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Abstract

Temporal Moment Localization is a challeng-
ing multimodal task which aims to identify the
start and end timestamps of a moment of in-
terest in an input untrimmed video, given a
query in natural language. Solving this task
correctly requires understanding the temporal
relationships in the entire input video, but pro-
cessing such long inputs and reasoning about
them is memory and computationally expen-
sive. In light of this issue, we propose Stochas-
tic Bucket-wise Feature Sampling (SBFS), a
stochastic sampling module that allows meth-
ods to process long videos at a constant mem-
ory footprint. We further combine SBFS with a
new consistency loss to propose LOCFORMER,
a Transformer-based model that can process
videos as long as 18 minutes. We test our pro-
posals on relevant benchmark datasets, show-
ing that not only can LOCFORMER achieve
excellent results, but also that our sampling
is more effective than competing counterparts.
Concretely, SBFS consistently improves the
performance of prior work, by up to 3.13% in
the mean temporal IoU, leading to a new state-
of-the-art performance on Charades-STA and
YouCookll, while also obtaining up to 12.8x
speed-up at testing time and reducing memory
requirements by up to 5x.

1 Introduction

Processing long untrimmed videos for understand-
ing and reasoning is a computationally expensive
task that not only demands a smart approach that
can capture global and local interaction, but also
requires allocating thousands of frames in mem-
ory (Wu et al., 2022). Previous work so far has
mostly focused on parsing the visual content in in-
dependent snapshots of a video, which limits the
approaches in terms of modeling long-term depen-
dency between events in the input.
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Figure 1: Empirical upper-bound memory consumption
of LOCFORMER, Transformer-base, with and without
enabling our proposed sampling technique (SBFS), and
DORIi (Rodriguez-Opazo et al., 2021). Memory usage
(y-axis) is computed on an NVIDIA RTX-8000 GPU,
using a batch size of 32 and assuming all sequences
have maximum length for the given video duration.

In this paper, we particularly look at the task of
temporal moment localization, which aims to iden-
tify the start and end timestamps of a moment of in-
terest in an input untrimmed video given the query
in natural language (Richard et al., 2018; Lin et al.,
2017; Escorcia et al., 2016; Chao et al., 2018; Gao
et al., 2017b; Xu et al., 2019). Recent approaches
have aimed at directly predicting the starting and
ending temporal locations, or regressing them from
the input video, moving away from the propose-
and-rank based approaches (Yuan et al., 2019c;
Ghosh et al., 2019; Rodriguez-Opazo et al., 2020).
Although these models are more efficient and can
potentially capture the influence between different
events in a video, they still require a considerable
amount of computation and/or memory since they
need to process the whole input video at once.

Recent improvements in both Natural Language
Processing (NLP) and Computer Vision (CV) tasks
can be attributed to the Transformer (Vaswani et al.,
2017) model. Despite their success, one main draw-
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back of these models is their computational cost,
with memory usage ballooning as model sizes in-
crease to attain better performance. This issue is ex-
emplified by many existing developments in Trans-
former models for video understanding only being
capable of processing short inputs at a time due to
memory constraints. For example, TimeSformer-
large (Bertasius et al., 2021) can only process in-
puts that are 24 seconds long!, ViVIT (Arnab et al.,
2021) and X-ViT (Bulat et al., 2021) can receive
inputs that are up to 32 frames long, while other ap-
proaches like MERLOT (Zellers et al., 2021) and
ClipBERT (Lei et al., 2021) specifically sample a
single or a few frames from the whole video.

In light of this issue, we present Stochastic
Bucket-wise Feature Sampling (SBFS). During
training, SBFS first splits the input feature se-
quence into a fixed number of sections (buckets)
and then selects a single feature per bucket using a
stochastic approach. At testing time, our module
selects the sufficient statistic of each bucket, which
allows us to obtain a feature sample-set that is rep-
resentative of the video content for the task at hand
while keeping the memory footprint constant

To show the effectiveness of our sampling tech-
nique, we combine SBFS with a broad selection
of models from previous work, and also use it to
propose LOCFORMER, a Transformer-based model
that operates at a constant memory footprint re-
gardless of the input length, as shown in Figure
1. We conduct experiments on three challenging
datasets, Charades-STA (Gao et al., 2017a), Activ-
ityNet Captions (Caba Heilbron et al., 2015; Kr-
ishna et al., 2017) and YouCooKII (Zhou et al.,
2018b,a). We show that by applying SBFS in
previous work we improve their performance in
all considered datasets, leading to a new state-of-
the-art on Charades-STA and YouCooklIl, while
reducing the memory requirements by up to 5x.
Furthermore, LOCFORMER is able to obtain state-
of-the-art performance in the latter, and competitive
results elsewhere.

We believe our results highlight the importance
of sampling techniques as a valid mechanism to
obtain better coverage of long input videos while
keeping memory usage under budget. This ulti-
mately provides a concrete direction for further
research on tasks where it is necessary to cover
long untrimmed videos, which include but are not

'TimeSformer-base/large reads 8 frames at 32/4 fps re-
spectively.

limited to video grounding. We release our code
and data® to encourage future research in this area.

