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Abstract

Explanations accompanying a recommendation
can assist users in understanding the decision
made by recommendation systems, which in
turn increases a user’s confidence and trust in
the system. Recently, research has focused on
generating natural language explanations in a
human-readable format. Thus far, the proposed
approaches leverage item reviews written by
users, which are often subjective, sparse in lan-
guage, and unable to account for new items
that have not been purchased or reviewed be-
fore. Instead, we aim to generate fact-grounded
recommendation explanations that are objec-
tively described with item features while im-
plicitly considering a user’s preferences, based
on the user’s purchase history. To achieve this,
we propose a knowledge graph (KG) approach
to natural language explainable recommenda-
tion. Our approach draws on user-item features
through a novel collaborative filtering-based
KG representation to produce fact-grounded,
personalized explanations, while jointly learn-
ing user-item representations for recommenda-
tion scoring. Experimental results show that
our approach consistently outperforms previ-
ous state-of-the-art models on natural language
explainable recommendation metrics.1

1 Introduction

Current approaches to natural language (NL) ex-
plainable recommendation focus on generating user
reviews (Chen et al., 2018; Wang et al., 2018a; Li
et al., 2020, 2021; Yang et al., 2021). Instead of pro-
viding a justification for the item recommendation,
the models learn to output language that is com-
monly found in personal reviews. This reliance on
reviews poses three problems: 1) The explanations
are not objective, because users typically review
items based on their sentiment (Wu et al., 2018),

*Work performed at Bosch Research.
1Our code and datasets are available at: https://github.

com/boschresearch/KnowRec.

2) Reviews are often sparse, because they describe
a user’s own experience (Asghar, 2016), 3) Sys-
tems that rely on reviews cannot account for new
items which have never been purchased before, nor
can they provide justifications for item catalogs
which may not have reviews available. Given this,
it may be difficult for a user to reason as to why
an item was recommended, hindering the user’s ex-
perience (Tintarev and Masthoff, 2015). The user
may then lose trust in such systems which do not
provide objective and accurate explanations.

We propose KnowRec, a KG-grounded ap-
proach to natural language explainable recommen-
dation which not only personalizes recommen-
dations/explanations with user information, but
also draws on facts about a particular item via
its corresponding KG to generate objective, spe-
cific, and data-driven explanations for the recom-
mended item. For example, given the movie “Paths
of Glory”, previous work aims to generate expla-
nations such as “it’s not the best military movie”
and “good performances all around”, which are
subjective, not specific to a given movie, and re-
lies on data from pre-existing reviews. Instead,
by leveraging an item KG such as <director, Stan-
ley Kubrick>, <conflict, World War 1>, <country,
France>, a more objective and precise explanation
can be produced such as: “A World War I French
colonel defends three soldiers. Directed by Stan-
ley Kubrick.” The item features of ‘World War I’,
‘colonel’, and ’defends three soldiers’ in the expla-
nation objectively describe the movie, while they
can implicitly reflect the user’s preferences for war
movies, based on his/her purchase history.

KnowRec is also more advantageous than prior
work in terms of scalability to unpurchased items.
Previously, KG-based recommendation systems
have effectively addressed the cold-start problem
by linking users and items through shared at-
tributes (Wang et al., 2019, 2020, 2021). Similarly,
there exists a kind of cold-start problem for new

https://github.com/boschresearch/KnowRec
https://github.com/boschresearch/KnowRec
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items in recommendation explanation that rely on
reviews. KnowRec demonstrates KGs can help
solve this problem through existing item-level fea-
tures by adapting KG-to-text (Koncel-Kedziorski
et al., 2019; Ke et al., 2021; Colas et al., 2022) el-
ements into explainable recommendation, produc-
ing item-level explanations to justify a purchase.
The KG-based approach is particularly important
for recommendation scenarios in special domains
where personal reviews are not available and the
review-based approaches are impractical.

Our approach presents several algorithmic nov-
elties. First, inspired by work on KG Recommen-
dation (Wang et al., 2020) and KG-to-Text (Co-
las et al., 2022), we devise a novel user-item KG
lexical representation, viewing the input through
collaborative filtering lens, where users are graphi-
cally represented via their previous purchases and
connected to a given item KG. Our representation
differs from previous work on explainable NL gen-
eration which relies on ID and sparse keyword fea-
tures. Previous work extracts keywords from re-
views to represent the user and item, linearizing
all such features to encode and produce an NL ex-
planation (Li et al., 2020, 2022). Next, KnowRec
adapts a graph attention encoder for the user-item
representation via a new masking scheme. Finally,
the encoded KG representation is simultaneously
decoded into a textual explanation, while we in-
novatively dissociate the joint learned user-item
representation to compute a user-item similarity
for recommendation scoring.

To evaluate our approach, we first devise a
method of constructing (KG,Text) pairs from
product descriptions as described in Section 5,
where we extract entities and relations for the item
KGs. We construct two such datasets from the
publically available recommendation datasets to
evaluate our proposed model for both the explana-
tion and recommendation task and focus on natural
language generation (NLG) metrics for the expla-
nation task as in previous work. We adapt and
compare previous baseline models for the recom-
mendation explanation task as described in Sec-
tion 6, where we substantially outperform previous
models on explanation while achieving similar rec-
ommendation performance as models that rely on
user and item ID-based features.

2 Related Work

2.1 Explainable Recommendation

Previous works on NL explainable recommenda-
tion focus on generating user-provided reviews,
where the output is typically short, subjective, and
repetitive (Chen et al., 2018; Hou et al., 2019; Wang
et al., 2018b; Yang et al., 2021; Li et al., 2017,
2020, 2021; Hui et al., 2022). Extractive-based
approaches have been proposed to score and select
reviews as explanations (Chen et al., 2018; Li et al.,
2019). Conversely, generative approaches (Yang
et al., 2021; Li et al., 2017, 2020, 2021; Sun et al.,
2020; Hui et al., 2022) leverage user/item features
to generate new reviews as explanations. Currently,
the task is still limited by review data, thus these
models cannot adequately handle new items. Un-
like previous work, we introduce KGs to the ex-
plainable recommendation task to provide objec-
tive, information-dense, specific explanations. Our
approach can then handle new items which have
not been reviewed yet.

