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Abstract

This paper presents a new dataset with Dis-

course Representation Structures (DRSs) an-

notated over naturally-occurring sentences. Im-

portantly, these sentences are more varied in

length and on average longer than those in the

existing gold-standard DRS dataset, the Paral-

lel Meaning Bank, and we show that they are

therefore much harder for parsers. We argue,

though, that this provides a more realistic as-

sessment of the difficulties of DRS parsing.

1 Motivation

Corpora with deep, logic-based semantic annota-

tions are quite rare because they are so hard to

annotate. The arrival of the Groningen Meaning

Bank (Bos et al., 2017) and the Parallel Mean-

ing Bank (PMB; Abzianidze et al., 2017) changed

this situation by offering full Discourse Representa-

tion Structures (DRSs; Kamp, 1981b) for substan-

tial amounts of text in Dutch, English, German,

and Italian. The current release, 4.0.0, contains

more than 10,000 sentences in English and between

1,400 and 2,800 sentences in other languages. How-

ever, the dataset contains both bronze (automatic),

silver (partial manual disambiguation), and gold

(full manual disambiguation) data, and the gold

sentences are consistently very short (mostly <10

words). Since the dev, test, and eval sets contain

only gold data, this means that DRS parsers are

tested only on very short sentences, yielding an

overly optimistic assessment of results in this area.

In this paper, we improve on the situation by

offering a gold standard dataset containing DRSs

with a more realistic sentence length distribution.

We call this dataset DRASTIC, for ‘Discourse Rep-

resentation Annotation with Sentence Texts of In-

creased Complexity’.1 An additional strength of

DRASTIC is that the texts it contains – three contigu-

ous documents plus a selection of medium-length

1The dataset and accompanying scripts are available here:
https://github.com/Universal-NLU/DRASTIC.

sentences – are from the GUM corpus (Zeldes,

2017), allowing users to explore connections be-

tween the DRS annotation and the rich annotation

available in GUM: beside morphosyntactic anno-

tation following the Universal Dependencies (UD)

scheme (de Marneffe et al., 2021), this also in-

cludes entity recognition, coreference, discourse

structure and more.2 The current size of our dataset

is small, at 157 sentences with full manual disam-

biguation, but around 1,000 more sentences have

received a first manual annotation by student anno-

tators and will subsequently be integrated into the

dataset.

DRS parsing gets harder as sentences grow

longer (cf. van Noord et al., 2020, 4594f.). This

is natural, but some peculiarities of the PMB anno-

tation are especially hard to capture, and contribute

only little extra information. Cases in point are

recursive presuppositions, strict separation of dif-

ferent presuppositions of a single sentence, and the

use of discourse relations with relatively bland con-

tent such as CONTINUATION. As the sentence

grows in length, these result in a complex network

of embedded DRSs. In such cases, parser output

that is (more or less) logically equivalent to the

gold can still get a low score. To avoid this, we

simplify the annotation of such structures (see Sec-

tion 2.2). Since our corpus is small and does not

include training data, we provide a script that flat-

tens PMB-style annotations to our format. This

can be used to flatten PMB data before training

a parser, or alternatively to flatten the output of a

parser trained on the PMB.

The structure of the paper is as follows. In Sec-

tion 2, we introduce Discourse Representation The-

ory (DRT), as well as the PMB annotation and our

simplifications of it. In Section 3, we describe our

corpus, and Section 4 studies the effects of sen-

2The list at https://gucorpling.org/gum/annotations.html
(accessed 31 May 2023) provides the full set of annotation
layers.

https://github.com/Universal-NLU/DRASTIC
https://gucorpling.org/gum/annotations.html
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tence length on DRS parsing and offers baseline

modelling results on our data.