2 Related Work

Sampling To the best of our knowledge, the earli-
est example of a sampling technique that is similar
to ours is the work of Nakagawa and Nakanishi
(1988), who proposed a stochastic version of dy-
namic time warping for speech recognition of the
Japanese language in the late 80s. This idea was
further extended by Suryanto et al. (2016) in the
context of motion recognition, where a random-
ized version of dynamic time warping for this task
was introduced. We also find several models that
utilize sampling techniques for action recognition
in videos, in this case to specifically select salient
clips, such as SCSampler (Korbar et al., 2019) and
MGSampler (Zhi et al., 2021), which were later
adopted by models like MVFNet (Wu et al., 2021).
Also, Adaframe (Wu et al., 2019b) recently pro-
posed a framework that adaptively selects relevant
frames on a per-input basis for fast video recogni-
tion. Fayyaz et al. (2021) introduced differentiable
parameter-free Adaptive Token Sampling (ATS),
which uses a scoring to adaptively sample signifi-
cant tokens and can be plugged into any existing
vision transformer architecture. Finally, Wu et al.
(2019a), recently proposed to process short video
segments at a time also augmenting the models
with a long-term bank from where global features
can be sampled. This ultimately enables them to
process longer overall inputs without losing global
information. While their motivation is similar to
ours, we note that their proposed sampling tech-
nique is not stochastic and requires learning. More-
over, our results show that performance improve-
ments are possible without access to global context,
making our contributions fundamentally different
in this sense.

Temporal Action and Moment Localization The
goal of Temporal Action Localization is to solve
the problem of recognizing and determining tem-
poral boundaries of action instances in videos, with
extensive previous work devoted to it (Shou et al.,
2016; Gu et al., 2018; Girdhar et al., 2019). Given
its limitations —restricted to a pre-defined list of
labels— the task of language-driven temporal mo-
ment localization was introduced as a generaliza-
tion (Gao et al., 2017a; Hendricks et al., 2017).
In this task, the goal is to determine the start and

2https://github.com/crodriguezo/locformer
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end times of the video segment that best corre-
sponds to a given natural language query. As this
requires the model to extract useful information
from the textual semantics in the query in order
to identify the moment, this task is also usually
regarded as video grounding. Early approaches
that tackled temporal moment localization, includ-
ing (Liu et al., 2018) and Ge et al. (2019), were
mainly based on the generation of candidate clips
which could later be ranked. Soon after, Chen et al.
(2018), Chen and Jiang (2019), and Xu et al. (2019)
focused mainly on reducing the number of propos-
als by producing query-guided or query-dependent
approaches. Recently, Zhang et al. (2021a) also
adopted a Transformer-based model for this setting,
being the most relevant to our work.

The extensive computation of enumerating can-
didates in the above-mentioned proposal-based
methods led to the development of methods that
can directly output the temporal coordinates of the
segment, namely, proposal-free approaches. In this
context, Ghosh et al. (2019) first focused directly
on predicting the start and end frames using regres-
sions, and soon after Rodriguez-Opazo et al. (2020)
improved results by modelling label uncertainty.
While Mun Mun et al. (2020) and Zeng et al. (2020)
later proposed more sophisticated modality match-
ing strategies, some more recent approaches have
focused on better contextualizing I3D (Carreira and
Zisserman, 2017) video features by proposing other
model variations (Li et al., 2021). More recently,
Liu et al. (2021), CPNet (Li et al., 2021), VSLNet
(Zhang et al., 2020a) have pushed performance
further up. Finally, models like DORi (Rodriguez-
Opazo et al., 2021), which also incorporates spatial
features and CPN (Zhao et al., 2021) have pro-
posed ad-hoc graph-based approaches. Compared
to these models, our contributions go in a differ-
ent direction which can be complementary because
of their large memory consumption, as shown in
Section 5.4.

3 Stochastic Bucket-wise Feature
Sampling

Let G be a sequence of input video features ex-
tracted by a video encoding function Fy (V). We
are interested in developing a module to limit the
memory budget of a given model when dealing
with long video inputs. In order to do this, we
limit the overall memory budget of the model by
shortening the sequence of video features fed into

the localization module. We do this in practice
by proposing a technique that we call Stochastic
Bucket-wise Feature Sampling (SBFS), which re-
turns a sequence of length at most b derived from
G, as follows.

A ifn<b
SBES(Gb) = (i L iTesho)
{gf(k) k=1 ifn>b

In Equation 1, m(n,b) characterizes the number
of buckets to be allocated to host video features,
and is defined as m(n, b) = LT%]J < b, where | |,
[1 are the floor and ceiling operators, respectively.
The index f(k) is sampled according to a uniform
distribution over the indices of the features in the
bucket, as Equation 2 shows, below.

F(R) ~ U . -1y

More intuitively, we create a fixed number of
buckets and allocate features to each by equally
distributing them into the buckets. During train-
ing, we randomly sample a single feature for each
bucket, following a uniform distribution, effec-
tively reducing the input sequence length to at most
b, the number of buckets. When doing this, we
also accordingly convert the original set of labels
%,7¢ € [1,...,n] into 7%,7¢ € [1,...,b]. For
simplicity, without loss of generality, for the rest
of the paper we will assume the sampling module
always returns total of b video features.

It is possible to prove that any sampled video
feature sequence G obtained using SBFS contains
sufficient statistics of GG, which allows us to train
our models on very long videos with adequate guar-
antees. From this, it also follows that although
SBFS can also be applied during inference, it is
better to decouple the model from this stochastic
component and instead utilize the max pooling op-
erator over the features of the bucket at inference
time. This gives models increased stability when
predicting, without sacrificing performance, as we
will show in Section 5.3. We refer the reader to
Section A of our supplementary material for the
full details on our theoretical analysis of SBFS.

