
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 155–168
December 7, 2023. ©2023 Association for Computational Linguistics

155

Causal Abstraction for Chain-of-Thought Reasoning
in Arithmetic Word Problems

Juanhe (TJ) Tan
Stanford University / Stanford, CA

juanhe@stanford.edu

Abstract

Recent work suggests that large language mod-
els (LLMs) achieve higher accuracy on multi-
step reasoning tasks when prompted to gener-
ate intermediate reasoning steps, or a chain of
thought (CoT), before their final answer. How-
ever, it is unclear how exactly CoTs improve
LLMs’ accuracy, and in particular, if LLMs use
their CoTs to reason to their final answers. This
paper tries to answer this question with respect
to arithmetic word problems, by (i) evaluating
the correctness of LLMs’ CoTs, and (ii) using
causal abstraction to assess if the intermedi-
ate tokens produced as part of a CoT causally
impact LLMs’ final answers, in line with the
reasoning described by the CoT. We find that
for CoT-prompted LLMs, correct answers to
arithmetic problems are highly correlated with
correct CoTs, and that when LLMs produce
correct CoTs, they realize to a fairly large ex-
tent the causal models suggested by their CoTs.
Higher degrees of realization also seem associ-
ated with better overall accuracy on the arith-
metic problems. These findings suggest that
some CoT-prompted LLMs may do better on
multi-step arithmetic reasoning at least partly
because they use their CoTs to reason to their
final answers. However, for some LLMs, other
internal processes may also be involved.

1 Introduction

While large language models (LLMs) achieve good
zero- or few-shot performance on many natural lan-
guage processing (NLP) tasks (Brown et al., 2020),
they still seem to struggle with tasks that require
multiple steps of reasoning, especially when pre-
cise computations are needed e.g. arithmetic or
symbolic reasoning. Intriguingly, recent work sug-
gests that LLMs can do better at such tasks if they
are prompted to generate a chain of thought (CoT)
– that is, a series of intermediate reasoning steps
– before producing their final answer (Nye et al.,
2021; Wei et al., 2022; Kojima et al., 2022).

It remains unclear, however, how exactly CoT
prompting improves the LLMs’ performance. One
natural thought is that LLMs use their CoTs to
perform the intermediate computations needed to
solve a multi-step reasoning problem. But this hy-
pothesis makes several assumptions that need to
be verified. First, it assumes that the CoTs gener-
ated are relevant to, and would correctly solve, the
given questions. To evaluate this, we need to go
beyond the accuracy of the LLMs’ final answers, to
also assess the quality of their CoTs. Second, even
when an LLM produces text that describes some
correct reasoning steps, this does not imply that
the LLM actually follows those steps in arriving
at its answer, since the CoT may not represent the
LLM’s workings faithfully (Jacovi and Goldberg,
2020). In particular, there is no guarantee that the
LLM is using its generated CoT tokens to work out
its answer. For example, there might instead be an
independent underlying process within the LLM
that produces both the CoT tokens and the final
answer, such that the CoT tokens have no causal
effect on the answer. Thus, without evidence that
the CoT is causally impacting the LLMs’ answers
in the right ways, we cannot say whether the LLMs
are reasoning using their CoTs, or whether they are
e.g. simply predicting a plausible string of words
while generating the final answer separately.

This paper therefore explores the extent to which
CoT-prompted LLMs actually use their CoTs to rea-
son to their final answers, in the context of multi-
step arithmetic problems. First, we use an origi-
nal 5-point scale to evaluate the quality of LLMs’
CoTs, in terms of how correctly they would solve
the given questions. Then, we study whether the in-
termediate output tokens in a CoT causally impact
the LLM’s final answer, in the ways described by
the CoT. To do so, we use the methods of causal
abstraction, which have been used in other work to
structurally analyze the inner workings of LLMs
(Geiger et al., 2020, 2021). In our case, we model
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the reasoning described in a generated CoT as a
causal model, with intermediate steps in the CoT as
variables that causally determine the LLM’s final
answer. Adapting the concepts from intervention-
ist theories of causality (Spirtes et al., 2001; Pearl,
2001), we then intervene on the variables within
the CoT, and compare the LLMs’ resultant answers
with the expected output from the hypothesized
causal model. This allows us to assess the extent
to which the LLM’s CoT realizes the causal model,
and thus the extent to which the LLM is using its
CoT to reason to its answer.

We study the performance of recently released
LLMs on arithmetic word problems, and find that
correct answers under CoT prompting are highly
correlated with correct CoTs. In addition, for ques-
tions where the LLMs produced a correct CoT and
answer, the LLMs appeared to realize the causal
model suggested by their CoTs to a fairly large ex-
tent. Higher degrees of realization were also associ-
ated with higher overall accuracy on the arithmetic
problems, though the results also suggest that other
internal processes may be important too.

Together, these findings provide some evidence
for the causal conclusion that some CoT-prompted
LLMs do better on multi-step arithmetic reasoning
tasks at least partly because they reason using their
CoTs. If this is correct, it would suggest that CoTs
can improve not just the performance but also the
explainability of certain LLMs on multi-step rea-
soning tasks, as we may then be able to bypass
their internal complexities to some extent, by using
their external CoTs to get a handle on what they are
doing. This is similar to how we can gain some un-
derstanding about how people are thinking without
looking into their brains, by asking them to explain
their reasoning.1 This approach requires some care,
though, as our results also suggest that the picture
might be more complex for some LLMs.

2 Prior Literature

2.1 CoT Prompting

Recent work suggests that CoT prompting can en-
able LLMs to achieve better accuracy on multi-step
reasoning questions. For example, Nye et al. (2021)
tried to get LLMs to perform algorithmic computa-
tions by training them to produce a "scratchpad",

1See e.g. Newell and Simon (1972). Even for humans,
though, it may be difficult to know or articulate how exactly
we reason our way to an answer, as there could be implicit
cognitive effects (Greenwald and Banaji, 1995).

which encodes the intermediate steps of the algo-
rithm, before producing the final answer. Wei et al.
(2022) showed that such additional training might
not be necessary, by using few-shot CoT prompt-
ing – where each exemplar in the prompt for the
LLM consists of a question, CoT, and answer – to
produce significant gains in accuracy without fine-
tuning any parameters. Kojima et al. (2022) went
even further by showing that zero-shot CoT prompt-
ing – where the LLM is prompted simply with a
question followed by an instruction like, "Let’s
think step by step," without any CoT exemplars –
could also improve performance considerably. This
most extreme setting provides the clearest evidence
that producing a CoT alone can improve LLM per-
formance, as even few-shot CoT prompting might
improve LLM performance in other ways (e.g.,
few-shot CoT exemplars may help the LLM infer
something about how to do the task more generally,
rather than prompt it to use the CoT it produces to
answer the specific question it was asked).

