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Abstract

Despite the rapid recent progress in creating ac-
curate and compact in-context learners, most re-
cent work focuses on in-context learning (ICL)
for tasks in English. However, the ability to in-
teract with users of languages outside English
presents a great potential for broadening the
applicability of language technologies to non-
English speakers.

In this work, we collect the infrastructure nec-
essary for training and evaluation of ICL in a
selection of Slavic languagesl: Czech, Polish,
and Russian. We link a diverse set of datasets
and cast these into a unified instructional for-
mat through a set of transformations and newly-
crafted templates written purely in target lan-
guages. Using the newly-curated dataset, we
evaluate a set of the most recent in-context
learners and compare their results to the su-
pervised baselines. Finally, we train, evaluate
and publish a set of in-context learning mod-
els that we train on the collected resources and
compare their performance to previous work.

We find that ICL models tuned on English
are also able to learn some tasks from non-
English contexts, but multilingual instruction
fine-tuning consistently improves the ICL abil-
ity. We also find that the massive multitask
training can be outperformed by single-task
training in the target language, uncovering the
potential for specializing in-context learners to
the language(s) of their application.

1 Introduction

The emergent ability of very large language mod-
els to understand unseen tasks from natural input
text (Brown et al., 2020a), referred to as In-context
Learning (ICL), recently motivated a large body of
work focused specifically on creating more efficient
models able to understand a new task from human

'All our templates and models are available on https:

//github.com/fewshot-goes—-multilingual/
slavic—-incontext-learning
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Figure 1: In this work, we transform Czech, Polish, and
Russian datasets for diverse task types into a unified
instructional format through a set of templates curated
by the native speakers of target languages. The resulting
collection enables an evaluation of existing in-context
learners as well as the creation of new in-context learn-
ers interacting fully in the target language.
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instructions (Min et al., 2022; Sanh et al., 2022;
Wei et al., 2022; Chung et al., 2022). The ICL mod-
els presented in these works reduce the number of
parameters compared to the first in-context learners
by orders of magnitude. In exchange, they assume
that the generalization to new tasks emerges from
a vast mixture of diverse training tasks seen in the
training process.

The data volume and diversity requirements
might also be the factor that substantially limits
the application of current ICL models mainly to
English. Acquiring a large and diverse set of tasks
is relatively easy for English, which is in the spot-
light of the NLP community. Unfortunately, there
are fewer datasets in other languages, and the col-
lection of new ones is costly. Previous work ad-
dresses this problem by automatic translation of
some English datasets (Chandra et al., 2021), or
by a cross-lingual training (Mishra et al., 2022)
and evaluation (Conneau et al., 2018). However,
such approaches do not resemble the use of instruc-
tion models by non-English speakers, expecting the
models to interact solely in their native language.

This work evaluates the quality of in-context
learning achievable in non-English languages to
this date, specifically focusing on applicability in
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few-shot in-context learning for interaction in se-
lected Slavic languages (Figure 1). Further, we
assess the possibilities of further improvement un-
der the assumption of limited data availability in
the target language. We formulate these goals in
two research questions:

RQ1: How well can recent in-context few-shot
learners perform in the interaction purely
within our chosen, non-English languages?

RQ2: Can the improvements of in-context learning
in a large-resource language transfer to lower
resource, target languages?

Given very limited previous work in in-context
learning in our target languages, within our work,
we first (i) survey and transfer a diverse set of
datasets to instructional format through a set of
transformations and newly-collected database of
prompting templates with both the instructions
and labels written in our target language(s). Our
collected tasks include datasets for Named Entity
Recognition, Sentiment Classification, Natural lan-
guage Inference, and Question Answering in our
target languages. After collecting the datasets of
diverse tasks in the ICL-compatible format, we
(ii) survey and evaluate in-context few-shot learners
that can be applied to our target languages. Finally,
we (iii) explore the possibility of further improv-
ing the in-context learners specific for our target
languages along two axes: (a) by increasing mod-
els’ exposure to target-language data and (b) by
improving ICL ability in high-resource language,
evaluating the cross-lingual transfer of such im-
provements.

This paper is structured as follows. Section 2
overviews the standard settings of in-context few-
shot learning and surveys the previous work in
this direction. Section 3 describes the evaluation
datasets that we use and covers datasets’ selection
and unification process and templates database col-
lection. Section 4 presents the settings used for
training our in-context learners for Czech, Polish,
and Russian. Finally, Section 5 presents the evalua-
tion results, including existing and newly-trained
in-context learners in the supervised baseline.

2 Background

In-context learners In-context learning from
both human prompt and a set of input-output ex-
amples is initially observed as an emergent abil-
ity of GPT-3 (Brown et al., 2020b) trained on a
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vast collection of unlabelled texts for Causal lan-
guage modeling (CLM) objective (Radford and
Narasimhan, 2018). Subsequent work reproduces
ICL ability and open-sources the resulting models,
such as BLOOM (Scao et al., 2022) or OPT (Zhang
et al., 2022). However, in-context learners trained
in a solely unsupervised fashion are impractically
large and hence, expensive for conventional use;
In unsupervised settings, the ICL ability seems to
emerge only when using far over 10 billion pa-
rameters (Brown et al., 2020b), thus requiring an
extensive infrastructure to perform a single infer-
ence.