4 LOCFORMER

In what follows, we assume that a given video
V' € V can be characterized as a sequence of
frames such that V' = {v;} with ¢t = 1,...,[
Each video in V is annotated with a natural lan-
guage passage S € S where S is a sequence of
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Figure 2: Our method uses a sampling technique that divides the video into a fixed number of buckets. Then,
we uniformly sample a single I3D feature from each bucket, which is then fed into the localization module, a
multi-modal Transformer model that receives video features and language features obtained from BERT.

tokens S = {s;} with j = 1,...,m, which de-
scribes what is happening in a certain period of
time. Formally, this interval is defined by ¢° and
t¢, the starting and ending points of the annotations
in time, respectively. Although in the data a given
video may be annotated with more than one single
moment, and one natural language description may
be associated to multiple moments, in this work
we assume each derived case as an independent,
separate training example.

Our model is trained to predict the most likely
temporal localization of the contents of a given in-
put query S in terms of its start and end positions
t%* and t°* in the video. We apply the mapping
7 = (t - n - fps)/l to transform frame/feature in-
dex to time, converting ¢° and ¢° into 7° and 7°,
which correspond to specific integer feature posi-
tions such that 7%, 7¢ € [1,..., n].

LOCFORMER follows the Transformer architec-
ture (Vaswani et al., 2017), which has been recently
extended to multi-modal scenarios as in UNITER
(Chen et al., 2020) in the context of vision-and-
language, and Recurrent VLN-BERT (Hong et al.,
2021) for vision-and-language navigation. Our
model operates on sequences of tokens {s;} and a
video {v;} characterized as a sequence of frames,
as specified earlier. The overall architecture is com-
posed by three main modules, as shown in Figure 2.
(1) The Video Encoding Module, which is in charge
of mapping video frames to vectors, and obtaining
a sample that is representative of the video con-
tents using SBFS, (2) the Text Encoding Module, a
Transformer model with dimension d,,, in charge of
extracting useful representations from the natural
language query, and (3) the Localization Module,
a multi-modal Transformer, also with hidden di-

mension d,,,, which receives both textual and video
features from the previous modules and is in charge
of estimating 7° and 7¢. In the following subsec-
tions, we give details about each component and
how they interact.

Video Encoding Module with SBFS  Our video
encoding module is in charge of mapping the [ in-
put video frames into a sequence of video features
G ={gi € R%},i=1,...,n. Atthe core of this
module lies SBFS, which we use to select a subset
of the features that are representative of the con-
tents of the video. Thus, the sampled video feature
sequence G will later be fed into the localization
module.

Text encoding module Sentences are processed
using the BERT tokenizer, which also prepends the
special CLS token, and adds the SEP marker at the
end. Each token is mapped to learned embeddings
of dimension d,,, and summed with learned posi-
tional encodings of the same size. These vectors
are passed through L encoder transformer blocks
with M attention heads, to produce final text repre-
sentations [ho, . . . , ).

Localization module A Transformer model that
receives both textual and video features, previously
obtained by the respective modules. For the former,
we directly input Ay, . . ., h,,, while for the latter
we first project G = [g1, . . ., gp) into the hidden
dimension using a trainable linear layer and fur-
ther combine this with a set of learned positional
encodings. These two encoded vector sequences
are concatenated lengthwise and passed through L
encoder blocks with M attention heads, to produce

(hos - .., Russ).

1912



these vectors, we select
[t .., hmys] and utilize the same lo-
calization function proposed by Rodriguez-Opazo
et al. (2020) as the main training signal, namely,
feature-level soft classification task on the time
dimension. Concretely, two different MLP layers
produce scores of each position being the start/end
of the location, which are passed through a softmax
activation to obtain 7°,7¢ € R’ which are
compared to soft-labels using the Kullback-Leibler
divergence (Lx1.).

From

In order to guide the model to utilize the infor-
mation in the relevant section of the video, we
encourage the attention heads of this module to
put more weight into the target video portions dur-
ing training, adapting the approach proposed by
Rodriguez-Opazo et al. (2020) as shown below.

L M

Loyt = — Z Z (1 -z ®x)*log(l— A'™) (3)

=1 m=1

In Equation 3, A is the attention matrix of
the [-th layer and m-th attention head of the lo-
calization module and & € R™*? is a vector that
denotes which areas of the output sequence will
be subject to our guiding signal, and is defined as
x = [Ll;,;075<i<re|, where ; denotes concatena-
tion, 4 is the Kronecker delta returning 1 when ¢ is
inside the range of 7, and 1; denotes a vector of
ones of size k.

Since our proposed localization loss is not sen-
sitive to the order of the predictions of the starting
and ending locations because there is no condition-
ing on the time in the model portions that generate
them, in this paper we additionally propose to in-
duce the model to respect the start-end order, tak-
ing a probabilistic approach. Concretely, we push
the expected location of the start of the segment
(S) to be before the expected location of the end-
ing (E) location, which is equivalent to requiring
E(FE) — E(S) > 0. Replacing the values of the
expectations, we obtain the following.

b

b b
B(E)—E(S) =) #i—Y #i=> i(if =) @
=1 =1

i=1

In Equation 4 above, 77 and 7, are integers that
denote the predicted probability value of the start-
ing and ending localizations at position ¢. Based on
this derivation, we formally implement our loss by
minimizing the negative difference of the expected

values as shown in Equation 5, below.

Lge =min(0, Y i(7 — 7)) )

=1

Finally, our model is trained with the direct sum-
mation of the three losses introduced earlier, such
that £ = Lxp + Latt + Lse.

S Experiments

5.1 Datasets

To evaluate our proposed approach, we work with
three widely-utilized and challenging datasets.

Charades-STA  Built upon the Charades dataset
(Sigurdsson et al., 2016), which provides time-
based annotations using a pre-defined set of ac-
tivity classes, and general video descriptions. We
use the predefined train and test sets, containing
12,408 and 3,720 moment-query pairs respectively.
Videos are 31 seconds long on average and a maxi-
mum duration of 194 seconds, with 2.4 moments
on average, each being 8.2 seconds long on aver-
age.