2 The format: Discourse Representation

Structures

In Discourse Representation Theory (Kamp, 1981b;

Kamp and Reyle, 1993; Kamp et al., 2011; Kamp

and Reyle, 2019) the meaning of a sentence is anal-

ysed as its contribution to the existing semantic

representation of the discourse context, called a

Discourse Representation Structure (DRS). This

means that DRT belongs to the family of theo-

ries called dynamic semantics, although DRT treats

only the process of interpretation as dynamic, not

the notion of meaning itself.3

DRSs are traditionally represented as boxes di-

vided into two: a universe of discourse at the top,

containing a number of discourse referents, which

can then be referred to by the set of conditions in

the lower part of the box. DRS conditions are by

and large simply formulae of some predicate logic,

but can also contain complex conditions relating

multiple DRSs via logical operators like negation,

implication, and disjunction, or modal operators

like possibility and necessity. By way of illustra-

tion, Figure 1 gives a DRS for the sentence Jadzia

thought that Miles or Julian had been hurt. DRT

is compatible with many different specific theoreti-

cal approaches to semantics; in Figure 1, as in our

corpus, we use a Neo-Davidsonian event semantics

where events and states (collectively called eventu-

alities) are treated as first-class entities in the ontol-

ogy, and semantic dependents are related to their

heads via thematic role predicates such as Agent,

Patient, etc. (on event semantics see e.g. Davidson,

1967; Parsons, 1990). A basic representation of

tense is also given, by including the relation Time

between an eventuality and its time, and relating

that time to the constant ‘now’ (referring to the

time of utterance) or to other times.

Aside from the rich body of theoretical work

in DRT exploring various knotty semantic phe-

nomena such as anaphora (Kamp, 1981b; Haug,

2014), tense (Kamp, 1981a), rhetorical structure

(Lascarides and Asher, 1993; Asher and Lascarides,

2003), propositional attitudes (Asher, 1986; Kamp,

1990), and others, one other good reason for us-

ing DRSs as our semantic representations is the

3Muskens (1994, 1996) provides a compositional interpre-
tation of DRT using the lambda calculus, which also treats
meaning itself as dynamic, thus uniting two divergent ap-
proaches within the dynamic semantics family.

existence of the Parallel Meaning Bank (PMB;

Abzianidze et al., 2017), a multilingual corpus of

DRS-annotated texts in English, Dutch, Italian, and

German, to which we aim to contribute.

2.1 DRT in the PMB

The PMB makes a number of specific choices

with regard to its DRS representations, which we

endeavour to follow. Firstly, it represents DRSs

not as graphical boxes, but as machine-readable

text files, in a clausal format (van Noord et al.,

2018a). An example PMB-style DRS and its cor-

responding translation into the clausal format is

shown in Figure 2. Each clause begins with the

label of a DRS (a ‘box’, hence the b), indicat-

ing where the condition is introduced. It then con-

tains one of three types of condition: (1) a unary

or binary predicate name, followed by its argu-

ment(s), as in b1 scowl.v.01 e1; (2) the ex-

plicit introduction of a discourse referent, as in

b1 REF e1; or (3) a relation between DRSs, as

in b2 PRESUPPOSITION b1, which states that

the contents of DRS b2 is a presupposition of

b1.4 Finally, the clause contains information about

which word it originates from, and gives the char-

acter offsets of that word in square brackets.

As indicated in Figure 2, the PMB also repre-

sents presupposition, following the approach of

Projective DRT (Venhuizen, 2015; Venhuizen et al.,

2018). In the graphical representation, we indi-

cate presupposed material with a prefixed aster-

isk, ‘∗’, since we flatten any embedded presuppo-

sition structure so that we just have a single box

containing all presupposed material for the sen-

tence (see Section 2.2 for more on our simplifica-

tions of the clausal format). On the clausal side,

b2 PRESUPPOSITION b1 means that DRS b2

is a presupposition of DRS b1. A full list of PMB

relations, including temporal relations (such as

TPR, temporal precedence, used in Figure 2) is

available on the PMB website.5.

The PMB representations do not include any

indication of number (singular vs. plural, etc.),

nor of aspect, but they do contain detailed lex-

ical semantic information, because each lexical

concept, i.e. unary predicate, is identified with a

WordNet synset (Fellbaum, 1998) indicating which

4Other relations between DRSs used in the PMB follow
the rhetorical relations of Segmented DRT (SDRT; see e.g.
Asher and Lascarides 2003), but we do not use these in the
DRASTIC corpus – see Section 2.2.