Inspired by recent advancements in explainable
recommendation models like (Li et al., 2021), we
enhance BART (Lewis et al., 2020), renowned for
graph-to-text tasks, to incorporate user-item knowl-
edge graphs. This adaptation enables us to gen-
erate recommendation scores along with natural
language explanations.

2.2 Knowledge Graph Recommendation

Leveraging KGs for recommendation systems has
gained increasing attention (Wang et al., 2019,
2020, 2021; Xie et al., 2021; Du et al., 2022).
In neighborhood-based methods (Hamilton et al.,
2017; Welling and Kipf, 2016; Veličković et al.,
2018), propagation is performed iteratively over
the neighborhood information in a KG to update
the user-item representation. While recent work
has produced explanations via KGs, these works
focus on structural explanations such as knowledge
graph paths (Ma et al., 2019; Fu et al., 2020; Xian
et al., 2019) and rules (Zhu et al., 2021; Chen et al.,
2021; Shi et al., 2020), which are not as intuitive
for users to understand. We focus on generating
NL explanations, which has been shown to be a pre-
ferred type of explanation (Zhang et al., 2020). For
a fair comparison, we compare to prior work that
produces NL explanations. Unlike these works, we
aim to generate NL explanations instead of using
paths along the KG as explanations.
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Figure 1: Illustration of KnowRec. 1) The User’s Item KG Representation Module. 2) The Global and User-Item
Graph Attention Encoder. 3) The Output Module for rating prediction and explanation.

2.3 Knowledge Graph-to-Text Generation

In KG-to-Text, pre-trained language models such
as GPT-2 (Radford et al., 2019) and BART (Lewis
et al., 2020) have seen success in generating fluent
and accurate verbalizations of KGs (Chen et al.,
2020; Ke et al., 2021; Ribeiro et al., 2021; Colas
et al., 2023). We devise an encoder for user-item
KGs and a decoder for both the generation and rec-
ommendation tasks. Specifically, we formulate a
novel masking scheme for user-item KGs to struc-
turally encode user and item features, while gen-
erating a recommendation score from their latent
representations. Thus, our task is two-fold, fusing
elements from the Graph-to-Text generation and
KG recommendation domains.

3 Problem Formulation

Following prior work, we denote U as a set of users,
I as a set of items, and the user-item interaction
matrix as Y ∈ R|U|×|I|, where yuv = 1 if user
u ∈ U and item v ∈ I have interacted. Here, we
represent user u as the user’s purchase history u =
{vui}, where vui denotes the i-th item purchased by
user u in the past. Next, we define a KG as a multi-
relational graph G = (V, E), where V is the set of
entity vertices and E ⊂ V×R×V is the set of edges
connecting entities with a relation from R. Each
item v has its own KG, gv, comprising an entity
set Vv and a relation set Rv which contain features
of v. We devise a set of item-entity alignments
A = {(v, e)|v ∈ I, e ∈ V}, where (v, e) indicates
that item v is aligned with an entity e.

Given a user u and an item v represented by its
KG gv, the task is to generate an explanation of
natural language sentences Eu,v as to why item
v was recommended for the user u. As in previ-
ous multi-task explainable recommendation mod-
els, KnowRec calculates a rating score ru,v that

measures u’s expected preference for v. By jointly
training on the recommendation and explanation
generation, our model can contextualize the embed-
dings more adequately with training signals from
both tasks.

4 Model

Figure 1 illustrates our model with the user-item
graph constructed through collaborative filtering
signals, an encoder, and inference functions for
explanation generation and rating prediction.

4.1 Input

The input of KnowRec comprises a user u repre-
sented by the user’s purchase history {vui} and an
item v represented by its KG gv, as introduced in
Section 3. Let vc denote the item currently consid-
ered by the system. The item vc is aligned with one
of the entities through A and becomes the center
node of gv, as shown in Figure 1.

Because our system leverages a Transformer-
based encoder, we first linearize the input into a
string. For the user u = {vui}, we initialize it by
mapping each purchased item vui into tokens of
the item’s name. For the item v represented by
gv, we decompose gv into a set of tuples {tvj},
where tvj = (vc, rvj , nvj), nvj ∈ Vv, and rvj ∈
Rv. We linearize each tuple tvj into a sequence of
tokens using lexicalized names of the nodes and the
relation. We then concatenate all the user tokens
and the item tokens to form the full input sequence
x. For example, suppose the current item vc is
the book Harry Potter, the KG has a single tuple
(Harry Potter, author, J.K. Rowling), and the user
previously purchased two books The Lord of the
Rings and The Little Prince. In this case, input
sequence x = The Lord of the Rings The Little
Prince Harry Potter author J.K. Rowling.
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We map the tokens to randomly initialized vec-
tors or pre-trained word embeddings such as those
in BART (Lewis et al., 2020), obtaining X0 =
[. . . ;Vui; . . . ;Tvj ; . . . ] where Vui and Tvj are
word vector representations of vui and tvj , respec-
tively. Unlike previous work on KG recommen-
dation (Wang et al., 2020) where users/items are
represented via purchase history and propagated
KG information, our system infuses KG compo-
nents to provide a recommendation and its natu-
ral language explanation. Our system also differs
from prior studies on explainable recommendation
in that while they focus on reviews and thus en-
code users/items as random vectors with additional
review-based sparse token features as auxiliary in-
formation (Li et al., 2021), we directly encapsulate
KG information into the input representation.