Computational overhead is addressed by a se-
ries of smaller models trained specifically for in-
context learning. The smaller in-context learners
are trained with a large mixture of tasks converted
to a consistent sequence-to-sequence format via
human-written templates (Bach et al., 2022) that
define the input prompts for each task in the col-
lection. A popular use of this framework includes
prefixing the input sequence with natural-language
instructions, such as the ones given to human anno-
tators (Mishra et al., 2022). Large-scale instruction-
based prompting in training over 1,600 tasks is also
adopted in training TK-INSTRUCT (Wang et al.,
2022) that we assess in our evaluations.

Recently, more attention has been dedicated to
a selection of in-context training tasks under the
assumption that some training tasks might be more
beneficial for the emergence of in-context learning
than others. In this direction, FLAN-T5 of Chung
et al. (2022) further extends a database of tasks
with the ones requiring multi-step reasoning in a
Chain-of-Thought manner, where additionally to
the correct prediction, the model is trained to pre-
dict a sequence of steps mapping the input to an
output.

In-context Few-shot learning In-context learn-
ers are easily applicable in few-shot evaluation set-
tings, where a small set of demonstrations for a
given task exists. Given a dataset D : {(z; —
Y1),...,(z; — Y;)} € D containing pairs of
input x; with associated label Y}, an in-context
few-shot learner ©(x) — y aims to predict a cor-
rect yx+1 = Y41 given input text containing a
sequence of k input-output demonstrations, and
the predicted input zy (Stefanik and KadI&ik,
2022; Gao et al., 2022):

@([xl — Yl, o, T — Yk];l‘k-i-l) — Yk+1 (1)



Name Task Size Templates
CNEC (Sevcikova et al., 2007) NER 19k 3
CSFD (this work) CIf. 30k 3
cs FBCom (Brychcin and Habernal, 2013) CIf. Tk 3
MALL (Brychcin and Habernal, 2013) CIf. 30k 3
SQAD (Medved’, 2022) QA 8k 4
CTKFacts (Ullrich et al., 2022) NLI 5k 7
PoliticAds (Augustyniak et al., 2020) NER 1k 4
| KPWR (Broda et al., 2012) NER 9k 4
p Polemo (Kocon et al., 2019) CIf. 8k 4
CDSC (Wréblewska et al., 2017) NLI 10k 4
Polyglot (Al-Rfou et al., 2015) NER 136k 3
u CEDR (Sboev et al., 2021) CIf. 9k 3
SberQuAD (Efimov et al., 2019) QA 74k 4
XNLI (Conneau et al., 2018) NLI 399k 7

Table 1: Overview of datasets that we transform to a
sequence-to-sequence format through manually-crafted
templates in target languages.

Contrary to the standard supervised learning, in
in-context learning, model O is not updated. Thus,
it can rely solely on its ability to understand the
task from input text.

Similarly to humans, the specific wording of in-
put, i.e., prompt x;, might play a large difference in
the evaluation performance of the model. A prompt
formulation optimal for one model type is likely not
optimal for another (Lu et al., 2022). Therefore, in
order to fairly compare different in-context learners,
one should evaluate in-context learners on a larger
set of diverse prompts (Bach et al., 2022). With this
motivation, we also collect multiple prompts for
each task, with a focus on their mutual diversity.

3 Datasets

The evaluation and training of new in-context learn-
ers for our target languages require (i) a collection
of datasets for a representative range of tasks, and
(i1) the transformation of these datasets into a uni-
fied, self-containing sequence-to-sequence form of
inputs and outputs. Thus, one of our main contri-
butions is the adaptation of the datasets for Czech,
Polish, and Russian in a range of tasks: Named en-
tity recognition, Sentiment classification, Natural
language inference, and Question answering. The
overview of the datasets for our target languages is
shown in Table 1.

This section overviews the datasets in the tar-
get languages that we transformed, followed by a
description of the process of constructing the tem-
plates for these datasets.
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3.1 Data Collections in Target Languages

Contrary to English, labelled resources in our tar-
get languages for some tasks are relatively sparse,
which conditions us to undertake some compro-
mises in the diversity of the resources that we
proceed with. The following text also covers the
transformation that we had to perform with these
datasets to cast them into a unified sequence-to-
sequence format.

3.1.1 Czech Datasets

Contrary to Polish with a larger base of speakers,
Czech datasets include all tasks that we aim to
collect, including NER, Classification, QA, and
NLI.

CNEC (Sevéikovi et al., 2007) dataset for NER
presents entities in the context of radio transcripts
and news articles, featuring a relatively large col-
lection of more than 10,000 original texts. We
transform this dataset into sequence-to-sequence
form by querying a specific type of entity, where
we only use samples containing at most one occur-
rence of the requested entity to avoid ambiguity.