However, even if CoT prompting improves
task performance, it remains an open question
whether the LLM uses its CoT to reason to its
answer. For example, other work suggests that
task performance can also improve if LLMs are
prompted to produce an explanation after their an-
swer (Lampinen et al., 2022). In these cases, the ex-
planation has no causal impact on the answer, since
the LLMs are auto-regressive and can only generate
answers using tokens that come before, not after.
Hence, if pre-answer CoTs improve performance
in the same way as post-answer explanations, then
the generated CoTs would not themselves causally
impact the LLMs’ answer, and we cannot conclude
that the LLMs are using their CoTs to reason to
their answers. In such a case, it would seem more
likely that CoT prompting improves task perfor-
mance by triggering a different process within the
LLM compared to non-CoT prompting – perhaps
e.g. by biasing the LLM toward patterns seen more
often in training datasets that come with CoTs,
which may also happen to be datasets that solve
reasoning problems more accurately.

2.2 CoT Evaluation

Existing metrics for evaluating LLM-generated
CoTs focus on measuring the extent to which the
CoT helps a simulator to predict the LLM’s output
response to a given task, compared to a baseline of
predicting the LLM’s response from the task input
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alone without the CoT (Hase et al., 2020; Wiegreffe
et al., 2021). Chen et al. (2023) go further in trying
to measure the new information that CoTs contain,
by comparing against a baseline of vacuous CoTs,
which consist of simply combining the given task
input and output. While these methods give some
indication of the correlation between LLMs’ CoTs
and outputs, they stop short of evaluating the cor-
rectness of CoTs, as well as the causal impact, if
any, of the CoTs on the LLMs’ output.

2.3 Causal Abstraction

The methods of causal abstraction have been used
to study the inner workings of LLMs performing
natural language inference (NLI) tasks (Geiger
et al., 2020, 2021; Wu et al., 2023; Yamakoshi
et al., 2023). The idea is as follows. Suppose we
hypothesize that a high-level causal model C ex-
plains how an LLM performs a given task. Then,
for each node c in C, we can look for some part
n of the LLM that might correspond to c. If inter-
ventions on n have the same impact on the LLM’s
output as the corresponding interventions on c have
on C’s output, then n plays a similar causal role in
the LLM as c does in C. If we find such an n in the
LLM for each node c in C, then we have evidence
that the LLM realizes C in performing the task, i.e.
that C is a causal abstraction of the LLM.

In practice, causal abstraction faces two chal-
lenges. First, if we use it to study an LLM’s inter-
nal workings, there may be intractably many loca-
tions n in an LLM that might correspond to each
node c in C. The alignment search for the right n
can thus be costly, and various methods, such as
Distributed Alignment Search (DAS) (Geiger et al.,
2023) and Boundless DAS (Wu et al., 2023), have
been developed to tackle this. Second, for any can-
didate location n, we may not know a priori which
interventions on n correspond to which interven-
tions on c (since n is embedded in a complicated
neural network and we may not know what its val-
ues represent). Thus, Geiger et al. (2020) propose
a method called interchange intervention, which
produces the desired interventions by changing the
inputs to the LLM accordingly. To illustrate, let i
and i′ be two different possible inputs to C, and
Di and Di′ be the embeddings of i and i′ in the
LLM respectively. Let Cc←i′(i) be the output of
C on input i when we intervene on c to give it the
value that it would have if the input were i′ instead,
and let LLMn←Di′ (Di) denote something similar

for the LLM and location n. Now, if the following
holds for every pair of inputs i, i′:

Cc←i′(i) = LLMn←Di′ (Di)

then each intervention on n corresponds to an
equivalent intervention on c. Using interchange
intervention, Geiger et al. (2020, 2021) find that,
at least on some significant subsets of their inputs,
the LLMs they test partially realize their hypothe-
sized causal model in performing certain NLI tasks
(Monotonicity NLI (MoNLI) and Multiply Quan-
tified NLI (MQNLI)). Using similar methods, Ya-
makoshi et al. (2023) find evidence of certain inter-
nal circuits within LLMs that play a causal role in
tackling the Winograd Schema Challenge, which
they hypothesize could indicate that the LLMs are
constructing implicit situation models that improve
task performance.

In our case, applying causal abstraction to the
CoTs produced by LLMs overcomes the two chal-
lenges above. Since CoTs are external to the LLM
and are expressed in natural language, a CoT itself
suggests a causal model, and it is transparent both
(i) which parts of the CoT should match which
nodes of the causal model, and (ii) which inter-
ventions on the CoT should correspond to which
interventions on the corresponding causal nodes.
This removes the need for alignment search and
interchange intervention, and we can instead inter-
vene on the CoTs directly for our study.

3 Data

We focus on one type of multi-step reasoning task
that has been found to benefit from CoT prompting:
arithmetic word problems (Wei et al., 2022; Kojima
et al., 2022). This is an interesting task to study as
it requires a mix of linguistic skills, which LLMs
are trained more directly for, and arithmetic skills,
which LLMs might find more challenging.