4.2 Encoder
Collaborative KG Representation. Because
KnowRec outputs a natural language explanation
grounded on KG facts, as well as a recommenda-
tion score for the user-item pair, we need to con-
struct a user-item-linked KG to represent an in-
put through its corresponding lexical graph feature.
To do so, we leverage collaborative signals from
Y, combining u with v by linking previously pur-
chased products vui to the current item vc from gv,
forming a novel lexical user-item KG. Additionally,
we connect all previously purchased items together
in order to graphically model collaborative filtering
effects for rating prediction, as illustrated in Fig-
ure 1. Note that the relations between previously
purchased items and the current items do require a
lexical representation for our model. The resulting
graph goes through the Transformer architecture,
as described below.
Global Attention. Transformer architectures have
recently been adopted for the personalized ex-
plainable recommendation task (Li et al., 2021).
We similarly leverage Transformer encoder lay-
ers (Vaswani et al., 2017), referred to as Global
Attention, to encode the input representation with
self-attention as:

Xl = Attn(Q,K,V) = softmax

(
QK⊤
√
dk

)
V,

Q = Xl−1W
Q
l ,K = Xl−1W

K
l ,

V = Xl−1W
V
l

(1)
where Xl is the output of the l-th layer in the en-
coder, and dk is a tunable parameter. Q, K, and

V represent the Query, Key, and Value vectors,
respectively, each of which is calculated with the
corresponding parameter matrix W in the l-th layer.
Note that the transformer encoder may be initial-
ized via a pre-trained language model.
User-Item Graph Attention. We further propose
User-Item Graph Attention encoder layers, which
compute graph-aware attention via a mask to cap-
ture the user-item graph’s topological information,
which runs in parallel with the Global Attention
encoder layers.

We first extract the mask Mg ∈ Rm×m from the
user-item linked KG, where m is the number of
relevant KG components, i.e., nodes and edges that
are lexically expressed in the KG (edges between
vui and vc not included). In Mg, each row/column
refers to a KG component. Mij = 0 if there is a
connection between component i and j (e.g., “J.K.
Rowling” and “author”) and −∞ otherwise. In
addition, we assume all item components, i.e., the
previous purchases and the current item, are mutu-
ally connected when devising Mg.

For each layer (referred to as the l-th layer), we
then transfer its input Xl−1 into a component-wise
representation Xg

l−1 ∈ Rm×d, where d is the word
embedding size. Motivated by Ke et al. (2021),
we perform this transfer by employing a pooling
layer that averages the vector representations of
all the word tokens contained in the correspond-
ing node/edge names per relevant KG component.
With the transferred input Xg

l−1, we proceed to en-
code it using User-Item Graph Attention with the
graph-topology-sensitive mask as follows:

X̃g
l = AttnM (Q′,K′,V′)

= softmax

(
Q′K′⊤
√
dk

+Mg

)
V′.

(2)

where query Q′, key K′, and value V′ are com-
puted with the transferred input and learnable pa-
rameters in the same manner as Equation (1).

Lastly, we combine the outputs of the Global
Attention encoder and the User-Item Graph Atten-
tion encoder in each layer. As the two outputs have
different dimensions, we first expand X̃g

l to the
same dimension of Xl through a gather operation,
i.e., broadcasting each KG component-wise rep-
resentation in X̃g

l to every encompassing word of
the corresponding component and connecting those
representations. We then add the expanded X̃g

l to
Xl through element-wise addition, generating the
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l-th encoding layer’s output:

X̃l = gather(X̃g
l ) +Xl (3)

Note, in this section, we illustrate the Global At-
tention encoder, User-Item Attention encoder, and
their combination with single-head attention. In
practice, we implement both encoders with multi-
head attention as in Vaswani et al. (2017).

4.3 Rating Prediction

For the rating prediction task, we first separate
and isolate user u and item v features via masking.
Once isolated, we perform a mean pool on all their
respective tokens and linearly project u and v to
perform a dot-product between the two new vector
representations as follows:

x̃u = poolmean(X̃L +mu)W
u

x̃v = poolmean(X̃L +mv)W
v

r̂u,v = dot(x̃u, x̃v),

(4)

where mu and mv are the user and item masks that
denote which tokens belong to the user and item,
Ws are learnable parameters, and L refers to the
last layer of the encoder.

4.4 Explanation Generation

Before generating a final output text for our expla-
nation, we pass the representation through a fully
connected linear layer as the encoder hidden state
and decode the representation into its respective
output tokens through an auto-regressive decoder,
following previous work (Lewis et al., 2020).

4.5 Joint-learning Objective

As previously noted, our system consists of two
outputs: a rating prediction score r̂u,v and natural
language explanation Eu,v which justifies the rat-
ing by verbalizing the item’s corresponding KG.
We thus perform multi-task learning to learn both
tasks and manually define regularization weights
λ, as in similar multi-task paradigms, to weight
the two tasks. Taking Lr and Le to represent the
recommendation and explanation cost functions,
respectively, the multi-task cost L then becomes:

L = λrLr + λeLe, (5)

where λr and λe denote the rating prediction and
explanation regularization weights, respectively.

We define Lr using Mean Square Error (MSE)
in line with conventional item recommendation and
review-based explainable systems:

Lr =
1

|U||I|
∑

u∈U∧v∈I
(ru,v − r̂u,v)

2, (6)

where ru,v denotes the ground-true score.
Next, as in other NLG tasks (Lewis et al., 2020;

Zhang et al., 2020), we incorporate Negative Log-
Likelihood (NLL) as the explanation’s cost func-
tion Le. Thus, we define Le as:

Le =
1

|U||I|
∑

u∈U∧v∈I

1

|Eu,v|

|Eu,v |∑
t=1

− log pett (7)

where pett is the probability of a decoded token et

at time step t.