5https://pmb.let.rug.nl/drs.php (accessed 31 May 2023).

https://pmb.let.rug.nl/drs.php
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b1 ∶

e1 x1 t1

person(x1)
Name(x1, ‘Jadzia’)
think(e1)
Experiencer(e1, x1)
Topic(e1, b2)
time(t1)
Time(e1, t1)
t1 < ‘now’

b2 ∶

e2 x4 t2

hurt(e2)
Patient(e2, x4)
time(t2)
Time(e2, t2)
t2 < t1

x2

x2 = x4

person(x2)
Name(x2, ‘Julian’)

∨

x3

x3 = x4

person(x3)
Name(x3, ‘Miles’)

Figure 1: DRS for Jadzia thought that Miles or Julian had been hurt

b1 ∶

e1 ∗ x1 ∗ t1

∗person.n.01(x1)
∗Name(x1, ‘Benjamin’)
scowl.v.01(e1)
Agent(e1, x1)
∗time.n.08(t1)
Time(e1, t1)
∗t1 < ‘now’

(a) Graphical representation

b2 PRESUPPOSITION b1

b2 REF x1 % Benjamin [0...8]

b2 person.n.01 x1 % Benjamin [0...8]

b2 Name x1 "Benjamin" % Benjamin [0...8]

b1 REF e1 % scowled [9...16]

b1 scowl.v.01 e1 % scowled [9...16]

b1 Agent e1 x1 % scowled [9...16]

b2 REF t1 % scowled [9...16]

b2 time.n.08 t1 % scowled [9...16]

b1 Time e1 t1 % scowled [9...16]

b2 TPR t1 "now" % scowled [9...16]

(b) Clausal notation

Figure 2: Graphical vs. clause-based representation of a PMB-style DRS for the sentence Benjamin scowled

particular word sense is implicated. That is, the

clause b2 person.n.01 x1 indicates that the

discourse referent x1 falls under the first nominal

sense of the lexeme PERSON listed in WordNet,

i.e. a human being, as opposed to a body or the

grammatical category (senses 2 and 3).

2.2 Simplifications

In general, the DRASTIC corpus follows the PMB

annotation style, to allow the transfer of tools and

techniques developed for the PMB, and in particu-

lar to provide test data involving longer sentences

for the evaluation of parsers trained on the PMB.

However, there are two areas in which we have

chosen to simplify the PMB scheme in DRASTIC.

Firstly, we flatten DRSs by removing extrane-

ous presuppositional sub-DRSs. To see what this

means, consider the sentence Jenna’s car stopped.

Here we have (at least) three distinct existential

presuppositions: the possessive construction pre-

supposes the existence of Jenna’s car; the proper

noun Jenna itself introduces a presupposition that

someone called ‘Jenna’ exists; and the past tense

presupposes the existence of some time before the

present. In PMB, this would result in three separate

presuppositional DRSs, with two related directly

to the main, outer DRS, and one related indirectly,

via another of the presuppositional DRSs. This is

shown in Figure 3a. In our own representations, all

presuppositional material that originates in a given

DRS is collapsed into a single sub-DRS, as shown

in Figure 3b.

Since presuppositional material is ultimately not

interpreted where it originates, but at the level to

which it projects (on presupposition projection in

DRT, see Venhuizen et al. 2018), this move is harm-

less with respect to the content of the DRSs in

question. We lose track of which presuppositions
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b1 ∶

e1

b2 ∶

x2

Owner(x2, x1)
car.n.01(x2)
PRESUPPOSITION(b1)

b3 ∶

x1

person.n.01(x1)
Name(x1, ‘Jenna’)
PRESUPPOSITION(b2)

stop.v.01(e1)
Theme(e1, x2)
Time(e1, t1)

b4 ∶

t1

time.n.08(t1)
t1 < ‘now’
PRESUPPOSITION(b1)

(a) Unflattened presuppositional DRS

b1 ∶

e1

b2 ∶

x1 x2 t1

Owner(x2, x1)
car.n.01(x2)
person.n.01(x1)
Name(x1, ‘Jenna’)
time.n.08(t1)
t1 < ‘now’
PRESUPPOSITION(b1)

stop.v.01(e1)
Theme(e1, x2)
Time(e1, t1)

(b) Flattened presuppositional DRS

Figure 3: Unflattened vs. flattened DRS for Jenna’s car stopped

originated together, but this is not essential for in-

terpretation. Moreover, when it comes to evaluating

DRS parsing, we avoid many cases where logically

equivalent DRSs are identified as distinct, owing

to inconsequential differences in presupposition

structure, which will then inappropriately suppress

performance scores for DRS parsers.

