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Introduction

Welcome to AmericasNLP 2023, the Third Workshop on Natural Language Processing for Indigenous
Languages of the Americas!

AmericasNLP aims to...

• ...encourage research on NLP, computational linguistics, corpus linguistics, and speech around the
globe to work on Indigenous American languages.

• ...connect researchers and professionals from underrepresented communities and native speakers
of endangered languages with the machine learning and NLP communities.

• ...promote research on both neural and non-neural machine learning approaches suitable for low-
resource languages.

In 2023, AmericasNLP is being held in Toronto, Canada, on July 14. There will be 3 invited talks, an
overview of this year’s AmericasNLP shared task, a poster session, and multiple paper as well as shared
task system presentations.

We received a total of 33 submissions this year: 22 research papers, 1 extended abstract, 3 previously
published papers, and 7 shared task system description papers. 15 research papers were accepted (accep-
tance rate: 68%) – as well as all extended abstracts, previously published papers, and system description
papers. In addition, two Findings of ACL papers will be presented at the workshop.

We would like to extend our gratitude to everyone who helped make AmericasNLP happen: First, we
thank our gold sponsor, Google. In addition, AmericasNLP would not be possible without all the work
that went into the reviewing process. Thus, we thank the program committee members for committing
their time to help us select an excellent technical program. Finally, we thank all the authors who submitted
their work to the workshop and all participants who will be at the workshop to exchange their ideas around
NLP for Indigenous languages of the Americas!

Manuel Mager, Abteen Ebrahimi, Arturo Oncevay, Enora Rice, Shruti Rijhwani, Alexis Palmer,
and Katharina Kann
AmericasNLP 2023 Organizing Committee
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Keynote Talk: No Language Left Behind: Scaling
Human-Centered Machine Translation

Angela Fan
Meta AI Research

2023-07-14 09:15:00 – Room: TBD

Abstract: Driven by the goal of eradicating language barriers on a global scale, machine translation
has solidified itself as a key focus of artificial intelligence research today. However, such efforts have
coalesced around a small subset of languages, leaving behind the vast majority of mostly low-resource
languages. What does it take to break the 200 language barrier while ensuring safe, high-quality results,
all while keeping ethical considerations in mind? In this talk, I introduce No Language Left Behind,
an initiative to break language barriers for low-resource languages. In No Language Left Behind, we
took on the low-resource language translation challenge by first contextualizing the need for translation
support through exploratory interviews with native speakers. Then, we created datasets and models ai-
med at narrowing the performance gap between low and high-resource languages. We proposed multiple
architectural and training improvements to counteract overfitting while training on thousands of tasks.
Critically, we evaluated the performance of over 40,000 different translation directions using a human-
translated benchmark, Flores-200, and combined human evaluation with a novel toxicity benchmark
covering all languages in Flores-200 to assess translation safety. Our model achieves an improvement
of 44% BLEU relative to the previous state-of-the-art, laying important groundwork towards realizing a
universal translation system in an open-source manner.

Bio: Angela is a research scientist at Meta AI Research in New York, focusing on research in text gene-
ration. Currently, Angela works on language modeling. Recent projects include No Language Left Be-
hind (https://ai.facebook.com/research/no-language-left-behind/) and Universal Speech Translation for
Unwritten Languages (https://ai.facebook.com/blog/ai-translation-hokkien/). Before translation, Angela
previously focused on research in on-device models for NLP and computer vision and text generation.
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Keynote Talk: From fieldwork to ”data” - A
behind-the-scenes look from Brazilian Amazonia

Kristine Stenzel
Federal University of Rio de Janeiro / University of Colorado Boulder

2023-07-14 11:00:00 – Room: TBD

Abstract: This talk offers an overview of one linguist’s experience in language documentation with two
indigenous groups in the northwest Amazon. Based on over twenty years of fieldwork, it aims to provide
broader perspective on what goes into the collection, organization, and annotation of “data” from endan-
gered or low-resource languages.