We note that all classification datasets that we
find for evaluation are focused on a specific case of
sentiment classification. Nevertheless, the volume,
quality, and variance of sentiment classification
datasets are relatively high; (i) CSFD presents a
set of 30,000 public reviews from the movie cri-
tiques with diverse vocabulary and the challeng-
ing end task of predicting the corresponding star
rating (0-5). The dataset is balanced, with each
rating having a similar number of occurrences. To
evaluate the models in a natural language, instead
of predicting a specific numeric rating for each
review, we transform the dataset labels to posi-
tive/negative classification, omitting samples with
rating=3. (ii) MALL (Brychcin and Habernal,
2013) dataset is a semantically less complex col-
lection of product reviews of online store products,
and (iii) FBCom (Brychcin and Habernal, 2013)
features a collection of scraped but verified Face-
book comments presenting a sample of informal
language. The latter two datasets come with three-
class targets (positive/neutral/negative).

The only available Czech QA dataset, SQAD
(Medved’, 2022), also builds a dataset on
Wikipedia, containing the original articles in a full
length, associated with manually-crafted questions
and associated answer texts. To avoid the overhead
of models’ inference with full Wikipedia articles



in a few-shot format, we synthesize the contexts
containing answers by sequencing paragraphs con-
taining the first answer occurrence. Thus, our cu-
rated context paragraphs resemble the format of
the commonly-known English SQuAD dataset (Ra-
jpurkar et al., 2016). We note that the original
version of the dataset contains a strong statistical
bias, with around half of the questions having the
answer at the beginning of the article. To avoid
exploiting this bias in evaluation, we randomly re-
moved 90% of the questions whose answer starts
in the first 50 characters.

Finally, CTKFacts (Ullrich et al., 2022) intro-
duces a collection of NLI examples containing
premises extracted from Wikipedia, with manually-
crafted hypotheses to assess given the premises, in
standard NLI settings.

3.1.2 Polish

The Polish datasets for our desired tasks are smaller
than Czech, and contrary to Czech, to the date of
writing, we find no publicly-available Polish QA
dataset. However, we find two Polish NER datasets.
PoliticAds (Augustyniak et al., 2020) presents in-
put texts in a relatively unconventional domain of
political advertising. A lot of entities are largely
context-dependent, thus presenting adaptation chal-
lenges for general-domain models. Therefore, we
complement this quite small and specific dataset
with the KPWR (Broda et al., 2012) dataset. How-
ever, original KPWR has a very fine granularity
of entities; thus, we transform the target entities
to a second-level type (i.e. mapping entity name-
location-city simply to location). After disambigua-
tion analogical to CNEC, we obtain a sequence-to-
sequence dataset with 9,000 inputs.

Consistently to Czech, we enrich the set with
Polemo dataset (Kocon et al., 2019) for sentiment
classification, which contains a human-annotated
set of consumer reviews from the domains of
medicine, hotels, products, and university. Finally,
we find CDSC dataset for NLI (Wréblewska et al.,
2017), featuring a collection of premise-hypothesis
pairs from a wide range of 46 thematic groups.

3.1.3 Russian

Being the language with a much larger speaker
base, Russian is also the richest in resources. Thus,
we pick the datasets for our tasks of interest that we
assess as having the highest quality. Polyglot (Al-
Rfou et al., 2015) is a large NER dataset curated
from references to Wikipedia sites. We transform
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the datasets to per-entity-type prompt format, cre-
ating multiple prompts from each sample, resulting
in more than 100 k input-output entity pairs. Con-
sistently with other languages, we further include
in the collection a CEDR dataset for sentiment
classification originating in social media (Sboev
et al., 2021). While its domain is not representative
of many use cases, we assess the quality of annota-
tions as superior to its alternatives and the number
of labels (5) as practical for few-shot evaluation
with reasonably long contexts.

SberQuAD (Efimov et al., 2019) is an extrac-
tive QA dataset comparable with English SQuAD
in both the size and domain; Its 74,000 question-
context-answer tuples are manually collected with
the contexts originating in Wikipedia. Contrary to
SQuAD, a small portion of questions has several
different answers in the context, making the correct
prediction ambiguous in some cases; We omit these
cases in evaluations. Finally, we choose an XNLI
dataset (Conneau et al., 2018) for evaluating NLI
in Russian for its heterogeneity and size. However,
other quality alternatives exist (see, e.g. Shavrina
et al. (2020)), and our templates can be used with
any other Russian NLI dataset as well.

3.2 Templates

For each of the referenced datasets, we write a new
template mapping the samples of the dataset into
a sequence-to-sequence format. To reinforce tem-
plates’ heterogeneity, we start by reviewing exist-
ing templates of the analogical tasks in English, col-
lected within BigScience’s P3 project (Sanh et al.,
2022). From existing templates, we pick a set of
mutually most-distinct templates for each task and
proceed to the writing phase. The resulting number
of templates for each dataset was chosen subjec-
tively to maintain a high level of heterogeneity
among the templates of each dataset.

Inspired by the existing templates, we ask our
target-language volunteer native speakers to write
the templates in a form that they find “the most
natural to ask for the solution for a given task from
a human with a native understanding of their target
language”. We make sure that all the templates
contain the exact-matching form of the expected
response (i.e., label) so that the domain of possible
answers is clearly enclosed by the prompt. The
examples of some curated templates can be found
in Table 2. A full list of the collected templates can
be found in Appendix A.



Lang Task Template

Ccs
()
Cs
CS

CIf.
QA

NER {{text}} Jaka entita typu {{label_type}} se nachdzi v pfedchozim odstavci?

{{comment} } Je tato recenze {{"pozitivni, neutrdlni nebo negativni"}}?