This move also has the major advantage of mak-

ing the representations easier for contemporary

general-purpose neural networks to learn in the first

place. As van Noord et al. (2018b, 619) observe,

“DRSs are recursive structures and thus form a chal-

lenge for sequence-to-sequence models because

they need to generate a well-formed structure and

not something that looks like one but is not inter-

pretable”. By collapsing largely extraneous struc-

ture, we reduce one major source of difficulty for

sequence-to-sequence models in producing DRSs.

The second simplification that we make is to

eliminate rhetorical/discourse relations from our

representations. This is more destructive than our

first change since some such relations are gen-

uinely informative (e.g. EXPLANATION). How-

ever, by far the most common relation in the PMB

is CONTINUATION, the semantics of which re-

duces to conjunction, meaning that nothing is lost

by eliminating it. Annotation of such rhetorical re-

lations is also rather more subjective than other as-

pects of semantic annotation, which can inevitably

lead to inconsistencies within or between annota-

tors. Finally, removing these relations once again

results in flatter DRSs, and so also serves to aid

machine learning of DRS parsing.

However, since our corpus is too small to train

a parser on our simplified format, model training

must still rely on the PMB training set. Since most

sentences there are very short, the structures that

we simplify are unlikely to arise in large numbers;

nevertheless, to make sure that the annotations are

compatible, we provide a script that flattens PMB-

style annotations as described above. This can be

used to flatten the PMB data before training (to

train a parser directly on this simplified format) or

to flatten the output of a parser trained on the PMB

directly. In Section 4, we report the results of some

experiments using this second approach.

3 The corpus

3.1 The texts

The DRASTIC corpus consists of four sub-corpora:

three entire documents from the biographical sec-

tion of GUM, and one selection of shorter sentences

drawn from different sub-parts of the GUM corpus.

The three biographical texts are Wikipedia arti-

cles relating to Czech composer Antonı́n Dvořák

(GUM bio dvorak), YouTuber Jenna Marbles

(GUM bio marbles), and translation theorist Eu-

gene Nida (GUM bio nida), while the short texts

corpus contains sentences 6–19 words long from

6 academic articles included in the 216 texts of

the GUM corpus (the specific texts are shown in

Table 1). Table 2 gives details about the size of the

sub-corpora. ‘Tokens’ in this table refers to ortho-

graphic words separated by whitespace or hyphens,
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GUM academic art

GUM academic census

GUM academic eegimaa

GUM academic enjambment

GUM academic epistemic

GUM academic games

Table 1: GUM texts from which the short-texts

corpus draws

Sub-corpus Sentences Tokens UD tokens

dvorak 28 668 678

marbles 43 842 926

nida 46 878 917

short-texts 40 512 539

TOTAL 157 2900 3060

Table 2: Size breakdown of the DRASTIC corpus

and to some punctuation characters (., ,, !, ?, ;).

The UD tokenisation used in the GUM CoNLL-U

files is more morphosyntactically motivated (e.g.

possessive ’s is separated from its host), and as such

gives a larger number.

The major contribution of our corpus is that the

sentence length distribution is more evenly spread

and has a far wider range than that of the PMB data

(especially the test set). For instance, the median

sentence length in our corpus is 17, compared to 8

in the PMB data overall, and 6 in the PMB test set.

The full distributions are shown in Figure 4, while

Table 3 gives some further descriptive statistics

about sentence length across the (sub-)corpora.