We use the GSM8K dataset (Cobbe et al., 2021),
which is widely used as a standard benchmark for
performance on arithmetic reasoning. It comprises
8.5K grade school math word problems, split into
a train (7.5K) and a test (1K) set. Each entry in the
dataset comprises a string for the math question,
and a separate string for the corresponding answer,
which includes multiple intermediate steps of rea-
soning and calculator annotations (see Table 1 for
example). As we do not fully know what data the
LLMs that we evaluate have been pre-trained on,
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Question
A raspberry bush has 6 clusters of 20 fruit each
and 67 individual fruit scattered across the bush.
How many raspberries are there total?
Answer
First find the number of fruit in clusters: 20
fruit/cluster * 6 clusters = «20*6=120»120 fruit
Then add the number of individual fruit to find
the total number of fruit: 120 fruit + 67 fruit =
«120+67=187»187 fruit
#### 187

Table 1: Example from GSM8K test set. Equations
in angled brackets « » indicate calculator annotations.
Final answer is entered after "####" for easy extraction.

some or all of them may have been exposed to por-
tions of the GSM8K training set. We therefore used
only the test set in our evaluations, in the hope that
the makers of the LLMs had avoided training them
on the test set, in order to report a fair assessment
of their arithmetic reasoning performance.2

4 Models

We select three recent LLMs for evaluation, from
three different sources, all accessible by API:

• OpenAI GPT-3.5 ("gpt-3.5-turbo")

• Cohere Command ("command")

• Google PaLM Bison ("text-bison-001")

One reason to focus on these LLMs is that the
public has no access to their internal representa-
tions. It is thus useful to test whether these LLMs
reason using their CoTs, since if so, we can better
understand them through their externally accessible
CoTs, without seeing their internal representations.

5 Methods

We divided our experiments into three parts.

5.1 Part 1: Accuracy Evaluation for CoT vs.
Non-COT Prompting

We first evaluated the three LLMs on the full
GSM8K test set, to contrast their performance un-
der CoT vs. non-CoT prompting. Our metric was
the accuracy of the final answer. The aim was

2We acknowledge, though, that there is no guarantee that
the LLMs have not been exposed to the test set, since there is
also an incentive to train on test examples to achieve artificially
better performance.

to verify that CoT prompting indeed improves the
task performance of the LLMs. This can be seen
as a replication of earlier work (Wei et al., 2022;
Kojima et al., 2022) using more recent models.

Under non-CoT prompting, each test question
was followed simply by the instruction, "Pre-
fix your final answer with "Answer:"." to facil-
itate easy extraction of the LLMs’ answer. For
CoT prompting, we used the zero-shot prompting
paradigm from Kojima et al. (2022), to isolate the
effect of producing a CoT on the LLMs’ perfor-
mance. Specifically, for OpenAI GPT-3.5 and Co-
here Command, each question was followed by,
"Let’s think step by step. Prefix your final answer
with "Answer:".", based on Kojima et al. (2022)’s
finding that the instruction, "Let’s think step by
step," produced the best results. For PaLM Bison,
we could only consistently elicit a CoT by tweaking
the instruction to, "Think step by step and prefix
your final answer with "Answer:"." instead.

5.2 Part 2: CoT Quality Evaluation
Next, we randomly selected 100 GSM8K test exam-
ples for a more in-depth analysis of the quality of
the LLMs’ generated CoTs. The aim was to go be-
yond measuring the accuracy of the final answers,
to get a richer evaluation of the LLMs’ arithmetic
reasoning performance. This would also give us
a sense of the extent to which the generated CoTs
may be helping the LLMs to do better at multi-step
arithmetic reasoning (though no causal conclusions
can be drawn yet). For example, if the CoTs pro-
duced by the LLMs were incorrect or irrelevant to
their final answers, then it cannot be that the LLMs
were using their CoTs to reason to their answers.

We manually assessed the quality of the CoTs
on a novel 5 point scale, from 0 to 4 (see Appendix
A for illustrative examples). First, we gave a score
of 0 if the LLM could not have reasoned its way
to its answer using its CoT. This was the case if
the LLM produced (i) no CoT,3 (ii) no final answer
(e.g. it got "stuck" and kept producing the same
sequence of words in its CoT, never getting to the
final answer), (iii) a CoT that was irrelevant to or
did not lead to its final answer, or (iv) a CoT after
its final answer, in which case the CoT could not
have causally impacted the final answer.

Second, if the LLM produced both a final answer,
and a CoT that preceded and led to the final answer,

3A "vacuous" CoT in the sense of Chen et al. (2023), which
simply repeats the input question followed by the final answer,
would fall in this category and would thus be scored 0.
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we rated the quality of the CoT, by evaluating the
causal model that it suggested. We considered two
main factors. First, would the causal model, if
correctly executed, solve the problem correctly?
This came in degrees: the causal model could be
completely off-track, or it could have made partial
progress toward the solution but ultimately failed
due to important misunderstandings of the problem,
or it could be a full and correct solution. Second,
if the CoT suggested a causal model that would
correctly solve the problem, did the CoT describe
a correct execution of the model? For example,
there could be errors in computing an arithmetic
operation, or a wrong number might be used as an
input. Based on these factors, we gave the CoT a
score of 1 (lowest-quality) to 4 (highest-quality):

1. The CoT does not make any progress toward
solving the question at all.

2. The CoT makes some progress toward solving
the problem (i.e. it correctly takes at least one
intermediate step needed to solve the prob-
lem), but ultimately fails to do so.

3. The CoT would have correctly solved the prob-
lem, if not for some minor mistakes in execu-
tion (e.g. computational errors).

4. The CoT correctly solves the problem and is
correctly executed.

This scale reflects the view that it is better to ex-
hibit a correct line of reasoning that is incorrectly
executed (a 3-rating), than a wrong line of reason-
ing that is correctly executed (a 1- or 2-rating),
which is how a human student might plausibly be
graded on similar arithmetic problems. In addition,
we note that, except for 4-ratings, which are only
compatible with a correct final answer, each of the
other ratings (0-3) is compatible with a correct or
incorrect final answer. It is just that, if a correct fi-
nal answer was reached with a <4-rated CoT, then
this would have been a fluke.

5.3 Part 3: Causal Abstraction Analysis
Finally, of the 100 GSM8K test examples for which
we assessed CoT quality, we selected all 27 exam-
ples where all LLMs’ CoTs were rated 4, to enable
cross-model comparisons for our causal abstrac-
tion analysis. For each example, we developed one
causal model for each LLM, comprising some in-
put and intermediate nodes and one output node.
All three models shared the same input nodes, as

these were variables given in the question. But each
model might have different intermediate nodes, as
the CoTs might solve the question in different ways.
The total number of input and intermediate nodes
for each causal model ranged from 3 to 10.