{{context}} Q: {{question}} S odkazem na sekci vyse je spravna odpovéd’ na danou otdzku
NLI Za predpokladu, Ze {{evidence}} vyplyva, Ze {{claim}}? Ano, ne, nebo mozna?

pl clf.  "{{text}}" Ten tekst jest pozytywny, negatywny, neutralny czy dwuznaczny?

pl NLI Ocen czy ponizsze zdania sg zgodne ze sobg - tak, nie czy nie wiadomo? Zdanie A: {{premise}} Zdanie B: {{hypothesis} }
Zgodnos¢:

pl  NER Jaka encja typu {{label_type_selected}} znajduje si¢ w nastepujacym tekscie? "{ {text}}"

ru
ru

"j10kp" wim "HeybepuresbHo"?
ru

ru CIf.

NER {{text}} Kakoit o6bexr Tuna {{label type}} naxomurcs B npeipuiyiem abzame?
NLI IIpumure 3a ucrumy ciemyiomee: {{premise}} Torna caemyiomee yrsepxkienune: "{{hypothesis}}" ecrs "upasna",

QA Tlocmorpure Ha af3al] HUXKe U OTBEThTe Ha cieyromuii oupoc: A6zam: {{context}} Bompoc: {{question}}
{{text}} KakoBo Hacrpoenue sToro o63opa? pajiocTh, 1evajib, yAUBIEHAE, CTPAX UIH I'HEB?

Table 2: Examples of instruction templates for each of the language + task pair that we collect in this work. A full
list of templates collected in this work by our native speakers can be found in Appendix A Table 6.

We do not identify any instructional templates
for the Named Entity Recognition task in the previ-
ous work. This is likely due to the complexity of
fair evaluation of prediction containing a sequence
of prediction, necessary for collecting all predic-
tions for the prompted entity type; an evaluation of
sequences is difficult by using the commonly-used
generative measures. After consideration, we de-
cided to reformulate the NER tasks in the form of
information extraction, where we filter out samples
where prompted entity type occurs more than once.
This makes the task easier, but on the other hand,
the evaluation is not biased by the models’ ability
to order predictions correctly. Based on that, we
assume that such evaluation corresponds better to
in-context learners’ ability to identify entities.

4 [Experiments

Making in-context learning in our target languages
finally possible through the transformations de-
scribed in the previous section, our first objective
is to assess the current state-of-the-art of the re-
cent in-context few-shot learners when used in
the interaction exclusively in the target language
(RQ1). We follow by outlining the perspectives in
further enhancing the quality of target-language in-
context few-shot learners by assessing the potential
of cross-lingual transfer (RQ2).

4.1 In-context Few-shot Learning Evaluation

The overview of previous work on in-context learn-
ing covered in Section 2 shows a shifting interest
from the over-parametrization to the scaling of di-
verse training tasks (Wang et al., 2022) and more
explicit reasoning schemes, such as a Chain-of-
Thought (Chung et al., 2022), where in addition
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to the final result, the model learns to predict the
reasoning path that has led to the prediction. Our
evaluation aims to assess how these aspects impact
the quality of in-context few-shot learning in our
target languages.

Multilingual fine-tuning To this date, we iden-
tify only one in-context learners’ family that
claims to support all our target languages: MTK-
INSTRUCT (Wang et al., 2022). While its English
counterpart (TK-INSTRUCT) fine-tunes T5 models
(Raffel et al., 2020) on 1,616 tasks with English
prompts, inputs, and targets, MTK-INSTRUCT is
additionally fine-tuned on 576 tasks with inputs
in 55 diverse languages, including Czech, Polish
and Russian. Still, the instructional templates for
these languages were written in English due to eas-
ier quality assurance. Thus, it remains an open
question whether such-acquired in-context learn-
ing skills transfer to an interaction solely in the
target language.

Hence, we assess the benefit of multilingual
training by measuring and comparing the perfor-
mance of English-only TK-INSTRUCT and multi-
lingual TK-INSTRUCT of the same size (3 B param-
eters).

Fine-tuning strategy We evaluate the impact of
a set of objectives of FLAN-TS5 (Chung et al.,
2022) complementary to a sole scaling of tasks
of TK-INSTRUCT. Notably, these include (i) ad-
ditional fine-tuning for a zero-shot setting, i.e.
without presenting the model with demonstrations,
(ii) fine-tuning for generating Chain-of-Thought,
i.e. a sequence of steps leading the model to the
answer, that is purposed to enhance the model’s
reasoning ability.



The evaluations of the impact of a fine-tuning
strategy are also complemented by the assessment
of our newly-trained in-context learners, trained
on a single task type (QA), including the data in
a target language; We detail our approach to train
these models in Section 4.2.

Model size Finally, we evaluate both TK-
INSTRUCT and FLAN-TS in two different sizes: in
a 700-million and in a four-times bigger, 3-billion-
parameters variant. While it is perhaps not a sur-
prising finding that the larger model would also
perform better in the unseen language, the experi-
ments in this axis assess the scale of improvement
that can be expected by increasing computational
costs for larger models, as compared to other ad-
justments.