5 Dataset

Although KG-recommendation datasets exist, they
do not contain any supervision signals to NL de-
scriptions. Thus, to evaluate our explainable recom-
mendation approach in a KG-aware setting and our
KnowRec model, we introduce two new datasets
based on the Amazon-Book and Amazon-Movie
datasets (He and McAuley, 2016): (1) Book KG-
Exp and (2) Movie KG-Exp.

Recall that our task requires an input KG along
with an NL explanation and recommendation score.
Because it is more efficient to extract KGs from
text, rather than manually annotate each KG with
text, we take a description-first approach, automati-
cally extracting KG elements from the correspond-
ing text. Given the currently available data, we
leverage item descriptions as a proxy for the NL
explanations, while constructing a user-item KG
from an item’s features and user’s purchase history.

We first extract entities from a given item de-
scription via DBpedia Spotlight (Mendes et al.,
2011), a tool that detects mentions of DBpe-
dia (Auer et al., 2007) entities from NL text.
We then query for each entity’s most specific
type and use those types as relations that con-
nect the item to its corresponding entities. We
construct a user KG via their purchase history,
e.g. [Purchase1, Purchase2, ...Purchasen], as
a complete graph where each purchase is connected.
Finally, we connect all the nodes of the user KG
to the item KG, treating each user purchase as a
one-hop neighbor of the current item. To ensure the
KG-explanation correspondence, we filter out any
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sentences in the explanation in which no entities
were found. To measure objectivity, we calculate
the proportion of a given KG’s entities that appear
in the explanation, called entity coverage (EC) (de-
fined in Appendix B.2). We summarize our dataset
statistics in Table 1 and present a more comprehen-
sive comparison in Appendix A.2.

6 Experiments

6.1 Evaluation Metrics

We assess explainable recommendation following
prior work: 1) on the recommendation performance
and 2) on the explanation performance. For the ex-
planation generation task, we employ standard natu-
ral language generation (NLG) metrics: BLEU (Pa-
pineni et al., 2002) and ROUGE (Lin, 2004). We
measure diversity and the detail-oriented features
of the generated sentences using Unique Sentence
Ratio (USR) (Li et al., 2020, 2021), and use EC,
instead of feature coverage ratio, for coverage due
to our non-review-based explanations.

6.2 Baseline Models

Previous models were primarily designed for user
review data. To assess the effectiveness of our
approach, we compare it to existing explanation
generation baselines. These baselines include mod-
els that utilize user and item IDs, as well as those
that employ word-level features. Additionally, we
adapt several existing baselines to the context of
explainable recommendation in a knowledge graph
(KG) setting, addressing the need for adaptation,
as the existing models were originally designed for
user review data.

Att2Seq (Dong et al., 2017) was designed for
review generation, where we adapt it to the item
explanation setting. As in (Li et al., 2021), we
remove the attention module, as it makes the gen-
erated content unreadable.

NRT (Li et al., 2017) is a multi-task model for
rating prediction and tip generation, based on user
and item IDs. As in previous work, we use our
explanations as tips and remove the model’s L2
regularizer (Li et al., 2020, 2021), which causes the
model to generate identical sentences.

Transformer (Vaswani et al., 2017; Li et al.,
2021) treats user and item IDs as words. We adapt
the model first introduced for review generation
by Li et al. (2021) while integrating the KG entities
and relations instead of the review item features.

PETER (Li et al., 2021) utilizes both user/item
IDs and corresponding item features extracted from
user reviews to generate a recommendation score,
explanation, and context related to the item fea-
tures. The model also develops a novel PETER
mask between item/user IDs and corresponding
features/generated text. As our task does not take a
feature-based approach, for a fair comparison we
remove the context prediction module and input
the whole KG into the model as the corresponding
item features.

PEPLER (Li et al., 2022) is an extension of
PETER, where the transformer is replaced with a
pre-train language model, namely GPT-2 to gener-
ate both recommendation scores and explanations.
We take the best-performing setting for a fair com-
parison, namely using the MLP setting for recom-
mendation scores.

In addition to NRT, PETER, and PEPLER, as
in previous work, we compare with two traditional
baselines for recommendation: PMF (Mnih and
Salakhutdinov, 2007) and SVD++ (Koren, 2008).

6.3 Implementation

We train our newly proposed KnowRec model
on two settings of the Book and Movie KG-Exp
datasets, a full training set and a few-shot setting,
where 1% of the data is used. Because our method
provides item-level explanations based on KGs, we
split the datasets based on their labeled descrip-
tion/explanation, and as such, we experiment in a
setting where items in the test set can be unseen dur-
ing training. By doing so, we handle a unique case
that has not been considered in previous research
relying on item reviews. The train/validation/test
sets are split into 60/20/20. For KnowRec, we use
BART as our pre-trained model, with a Byte-Pair
Encoding (BPE) vocabulary (Radford et al., 2019).
For more details regarding our experimental set-
tings please see Appendix B.1.

7 Results and Analysis

7.1 Explanation Results

In Table 2, we evaluate the models’ text reproduc-
tion performance using BLEU and ROUGE (R)
metrics, while also examining their explainability
through USR and EC analysis.

For BLEU and ROUGE, KnowRec consistently
outperforms all baselines, achieving a BLEU-4
score of 10.71 and ROUGE-L F1 score of 27.71
on Movie KG-Exp and a BLEU-4 score of 12.60
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Name #Users #Items #Interactions KG #Es #Rs #Triples EC Desc. Words/Sample

Book KG-Exp 396,114 95,733 2,318,107 Yes 195,110 392 745,699 71.45 Yes 99.96
Movie KG-Exp 131,375 18,107 788,957 Yes 59,036 363 146,772 71.32 Yes 96.35

Table 1: Statistics of our Book KG-Exp and Movie KG-Exp benchmark datasets. #Es, #Rs, and Desc. denote
number of entities, number of relations, and if the dataset contains parallel descriptions.