Next, we matched each input and intermediate
node c in a causal model C, with the corresponding
variable v in the LLM’s CoT. We then tested if the
same intervention on both c and v (while keeping
all other independent nodes and variables the same)
yielded the same final answer from C as from the
LLM. If so, we considered the intervention "suc-
cessful". We used the percentage of interventions
that were successful, as a measure of the degree to
which the LLM’s CoT realized the causal model.

Concretely, to intervene on a variable v in the
LLM’s CoT, we identified the first instance of v in
the sequence of tokens preceding the final answer,
and replaced that instance with the intervention
value a. If v corresponded to an input node, its first
occurrence would be in the question itself, so we
would prompt the LLM with the question and CoT
prompt only, except with the variable v changed to
value a.4 If v corresponded to an intermediate node,
its first occurrence would be in the LLM’s CoT, so
we would prompt the LLM with the question and
CoT prompt, followed by the LLM’s original re-
sponse, but truncated at the end of the sentence
where v first appears, and with v changed to value
a.5 The LLM then completed the rest of the CoT
and gave its final answer accordingly, which we
compared with the outcome of the similarly inter-
vened causal model. (See Table 2 and Figure 1 for
illustration.) To ensure the same type of output
after interventions, we always ran all LLMs with
temperature 0 (i.e. deterministic outputs).

For each input and intermediate node in each
causal model, we generated 10 intervention values,
which generally ranged from 0 to either 100 or 2×
the original node value, whichever was higher. We
put constraints on these interventions so that they
would not impose unfair demands on the LLMs.
For example, we ensured that the final answer after

4 We intervened within the question prompt rather than the
CoT for input variables due to some difficulties with the latter
approach. For instance, often, input variables first appear in
CoTs as part of an equation that computes an intermediate
variable, and so intervening on them without retaining the
intermediate variable would require truncating the CoT in the
middle of the equation. This was hard for LLMs to complete,
compared to truncating the CoT at the end of a sentence.
Future work could explore different approaches to this issue.

5For Cohere Command, we found we also had to append
another instruction "Continue from here."
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Original Prompt and Response
A raspberry bush has 6 clusters of 20 fruit each
and 67 individual fruit scattered across the bush.
How many raspberries are there total?
Think step by step and prefix your final answer
by "Answer:".
There are 6 * 20 = 120 raspberries in the clus-
ters. There are 120 + 67 = 187 raspberries total.
Answer: 187
Intervened Prompt and Response
A raspberry bush has 6(v0) clusters of 20(v1)
fruit each and 67(v2) individual fruit scattered
across the bush. How many raspberries are there
total?
Think step by step and prefix your final answer
by "Answer:".
There are 6 * 20 = 206(v3) raspberries in the
clusters. There are 206 + 67 = 273 raspberries
total.
Answer: 273

Table 2: Example of intervention, using a GSM8K test
question and actual response from PaLM Bison. Blue
italics indicate LLM’s response. The generated CoT
suggests a causal model (Figure 1(A)). Variables in
CoT are bolded and labeled in parentheses for reference
(labels are not part of generated text). Intervention uses
a new prompt, comprising the original prompt followed
by the generated CoT, up to the first instance of the
desired variable v3, which is edited to the desired value
(red underlined). The LLM completes the rest, and the
resultant outcome 273 is then compared to the similarly
intervened outcome in the causal model (Figure 1(B)).
Since they are equal, the intervention is successful.

Figure 1: (A) is the causal model suggested by the
original generated CoT in Table 2. The individual nodes
c0 to c3 are easily matched to the variables v0 to v3 of
the CoT. Intervention is done by setting c3 to 206 (red
underlined), as in (B), resulting in the outcome of 273
determined by the causal model. Since this equals to
the LLM’s output after the corresponding intervention
in the CoT (Table 2), the intervention is successful.

intervention would remain a non-negative integer
(as with the original GSM8K examples), and that
intermediate steps would not involve unrealistic
figures (e.g. a negative number of objects). Due to
these constraints, for some nodes, we could only
generate fewer than 10 interventions. In total, the
number of interventions across the 27 examples
range from 1,323 to 1,403 per LLM.

6 Results and Analysis

6.1 Part 1: Accuracy Evaluation

LLM CoT Non-CoT
OpenAI GPT-3.5 77.4 45.8
Cohere Command 31.7 6.1
PaLM Bison 65.9 17.3

Table 3: Accuracy scores (as %) compared to gold an-
swers on the full GSM8K test set (1,319 examples).

As expected, CoT prompting improved each
LLM’s accuracy significantly, compared to non-
CoT prompting.6 But performance across LLMs
differed considerably, with OpenAI GPT-3.5 scor-
ing best at 77.4, compared with Cohere Command
at 31.7. (For comparison, GPT-4 reportedly scored
92.0 using 5-shot CoT prompting (OpenAI, 2023).)
Even without CoT prompting, GPT-3.5 scored 45.8,
higher than Command under CoT prompting. An
informal check showed that even without CoT
prompting, GPT-3.5 often produced CoTs on its
own, which could be the result of task-specific pre-
training or reinforcement learning.

6.2 Part 2: CoT Quality Evaluation

For the questions that the LLMs correctly answered,
the vast majority of the CoTs were rated 4 (99% for
OpenAI GPT-3.5, 83% for Cohere Command, and
97% for PaLM Bison).7 Thus, the LLMs showed a

6We note that the results in Table 3 might not be fully
accurate, as we used a simple regex matching to extract the
LLMs’ final answers, by assuming they prefixed their answers
with "Answer:". But the LLMs did not always follow this
format, so we might have missed some correct answers and
thus underestimated their accuracy. Nonetheless, since this
happens for both CoT and non-CoT prompting, Table 3 should
suffice to show the broad trend that CoT prompting indeed
improves LLMs’ performance on the GSM8K test set. We did
not refine the results further as our focus is on understanding
whether LLMs use their CoTs to reason to their answers, and
not on measuring the exact accuracy of the LLMs.