4.2 Cross-lingual Transfer

In addition to the evaluation of existing in-context
learners, we are interested in assessing how much
the ICL in lower-resource languages can benefit
from the improvements in a large-resource lan-
guage (RQ2). This is particularly relevant given
the fast pace of progress in general in-context learn-
ing focused primarily on English, naturally raising
a question on how applicable these results are in
languages for which data resources are sparser.
However, having no control over the specific
data and training configuration of the existing mod-
els, we assess the scale of cross-lingual transfer by
fine-tuning our own in-context learners that differ
in the configuration in a large-resource language
(English) while fixing the configuration in the tar-
get language. By also considering the choices of
the previous work (Sanh et al., 2022), we pick the
Question Answering as the one that we assume
is crucial for obtaining in-context learning ability
while also being available in our target languages.
Therefore, in our experiments, we permute only
the English QA dataset and mix it in training with
the QA dataset of the target language. We train
in-context learners with three different configura-
tions; (i) using no English QA dataset, (ii) using
the standard SQuAD (Rajpurkar et al., 2016) con-
taining more than 90,000 question-context-answer
tuples, and (iii) using a lesser-known Adversari-
alQA (AQA) dataset (Bartolo et al., 2021) contain-
ing 30,000 more complex questions that exploit the
flaws of QA models trained on SQuAD, making
its samples complementary to SQuAD. Finally, we
measure the impact of this change in Czech and
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Russian, for which the target-language QA datasets
are available.

All our newly-trained in-context learners (further
referred to as mTK-QA g, 4p and mTK-QA 40 4)
are based on mT5 model (Xue et al., 2021) of 1.3-
billion parameter size. We make our newly-trained
in-context learners for both Czech? and Russian®
publicly available for any use.

5 Results

Consistently with the previous work (Sanh et al.,
2022; Wang et al., 2022), we jointly report the
ROUGE-L score (Lin, 2004) over all the evaluation
datasets (which we transform and create templates
for (§3)) and all the evaluated in-context learners
(§4.1), including the newly-trained ones introduced
in this work (§4.2). To ease the readability, we split
the reports by language, to the results on Czech
datasets in Table 3, Russian datasets in Table 5,
and Polish datasets in Table 4.

As a reference of the resulting ICL performance,
for each dataset, we also train a baseline model
that is also based on mT5 model (Xue et al., 2021),
fine-tuned on the training split of the dataset trans-
formed to a sequence-to-sequence format through
a mixture of all the templates that we curated. De-
tails on the training and evaluation configuration
that we use can be found in Appendix B.

Multilingual training helps in most cases A
comparison of mTK-INSTRUCT to TK-INSTRUCT
of the same size through all languages (Tables 3,
5, 4) evaluates the significance of including the
training data from the target language(s). Note
that mT5, a base model for mTk-instruct, was pre-
trained on mC4 balanced over languages, but mTk-
instruct was finetuned on only 15 Polish, 5 Russian,
and 2 Czech datasets making it about 1% of all
data. Additionally, the training prompts for these
datasets were English.

Still, we see that mTK-INSTRUCT is better than
its English-finetuned counterpart in all evaluation
datasets, except two Czech sentiment classification
tasks. However, in some cases, the differences are
relatively small; For instance, in the case of Pol-
ish CDSC, where English Tk-Instruct ends only
2.8 points behind the multilingual counterpart. The

https://huggingface.co/
fewshot-goes-multilingual/mTk-SQuAD_
en—-SQAD_cs-1B

*https://huggingface.co/

fewshot-goes-multilingual/
mTk—AdversarialQA_en-SberQuAD_ru—-1B
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Dataset + task CNEC CSFD FBCom MALL SQAD CTKFacts
Model NER CIf. CIf. CIf. QA NLI
Supervised (mT5-1B) 67.9+ 9.1 82.4+4.5 49.3+10.3 42.8+10.8 88.3+5.3 56.1£10.9
TK-Instruct (700M) 15.3+£ 6.7 14.1£7.1 252+ 7.2 255+ 84 5.6+4.8 54.7+8.2
TK-Instruct (3B) 32.8+ 9.1 20.948.1 23.0+ 7.4 25.1+ 6.9 34.049.0 47.849.8
T5-FLAN (700M) 41.1£10.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 46.5£8.4 30.3£9.3
TS5-FLAN (3B) 49.6£104 0.0+ 0.0 0.0+ 0.0 0.1+ 0.1 51.6+9.1 34.7+10.7
mTK-Instruct (3B) 62.5+ 89 90.2+4.2 10.8%6.2 9.9+7.0 67.9+8.6 44.0£10.1
mTK-QA;pne(1B) 72.0+ 9.0 45.9+9.1 29.2+8.2 32.1+£8.9 85.0+7.0* 35.4+10.5
mTK-QASQUAD(lB) 723+ 9.1 72.946.6 32.1+9.0 34.7+9.2 87.8+5.3* 46.9+10.1
mTK—QAAQA(lB) 77.0+ 7.8 59.8+8.8 27.6£8.6 29.849.9 87.1+6.6* 42.7+10.7

Table 3: In-context learners’ performance in Czech: ROUGE-L scores of selected in-context learners in Czech
interaction using the listed datasets, for the best-performing template of each model. In-context learners were shown
three demonstrations of each task. Included confidence intervals (o« = 0.05) are computed using bootstrapped
evaluation (sample groups n = 100, repeats » = 200). Results marked with * denote cases where the held-out set

of the listed dataset was used in training.