ActivityNet Captions Introduced by Krishna
et al. (2017), this dataset originally constructed for
dense video captioning, consists of 20k YouTube
videos with an average length of 120 seconds and
a maximum duration of 755 seconds. The videos
contain 3.65 temporally localized time intervals
and sentence descriptions on average, where the
average length of the descriptions is 13.48 words.
Following the previous methods, we report the per-
formance on the combined validation sets.

YouCookII Consists of 2,000 long untrimmed
videos from 89 cooking recipes obtained from
YouTube by Zhou et al. (2018b). Each step for
cooking these dishes was annotated with temporal
boundaries and aligned with the corresponding sec-
tion of the recipe. The average video length is 316
seconds and a maximum duration of 755 seconds.
In terms of relevant moment segments, each video
has 7.73 moments on average, with each segment
being 19.63 seconds long on average.

5.2 Implementation Details

For our experiments, we consider an off-line
video encoding function Fy, (V'), following previ-
ous work (Ghosh et al., 2019; Rodriguez-Opazo
et al., 2020; Rodriguez-Opazo et al., 2021; Wang
et al., 2020; Yuan et al., 2019a,b; Zhang et al.,
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2019). Concretely, we first pre-process the videos
by extracting features of size 1024 using 13D with
average pooling, taking as input the raw frames of
dimension 256 x 256, at 25fps. We use the pre-
trained model trained on Kinetics for ActivityNet
and YouCooklI released by Carreira and Zisserman
(2017). For Charades-STA, we use the pre-trained
model trained on Charades. For the natural lan-
guage input, we use the BERT-base-uncased tok-
enizer and keep the parameters of the Text Encoder
fixed. Models are trained using Adam (Kingma and
Ba, 2014). Evaluation is based on two widely used
metrics proposed by Gao et al. (2017a), namely
the Recall at various thresholds of the temporal
Intersection over Union (tloU or RQ«) measuring
the percentage of predictions that have tloU with
ground truth larger than certain o, and the mean
averaged tloU (mloU). We use three « thresholds
0.3, 0.5 and 0.7.

5.3 Ablation Studies

We begin by performing an empirical study of our
proposed stochastic sampling technique, compar-
ing it to several alternatives. We specifically con-
sider the following sampling approaches.

Random: As a naive baseline, we randomly
sample features maintaining the order.

Fixed-rate video down-sampling (FRVS): We
experiment with I3D features extracted at a lower
frame-rate of 5fps (Ghosh et al., 2019), which can
be regarded as a form of low-level down-sampling.

Fixed-rate feature down-sampling (FRFS):
We experiment with two fixed-rate down-sampling
techniques at the feature level, bucket-level mean-
pooling and max-poling.

Dynamic Time Warping (DTW): We perform
dynamic time warping between the non-structured
video features and the fixed size temporal sequence
created using our stochastic sampling technique
and max-pooling applied inside each bucket. In
this way, we assign features to each bucket that
will later be randomly sampled.

Dynamic-rate  feature = down-sampling
(DRFS): We utilize the similarity across features
to dynamically create each bucket. While many
variations are possible here, we decided to utilize
a cosine distance-based heuristic to create the
buckets. Please see Section B in the supplementary
material for all the details.

SBFS Variations: We experiment with different
alternatives for inference. Concretely, we always

. Performance

Sampling

R@0.3 R@0.6 R@0.7 mloU
Random 0942 0335 0074 09.24
FRVS-5fps 37.54  22.68 10.62 23.90
FRFS-mean 45.99 31.01 1546 2998
FRFS-max 45.53  30.61 15.55 30.11
DTW 27.58 13.52 0447 1822
DRFS 33.48 17.84  06.56 21.57
SBFS-all 46.28  30.04 1532 30.34
SBFS-mean  46.68  30.61 1523  30.53
SBFS 46.76  31.33 1581 30.92

Table 1: Performance of LOCFORMER on YoucookII
replacing SBFS with alternative sampling techniques.

apply our stochastic sampling during training, and
either use it for inference as well (SBFS-all), or
replace it with bucket-wise mean pooling (SBFS-
mean) or max pooling (SBFS).

For the experiments, we combine each of these
sampling approaches with the rest of the LocC-
FORMER architecture, and always use a bucket size
of 200. Regarding the data, we use the YouCookII
dataset, as it contains videos that can be as long
as 18 minutes with queries that use rich language,
which should help illustrate the importance of the
sampling.

As the results in Table 1 show, the effectiveness
of our sampling technique is clear, specially when
compared with more naive alternatives like random
sampling, or simple mean pooling. We see that
low-level down-sampling techniques, that extract
fewer frames from the original video, are not ef-
fective either. In contrast, the naive version of the
max-pooling-based sampling stands out, perform-
ing similarly but still below SBFS. To confirm the
effectiveness of our approach against FRFS-max
and FRFS-mean, we further compared average re-
sults of five runs using different random seeds. We
obtained baseline performances of 0.3006 £ 1.6 x
10~3 for FRFS-max and 0.3010 & 2.9 x 10~ for
FRFS-mean. In contrast, SBFS obtained a per-
formance of 0.3060 + 2.9 x 103, which we find
is statistically superior to both baselines at 99%
confidence. These results help illustrate the im-
portance of the stochastic approach we have taken,
which enables us to limit the input to the model
while still exposing it to all the training data in
the long run, significantly improving its general-
ization capabilities. Finally, we also note that all
the tested sampling alternatives except DTW and
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Bucket Size Performance
R@0.3 R@0.6 R@0.7 mloU
100 3574 2741 11.88  29.03
200 46.76  31.33 15.81  30.92
300 46.36 31.07 1595 30.63
400 45.25 30.30 15.58 30.23
500 44.33 28.69 14.18 29.14

Table 2: Impact on performance of LOCFORMER on
the YoucooklII dataset as parameter b, the bucket size,
changes.