Bio: Kristine Stenzel was an Associate Professor of Linguistics at the Federal University of Rio de
Janeiro, Brazil from 2009-2022 and is currently at the University of Colorado as Coordinator of the
Computational Linguistics, Analytics, Search, and Informatics Professional Master’s Program. She has
conducted research with the Kotiria and Wa’ikhana language communities since 2000, receiving grants
from NSF, NEH, ELDP, as well as CNPq and CAPES in Brazil. Her scientific contributions include A
Reference Grammar of Kotiria and publications in English and in Portuguese on diverse topics in pho-
nology, morphosyntax, discourse, multilingualism, contact phenomena, and language documentation.
She has developed language maintenance and revitalization materials for the Kotiria and Wa’ikhana, in-
cluding practical orthographies, pedagogical publications, documentary films, and audiovisual archives
(ELAR, open access).
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Keynote Talk: From doctoral thesis to the classroom: The
case of San Juan Quiahije Chatino

Emiliana Cruz Cruz
CIESAS-CDMX

2023-07-14 16:00:00 – Room: TBD

Abstract: In this presentation I will address an issue that is very important to us as speakers of indi-
genous languages: how to ensure that linguistic studies on indigenous languages reach the hands of the
speakers of these languages. Over the last 20 years, the Chatino Language Documentation Project (CL-
DP) has resulted in seven doctoral theses in the three Chatino languages, all written in English. For the
Eastern San Juan Quiahije Chatino, there are four doctoral theses. The theses are of great importance for
the speakers. However, generating pedagogical products based on these doctoral theses has been a slow
process. It is not just a translation issue, as CLDP linguists have tried to make teaching materials out of
their research. So, what are the challenges when we are dealing with a ”well-studied” Chatino language?
In this talk I will present some reflections around this question based on a project in the municipality of
Quiahije.

Bio: I am a linguistic anthropologist and assistant professor at CIESAS-DF. I primarily work on language
treatment and revitalization, with a focus on the Chatino language of Oaxaca, Mexico; cultural identity
and maintenance through language programs and curriculum development; orthography development;
and, finally, issues related to sovereignty and decolonization. One aspect of my research is the appli-
cation of anthropological methods in the documentation of naturally occurring discourse in indigenous
languages. An essential contribution of the anthropological perspective is the recognition of the crucial
role to be played by native speaker linguists in all phases of research. My linguistic work centers on the
complex tonal structure of Chatino languages, and I developed the San Juan Quiahije variety’s alphabet.
An important result of this project has been the creation of pedagogical materials that will enable mem-
bers of the Chatino community to preserve their language and cultural integrity. I am a native speaker of
Chatino and founder of The Chatino Language Documentation Project, a team of linguists which aims to
document and revitalize Chatino languages.
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Use of NLP in the Context of Belief states of Ethnic Minorities in Latin
America

Olga Kellert and Md Mahmud Uz Zaman
University of Göttingen, Germany

olga.kellert@phil.uni-goettingen.de and
mail.mahmuduzzaman@gmail.com

Abstract

The major goal of our study is to test methods
in NLP in the domain of health care education
related to Covid-19 of vulnerable groups such
as indigenous people from Latin America. In
order to achieve this goal, we asked participants
in a survey questionnaire to provide answers
about health related topics. We used these an-
swers to measure the health education status of
our participants. In this paper, we summarize
the results from our NLP-application on the
participants’ answers. In the first experiment,
we use embeddings-based tools to measure the
semantic similarity between participants’ an-
swers and "expert" or "reference" answers. In
the second experiment, we use synonym-based
methods to classify answers under topics. We
compare the results from both experiments with
human annotations. Our results show that the
tested NLP-methods reach a significantly lower
accuracy score than human annotations in both
experiments. We explain this difference by the
assumption that human annotators are much
better in pragmatic inferencing necessary to
classify the semantic similarity and topic clas-
sification of answers.

1 Introduction

Indigenous people belong to the particularly vulner-
able groups in the COVID-19 era and are dispropor-
tionally affected by epidemics and other crises, as
acknowledged by the United Nations (United Na-
tions and Affairs, 2020). Beyond the general prob-
lems related to the socio-economic marginalization
and the concomitant inaccessibility of health-care
services (in particular in rural regions and remote
communities), a major threat for indigenous peo-
ple arises through miscommunication, either due to
the sparsity of information material in indigenous
languages or due to cultural differences hindering
the interpretation/application of the recommended
health measures(García et al., 2020) (Afifi et al.,
2020). Dissemination of reliable COVID-19- re-

lated information, adapted to cultural and linguis-
tic background of indigenous peoples, is a major
priority in epidemic crisis; (García et al., 2020)
(Afifi et al., 2020) (UN, 13 April 2020). Several
initiatives of the European Union (EU) and World
Health Organization (WHO) address the problems
in communication of health related information
(Baccolini, 2021). These initiatives target commu-
nication of key health-related terms and concepts
underlying them such as understanding of medical
instructions. In the recent covid pandemic, it was
documented that misconceptions about preventive
measures against the spread of covid had a strong
impact on the severity of the pandemic (UN, 13
April 2020). In order to reduce health-illiteracy and
avoid unnecessary spread of infectious diseases, it
is necessary to observe people’s understandings of
infectious diseases and their treatments. For in-
stance, some individuals have the perception that
antibiotics are a “cure-all” drug and might take an-
tibiotics to cure diseases caused by viruses, which
is an improper use of antibiotics and can lead to
severe damaging effects(Calderón-Parra J, 2021).