Dataset + task PoliticAds KPWR  Polemo CDSC Dataset + task Polyglot CEDR SberQAD XNLI
Model NER NER CIf. NLI Model NER CIf. QA NLI
Supervised (mT5-1B) 5.9+5.1  63.3x10.3 51.949.9 75.5+8.5 Supervised (mT5-1B)  54.3£10.8 48.6+9.6 86.4+6.5 51.5+11.5
TK-Instruct (700M)  5.6+4.3  8.6£54 28.3+8.6 52.3+8.2 TK-Instruct (700M) 0.1£0.5 12.2+6.8 0.6+1.1 129+ 6.9
TK-Instruct (3B) 17.6+£8.1 54.6£11.2 19.5+8.4 67.8+8.8 TK-Instruct (3B) 3.6£3.9 17.7+#83 8.1+4.1 22.2+ 8.2
T5-FLAN (700M) 6.8+5.5 33.849.8 24.3%8.6 10.0+6.4 T5-FLAN (700M) 1.0£1.6  15.1#6.1 11.4+4.8 13.8+ 6.2
T5-FLAN (3B) 18.4+7.3 60.5+7.8 43.0+9.0 71.5+9.0 T5-FLAN (3B) 2.0+£2.5 24.4+7.4 19.6+5.6 26.0+ 9.0
mTK-Instruct 3B)  32.1£9.6  67.6£8.4 25.4+8.6 70.6+8.2 mTK-Instruct (3B) 57.6x11.2 33.0£9.9 73.7+6.7 35.3+10.3

Table 4: In-context learners’ performance in Polish:
ROUGE-L scores of selected in-context learners in Pol-
ish interaction using the listed datasets. Configuration
of evaluation is identical to Table 3.

error analysis of mTk-Instruct on two flawing clas-
sification tasks (FBCom and MALL) has shown
that despite purely Czech prompts, the model gen-
erates English responses. This could be explained
by a semantic similarity of our tasks to some of
the model’s fine-tuning datasets, but in our evalua-
tion, we consider the divergence from the prompted
language of interaction a valid failure.

Inconsistent benefits of CoT training Compar-
ing the performance of TS-FLAN models with Tk-
instruct models of the corresponding size, we find
that T5-FLAN is superior in 17 out of 28 cases.
However, the differences are often relatively small,
and the performance of both in-context learners in
these cases remains below the usable level neverthe-
less. Therefore, while it seems that fine-tuning to a
Chain-of-Thought reasoning allows the modeling
of features that are applicable also in some mul-
tilingual settings, these do not generalize over all
in-context learning scenarios. Notably, T5-FLAN
perhaps surprisingly fails on classification in Czech,

mTK-QAuone(1B)  53.3+84 17.948.1
mTK-QAgQuaD(1B) 503£9.3  7.5:4.5
mTK-QAAQA(IB)  66.3£10.9 27.049.9

89.1+5.2* 19.6+ 7.5
84.6+6.0*% 23.8+ 8.8
86.0+5.6* 32.3+ 8.3

Table 5: In-context learners’ performance in Russian:
ROUGE-L scores of selected in-context learners in Rus-
sian interaction using the listed datasets. Configuration
of evaluation is identical to Table 3.

where it shows an inability to understand the task
even from the given demonstrations. On the other
hand, we note that in two of four evaluation cases
in Polish, the larger T5-FLAN performs superiorly
to even multilingual mTk-Instruct of the same size.

Model size matters The comparisons of T5-
FLAN and Tk-Instruct in their two size variants
show the superiority of the larger model with the
exceptions in 3 out of 28 cases, suggesting that
model size can be an even more important con-
dition of accurate in-context learning ability than
utilization of target-language data in training.

It is also worth noticing that the difference in
performance between two sizes of T5-FLAN are
often very large; For instance, note the difference
between Polish CDSC or Russian NLI. This sug-
gests that the different sizes of TS-FLAN might, in
fact, be very distinct in their representations.
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Cross-lingual transfer A comparison of mTK-
QA models that we train with and without the
high-resource QA dataset (§4.2) outlines the po-
tential for improvement of ICL in lower-resource
languages with adjustments in the high-resource
language. We see that including a complementary
QA dataset in other-than-evaluated language can
help in in-context learning of all new tasks, with
improvements over 60% in Czech CSFD, or Rus-
sian XNLIL

Additionally, using a higher-quality Adversari-
alQA can also significantly, though not consistently,
improve ICL ability for some tasks. For instance,
note the difference of 12.9 points in sentiment clas-
sification of the Czech CSFD dataset or of 16 in
Russian NER. This relatively large sensitivity to
the data configuration in a high-resource language,
from which we aim to transfer the ICL ability, sug-
gests that recent and future improvements in mod-
els’ ICL measured in English might also be directly
applicable to other languages.