DREFS do not utilize information about the features
when generating the buckets. It is interesting to see
that many of these arguably simpler sampling tech-
niques, including SBFS, outperform data-informed
approaches.

We also study the impact of SBFS at differ-
ent bucket sizes. For these experiments we use
the YouCooklI dataset, which contains the longest
videos on average, and test bucket sizes ranging
from 100 to 500. As we can see on Table 2, varia-
tions on parameter b have an impact consistent with
its expected behavior, with diminishing results as
b increases, and a clear performance sweet-spot at
b = 200 which we adopt for the main experiments
in our paper.

Finally, we ablate LOCFORMER component-
by-component, to test the effects of each one
of our introduced losses, and of SBFS. We
also compare LOCFORMER with two highly-
competitive Transformer-based model variations:
(1) Transformer-base a randomly-initialized
multi-modal Transformer-base?, into which we di-
rectly feed the text input and the sampled video fea-
tures, previously embedding them using a learned
embedding matrix and a linear projection layer,
respectively. Each encoder uses a separate set of
positional embeddings, and we also add a type em-
bedding to indicate the model the nature of each
vector. After this, the embedded sequences are con-
catenated lengthwise and passed through the trans-
former blocks; (2) BERT-base, where we initialize
our Transformer-base variation with the weights
of BERT. In this case, the projection linear layer
of the video features and the respective positional
encodings are randomly initialized.

Both model variations apply our attention guid-
ing loss L4 to all the attention heads in all the

3We follow the original notation (Vaswani et al., 2017)
using 12 layers and 12 attention heads.

layers. This effectively means that there is no
functionality separation inside these models. We
note that these baselines are comparable to existing
multi-modal transformer models such as ViIBERT
(Lu et al., 2019) and UNITER (Chen et al., 2020).
Experiments are again performed in YouCookll,
which contains the longest videos.

As seen in Table 3, our results first highlight
the importance of SBFS, enabling all kinds of
Transformer-based models we tested to process
long untrimmed videos, which would otherwise
lead to out-of-memory errors. Regarding the in-
teraction of the attention loss with different model
variations, we see that this additional training signal
leads to consistent gains for all Transformer-based
variations, but that these are larger in the case of
LOCFORMER. We surmise this is due to the atten-
tion loss potentially interfering with the inductive
bias that the baselines require to process the multi-
modal inputs, as well as with the already acquired
bias in the case of BERT, reflected in certain atten-
tion patterns for each head which have been studied
and documented by Rogers et al. (2020) among oth-
ers. This ultimately highlights the importance of
separating functionality inside Transformer models
for our task, which allows our model to perform
better overall.

On top of SBFS, our results also show how
each of our proposed component clearly helps in-
crease performance. In particular, we observe that
the addition of our attention loss (L) results in
the largest performance improvements, which is
consistent with the findings of Rodriguez-Opazo
et al. (2020). While the improvements due to L.
are comparatively less substantial, with differences
across « bands, we see that combining both losses
leads to the best results, showing that the losses
complement each other well, as expected.

5.4 Combining SBFS with previous work

We now focus on studying the ability of our sam-
pling technique to be combined with existing mod-
els. We do this by incorporating SBFS into
three proposal-free models selected from the lit-
erature, and testing them on our datasets. We
consider ExCL (Ghosh et al., 2019) and TMLGA
(Rodriguez-Opazo et al., 2020), which have been
extensively studied in the past years, as well as
DORi. We utilized our own implementation of
ExCL with our I3D features extracted at 25 fps*,

*The original implementation used a frame-rate of 5 fps.
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Component Transformer-base BERT-base Locformer
SBFS L. Ls¢ R@03 R@0.5 R@0.7 mloU R@03 R@0.5 R@0.7 mloU R@03 R@0.5 R@0.7 mloU
OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
v 33.65 2050 9.05 2223 3729 2251 1074 2461 4233 2826 12.83 2749
v v 3371 19.90 9.08 21.89 3946 2560 1257 2641 4284  28.01 13.80 28.04
v v 4086 25.09 11.51 26.16 4132 2738 1415 27.88 4639 3058 1535 30.57
v v v 4175 2652 1334 2783 4218 28.01 14.63 2824 46.76 3133 15.81 30.92

Table 3: Results of our Transformer ablation study, performed on the YouCooklI dataset, where OOM indicates we
obtained an out-of-memory error even when using the largest GPU at our disposal.

Method Charades-STA ActivityNet YouCookII

Mem.ics1 R@0.3 R@0.5 R@0.7 mloU Mem.ics) R@0.3 R@0.5 R@0.7 mloU Mem.icsj R@0.3 R@0.5 R@0.7 mloU
ExCL 2.8 62.28 39.74 22.53 4228 6.4 55.49 39.33 23.04 40.32 6.9 26.58 15.72 8.19 18.99
+ SBFS 1.6 62.74 42.04 24.57 43.05 1.8 56.42 40.37 24.70 41.13 1.8 30.96 18.64 10.05 21.76
TMLGA 2.3 67.53 52.02 33.74 4822 73 51.28 33.04 19.26 37.78 9.5 3348 20.65 1094 23.07
+ SBFS 1.5 70.67 52.20 33.90 49.18 1.7 53.00 35.10 19.83 37.85 1.8 39.25 25.40 12.80 26.20
DORi®* 328 7272 59.65 40.56 5328 347 57.89 4149 2641 4278 464 4336 3047 1824 30.46
+SBFS 23.1 7290 59.67 40.94 53.44 24.0 58.89 4221 2636 43.02 242 46.74 32.19 18.33 31.69

Table 4: Results of our experiments combining SBFS with existing work. Except where indicated, experiments
were performed using a batch size 32. * indicates experiments performed using a batch size of 4 due to memory

constraints.
Method Training Inference
TMLGA DORi TMLGA DORIi
Baseline 3.18 72 0.36 32
+ SBFS 0.72 10 0.08 2.5
Speed-Up 4.41 7.2 4.5 12.8

Table 5: Time in minutes for processing 10,337 and
3,492 queries from the YouCooklII dataset in training
and inference (test split) respectively.

and directly integrated the original implementa-
tions of the latter into our code.