(Sub-)corpus Median Mean St.dev.

dvorak 23 23.9 9.68

marbles 17 19.6 12.4

nida 18 19.1 11.1

short-texts 13 12.8 4.29

DRASTIC (all) 17 18.5 10.6

PMB (all) 8 10.0 9.53

PMB (test only) 6 6.60 2.08

Table 3: Sentence length across (sub-)corpora

Although it only has a modest number of sen-

tences, the DRASTIC corpus nevertheless also man-

ages to exemplify a range of complex linguistic

phenomena, including negation, modal expressions,

meta-linguistic usage, appositions, relative clauses,

complement clauses, and a variety of other kinds

of multi-clausal structure.

3.2 The annotation procedure

In the first instance, our annotation procedure fol-

lows that of the PMB as described in Abzianidze

et al. (2017).6 Our texts were uploaded to the PMB,

where they were automatically analysed on several

layers: tokenisation, CCG parsing, semantic tag-

ging and WordNet sense selection. With this infor-

mation, the Boxer system (Bos, 2008, 2015) then

automatically produces a DRS representation for

the sentence. All layers were subject to manual cor-

rection by trained annotators, and annotations were

harmonised through weekly meetings and subse-

quent retagging of texts. This was done for around

1,000 sentences. For the 157 sentences released in

the current version of the corpus, all sentences were

also checked by the authors of this paper, and this

process will continue.

The PMB interface imposes compositionality, in

the sense that the final representation cannot be

edited; only the representation of the tokens can be

changed, and Boxer will then assemble a new repre-

sentation of the sentence. While this is theoretically

desirable, it can be practically limiting. Consider

the sentence She paid $800 rent by working var-

ious jobs, like bartending, working at a tanning

salon, blogging, and go-go dancing at nightclubs.

Because this is a sequence of coordinated gerund

VPs, Boxer produces disjoint DRSs connected by

the discourse relation CONTINUATION. By man-

ual intervention, we can instead make sure that the

gerunds are coordinated to form one complex event,

which bears an Instrument role to the matrix event.

To deal with such complicated cases, we there-

fore exported our data from the PMB and manually

corrected remaining errors. Because we wanted to

factor out anaphora resolution as a separate task, we

exported the data with no anaphora resolved. How-

ever, all cases of sentence-internal anaphoric refer-

ence were noted, and we distribute the data in two

versions: with and without anaphoric resolution.

The former is the standard of the PMB and was

used in our subsequent experiments. Unfortunately,

it is not easy to represent cross-sentential anaphoric

references when each DRS represents one sentence

only; for that the DRSs must be merged or con-

nected by discourse relations. This is a task for

full-fledged discourse parsing, which we do not

6We are grateful to the PMB team, in particular Johan Bos
and Rik van Noord, for helping us with both technical and
linguistic issues in using the PMB interface.
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Figure 4: Length distribution in PMB 4.0.0 datasets compared to our corpus

attempt here. However, it is worth noting that this

is an area where the additional annotation layers

of the GUM corpus will be particularly useful. In

this instance, the discourse annotation layer, based

on Rhetorical Structure Theory (Mann and Thomp-

son, 1988; Taboada and Mann, 2006), may aid in,

for example, reconstructing the SDRS rhetorical/

discourse relations which DRASTIC omits.

3.3 The format

Each of the two versions of the corpus, with and

without anaphoric resolution, is provided as a set

of files, one for each sentence, named after their

GUM sent id. Each file contains the raw text of the

sentence and its clausal DRS annotation. We make

the connection from the DRS annotation to both

the original text and the GUM UD format explicit

by decorating clauses in our data not only with

character offsets, as shown in Figure 2, but also

with UD token offsets, taken from the CoNLL-U

files. This indicates which word(s) the clause in

question originates from.

4 Modelling results

4.1 State of the art DRS parsing

Work on DRS parsing has recently involved apply-

ing deep neural networks. The majority of the work

in this area (van Noord et al., 2018b; van Noord,

2019; Evang, 2019) has used sequence-to-sequence

(seq2seq) LSTMs (Hochreiter and Schmidhuber,

1997). Table 4 presents recently reported perfor-

mances of DRS parsing on the PMB datasets,

along with the best results from our seq2seq exper-

iments (Yıldırım and Haug, 2023), which, unlike

previous work, also reports results on PMB 4.0.0.7

We trained this state-of-the-art parser following the

design principles used by van Noord et al. (2020),

but instead of an LSTM we used transformer-based

encoders and decoders. Here, we report the results

obtained by using bert base cased as a frozen en-

coder along with a non-pretrained (randomly ini-

tialized) transformer as the decoder (12 layers, 12

attention heads per layer, using the Wordpiece tok-

enizer (Wu et al., 2016) used by the input (encoder)

for the output as well).