In-context learners trained on a single task are
comparable to multi-task learners While out-
performing the in-context learners trained on a
much larger scale of tasks was not our initial
objective, we note that at least one of our in-
context learners trained using a single (QA) task
out-performs mTk-Instruct in 6 out of 10 Czech
and Russian evaluations. In all other cases, a QA
model performs within the confidence interval of
mTk-Instruct. Additionally, in 4 out of 10 cases,
at least one of our QA models performs compara-
bly or better than the supervised baseline. Hence,
rather than a weak performance of mTk-Instruct,
this result underlines the efficiency of Question
answering as a proxy task for generalizing to the
unseen tasks. We also find this result encourag-
ing for creating in-context learners specialized to
other target languages, with a perspective to outper-
form generic state-of-the-art learners in a similar
methodology.

6 Conclusion

This paper documents our work in creating the
evaluation benchmark for in-context learning for
Czech, Polish, and Russian. We transform selected
datasets into a compatible format, and with the aid
of volunteer native speakers, we create templates
for these datasets exclusively in the evaluated lan-
guage. However, our templates can be applied

to any other dataset of the supported types (NER,
Classification, QA, and NLI).

In the interaction that is purely in the language(s)
of our interest, we evaluate a set of recent in-
context learners that we consider state-of-the-art
in this area. We find that even in-context learn-
ers trained dominantly on English data might per-
form considerably well and even outperform a
fully supervised baseline in some cases. However,
on average, massive multilingual pre-training and
instruction-based fine-tuning still largely improve
the ICL ability.

Finally, we train a set of in-context learners
specifically for our target languages by mixing
the large QA datasets in English with smaller QA
datasets in our target languages; In both Czech
and Russian, such-created learners perform better
or comparably to mTk-Instruct trained on a vastly
larger collection of over 2,000 tasks from 55 lan-
guages. We believe that this finding will motivate
future work in creating specialized but more ac-
curate in-context learners also for other languages
outside English.

We publicly release all data transformations, tem-
plates, and the newly-created in-context learners
for any use.

Limitations

Templates While the templates that we curate
with the help of native speakers were picked to
maximize their mutual diversity, we acknowledge
that the volumes of templates that we create for
some datasets do not cover the full variance of pos-
sible prompts of our tasks. Therefore, our templates
might not be optimal for our evaluated in-context
learners.

Models In-context learners fine-tuned specifi-
cally for in-context instruction learning, includ-
ing our introduced ones, are orders of magnitude
smaller than the original language models acquired
from sole pre-training like 175-billion-parameter
GPT-3 (Brown et al., 2020b), but still remain
compute-demanding for widespread deployment;
We notice the inference time of a single sample
for our 1B models to range between 3 and 10 sec-
onds on a four-core CPU typical for middle-level
personal computers to this date.

Analogically, also the application of our method-
ology (§4.2) to other languages with similar size
of the base model (1.3 B) constrains the users to
use dedicated GPU hardware with a minimum of
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30 GB memory. We train our assessed in-context
learners using Nvidia A100 GPUs with 80 GB
VRAM, where the convergence of a single mT5-
based model takes approximately 40 hours of com-
puting.
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Lang Task Template

CS
Cs
CS
Cs
CS
Cs
CS
Cs
CSs
CSs
Cs
CS
CSs
CS
Cs
CS
Cs
CS

Tu
ru
ru
ru
ru
ru

ru
T
ru
ru
rua
ru
ru

NER {{text}} {{label_type}} v tomto textu je

NER Jak4 entita typu { {label_type}} se nachazi v ndsledujicim textu? {{text}}

NER {{text}} Jaka entita typu {{label_type}} se nachdzi v pfedchozim odstavci?

CIf. Jaky sentiment vyjadiuje ndsledujici filmova recenze? {{comment} }

CIf. {{comment}} Shledal recenzent tento film {{"dobrym nebo zlym"}}?

CIf. {{comment}} Je tato recenze {{"pozitivni nebo negativni"}}?

CIf. {{comment}} Je tento komentar {{"pozitivni, neutralni nebo negativni"}}?

CIf. {{comment}} Jaky je sentiment tohoto komentate? {{"pozitivni, neutrdlni nebo negativni"}}?

CIf. Jaky sentiment ma nésledujici komentar? {{comment} }

CIf. {{comment}} Je tato recenze {{"pozitivni, neutrdlni nebo negativni"}}?

CIf. Jaky sentiment ma nasledujici recenze? {{comment}}

CIf. {{comment}} Jaky je sentiment této recenze? {{"pozitivni, neutrdlni nebo negativni"}}?

QA {{context}} Q: {{question}} S odkazem na sekci vyse je spravnd odpovéd’ na danou otazku

QA Podivejte se na odstavec niZe a odpovézte na nasledujici otazku: Odstavec: {{context}} Otazka: {{question}}

QA {{context}} S odkazem na vySe uvedeny odstavec, { {question} }

QA {{context}} Otazka: {{question}} Odpoved’:

NLI {{evidence}} Otdzka: {{claim}} Pravda, nepravda, nebo ani jedno?

NLI {{evidence}} Za uvedeného predpokladu a na zdkladé znalosti o svéte, "{{claim}}" je urcité pravda, nepravda, nebo neni
jasné?

NLI {{evidence}} Na zakladé predchoziho odstavce, je to pravda, ze "{{claim}}"? Ne, mozn4, nebo ano?

NLI Za predpokladu, Ze {{evidence}} vyplyva, ze {{claim}}? Ano, ne, nebo mozna?

NLI Predpoklddejme nasledovné: {{evidence}} Pak musi byt pravda, ze "{{claim}}"? Ano, ne, nebo mozna?