As Table 4 shows, SBFS is able to consistently
provide performance improvements in all cases,
with gains of up to 3.13% in terms of the mean
temporal IoU. These improvements lead to new
state-of-the-art results on both the Charades-STA
and YouCookII datasets. We note that despite not
having access to the spatial information that DORi
incorporates, the performance of LOCFORMER
is very competitive to that of DORi+SBFS in
YouCookll, which contains the longest videos.

We further study the impact on training and infer-
ence time when adding our sampling module. For
this study consider TMLGA and DORI, and again
use YoucooklI since it contains the longest videos.
As shown in Table 5, SBFS consistently leads to
shorter training and inference times, with the de-
gree of impact depending on dataset and model.

Concretely, on DORi we obtain a speed-up of 7.2x
in training and 12.8x for inference, which again
illustrates the effectiveness of our approach, espe-
cially in the context of larger models. We also no-
tice that the methods converge in a similar number
of epochs with or without adding SBFS, meaning
that we can significantly reduce the convergence
time, as our sampling enables models to go through
each example faster.

5.5 Comparison to state-of-the-art models

Finally, we compare the performance of our pro-
posals on the datasets considered against several
prior works. We consider models based on differ-
ent approaches, specifically proposal-based models
including CBP (Wang et al., 2020), MS-TAN-2D
(Zhang et al., 2021b) and MNM (Wang et al., 2022),
as well as TripNet (Hahn et al., 2020), based on
reinforcement learning.

In addition to that, we also compare our ap-
proach to more recent methods that do not rely
on proposals, including ABLR (Yuan et al., 2019c),
ExCL, TMLGA and LGVTI (Mun et al., 2020),
CPNet (Li et al., 2021), as well as VSLNet (Zhang
et al., 2020b) and BCPN (Nawaz et al., 2022),
which cast our task as visual question answering,
and CPL (Zheng et al., 2022) which also incorpo-
rate Transformer-based components. Finally, we
also consider CPN (Zhao et al., 2021) and DOR4,
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Method Charades-STA ActivityNet YouCookII
R@0.3 R@0.5 R@0.7 mloU R@0.3 R@05 R@0.7 mloU R@0.3 R@05 R@0.7 mloU
ABLR 7 - 24.36 9.00 - 55.67  36.79 - 36.99 - - - -
TripNet 51.33 36.61 14.50 - 4842  32.19 13.93 - - - - -
CBP 50.19  36.80 18.87 3574 5430 35.76 17.80 36.85 - - - -
ExCL 65.10 44.10  22.60 - 62.10 41.60  23.90 - 26.58 15.72 8.19 18.99
TMLGA 67.53  52.02 3374 48.22 51.28 33.04 19.26 37.78 3348  20.65 1094  23.07
LGVTI 7296 5946 3548 5138 5852 41.51 23.07 41.13 - - - -
DORi 7272  59.65 4056 5328 57.89 4149 2641 4278 4336 3047 18.24 30.46
VSLNet 7046  54.19 3522 50.02 63.16 4322 26.16 43.19 - - - -
CPNet - 60.27 3874 52.00 - 40.56  21.63  40.65 - - - -
CPN 75.53 59.77 36.67 53.14 62.81 45.10  28.10 45.70 - - - -
BCPN 7342  61.77 4391 - 66.87  44.53  30.11 - - - - -
MS-2D-TAN - 60.08  37.39 - 62.09 4550  28.28 - - - - -
CPL 66.40 4924  22.39 - 82.55 55.73  31.37 - - - - -
MNM - 47.31 27.28 - 65.05 48.59  29.26 - - - - -
DORi + SBFS 7290 59.67 4094 5344 58.89 4221 2636  43.02 46.74 3219 18.33 31.69
LOCFORMER 71.88  58.52 38.51 51.76 60.61 4374  27.04 44.05 46.76  31.33 15.81 30.92

Table 6: Performance comparison of our approach with existing methods for different tloU « levels. Underlined
and bold results indicate second-best and best performance for each dataset. Values are reported on the validation
split of Charades-STA and the ActivityNet Captions. T Results for ABLR are as reported by Chen and Jiang (2019).
T The results reported by ExCL for ActivityNet have 3,370 missing videos, and the results on Youcookll were

obtained using our own implementation.

two models that contain specific graph-based ap-
proaches for the task, with DORI also incorporating
spatio-temporal features.

Table 6 summarizes our best results on Charades-
STA, ActivityNet Captions and YouCookII
datasets, while also comparing the obtained per-
formance to relevant prior work. We can see
that overall LOCFORMER is able to offer excellent
performance, closing the gap with sophisticated
graph-based models like CPN and DORI as well
as Transformer-based models like CPL, with new
state-of-the-art performance on the Charades-STA
dataset. The results also show the effectiveness
of our sampling approach when dealing with long
untrimmed videos, as we observe that by combin-
ing DORi with SBFS we are able to also attain
state-of-the art results on the YoucooklII dataset.