The results in Table 4, with F1 scores in the

high 80s/low 90s, clearly leave room for improve-

ment, but do suggest that DRS parsing is a rela-

tively straightforward task for current systems. The

results are better, for example, than state-of-the-

art parsing for Abstract Meaning Representation

(AMR; Langkilde and Knight, 1998), which is in

the low to mid 80s (Bai et al., 2022). This is sur-

prising, because the expressive power of AMR is

strictly less than that of DRT (Bos, 2016), and be-

cause the PMB DRSs capture many phenomena

that AMR ignores, particularly involving scope.

However, there is reason to believe that DRS

parsing as evaluated on the PMB test set under-

states the difficulty of the task. One issue that was

7Poelman et al. (2022) report performances of parsing
Discourse Representation Graphs (DRG), a simpler form of
DRSs, using PMB 4.0.0.
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PMB 2.2.0 PMB 3.0.0 PMB 4.0.0

dev test dev test dev test eval DRASTIC

van Noord et al. (2020) 86.1 88.3 88.4 89.3 – – – –

Liu et al. (2021) – 88.7 – – – – – –

Yıldırım and Haug (2023) 87.5 89.2 89.8 90.3 88.1 89.0 86.9 36.2

Table 4: Recently reported F1 scores for PMB 2.2.0, 3.0.0, and 4.0.0 datasets, and our result for DRASTIC

noticed by van Noord et al. (2020, 4594f.) is that,

unsurprisingly, all models in their experiments per-

formed worse as sentences got longer. In this con-

text, the short length of the sentences in the PMB

test set becomes especially noteworthy. The distri-

bution of sentence lengths in the PMB was already

shown in Figure 4. We see that it is very differ-

ent between the training set and the dev/eval/test

sets. As noted above, this is because the latter only

include data that have been fully corrected man-

ually – generally very short sentences – whereas

the training set also contains data with no or only

partial manual disambiguation, and those sentences

are much longer. This mismatch is in itself a po-

tential problem and may be the reason why several

teams have fine-tuned their models on only the gold

data of the training set, which has a similar length

distribution to that of the test set.

4.2 DRS parsing and sentence length

More worrying than the mismatch between train-

ing and evaluation is the overall short length of

the sentences in the PMB dataset. We observe that

sentences longer than 10 tokens are very rare. This

is quite different from what one encounters in most

genres of running text. Owing to the small range of

sentence lengths in the PMB test set, the deleteri-

ous effect of increased length noted by van Noord

et al. (2020) is only weakly felt there. The cor-

relation between sentence length and F1 score in

the PMB test set has a Pearson’s r value of −0.21

(p < 5 × 10
−10), a trend shown in Figure 5 (with

regression line and 95% confidence intervals). In

the DRASTIC data, with its more varied sentence

lengths, the correlation with F1 scores is slightly

more pronounced, as shown in Figure 6 (Pear-

son’s r = −0.29, p < 4 × 10
−4). Nevertheless, it

is still fairly weak. Although longer sentences may

confuse the transformer architecture by virtue of

their length alone (because there was little or no

data with the same positional encodings in the train-

ing phase), linguistic complexity (e.g. the presence

of negation or other scopal operators, along with

0.00

0.25

0.50

0.75

1.00

4 8 12 16

length

f1

Figure 5: Performance vs. length in the PMB test set

obtained by using the model reported under PMB 4.0.0

in Table 4 by Yıldırım and Haug (2023)

embedded structures) is another, semi-orthogonal

source of difficulty, which will affect performance

independently of length. Of course, the two are not

entirely unrelated, since longer sentences also tend

to be linguistically more complex (especially in

terms of sentential embedding), exhibiting more

structures that are rarely seen in the training data.