7Manual changes were made to grade as "correct" four
test examples where GPT-3.5 got the right answer, but did
not prefix it with "Answer:". We also found one error in the
GSM8K test set (see Appendix C for details).
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OpenAI Cohere PaLM
Ratings C I C I C I

4 80 0 30 0 73 0
3 0 3 2 6 0 1
2 1 11 3 34 2 19
1 0 4 1 15 0 4
0 0 1 0 9 0 1

Table 4: Number of examples with different CoT ratings
(out of 100). "C" indicates examples where the LLM
got the correct final answer, "I" where it was incorrect.
Charts for visual comparison are in Appendix B.

strong correlation between getting the correct final
answer, and producing a correctly formulated and
executed CoT. While we cannot yet draw a causal
conclusion that the LLMs got the correct answer
because they produced a correct CoT, our findings
here are consistent with this hypothesis, and sug-
gest that there is some important relationship within
the LLMs between producing a correct CoT and
a correct final answer. It is not, for instance, that
producing any text before the final answer enables
the LLMs to get the correct answer more often – it
is important that the text produced is a correct CoT.
Otherwise, we would expect a similar CoT ratings
distribution for both correctly and incorrectly an-
swered questions, but our findings show that in fact
they are very different.

That there is an important connection between
the content of the CoTs and the LLMs’ final an-
swers is also suggested by our finding that there
were virtually no cases in which the CoT produced
bore no relation at all to the LLM’s final answer.
Such cases would have received a 0-rating, but only
11 CoTs in total (1% of all CoTs for OpenAI GPT-
3.5, 9% for Cohere Command, and 1% for PaLM
Bison) were rated 0, and of these only 2 could not
be said to lead to the final answer declared by the
LLM (the others either produced no CoT or no
answer, or produced a relevant CoT but only after
the answer). In other cases, even when the CoT
was not the right way to solve the problem, the
LLM would almost always report the result that the
CoT arrives at as its final answer. All this suggests
that the LLM’s workings encode significant corre-
lations between the content of their CoTs and their
final answers. However, this still falls short of any
causal conclusions, since for instance it may be that
some common process within the LLM produces
both the CoT and the final answer, but the CoT
does not itself causally impact the final answer.

Separately, it is worth noting that, among ques-
tions that the LLMs answered wrongly, only a small
proportion of CoTs were rated 3 (16% for OpenAI
GPT-3.5, 9% for Cohere Command, 4% for PaLM
Bison), which signifies a correctly formulated CoT
that was incorrectly executed e.g. due to compu-
tation errors. This suggests that LLMs’ mistakes
on the GSM8K dataset might not mainly be at-
tributable to computational deficiencies. Instead,
most CoTs for incorrectly answered questions were
rated 2 (58% for OpenAI GPT-3.5, 53% for Cohere
Command, 76% for PaLM Bison), which signifies
an incomplete CoT that does not fully solve the
question. Such CoTs usually exhibited conceptual
errors that reflected a semantic misunderstanding
of the question. That said, more of the incorrect
CoTs were rated 2 than 1 (21% for OpenAI GPT-
3.5, 23% for Cohere Command, 16% for PaLM
Bison), suggesting that, even when the CoTs were
incorrect, they more often than not made some
progress toward solving the question.

In a few cases, LLMs’ CoTs had numbers that
neither came from the question nor resulted from
a computation in the CoT (e.g. Appendix D). It is
unclear what causes this, but it may be related to
LLMs’ tendencies to "hallucinate" more generally.

6.3 Part 3: Causal Abstraction Analysis

LLM All Input Intermediate
OpenAI 83.0 94.8 60.3
Cohere 66.0 66.5 66.3
PaLM 80.7 81.1 80.3

Table 5: Average percentage of successful interventions
on all nodes (both input and intermediate, excluding
output node), input nodes only, and intermediate nodes
only, across 27 4-rated CoTs.

For each LLM, for each of the 27 selected exam-
ples, we first compute the percentage of successful
interventions for each node. We then compute the
mean percentage across (i) all non-output nodes,
(ii) input nodes only, and (iii) intermediate nodes
only, for that example. Finally, we compute the
mean of these example-specific means, across all
27 examples, to get Table 5. A more detailed break-
down by example is provided in Appendix E.

All three LLMs demonstrated a fairly high aver-
age percentage of successful interventions across
all non-output causal nodes (66.0 and above, com-
pared to a theoretical maximum of 100). We also
examined the results for input and intermediate
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nodes separately, as they have different implica-
tions. For input nodes, since we intervene on them
within the question prompt rather than the CoT (see
Footnote 4), their results reflect how the LLM is
using the variables in the question rather than the
tokens produced in the CoT. In contrast, the results
for the intermediate nodes reflect more directly the
LLM’s use of its CoT tokens. We note that the per-
centage of successful interventions remains fairly
high when considering only intermediate nodes,
ranging from 60.3 for OpenAI GPT-3.5 to 80.3 for
PaLM Bison. While it is difficult to interpret what
these figures mean precisely, their absolute magni-
tudes strongly suggest that the LLMs’ CoT tokens
do exhibit significant causal influence on their final
answers. For if there were no such causal impact,
we would expect the percentages for the interme-
diate nodes to be close to 0, since intervening on
the CoT tokens should not affect the LLMs’ final
answers at all, much less alter them in line with
the predictions of the hypothesized causal models.
Hence, we tentatively conclude that, at least on our
27 examples, all the LLMs realized the causal mod-
els suggested by their CoTs to a fairly high extent,
and that they largely used their CoTs to get to their
answers, in the ways described in the CoTs.

Besides their absolute magnitudes, the relative
percentages across the LLMs are also suggestive.
Focusing first on Cohere Command and PaLM Bi-
son, we note that the results for their input vs. their
intermediate nodes are remarkably similar (66.5
vs. 66.3 for Command, 81.1 vs. 80.3 for Bison),
despite the differences in how we intervened on
the two node types. This consistency could indi-
cate that these percentages do indeed reflect the
degree to which the LLMs realize the full causal
models (i.e. including both input and intermediate
nodes) suggested by their CoTs. Moreover, com-
pared to Command, Bison not only has a higher
percentage of successful interventions across all
nodes, but also does better on the whole GSM8K
test set. This suggests the causal interpretation that
the two LLMs might be doing better at multi-step
arithmetic reasoning under CoT prompting at least
partly because they realize the causal model im-
plied by their CoTs, since they seem to do better
when the degree of realization is higher.