Dataset Model BLEU-1 BLEU-4 USR R2-F R2-R R2-P RL-F RL-R RL-P EC

Att2Seq 8.86 0.39 0.30 2.08 1.41 8.47 8.07 11.65 9.49 0.44
NRT 11.76 0.57 0.03 1.50 1.40 3.25 7.20 11.70 8.05 0.98

Movie Transformer 8.67 0.18 0.33 1.21 0.91 6.55 6.58 9.54 9.69 0.82
KG-Exp PETER 14.66 3.99 0.55 5.07 4.26 11.66 15.06 16.67 23.03 10.58

PEPLER 11.68 0.13 0.46 0.56 0.63 0.54 8.90 10.92 9.53 0.78
KnowRec 37.02 10.71 0.83 15.49 15.12 18.15 27.71 28.71 37.10 67.97

Att2Seq 19.51 1.85 0.43 5.08 3.76 12.15 12.98 16.55 20.89 0.86
NRT 21.06 2.59 0.10 6.18 4.88 11.44 15.57 18.67 24.36 1.57

Book Transformer 16.90 2.01 0.12 5.68 4.23 11.94 13.66 15.57 26.87 2.08
KG-Exp PETER 27.93 8.39 0.71 11.94 10.36 18.68 21.24 23.30 28.02 17.39

PEPLER 16.07 1.20 0.90 2.39 2.63 2.26 13.03 16.34 12.24 0.74
KnowRec 38.53 12.60 0.92 19.78 19.44 23.22 28.29 29.43 35.28 69.50

Table 2: Comparison of explanation generation models on the Movie KG-Exp and Book KG-Exp datasets.

and ROUGE-L F score of 28.29 on Movie KG-
Exp. This suggests that previous baselines, de-
signed for review-level explanation, are inadequate
to produce longer and more objective explanations.
Specifically, of the baselines, PETER which uti-
lizes the whole lexical input, adapts best. However,
KnowRec makes use of user-item graph encodings,
which may lead to better generation of the item KG
features mentioned in the ground truth texts. While
PEPLER (Li et al., 2022)’s pretrained approach
aids in fluent sentence generation, KnowRec excels
in generating contextually relevant words around
feature-level terms. Unlike PEPLER, which creates
concise reviews based on user-item IDs, KnowRec
utilizes graph attention to interconnect related com-
ponents for comprehensive NL text explanations.

In terms of explainability, KnowRec also gen-
erates much more diverse sentences (USR), espe-
cially compared to models that do not leverage
pre-trained models. Note that while PEPLER has a
comparable USR score to KnowRec on the Book
KG-Exp dataset, it does not similarly produce high-
quality and related sentences according to the NLG
metrics. Our results show that while the ground
truth is based on item-level features, the generated
output is still personalized as further discussed in
Section 7.5. Also note the high discrepancy in EC,
where the entity-level features are generated in the
output text. As our goal is to generate objective and
specific explanations, the EC can help real-world
users understand what a certain recommended prod-

uct is about and how it compares to other products.
Therefore, it is crucial that explainable models cap-
ture these features when producing justifications
for recommendations.

7.2 Few-shot Explanation Results

Real-world recommendation systems may face low-
resource problems, where only a small amount of
training data with few item descriptions is available
but an item database exists. To reflect this practical
situation, we also evaluate a few-shot setting where
the training data is 1% of its total size.

As in previous experiments, we set the user-item
size for KnowRec to 5. We show the results of
this few-shot experiment in Table 3. KnowRec
consistently and significantly outperforms other ex-
plainable baselines on both the Book and Movie
datasets in terms of text quality, sentence diversity
(USR), and entity representation (ER), showing
our approach is effective even in data-scarce sce-
narios. Like KnowRec, PEPLER also leverages a
pre-trained model, namely GPT-2. However, unlike
KnowRec, the model does not adapt well to gener-
ating item-specific explanations. The second best
model, PETER, fully leverages the KG features
in their approach. However, such a model does
produce diverse sentences. Note that those models
that completely rely on user and item IDs, fail to
produce quality explanations, as noted by their re-
spective BLEU and ROUGE scores, showing the
task to be more complex than previous explana-
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Dataset Model BLEU-1 BLEU-4 USR R2-F R2-R R2-P RL-F RL-R RL-P EC

Att2Seq 2.63 0.00 0.00 0.00 0.00 0.00 2.73 4.25 2.63 0.01
Movie NRT 8.78 0.32 0.01 1.84 1.08 11.73 7.12 10.17 17.97 0.07
KG-Exp Transformer 12.23 0.27 0.16 1.24 1.07 3.54 6.97 9.54 12.00 1.18
(Few-shot) PETER 12.28 0.68 0.36 2.33 1.45 12.49 12.00 13.18 18.03 5.44

PEPLER 12.58 0.41 0.01 1.26 1.44 1.18 10.73 12.63 10.38 0.11
KnowRec 33.89 7.53 0.87 13.41 12.60 17.67 24.48 25.63 35.66 63.92

Att2Seq 16.58 1.53 0.22 4.68 3.10 15.58 13.30 15.28 21.32 0.26
Book NRT 19.12 2.19 0.01 6.11 4.36 13.99 15.18 20.47 16.78 1.19
KG-Exp Transformer 12.69 1.22 0.08 3.60 3.16 8.65 9.77 15.64 10.58 1.57
(Few-shot) PETER 18.38 2.87 0.45 7.12 5.07 17.50 14.74 17.66 17.52 4.23

PEPLER 7.96 0.26 0.02 0.67 0.63 0.83 7.59 10.07 7.04 0.54
KnowRec 28.93 7.94 0.93 17.28 16.05 22.45 24.84 25.19 36.60 60.46

Table 3: Comparison of explanation generation models on the Movie KG-Exp and Book KG-Exp datasets in the
few-shot learning setting (1% of training data).