NLI Predpoklddame, Ze {{evidence}} Je mozné predpokladat, Ze "{{claim}}" je pravda? Ano, ne, nebo mozna?

NLI Predpokladejme nasledovné: {{evidence}} Pak nasledujici tvrzeni: "{{claim}}" je pravda, nepravda, nebo nejasné?

clf. "{{text}}" Ten tekst jest pozytywny, negatywny, neutralny czy dwuznaczny?

clf.  Ocen ten tekst jako pozytywny, negatywny, neutralny lub dwuznaczny. Tekst: {{text}}

clf. Ocen wydzwigk tego tekstu jako pozytywny, negatywny, neutralny lub dwuznaczny. Tekst: {{text}} Wydzwigk:

clf.  "{{text}}" Jaka jest ta recenzja? Jest pozytywna, negatywna, neutralna czy dwuznaczna?:

NLI "{{sentence_A}}" Na podstawie tego, mozna powiedziec, ze zdanie "{ {sentence_B}}" jest potwierdzeniem, zaprzeczeniem
czy niezwigzane?

NLI Ocen czy ponizsze zdania sa zgodne ze sobg - tak, nie czy nie wiadomo? Zdanie A: {{sentence_A}} Zdanie B: {{sentence_B}}
Zgodnos¢:

NLI Hipotezg i przestanke mozna powiazaé jako potwierdzenie, zaprzeczenie lub niezwigzane. Hipoteza: {{sentence_A}}
Przestanka: {{sentence_B}} Powiazanie:

NLI Hipoteza: {{sentence_A}} Przestanka: {{sentence_B}} Czy przestanka jest dla hipotezy potwierdzeniem, zaprzeczeniem czy
jest niezwiazana?

NER "{{text}}" {{label_type_selected}} w tym tekscie to

NER Znajdz encje typu {{label_type_selected}} w nastgpujacym tekscie: {{text}}

NER Jaka encja typu { {label_type_selected}} znajduje si¢ w nastgpujacym tekscie? "{{text}}"

NER "{{text}}" Jaka encja typu { {label_type_selected}} znajduje si¢ w poprzednim akapicie?

NER "{{text}}" {{label_type_selected}} w tym tekscie to

NER ZnajdzZ encje typu {{label_type_selected}} w nastgpujacym tekscie: {{text}}

NER Jaka encja typu {{label_type_selected}} znajduje si¢ w nastgpujacym tekscie? "{{text}}"

NER "{{text}}" Jaka encja typu {{label_type_selected}} znajduje si¢ w poprzednim akapicie?

NER {{text}} {{label_type}} B aToM TekcTe:

NER Kakoii oobexr tuna {{label type}} Berpeuaercs B cienyiomenm rexere? {{text}}

NER {{text}} Kakoii o6bekr tuna {{label type}} naxoaurcs B npeapiiymenm abzame?

NLI {{premise}} Mcnonn3ys TOJBKO HPHUBEJEHHOE BBINIE ONUCAHKME W TO, 9T0 BbI 3Haere o mup, "{{hypothesis}}"
ONIPEJIEIEHHO BEPHA, HEBEPHA WJIN HEyOenTeTbHA !

NLI {{premise}} Bepno su, ucxomust u3 npejpiaymiero orpoiska, aro "{{hypothesis}}"? Ha, ner, a moxker 6brTn?

NLI VunreBas {{premise}}, cieayer ju u3 sroro, uro "{{hypothesis}}"? Ia, HeT mwim BO3MOKHO?

NLI {{premise}} Nnmeem st mbl npaso rosopurb, aro "{{hypothesis}}"? da, ner, nnu moxer 6orrn?

NLI Vunreas, uro {{premise}} Ciemosarensno, no/mkao Gerb BepHo, 9o "{{hypothesis}}"? Ila, Her, a Bosmoxno?

NLI Vunrsizas {{premise}} Hoskubl jau Mbl npeanonoxkuthb, uro "{{hypothesis}}" sepua? a, Her mwiu Bo3MOXKHO?

NLI IIpumure 3a ucruny ciaenytomee: {{premise}} Torua caenyrommee yreepxkiaenue: "{{hypothesis}}" ects "upasua",
102" nim "HeybeuresibHo"?

QA {{context}} Orser na sonpoc: {{question}}

QA TlocMorpuTe Ha ab3al HUZKE W OTBETHTE Ha cueaytommii Bonpoc: A6sar: {{context}} Bompoc: {{question}}

QA {{context} '\n\nCo ccpuikoit Ha a63ar Boie, {{question}}

QA {{context}} Bompoc: {{question}} Orsevars:

CIf. {{text}} DTo 0630p pajsr, nevas, yJuBJIeHUE, CTPAX WU THEB?

CIf. Kakoso HacTpoenue cieyiomero o6zopa? {{text}} Bapuaurel: pajocTh, nedasb, yIUBIeHAE, CTPAX, I'HEB

CIf. {{text}} KakoBo nacrpoemnue sroro 063opa’ pajocTb, edab, yIUBJICHAE, CTPAX UJIA IHEeB?

Table 6: Templates for all languages and all task types that we collect in this work. Templates were written by native

speakers of the template’s language.
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