OpenAI GPT-3.5’s results also support this inter-
pretation if we consider all the non-output nodes as
a whole, since it registers the highest percentage of
successful interventions there (83.0) and also does

best on the full GSM8K test set. But separating in-
put and intermediate nodes reveals a more nuanced
picture. For GPT-3.5, the average percentage of
successful interventions differed significantly for
input (94.8) vs. intermediate (60.3) nodes, and
its percentage for intermediate nodes is lower than
even Cohere Command’s (66.3). This suggests that,
compared to the other LLMs, GPT-3.5 may be us-
ing its CoT tokens to a smaller extent in getting
to its answer (though it adapts better to changes in
the input variables given in a question). Indeed, for
many of the unsuccessful intermediate node inter-
ventions, GPT-3.5 seemed to ignore the intervened
value in generating its completion. This suggests
that some other internal process, not causally de-
pendent on its CoT tokens, is producing its final
answer in these cases.

In other cases, GPT-3.5 exhibited self-correcting
behavior, by explicitly correcting the intervened
value in its CoT completion. To explain, an in-
termediate node intervention always introduces a
computational error, since the correct intermediate
value is fully determined by the input values (which
remain unchanged), but the intervention changes
the intermediate node to a different value. In some
cases, GPT-3.5 seemed to recognize this error, by
producing tokens acknowledging a "mistake", be-
fore producing the correct intermediate value and
completing the CoT from there (see Appendix F
for an example). Unlike the earlier cases where
GPT-3.5 seems to ignore the intervened intermedi-
ate value, however, such self-correcting behavior
requires GPT-3.5 to use the intervened CoT token
to generate its response, since it is only then that it
can detect the "mistake" (given that we intervene
only on the CoT token and not on any of GPT-
3.5’s internal representations). Still, self-correcting
behavior also requires GPT-3.5 to have internal rep-
resentations of the correct intermediate value, so
that it can compare this with the intervened CoT
token to notice the "mistake". This again points to
an internal process for producing its final answer
that is not causally dependent on its CoT tokens.

These findings thus complicate our earlier sug-
gestion that LLMs do better on multi-step arith-
metic reasoning because they use their CoTs to
reason to their answers. At least for GPT-3.5, bet-
ter performance may also depend on some internal
processes that operate independently of the CoT to-
kens. While the reasons for GPT-3.5’s intervention-
ignoring and self-correcting behavior are unclear,
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one possibility could be that GPT-3.5 received spe-
cific reinforcement learning that encouraged such
behavior. It may also be possible that GPT-3.5
was exposed to some of the GSM8K test examples
during training.

7 Conclusion

In conclusion, we found that (i) LLMs achieved sig-
nificantly higher accuracy on the multi-step arith-
metic reasoning GSM8K test set under CoT vs.
non-CoT prompting, (ii) correct LLM answers
were highly correlated with correctly formulated
and executed CoTs, and (iii) when LLMs produced
both correct CoTs and correct answers, they real-
ized the causal models suggested by their CoTs to
a fairly large extent. For Cohere Command and
PaLM Bison, greater degrees of realization were
associated with higher accuracy on the GSM8K
test set, suggesting that some CoT-prompted LLMs
might do better at multi-step arithmetic reasoning
at least partly because they use their CoTs to reason
to their answers. The results for OpenAI GPT-3.5,
however, suggest that for some LLMs, other inter-
nal processes may also be involved.

Because we studied only a small number of ex-
amples and interventions, future work could scale
up to more examples, with more robust human eval-
uation methods such as inter-annotator agreement.
In addition, future work could explore cases where
LLMs produce incorrect CoTs, to examine whether
LLMs nonetheless realize the causal models sug-
gested by those CoTs, and whether those incorrect
causal models could be salvaged by appropriate
interventions. This would provide more assurance
that externally generated CoTs faithfully represent
how the LLMs are producing their final answers,
and suggest ways to improve their performance by
directly intervening on their CoTs. Future work
could also explore few-shot CoT prompting ap-
proaches, which may work differently from the
zero-shot paradigm, and/or explore how to extend
these methods to other types of reasoning tasks,
beyond arithmetic reasoning.

Finally, it could be useful to replicate these exper-
iments with LLMs whose internal representations
are accessible. This way, we can compare the re-
sults with the results that we get when we intervene
within those LLMs, and observe how such internal
interventions affect the external CoTs. This could
help us to better understand why LLMs differ in
the degree to which their CoTs realize the hypothe-

sized causal models, and perhaps also shed light on
interesting phenomena such as the self-correcting
behavior of some LLMs,

Limitations

This paper only examines a few LLMs’ behavior,
for a small subset of examples and associated inter-
ventions, from a single dataset (GSM8K test set). It
should not be assumed that the findings will gener-
alize to all LLMs or all examples from the dataset,
much less to examples from other datasets, even if
those examples represent a similar task (multi-step
arithmetic reasoning). For better generalization,
the experiments should ideally be replicated at a
larger scale involving more LLMs, more exam-
ples, and more interventions, but this may require
more time and labor resources, and/or a change in
methodology to enable easier scaling.

This paper is also limited to only one type of rea-
soning task, and the findings may not generalize to
other tasks, such as question answering, symbolic
reasoning, or natural language inference tasks.

The experiments in this paper were conducted
in a controlled setting, with temperature 0 (i.e. de-
terministic outputs). There is no guarantee that the
findings will extend to other settings e.g. when tem-
perature is higher and so there is more randomness
in the output of an LLM, in which case the LLM
may no longer use the tokens generated in its CoT
in the same way.

Finally, this paper only found evidence that
LLMs may in some cases partially realize the
causal models suggested by their CoTs. It is still un-
clear what the precise theoretical interpretation of
such partial realizations should be. In cases where
LLMs answered a question correctly but seemed
not to realize the causal model suggested by their
CoT, this paper does not indicate how else the LLM
might be getting the question right.

Ethics Statement

While this paper suggests some very modest ev-
idence that externally generated CoTs in certain
specific settings may provide faithful explanations
or interpretations of how an LLM arrived at its final
answer to a question, it may not be safe to assume
that this is the case in general. When using an LLM
for a task, the reasoning provided may not really
be how it arrives at its final answer, and due cau-
tion should be taken to check that the reasoning
provided is factual and sensible, before relying on
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it for making substantive decisions. For example,
an LLM may claim to have reasoned to an answer
in a fair way, but may have in fact relied on implicit
biases within its internal workings. Independent
checks should be done to verify any claims made
in an LLM’s CoT.