Book KG-Exp Movie KG-Exp
Model All Few All Few

R M R M R M R M

PMF 3.50 3.35 3.50 3.35 3.31 3.08 3.32 3.08
SVD++ 1.03 0.80 1.01 0.64 1.20 0.79 1.25 0.98
NRT 0.98 0.74 1.07 0.73 1.17 0.93 1.23 0.97
PETER 1.01 0.79 1.03 0.82 1.24 1.03 1.24 1.00
PEPLER 0.96 0.72 1.07 0.72 1.14 0.91 1.27 0.96
KnowRec 1.04 0.75 1.04 0.72 1.22 0.92 1.21 0.93

Table 4: Performance comparison on the recommenda-
tion task with respect to RMSE and MAE, denoted as R
and M on the table respectively.

BLEU-4↑ USR↑ RL-F↑ RMSE↓ MAE↓

KnowRec 7.94 0.93 24.84 1.04 0.78
- Recomm. 8.32 0.93 24.90 - -
- UIG Att. 7.75 0.91 24.80 1.03 0.78

Table 5: Ablation study on the Book KG-Exp (Few-
Shot) dataset. ‘Recomm.’ means the joint learning with
recommendation scoring, and ‘UIG Att.’ denotes the
user-item graph attention.

tion tasks relying on repetitive, short, and already
existing user reviews.

7.3 Recommendation Performance

Table 4 shows the recommendation performance
on all KG Explanation datasets. We report the Root
Mean Square Error (RMSE) and Mean Absolute
Error (MAE) metrics to evaluate the recommenda-
tion task. As shown, all results except PMF are
relatively close. PMF significantly underperforms
due to the cold start problem presented on new
items. KnowRec achieves performance compara-
ble to other strong baselines, despite KnowRec be-
ing the only model that uses lexical features for the
recommendation task, while the other models learn
the task through user/item IDs. Thus, KnowRec

may need more data to learn these parameters. Ad-
ditionally, because we learn the recommendation
task through lexical features, our model provides
an interpretable solution that could be directly com-
pared to the produced NL explanations.

7.4 Ablation Study

We perform ablation studies to analyze the effects
of the recommendation and user-item graph com-
ponents on Book KG-exp as shown in Table 5.
Due to computational resources, we performed the
study on the few-shot setting. We first examine
the results of KnowRec without the recommenda-
tion module in the second row (- Recomm.). By
removing the ‘Recomm’ component, the perfor-
mance on the NLG metrics improves, as the task
is now a single-objective generative task instead
of a multi-objective. We next study the effects of
the User-Item Attention encoders on KnowRec’s
explainability and recommendation performance
(- UIG Att). As shown by - UIG Att., even with
a smaller training dataset of 1% of the full data,
by removing this component, we observe a slight
decrease in the NLG metrics, BLEU and ROUGE,
and less diverse sentences (USR). The representa-
tion and attention masking on the user-item graph,
which connects and encodes the local item infor-
mation, may therefore give a better representation
of the input which is in turn decoded to produce an
explanation. This may be further expressed within
larger datasets. Furthermore, from the NLG metric
results, we can infer from Table 5 that our rating
module does not significantly hinder the perfor-
mance of the generation component of KnowRec.
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7.5 Qualitative Analysis

To grasp KnowRec’s effectiveness, we analyze
explanations from Movie/Book KG-Exp test sets.
These explanations are both grammatically smooth
and adept at (1) integrating robust item features
for factual insights and (2) tailoring personalized
content based on diverse user purchase histories
(examples in Appendix C, Table 7).

Consider the first two rows of the table, pertain-
ing to the movie Journey to the Center of the Earth.
We can see two different (but syntactically simi-
lar) generated explanations for two different users.
In one case, the user has bought mystery and fan-
tasy movies such as Stitch in Crime, Columbo, and
The Lord of the Rings, and the output integrates
related words such as investigates and mysterious
to personalize the explanation. The second case
mentions classic and novel, possibly because the
second user’s purchase history involves Disney clas-
sics and movies based on novels such as The Hardy
Boys and Old Yeller. While the input KG does not
explicitly state that Journey to the Center of the
Earth is a novel, such information may be inferred
from the KG’s relation and supported through the
user’s related purchases. In both cases the output
closely matches the ground truth, verbalizing item
features from the KB such as Jules Verne and mag-
netic storm, suggesting that our model is robust
in describing the explanation content, while still
implicitly reflecting the user’s purchase history.

8 Conclusion

We propose KnowRec, a Knowledge-aware model
for generating NL explanations and recommen-
dation scores on user-item pairs. To evaluate
KnowRec, we devise and release a semi-supervised
large-scale KG-NL recommendation dataset in the
book and movie domain. Extensive experiments
on both datasets demonstrate the suitability of our
model compared to recently proposed explainable
recommendation models. We hope that by propos-
ing this KG-guided task, we will open up avenues
to research focused on detailed, objective, and spe-
cific explanations which can also scale to new items
and users, rather than the current review-focused
work. In future work, we plan to incorporate user-
specific KGs and other pre-trained language mod-
els into our model in order to verbalize both user
and item-level feature explanations.

9 Limitations

While our approach generates objective, descriptive
explanations while implicitly capturing personal-
ized aspects of a user’s purchase history, currently
our dataset labels are limited to item-specific ex-
planations, with the book-related KGs typically
containing author-related information, and thus
more information-dense than the movie-related
KGs. These limitations are due to the currently
available datasets, and future work can explore con-
structing a more personalized user-item KG for
explainable recommendation. Furthermore, we rep-
resent users through their item purchase history
in our approach. Therefore, while we handle the
zero-purchase case for items (items that have not
been purchased before), the zero-purchase case for
users (users without a purchase history) is outside
the scope of our work. In the future, we will extend
our approach to user-attributed datasets to handle
such cases.