4.3 Performance on our dataset

Since our data structures are simplified (‘flattened’)

compared to the PMB annotations, as described in

Section 2.2, we transform the output of our parsers,

which are trained on the original PMB data. This is

done automatically in three steps:8

1. Removing discourse relations: Each clause

of the form x REL y, where REL is

one of CONTINUATION, CONTRAST,

ELABORATION or EXPLANATION, is elim-

inated. All occurrences of the box variable x

are replaced by y in all clauses.

8The script to perform this transformation has been
made available along with the data at https://github.com/
Universal-NLU/DRASTIC.

https://github.com/Universal-NLU/DRASTIC
https://github.com/Universal-NLU/DRASTIC
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Figure 6: Performance vs. length in the DRASTIC corpus

obtained by using the model reported under PMB 4.0.0

in Table 4 by Yıldırım and Haug (2023)

2. Flattening recursive presuppositions:

for all occurrences of pairs of clauses

of the form x PRESUPPOSITION y,

y PRESUPPOSITION z, we remove the

first clause and replace all occurrences of the

box variable x by y.

3. Grouping presuppositions: for all occurrences

of clause pairs x PRESUPPOSITION y,

z PRESUPPOSITION y, we remove the

first clause and replace all occurrences of the

box variable x by z.

For the purposes of this paper, we perform these

transformations on the output of the DRS parser

before measuring performance on our dataset. This

allows us to use the same model both on PMB data

(with unflattened output) and on our data (with

flattened output). As an alternative, it would be

possible to train the model on flattened PMB output,

so that the model will have seen the simplified

structures directly during training; we leave this for

future research.

We saw in Figure 6 the performance of our best

model across sentences of different lengths in the

DRASTIC corpus. Often for longer sentences the

output of the model contains far fewer clauses than

the gold data, suggesting an effect of length alone.

But the model also performs much worse on DRAS-

TIC than on the PMB in general, as witnessed by the

low F1 score of 36.2 shown in Table 4.9 Partly, this

9And this is true even when length is held constant: for

is because our dataset is more linguistically com-

plex than the PMB. Sentences involving negation,

for example, cause particular problems, and the

negative meaning is often absent from the model

output. Interaction between scopal elements such

as negation and modality is also difficult: for the

sentence While the impact of a translation may be

close to the original, there can be no identity in

detail, the model incorrectly stacks the possibility

operators and flips the scope of negation and pos-

sibility, so that the meaning of the second clause

becomes “it is possible that it is possible that there

is no identity in detail”, while in This is, perhaps,

not the best example of the technique . . . , the nega-

tion disappears altogether.

Linguistic complexity cannot be the whole story,

however. There are also unusual errors such as

names that occur in our data but not in the PMB

being incorrectly rendered in the parser output: e.g.

the name “Marbles” becomes ‘georgia strawberry’,

‘margau’, ‘margis’, and ‘name’. It is surprising to

see such behaviour in a parser that performs so

well on the PMB test set. This might indicate that

the models overfit on peculiarities of the PMB.10

A deeper investigation into what causes this drop

in performance is clearly required – for example,

one could replace names in the DRASTIC corpus

with frequently-occuring names in the PMB to see

if this improves performance. Whatever the exact

origins of these deficiencies turn out to be, we be-

lieve our more varied data can contribute to more

robust DRS parsers, especially as DRASTIC grows

in size.

5 Summary

We have presented a new dataset, the DRASTIC cor-

pus, which contains PMB-style DRSs annotated

over sentences with more realistic lengths than

the original PMB dataset, and which is, accord-

ingly, much more of a challenge for state-of-the-art

parsers. We hope that this will lead both to a more

realistic assessment of the difficulty of DRS pars-

ing and, in the longer term, to the development of

more robust models.

example, in the PMB, the majority of sentences of length 8 are
parsed to an F1 score of 0.75 or higher, whereas in our data,
only one “sentence”, of length 1, gets a score at this level.

10As an anecdotal example, we can mention that that 15-
20% of the sentences across the PMB subsets contain the
proper name Tom.
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