6 Conclusion

In this paper we have presented LOCFORMER, a
Transformer-based model for the task of temporal
moment localization which operates at a constant
maximum memory footprint regardless of the input
length. The success of our model fundamentally
relies on our modular design, which allows us to
separate functionality, and SBFS, where we split
the sequence of input video features into a fixed
number of buckets and select a single feature per
bucket using a stochastic approach.

Experiments conducted on three challenging
datasets show that LOCFORMER obtains competi-
tive results, and show that our sampling technique
can improve the performance of prior work on
all considered datasets, leading to a new state-of-
the-art on YoucooklII and Charades-STA. We think
these results highlight the importance of sampling
techniques as a valid mechanism to obtain better
coverage of long input videos while keeping mem-
ory usage low.

For future work, we are interested in testing our
sampling approach in other relevant tasks in the
context of video-and-language, for example video
retrieval. We are also interested in extending our
approach to address its limitations, for example, us-
ing adaptive or iterative sampling to treat different
areas of the video with different granularity.
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Limitations

We believe our results show that sampling is a valid
mechanism to obtain better coverage of long input
videos, while keeping memory usage under budget.
However, it is important to stress that in this work
we primarily focused on proposal-free models for
temporal moment localization and thus have no
evidence to suggest such improvements would be
observed in other models.

There is also a specific scenario where our
sampling could degrade the performance of a
given model. This scenario occurs when the span
of the query, a.k.a. moment, is located com-
pletely inside a given bucket, with many additional
frames/features in the same bucket. In this case,
the best that a model can do is to predict a moment
covering the whole bucket, this losing granularity.
In practice, this occurs when the ratio between the
duration of a given moment and the duration of
the video is vanishingly small. We believe this is-
sue can be alleviated in future work by recursively
generating and exploring buckets, an issue that we
would like to tackle in the future.

Our results are also limited to the features uti-
lized by the models we considered, and we offer no
evidence that our technique will generalize to those
cases as well. In terms of data, we have only exper-
imented with queries in English. While it would be
interesting to experiment with different languages,
this is so far a limitation of the datasets that exist.
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A Theoretical Analysis of SBFS

Let us begin by providing some key definitions that
we will be requiring to perform our analysis.

A statistic is a function T = r(X1,...,X,)
of the random sample X1, ..., X,,, which carries
information of the sampled data, such as the sample
mean and sample variance. We say that a statistic
satisfies the criterion of sufficiency when no other
statistic which can be calculated from the same
sample provides any additional information as to
the value, of the parameter to be estimated. We
can easily find a sufficient statistics by using the
Fisher—Neyman Factorization Theorem.
Factorization theorem: given a random sample
X1,..., Xy, with joint density f(x1,...,2,]0) a
statistic T = r(X1,...,Xy) is sufficient if and
only if the joint density can be factored as follows:

f((ﬂl, .

Spll) =u(zy, .. xn)v(r(z1,. .., T0),0)

where u and v are non-negative functions. The
function u can depend on the full random sample
T1,...,Ty but not on the unknown parameter 0.
The function v can depend on 0, but can depend
on the random sample only through the value of
r(T1,. .., Tn).

In our case, let us assume that our bucket con-
tains features X; that are independent and uni-
formly distributed on [0, 8] where € is unknown.
Then, the probability dense function can be writ-
ten as a product of individual densities since the
observations are independent,

1 1
fl@y,.. 2al0) =5 Ho<a <0y - - gLl{o<an<o)

Here 1(E) is an indicator function. It is 1 if the
event I holds, and 0 if it does not. Now z; < 8 for
i =1,...,nif and only if max{zy,...,x,} < 6.
Therefore,

1
flxy, ... 2n]0) = g Ho<min (i1} L{max {2} <6}

Thus, the factorization theorem shows that T' =
max{Xji,...,X,} is a sufficient statistic since the
density function takes the required form, where
u = Lp<minga;}} a1d v = gL max (2} <0}> Which
is a function that only depends on # and T' =
max{z; }.

With this in mind, we can now move on to our
analysis. We first note that nature of SBFS is
that a single feature is sampled from each bucket
with equal probability each time. If we assume

features are i.i.d., this implies that the probabil-
ity of getting a sampled video feature sequence is
P(G) = (b/n)". As this is a very small probabil-
ity, the number of potential distinct sampled video
feature sets (G) is exceptionally large.

Fortunately, video features (frames) within a
bucket are highly correlated as they originate from
neighboring video frames which are generally very
similar, and one may make a weak assumption that
bucket population in bucket k£ may not contain suffi-
ciently more information than any sampled feature
g (k) from the bucket population.

In other words, if gy ) is sufficient statistic of
the bucket k, then any sampled video feature se-
quence G using SBFS contains sufficient statistics
of G, and SBFS(G) is the sufficient statistic of
video feature population G. Therefore, we can
make the following proposition.

Proposition 1 Any sampled video feature se-
quence GG from SBES method is a sufficient statistic
of video feature population G.

The above proposition is very important as it
allows us to train any complex model, such as a
Transformer, on very long videos using SBFS with
adequate guarantees. Next, we also present an in-
teresting insight on how to pool features within a
bucket. To do this, let us denote the j-th dimension
of the feature vector g; by gf-.

Proposition 2 If the j-th dimension of vectors
within the bucket k has a uniform population for
all j, i.e. g;(k) is uniformly distributed on [1, p;]
where i is unknown, by the Fisher—Neyman fac-
torization theorem (Fisher, 1922), the sufficient
statistics of the population within the bucket k is
given by the max-pooling operator over the bucket

features °.