Given the urgency of measuring the accuracy of
health-related concepts and uses, it is necessary to
develop NLP tools that can ease and speed up the
process related to health education measurement.
The key outcome of our research project is testing
NLP methodology targeting measurement of health
education related to the COVID-19 pandemics.

2 State-of-the-art

Accuracy measurement of medical terms uses like
antibiotics is currently missing due to two main
reasons: a) missing data sources and method-
ologies that enable researchers to identify, charac-
terize and measure actual uses of health related
topics and concepts and b) missing statistical
(in)accuracy measures of actual information status
related to infectious diseases. It is thus not surpris-
ing that the initiative the Social Media Mining 4
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Health (#SMM4H) is addressing these problems in
its agenda(Klein, 2021) (Magge et al., 2021). This
initiative uses social media data as a data source
for solving health-related tasks and problems such
as finding disease mentions and symptoms(Klein,
2021) (Magge et al., 2021) (Weissenbacher et al.,
2019). However, this rich data source does not have
demographic information necessary for the statis-
tics on social variation in the health literacy study.
In addition, social media does not represent all so-
cial groups including indigenous population that
often has low internet access or uses other tools for
communication. As a consequence, data from in-
digenous communities related to Covid pandemics
is very rare (Ojha et al., 2021). In order to address
these problems, we used a traditional methodology
in social sciences in order to access the informa-
tion about the health education status, namely the
survey methodology. We asked health-related ques-
tions such as questions about virus propagation
and treatment to our participants. In order to be
able to measure the accuracy of health-related con-
cepts and uses of our participants’, it is necessary
to compare their information status with "expert"
knowledge or uses.
In recent years, big progress has been made in
semantic comparison of linguistic units such as
words and sentences due to recent developments
in neural language models such as BERT(Devlin
et al., 2019) (Giulianelli et al., 2020). BERT is a
language model trained on a large amount of natu-
ral language data to predict words that have been
masked out as shown in Table 1 for the word coach
(Devlin et al., 2019).

BERT has been used to find out which word vec-
tors are responsible for lexical meaning variation
such as coach used as ‘trainer’ and ‘vehicle’. A
word vector is essentially a mathematical represen-
tation of the meaning of a word based on learning or
memorizing the frequency at which a word appears
in a particular linguistic context. The differences or
similarities of word vectors have been used to pre-
dict semantic (dis)similarity of words (Giulianelli
et al., 2020) and sentences (Reimers and Gurevych,
2020). However, previous approaches mainly focus
on meaning differences in Big Data sources such as
social media and very few of them address mean-
ing differences in survey questionnaires of ethnic
minorities. It is thus not known yet how well these
models work in the low resource scenario given
the specific topic domain and the specific format

of answers. This paper presents results from test-
ing vector-based approaches in the measurement
of answer similarity in the low resource domain.

3 Methodology

We carried out a survey study with our cooperation
partners from Latin America (Marleen Haboud,
Claudia Crespo, Fernando Ortega Pérez), in which
indigenous groups speaking Quechua or Kichwa
from Peru and Ecuador (around 150 people from
each country) answered questions about Covid-19
(10 yes-no questions and 10 open-ended questions).
Our task was to measure the accuracy of key con-
cepts related to health. We tested how well the in-
formation status of indigenous groups matches the
information and suggestions from reliable sources
such as the World Health Organization (WHO),
henceforth our Reference Corpus. For instance,
according to the WHO, the virus COVID-19 is dis-
tributed through contact, hence the suggestion to
keep social distancing. We asked our participants
about how the virus COVID-19 is distributed in
order to see how well their answer matches the in-
formation from WHO. The answers were collected
in rural areas via free interviews by a local person
knowing indigenous communities. The method of
free interviews was particularly important in order
to include individuals who are less accustomed to
performing highly controlled tasks such as older
and/or illiterate participants. Due to lack of time
and resources we did not transcribe the interviews.
Instead, the local interviewer summarized the an-
swers to the questions in a digital form in Spanish.
Consequently, the answers in this survey study do
not directly reflect the information state of indige-
nous minorities.