Acknowledgments

We would like to thank the anonymous review-
ers for their helpful comments and suggestions.
We would also like to thank Thomas Icard, Kawin
Ethayarajh, Atticus Geiger, and Zhengxuan Wu for
helpful discussions and feedback on the paper.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Hanjie Chen, Faeze Brahman, Xiang Ren, Yangfeng Ji,
Yejin Choi, and Swabha Swayamdipta. 2023. REV:
Information-theoretic evaluation of free-text ratio-
nales. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2007–2030, Toronto,
Canada. Association for Computational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christo-
pher Potts. 2021. Causal abstractions of neural net-
works. In Advances in Neural Information Process-
ing Systems, volume 34, pages 9574–9586. Curran
Associates, Inc.

Atticus Geiger, Kyle Richardson, and Christopher Potts.
2020. Neural natural language inference models
partially embed theories of lexical entailment and
negation. In Proceedings of the Third BlackboxNLP
Workshop on Analyzing and Interpreting Neural Net-
works for NLP, pages 163–173, Online. Association
for Computational Linguistics.

Atticus Geiger, Zhengxuan Wu, Christopher Potts,
Thomas Icard, and Noah D. Goodman. 2023. Find-
ing alignments between interpretable causal variables
and distributed neural representations.

A G Greenwald and M R Banaji. 1995. Implicit so-
cial cognition: attitudes, self-esteem, and stereotypes.
Psychological Review, 102(1):4–27.

Peter Hase, Shiyue Zhang, Harry Xie, and Mohit Bansal.
2020. Leakage-adjusted simulatability: Can models
generate non-trivial explanations of their behavior
in natural language? In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4351–4367, Online. Association for Computational
Linguistics.

Alon Jacovi and Yoav Goldberg. 2020. Towards faith-
fully interpretable NLP systems: How should we
define and evaluate faithfulness? In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4198–4205, On-
line. Association for Computational Linguistics.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199–22213. Curran Associates, Inc.

Andrew Lampinen, Ishita Dasgupta, Stephanie Chan,
Kory Mathewson, Mh Tessler, Antonia Creswell,
James McClelland, Jane Wang, and Felix Hill. 2022.
Can language models learn from explanations in con-
text? In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 537–563,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

A. Newell and H.A. Simon. 1972. Human Problem
Solving. ACS symposium series. Prentice-Hall.

Maxwell I. Nye, Anders Johan Andreassen, Guy Gur-
Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten
Bosma, David Luan, Charles Sutton, and Augustus
Odena. 2021. Show your work: Scratchpads for inter-
mediate computation with language models. CoRR,
abs/2112.00114.

OpenAI. 2023. Gpt-4 technical report.

Judea Pearl. 2001. Direct and indirect effects. In
Proceedings of the Seventeenth Conference on Un-
certainty in Artificial Intelligence, UAI’01, page
411–420, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Peter Spirtes, Clark Glymour, and Richard Scheines.
2001. Causation, Prediction, and Search. The MIT
Press.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Sarah Wiegreffe, Ana Marasović, and Noah A. Smith.
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A Examples of CoT Quality Ratings

The following are all real CoT examples from Co-
here Command on the GSM8K test set.

A.1 0-rating: No CoT provided

Question: John likes to have a glass of water with
breakfast, lunch and dinner. Finally, he has one
before he goes to bed as well. John does this every
weekday, but on the weekends he likes to relax and
have a soda with dinner instead. How many glasses
of water does John drink in a week?

CoT: Answer: 5

A.2 0-rating: CoT does not lead to answer

Question: Kelly has 5 quarters and 2 dimes. If she
buys a can of pop for 55 cents, how many cents
will she have left?

CoT: She has 55 cents because 5 quarters are
worth $0.25 and 2 dimes are worth $0.10. She has
55 cents because $0.25 + $0.10 = $0.35. She has
55 cents because $0.35 - $0.55 = -$0.20. She has
55 cents because -$0.20 + $0.55 = $0.35.

Answer: 55

A.3 1-rating: CoT makes no progress

Question: Sandra’s neighbor gives her a basket of
9 eggs every time she babysits their daughter. To
make a Spanish flan, she needs 3 eggs. If Sandra
has been tasked to make 15 Spanish flans for her
school fundraiser, how many times does Sandra
have to babysit?

CoT: Sandra needs to make 15 Spanish flans, so
she needs to use 3 eggs 15 times. She gets 9 eggs
each time she babysits, so she needs to babysit 9 /
3 = 3 times.

Answer: 3

A.4 2-rating: CoT makes some progress
Question: The marching band is ordering new
uniforms. Each uniform comes with a hat that
costs $25, a jacket that costs three times as much
as the hat, and pants that cost the average of the
costs of the hat and jacket. How much does each
uniform cost total?

CoT: The jacket costs 3 * 25 = $75. The pants
cost 75 / 2 = $37.5. So, the total cost of the uniform
is 25 + 75 + 37.5 = $137.5.

Answer: $137.5

A.5 3-rating: CoT is correct, but incorrectly
executed

Question: To have the car for the weekend, Wil-
son’s report card needs to show that he received
80 or higher in his math class. His math grade is
calculated by the average of 5 test scores. On those
tests, he received: 65, 94, 81, 86 and 74. What is
his current math grade?

CoT: His current math grade is calculated by the
average of 5 test scores. So, his current math grade
is (65 + 94 + 81 + 86 + 74) / 5 = 665 / 5 = 133.

Answer:133

A.6 4-rating: CoT is correct, and correctly
executed

Question: Ryan plants 2 flowers a day in his gar-
den. After 15 days, how many flowers does he have
if 5 did not grow?

CoT: He plants 2 flowers a day for 15 days so
he plants 2 * 15 = 30 flowers. But 5 did not grow
so he has 30 - 5 = 25 flowers.

Answer: 25

B Charts for CoT Quality Ratings

Figure 2: OpenAI GPT-3.5 CoT ratings, broken down
by ratings(left) and correct/incorrect final answer (right)
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Figure 3: Cohere Command CoT ratings, broken down
by ratings(left) and correct/incorrect final answer (right)

Figure 4: PaLM Bison CoT ratings, broken down by
ratings(left) and correct/incorrect final answer (right)

C Error in GSM8K Test Set

In the example below, since Marin and Nancy each
eat 4 apples a day, together they eat 8 apples a day.
The correct answer should thus be that they eat 240
apples in 30 days, not 150 as the GSM8K gold
answer claims.

