC w/o Bottom-k 39% 11% 23% 27% 0.02

PCC w/ Bottom-k 16% 8% 18% 58% −0.43

Table 8: Analysis on the distribution for the textual
similarity score with different augmentation methods.

temperatures τ ranging from 0.1 to 0.5, which is
the recommended setting from Wei et al. (2021).
We categorize EDA’s problems as the followings:

• Sample i) with τ = 0.1 and sample ii) with
τ = 0.2 changes the meaning of the input
sentence. ‘equal’ is possibly produced by ran-
dom insertion and ‘gladiola’ is possibly pro-
duced by synonym replacement via WordNet
(Feinerer and Hornik, 2020).

• Most of the samples produced with τ = 0.4
and τ = 0.5 breaks the grammar, which can
be harmful to generation tasks.

• Sample ii) and iv) with τ = 0.5 introduces
rare words such as ‘avail’ and ‘gladiolus’,
which is counterintuitive to see in many tasks.

As illustrated in Figure 1, PCC effectively reduces
the above-mentioned issues.

F Analysis on Bottom-k Sampling

Table 9 presents extensive case studies to support
that bottom-k sampling generates grammatically
rich and lexically rich paraphrases. PCC without
bottom-k tends to exploit a coping mechanism at
the beginning of generation (Sample 2, 3, 5, 6, 7,
8, 9, 10, 11, 12). By excluding these dominating
words to be copied for generation, bottom-k effec-
tively emphasises the content (Sample 5), improves
grammatical richness (Sample 1, 2, 3, 4, 5, 6, 7, 10,
12) and lexical richness (Sample 3, 4, 6, 8, 10, 12),
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Figure 3: A plot of the percentage performance im-
provements of the downstream task of text classification
against the number of data augmentation instances per
curriculum. We use the first row in Table 2 as the base-
line and the last row in Table 2 as the full improvements.

does appropriate synonym replacement (Sample 8,
11) and insertion (Sample 4). Without bottom-k
sampling, the input that starts with a first-person
pronoun ‘i’ is highly likely to have an output that
starts with ‘i’ (Sample 2, 3, 6, 8, 10). This con-
strains the model from generating grammatically
rich paraphrases. In contrast, bottom-k sampling
effectively reduces such cases and biases the gener-
ation towards a grammatically rich sampling space.
Indeed, out of the 6,126 persona traits from PER-
SONACHAT, 5,087 of them start with ‘i’. PCC
without bottom-k generates 2,558 paraphrases that
start with ‘i’, which avoids generating super-hard
instances and hampers the PCC performance.7 In
contrast, bottom-k generates 205 paraphrases that
start with ‘i’, indicating its usefulness in improving
grammatical richness and generating super-hard
instances. Avoiding coping helps to unearth the
diverse paraphrases hidden in the tail vocabularies,

7Neither a pure top-p sampling with p = 0.95, a pure
top-k sampling with k = 120, nor a greedy sampling helps,
which generates 2,313, 2,381 and 3,302 paraphrases that start
with ‘i’ respectively. Compared to these sampling strategies,
bottom-k is an effective strategy in preventing copying.
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Original Input Sentence PCC w/o Bottom-k Sampling PCC w/ Bottom-k Sampling

1): i like to shoot a bow. When i first started shooting bows, this was the most im-
portant method.

Hey, i like to shoot a bow. Just started using a Bow SLR
shooter, but a DSLR isn’t really necessary.

2): i have four sisters. i have four sisters four sisters, and i want four sisters.

3): i believe that mermaids are real. i believe that mermaids are real " @JesseyHawkins Marxist philosopher,’mermaids are real," property

4): i work as a stand up comedian. jesse t trained comedian, I work as a stand up comedian.

5): my favorite drink is cuba libre. My favorite beverage is Cuba libre. Cuba is my favorite drink and I live in Cuba free.

6): i did a few small roles in tv series. I have done a few small roles in tv series. over the years i’ve appeared in a few small roles in televi-
sion series

7): i love bicycling. bicycle is my friend. i Love Bicycling. how wonderful & amp ; inspiring! I love bicycling.

8): i own a hearse. own a hearse. u could do that? belongs to a hearse. it’s not that expensive.

9): i like to listen to music. i like to listen to music. How do you make up your mind? I like to listen to music. by JACK CLINTON

10): i like to party. I like to party touts my ambition and passion for parties " by @Mar-
gotHillary by @anadulka @KelisStout

11): my favorite band is imagine dragons. my favorite band is imagine dragons. I am just so happy
about that.

i love this band it is awesome

12): i love to sing. sing, am i love to sing artist, i love to sing.

Table 9: Extensive case studies on PERSONACHAT support our claim that bottom-k sampling generates grammati-
cally and lexically rich paraphrases that are more different than the input sentence.

which we postulate as the reason for the results
observed in human evaluation in Section 5.5.

Note that we use bottom-k sampling to effec-
tively prevent coping to generate instances that are
textually more different to the input. There is a
stream of work that considers improving the diver-
sity (Vijayakumar et al., 2016). However, these
works do not directly consider the similarity be-
tween the input paraphrase and the output para-
phrase. This is the advantage of bottom-k sampling
over this stream of work for our scenario.

G Analysis on Data Augmentation

Figure 3 presents the percentage improvements in
accuracy as a function of the number of data aug-
mentation instances available for each curriculum.
Here, since we have 5 curriculum difficulty levels
in our setting, having 3 instances available for each
curriculum means that we have 15 data augmenta-
tions in total for each original sample. The improve-
ments are positively correlated with the number of
available instances. Furthermore, it seems that the
improvements of PCC are not saturated yet. This
means that a further increase in the number of data
augmentations can lead to even higher performance
than reported in our paper.

H More Human Evaluation

• (Appropriateness): "Who is more appropri-
ate given the previous dialogue context?"

• (Informativeness): "Who is more diverse in-
stead of null answers such as I do not know?"

Criteria w/o PCC w/ PCC

Appropriateness 49 51 †

Informativeness 45 55 †

Engagingness 48 52 †

Human-likeness 49 51 †

Table 10: Human evaluation results for PCC in winning
percentages. † indicates the results as passing a two-
tailed binomial significance test with p < 0.05.

• (Engagingness): "Who would you prefer to
talk with for a long conversation?"

• (Human-likeness): "Which speaker do you
think sounds more like a real person?"

We follow Li et al. (2019) and Zou et al. (2021) to
conduct a human evaluation of dialogue generation
from the four aspects described above. We follow
the settings used in Section 5.5 to invite three ex-
perienced annotators to mark 200 instances under
A/B settings. The results in Table 10 indicate that
PCC effectively improves the DIALOGPT baseline
in all aspects, especially informativeness.

I Computing Infrastructure

We use an NVIDIA TITAN RTX with 24GB GPU
memory for all of the experiments conducted in
this paper. Training the text classification model
consumes about 1 hour. Fine-tuning the dialogue
generator consumes about 15 hours. Generating
a single paraphrase to be used in PCC as a CDA
method costs about 0.40 seconds on our machine.
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