Although our SBFS can also be applied during
inference, founded by Proposition 2, it is better to
decouple the model from this stochastic component
and instead utilize max pooling operator over the
features of the bucket at inference time. This gives
models increased stability when predicting, without
sacrificing performance, as we showed in Section
5.3.

B Dynamic-Rate Feature Down-Sampling

In this section, we present details of our Dynamic-
Rate Feature Down-Sampling ablation experiments.
With this sampling heuristic, our intention was to

SPlease check the supplementary material for details.
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create buckets that satisfy the two following con-
ditions. First, we would like each bucket to hold
semantically similar features, using similarity on
the embedding space as a proxy. Second, we aim
to group features in a way such that the number of
buckets [ that hold the totality of the features in the
video is smaller than the desired number of buckets
b.

The bucket construction procedure works as fol-
lows. For an input feature sequence of length n,
we use the cosine distance to compute the seman-
tic similarity between each of the features in the
video, and construct the pairwise distance matrix
D € R™ "™, We then start the process with a sin-
gle bucket that contains only the first feature x,
and add features to this bucket starting from xo.
Feature x5 will be added to the bucket if and only
if the cosine-distance D12 < th, where th is a
threshold parameter, and otherwise a new bucket
is started and the process is repeated until all the
features have been processed. Once this is done,
we evaluate the number of buckets / that were cre-
ated, and if [ > b, then we reduce the threshold
th by a small margin (0.01) and generate all the
buckets again. This process is repeated until the
I < b condition is satisfied. Please see Algorithm 1
below, for additional details.

C Qualitative Results

In this section, we present qualitative results of
our method for each one of datasets we use for
evaluation. Ground truth (GT) and predictions in
Figures 3, 4 and 5 are in seconds.

As seen on Figure 3, in the case of ActivityNet
Caption, our method is able to localize the query
The man continue to rub the board using his pol-
ishing tools with a high temporal intersection over
union (IoU) of 80.41%. Though not visible in the
figure, we also note that the end of this video is full
of black frames and information about the creator,
for example, webpage and logos. This exemplifies
how ground truth annotations can be inaccurate,
and how our model can adequately deal with these
issues.

Figure 4 presents qualitative results for Yook-
CooklI dataset. In this case, we specifically present
our predictions on one of the longest videos in the
dataset, with a duration of 11 minutes and 46 sec-
onds, and where the natural language query is slice
up the ginger finely. As seen, our method obtains
an impressive performance considering that the mo-

Algorithm 1 Dynamic-rate Feature down-sampling
using cosine similarity Algorithm

D =1 — pairwise_distances(1")
th=1.0
flag = True
index_sample = { }
while flag do
indx = 0
st=20
ed=1
for ed < st tolen(V) do
s = Dst,ed
if s < th then
samples_in_bucket = []
for i + st to ed do
samples_in_bucket.append(i)
end for
index_sample[indx] =
ples_in_bucket

sam-

st =ed
indx = indx + 1

end if

if indx <= bucket_size then:
flag = False

else
th =th —0.01
index_sample = {}

end if

end for

end while

ment of interest lasts only 20 seconds. This figure
also serves to exemplify one of the limitations of
the bucketing approach we take. It is possible to
see that the predictions of our model, though pre-
cise overall, add 0.96 seconds to both the start and
end locations. This is a result of the maximum
granularity given by the buckets and features in our
system.

Finally, Figure 5 shows an example of the predic-
tions of our model on the Charades-STA dataset. In
this case, we also choose one of the longest videos
in the data, with a duration of approximately 1
minute. For the query person walks into room hold-
ing a bag, our method obtains a good performance
of 95.70% of temporal IoU.

D Experiment Details
 Total Parameters:

— ExCL: 6.9M parameters.
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Query: The man continue to rub the board using his polishing tools.

GT| 1395.12 745.5|
Prediction| |459.44 74117 |

Figure 3: Results of our method on the ActivityNet dataset in a very long video of 12 minutes and 25 seconds (745.5
seconds). Our method can localize the query The man continue to rub the board using his polishing tools with a
temporal IoU of 80.41%

GT| 1355 375] 706.6]
Prediction| |355.96 375.96] 706.6]

Figure 4: Qualitative result of our method on the YouCooKII dataset in one of the longest videos in the dataset (11
minutes and 46 seconds.) Our method obtains a temporal IoU of 90.83% for the query slice up the ginger finely.

— TMLGA: 4.7M parameters.
— DORIi: 10.4M parameters.
— LOCFORMER: 86.1M parameters.

* Hyper-parameters: Besides what is explained
in the paper, we did not specifically run hyper-
parameter exploration. On our early experi-
ments, we tried some learning rate variations,
but all of our reported results use 102 or re-
spect the original setting of the model.

* Hardware requirements: Our experiments
were performed on two kinds of GPUs, 16-
GB NVIDIA V100 and 48-GB Quadro RTX
8000. The former we access by means of
nodes on a large cluster, where each node has
four such GPUs. Some experiments, espe-
cially on the ActivityNet dataset with DORi
or LOCFORMER, were performed using data
parallelism to speed up training time, but all
of our proposed models can still run on single
GPUs. For the experiments with the origi-
nal DORi model or the baseline Transformer
models without SBFS, we recommend using
a GPU with at least 32GB of memory.
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Query: person walks into room holding a bag

GT[0.0 16.7| 58.73]
Prediction| 0.0 16.0] 58.73]

Figure 5: Charades-STA qualitative results on one of the longest videos in the dataset. For the query person walks
into room holding a bag, our method obtains 95.70% IoU with respect to the ground truth annotations.
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