Question: Marin and his neighbor Nancy each
eat 4 apples a day. How many apples do they eat in
30 days?

Gold Answer: In one day, Marin and Nancy eat
4 + 1 = «4+1=5»5 apples.

In 30 days, they eat 30 * 5 = «30*5=150»150
apples.

#### 150

D Example of "Hallucinatory" CoT

In the example below, from Cohere Command, it
is unclear where the "3,200" figure comes from.

Question: Gissela, Gordy, and Gary are truck
drivers. Gissela has a truck large enough to haul
4,000 pounds of gravel. Gordy’s truck can haul 800
pounds more than Gissela’s truck. And when Gary
brings his truck and joins Gissela and Gordy, the
three trucks combined can haul a total of 11,600
pounds of gravel. How many pounds of gravel can
Gary’s truck carry?

CoT: Gissela’s truck can carry 4,000 pounds of

gravel. Gordy’s truck can carry 4,800 pounds of
gravel. So, the total amount of gravel that the two
trucks can carry is 4,000 + 4,800 = 8,800 pounds.
Therefore, the total amount of gravel that the three
trucks can carry is 8,800 + 3,200 = 11,600 pounds.
Since Gary’s truck can carry 800 pounds more than
Gissela’s truck, Gary’s truck can carry 4,000 + 800
= 4,800 pounds of gravel.

Answer: 4,800

E Breakdown of Average Percentage of
Successful Interventions by Example

The following tables provide a breakdown, by ex-
ample, and type of node, for the average percentage
of successful interventions for each LLM.

Example No. All Input Intermediate
59 97.5 100.0 90.0
65 35.0 56.7 13.3
113 97.5 100.0 90.0
190 96.7 100.0 90.0
206 97.0 100.0 92.5
208 82.0 100.0 55.0
262 82.5 100.0 30.0
335 76.7 100.0 30.0
352 92.5 96.7 80.0
431 86.7 91.3 75.0
454 70.0 100.0 10.0
457 100.0 100.0 100.0
511 80.0 100.0 40.0
613 86.7 85.0 90.0
671 91.6 96.4 85.2
723 55.0 82.5 0.0
742 81.7 100.0 63.3
788 52.0 86.7 0.0
792 90.0 100.0 60.0
872 70.6 89.2 15.0
879 88.0 96.7 75.0
888 92.5 100.0 70.0
934 91.7 97.5 80.0
977 92.0 96.7 85.0
986 70.0 98.0 23.3
1099 100.0 100.0 100.0
1112 86.5 87.5 85.5
mean 83.0 94.8 60.3

Table 6: Percentage of successful interventions by ex-
ample, for OpenAI GPT-3.5
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Example No. All Input Intermediate
59 72.0 66.7 80.0
65 31.7 60.0 3.3
113 82.5 83.3 80.0
190 50.0 30.0 90.0
206 21.0 8.3 40.0
208 38.0 36.7 40.0
262 85.0 80.0 100.0
335 63.3 52.5 85.0
352 97.5 100.0 90.0
431 85.7 84.0 90.0
454 52.5 75.0 30.0
457 90.0 93.3 85.0
511 90.0 85.0 100.0
613 16.7 10.0 30.0
671 89.6 90.4 88.6
723 95.0 92.5 100.0
742 62.5 65.0 60.0
788 84.0 86.7 80.0
792 47.5 50.0 40.0
872 60.0 60.0 60.0
879 30.0 33.3 25.0
888 92.5 93.3 90.0
934 34.3 40.0 26.7
977 75.0 80.0 60.0
986 68.9 64.0 75.0
1099 76.7 92.5 45.0
1112 90.4 84.2 96.7
mean 66.0 66.5 66.3

Table 7: Percentage of successful interventions by ex-
ample, for Cohere Command

Example No. All Input Intermediate
59 100.0 100.0 100.0
65 51.7 76.7 26.7
113 100.0 100.0 100.0
190 96.7 100.0 90.0
206 67.0 56.7 82.5
208 82.0 86.7 75.0
262 97.5 96.7 100.0
335 83.3 95.0 60.0
352 92.5 93.3 90.0
431 64.8 66.7 60.0
454 93.3 95.0 90.0
457 98.0 96.7 100.0
511 100.0 100.0 100.0
613 40.0 10.0 100.0
671 92.2 96.4 86.7
723 100.0 100.0 100.0
742 86.0 83.3 90.0
788 25.0 30.0 10.0
792 95.0 100.0 80.0
872 13.8 11.7 20.0
879 74.0 73.3 75.0
888 95.0 96.7 90.0
934 94.3 95.0 93.3
977 97.5 96.7 100.0
986 55.0 56.0 53.3
1099 100.0 100.0 100.0
1112 84.8 78.3 94.4
mean 80.7 81.1 80.3

Table 8: Percentage of successful interventions by ex-
ample, for PaLM Bison

F Example of OpenAI GPT-3.5’s
Self-Correcting Behavior for
Intervened CoTs

Intervened Prompt: Seven bottles of soda cost
$21.00 while 4 bottles of water cost $8. If David
wants to buy 3 bottles of soda and 2 bottles of water,
how much will that cost?

Let’s think step by step. Prefix your final answer
by "Answer:"

First, we need to find the cost of one bottle of
soda. We can do this by dividing the total cost of
seven bottles by seven:

$21.00 ÷ 7 = $3.00 per bottle of soda
Next, we need to find the cost of one bottle of

water. We can do this by dividing the total cost of
four bottles by four:

$8.00 ÷ 4 = $49 per bottle of water
GPT-3.5’s Completion: Oops, it looks like there
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was a mistake in the previous calculation. Let me
correct it:

$8.00 ÷ 4 = $2.00 per bottle of water
Now that we know the cost of one bottle of soda

and one bottle of water, we can calculate the total
cost of 3 bottles of soda and 2 bottles of water:

(3 x $3.00) + (2 x $2.00) = $9.00 + $4.00 =
$13.00

Answer: The total cost of 3 bottles of soda and
2 bottles of water is $13.00.