10 Ethics Statement

All our experiments are performed over publicly
available datasets. We do not use any identifiable
information about crowd workers who provide an-
notations for these datasets. Neither do we perform
any additional annotations or human evaluations
in this work. We do not foresee any risks using
KnowRec if the inputs to our model are designed
as per our procedure. However, our models may
exhibit unwanted biases that are inherent in pre-
trained language models. This aspect is beyond the
scope of the current work.
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A Dataset Details

A.1 Source Data
Amazon product data: The Amazon product
dataset is a large-scale widely used dataset for prod-
uct recommendation containing product reviews
and metadata from Amazon. Data fields include
ratings, texts, descriptions, and category informa-
tion (He and McAuley, 2016). Because the dataset
contains item descriptions, we can leverage such
data to extract entities and relations to construct
a KG that matches the textual description. Thus,
these descriptions provide objective, item-distinct

explanations as to why a user may have purchased a
product. Although a user may not have reviewed an
item, the dataset provides an existing description of
the item, allowing models to produce explanations
for such items. To keep our datasets large-scale, we
focus on Amazon Book and Amazon Movie 5-core,
the two largest Amazon product datasets.

A.2 Dataset Comparison

Table 6 summarizes existing popular rec-
ommendation system datasets utilized for
both the explainable recommendation and
KG recommendation task. We report both
traditional recommendation features, KG-
recommendation features, and explainable
recommendation features. Last.FM (Wang et al.,
2019), Book-Crossing (Wang et al., 2020), Movie-
Lens20M (Wang et al., 2020), and Amazon-book
(KG) (Wang et al., 2019) are popular benchmarks
for the KG-recommendation task but contain
no NL explanation features. Yelp-Restaurant,
Amazon Movies & TV, and TripAdvisor-Hotel
have been recently experimented with for the
explainable recommendation task (Li et al., 2020),
but lack KG data and rely on user reviews as
proxies for the explanation. In contrast, our
datasets, referred to as Book KG-Exp and Movie
KG-Exp contain both KG and the corresponding
parallel item descriptions associated with those
KGs as explanations. Compared to Book KG-Exp,
the Movie KG-Exp dataset contains fewer amount
of unique KG elements, with 59,036 to 195,110
and 745,699 to 146,772 unique entities and KG,
while having similarly sized explanations.

A.3 Dataset Statistics

We provide detailed statistics on both the Book KG-
Exp and Movie KG-Exp datasets in Figure 2. As
seen in Figures 2(a) and 2(b), the distributions of
KGs with respect to the number of tuples shows
similar long-tail distributions in both datasets. We
observe from Figures 2(c) and 2(d) that a similar
trend of long-tail distributions exists for both with
respect to explanation lengths, where the lengths in
the book dataset tend to skew more right than the
lengths in the movie dataset.

B Experiment Details

B.1 Hyper-parameters and Settings

As in (Li et al., 2021), we adapt the baseline codes
to our setting and set the vocabulary size for NRT,

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://ojs.aaai.org/index.php/AAAI/article/view/12054
https://ojs.aaai.org/index.php/AAAI/article/view/12054
https://ojs.aaai.org/index.php/AAAI/article/view/12054
https://dl.acm.org/doi/abs/10.1145/3437963.3441726
https://dl.acm.org/doi/abs/10.1145/3437963.3441726
https://dl.acm.org/doi/10.1561/1500000066
https://dl.acm.org/doi/10.1561/1500000066
https://doi.org/10.18653/v1/2021.naacl-main.245
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Name #Users #Items #Interactions KG #Es #Rs #Triples Desc. Words/
Sample

Last.FM 23,566 48,123 3,034,796 Yes 58,266 9 464,567 No -
Book-Crossing 276,271 271,379 1,048,575 Yes 25,787 18 60,787 No -
Movie-Lens20M 138,159 16,954 13,501,622 Yes 102,569 32 499,474 No -
Amazon-book (KG) 70,679 24,915 847,733 Yes 88,572 39 2,557,746 No -
Yelp-Restaurant 27,147 20,266 1,293,247 No - - - No 12.32
Amazon Movies 7,506 7,360 441,783 No - - - No 14.14
TripAdvisor-Hotel 9,765 6,280 320,023 No - - - No 13.01
Book KG-Exp 396,114 95,733 2,318,107 Yes 195,110 392 745,699 Yes 99.96
Movie KG-Exp 131,375 18,107 788,957 Yes 59,036 363 146,772 Yes 96.35

Table 6: Comparison of widely used datasets divided by task: KG-Recommendation (top), Explainable Recommen-
dation (middle), and KG Explainable Recommendation (bottom).
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Figure 2: Distributions for number of tuples (Figures 2(a) and 2(b)) and tokens (Figures 2(c) and 2(d)) per sample.

ATT2Seq, and PETER to 20,000 by keeping the
most frequent words. For PETER and PEPLER,
we set the number of context words to 128. For
all approaches, including KnowRec, we set the
length of explanation to 128, as the mean length
is about 94 for both datasets. For KnowRec, we
use an embedding size of 512, using a Byte-Pair
Encoding (BPE) vocabulary (Radford et al., 2019)
of size 50,256, with 2 encoding layers. Follow-
ing KG generation work (Ribeiro et al., 2021), we
split the tokens in the linearized graph with their
corresponding label: [user], [graph], [head], [re-
lation], and [tail]. For both datasets, we set the
batch size to 128 and max user and KG size to 64
and 192, respectively. We set the max node and
edge length to 60. We experiment with λr and λe

and find that 0.01 and 1 give us the best BLEU per-
formance without affecting the recommendation
prediction scores as in (Li et al., 2022). See Fig-
ure 3 for an analysis of Movie KG-Exp (Few-shot).
The model’s parameters were trained for 20 epochs
and optimized via Adam (Kingma and Ba, 2015)
with a learning rate of 1e-3 and Adam ϵ of 1e-08,
and the gradients were clipped at 1.0. All other
attention-related hyper-parameters were the same

as used in previous work (Lewis et al., 2020). We
decoded the text via beam search (Hokamp and Liu,
2017) with a beam size of 5. Experiments were per-
formed on NVIDIA RTX 3090 GPUs. We evaluate
the model based on the validation set’s total loss
instead of BLEU score due to computational limita-
tions, saving the top 10 models for testing, because
the model with the least loss does not necessarily
result in the best NLG metrics.
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Figure 3: Effect of λr on the BLEU-4 score for the
Book and Movie KG-Exp datasets. We average all top
10 runs for a more comprehensive comparison.
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Because of computation limitations, for evalua-
tion purposes, we randomly sample and evaluate on
1% of the test set, containing 4,491 and 1,456 sam-
ples for the Book and Movie datasets respectively.
Note, that the size of the test set is comparative to
other text generative tasks such as KG-to-text (Gar-
dent et al., 2017) and summarization (Yu et al.,
2022).

B.2 Entity Coverage
We define entity coverage (EC) as the percentage of
unique entities, originating in an item KG, which
appears in the recommendation explanation. More
formally, for each head and tail entity e in an item
KG’s set of entities E, we calculate the token over-
lap in the explanation output for those entities. The
EC score ranges in [0, 1], where we report the per-
centage value in our results. The Book KG-Exp
and Movie KG-Exp had an EC score of 71.45%
and 71.32%, indicating that a descriptive, objec-
tive explanation should have a high EC score. The
formula for EC is defined as:

#KGentities found in output

#KGentities

or is the recall of the entities in a KG.

C Generated Examples

Table 7 presents some examples generated by
KnowRec from the Book and Movie KG-EXP
datasets. As discussed in Section 7, we find the
examples to be fluent and grammatical, while in-
corporating both item features and implicit user
information based on a user’s purchase history.
The generated examples closely match the ground
truth, while integrating some language derived
from the user. Note, that our aim here is to il-
lustrate examples that showcase the implicit user
preferences, instead of showing those generated
outputs which most closely match the ground truth
descriptions. As with other state-of-the-art NLG
models, KnowRec does have a tendency to hallu-
cinate by adding extra information that may not
be necessarily accurate. As can be by the NLG
metrics in Table 2, KnowRec relieves the halluci-
nation problem by incorporating the user-item KG
information. Such limitations may be additionally
improved by leveraging more dense background
KGs to generate from, while also incorporating
user purchase history item features.
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Item Graph Representation Generated Explanation Ground Truth Explanation

writer

disease

Journey to the
Center of the Earth

Jules Verne

magnetic storm

The Lord of the
Rings, Trilogy

Columbo

Stitch in Crime

a scientist (jules verne) investigates
a magnetic storm that sends a
mysterious beam of light from earth
to the center of earth.

jules verne’s professor lindenbrook
leads a trip through monsters, mush-
rooms and a magnetic storm.

writer

disease

Journey to the
Center of the Earth

Jules Verne

magnetic storm

Walt Disney
Treasures

Old Yeller

The Hardy Boys

a group of scientists, inspired by
jules verne’s classic novel, take a
trip to the magnetic storm at the
center of the earth.

jules verne’s professor lindenbrook
leads a trip through monsters, mush-
rooms and a magnetic storm.

newspaper
person

newspaper
person

Murder in St .
Giles  

USA Today

Ashley Gardner

The Traitor in the
Tunnel 

Silent Circle 

Nice Dragons
Finish Last 

NY Times

pseudonym 

ashley gardner is a ny times and
usa today bestselling author. under
the pseudonym jennifer ashley, she
has collectively written more than
70 mystery and historical novels.

usa today bestselling author ashley
gardner is pseudonym for ny times
bestselling author jennifer ashley.

comicscreator
comicscharacter

publisher
comicscharacter

comicscharacter

Batgirl Vol. 1,
Silent Knight 

Kelley Puckett Batman

Silver Surfer
Volume 1, New

Dawn 

Black Canary and
Zatanna,

Bloodspell 

Star Wars vol. 1 ,
Skywalker Strikes  

DC Comics

Batgirl

Supergirl

kelley puckett is an american comic
book writer best known for his work
on batman for dc comics. he is
the author of numerous books for
young readers, including supergirl,
the ultimate guide to character de-
velopment and batgirl, a guide to
writing for comics, both published
by image.

kelley puckett has been writing
comics for far too long, by general
consensus. he has worked on such
series as batman adventures, bat-
girl and kinetic and supergirl for dc
comics.

animal
The Incredible Dr.

Pol - Season 2 pet
Best of the

Incredible Dr. Pol

Jurrasic World 
your favorite dr. pol vet and his
pet dog return for a second season
of this hilarious and heartwarming
animated adventure.

from sick goats to sick pet pigs, dr.
pol and his colleagues have their
hands full with a variety of cases
and several animal emergencies.

person

automobile

How to Draw and
Paint Fairyland , a
Step-by-step Guide 

Linda Ravenscroft

Mermaids in
Paradise , an Artist
' s Coloring Book 

How to Draw and
Paint Fairies 

wide range

linda ravenscroft is an award-
winning children’s book author and
illustrator who has illustrated a
wide range of books and mag-
azines, including the best-selling
how to draw and paint series.

linda ravenscroft has produced a
wide range of images in fairyland
motifs, including fine art prints, ex-
clusive giftware, and fantasy art
books.

Table 7: Examples generated by KnowRec on the Book/Movie KG-Exp datasets. In the first column, we follow the
format of user-item KG representation in Figure 1, where red nodes represent a user’s purchase history and blue
nodes represent an item KG. For clarity and brevity, we only show the relevant parts of the item graphs. In the
second column, the bold words are the item features directly coming from the item KG representation, whereas the
underlined words are the features implicitly captured by KnowRec, based on the user’s purchase history.