4 Experiments and Results

We ran two experiments. The data and the code
for both experiments can be found on GitHub1. In
our first experiment, we tested the SBERT Model
for measuring the semantic similarity between the
participants’ answers and the "expected" answers
from the reference corpus via cosine similarity
(see Sentence Transformers based on Reimers and
Gurevych, 2020). The following examples demon-
strate some results of cosine similarity from the
chosen method:

1https://github.com/mahmuduzzamanDE/
ACLAmericaNLP
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Word Before mask After mask
coach ’vehicle’ I have driven my coach into the garage. I have driven my <mask> into the garage.
coach ’trainer’ I have a female coach. I have a female <mask>.

Table 1: MASK TASK

Question : 8. When should a mask be used?
Reference text : Especially in closed public
places, but it is also useful in outdoor public
places."
Answers by participants:
"[’Whenever we are in contact with another
person.’] # participant 1
"Similarity: tensor([[0.1775]])", # similarity
between reference text and participant 1

"[’All the time when leaving home.’] #
participant 2
"Similarity: tensor([[0.0477]])", # similarity
between reference text and participant 2

"[’Especially in closed public places, but
it is also useful in outdoor public places’]",
"Similarity: tensor([[0.9961]])", match between
reference text and reference text

"[’When we are in public places where
social distancing cannot be maintained.’]",
participant 3
"Similarity: tensor([[0.2265]])", # similarity
between reference text and participant 3

In order to evaluate the validity of the similarity
measure by SBERT, we asked human annotators
to annotate participants’ answers from 0-5 as not
similar (0) or similar (5). The annotators were four
students of linguistics and one expert in medical
anthropology. We divided the human ratings into
three categories: similar (4-5), dissimilar (0-2),
ambiguous (3) and selected the answers with high
inter-speaker agreement. We translated the human
ratings into correspondent cosine similarity scores:
similar (>0.6), dissimilar (<0.4), ambiguous (> 0.4
and < 0.6). Our results show that the semantic
similarity measured by cosine similarity using
SBERT is significantly lower (mean 0.2) than the
semantic similarity acquired by human annotation
(mean 0.7).
Our second experiment had the goal to find a
computational method to classify a topic of an
answer to an open-ended question. Here is an
example. Survey question: Why do you not want to
be vaccinated? Topics: a) afraid of side effects, b)
my own decision, c).... An automatic classification
of answers under the correspondent topics can ease
the process of survey data analysis and provide a
uniform way of measuring answers to open-ended
questions. We asked human annotators to create

topics for the interview questions and then to
annotate answers according to these topics, e.g.
“I can get thrombosis” was classified by human
annotators as a) afraid of side effects.
We tested automatic methods to classify answers
under suggested topics. The underlying idea
was to look for key words in the answers that
semantically correspond to suggested topics.
For this aim, we performed a synonym-based
similarity task without stemming (Task 1) and
with stemming (Task 2). In the first task, if the
topic was a synonym of one of the tokens in the
given answer, the classification was TRUE. In the
second task, if the topic stem was a synonym of the
token stem in the given answer, the classification
was TRUE. The latter case ignores morphological
variation of words and focuses only on the lexical
stem. We preprocessed the given answers by tok-
enization, removing stop words and case lowering.
The synonyms were taken from the NLTK wordnet.

print(set(synonyms))
{’impinging’,’contact’,’reach’,
’get_through’, ’inter-
group_communication’ ,’contact_lens’,
...}

We used a Stemmer from NLTK, to stem the
synonym words:

print(Stem)
{contact|saliv|aglomer|tos|segur|
mascarill|distanci|comun|familiar|
friccion|intim|relacion|roc|
tocamient|....}

Table 2 demonstrates which answers the
synonym-based approach by stemming correctly
identified and which answers the system did not
correctly identify.

Our results in Table 3 show that stemming gives
slightly better results than the absence of stemming,
namely a correct classification of additional 10 an-
swers. However, despite this light improvement,
the accuracy is still very low, or more precisely,
the system could not make a link between a given

3



Used Sentence (Spanish) Translated (English) w/o
Stem

Stem

por no seguir medidas de bioseguridad for not maintaining social distancing
mediante contacto de persona a persona through contact from one person to an-

other
por saliba secreciones nasales, tos, falta
de aseo

through salive, secretion, cough, no
cleanliness

✗

cuando estamos juntos when we are together ✗

transmisión aérea de persona a persona,
vias respiratorias principalmente.

through air transmission from person to
person, mostly through respiration

✗ ✗

no acercándose mucho a otras personas we should not come too close to other
people

✗ ✗

Table 2: Example Sentences

answer and a topic in around 50 % of the cases.

5 Discussion

The computational approaches we tested have
shown much lower accuracy compared to human
annotations. The biggest problem we have identi-
fied is the lack of pragmatic inferencing humans
are good at, but automatic models we tested are
not. For instance, people answered to the question
about how the virus distributes by saying “through
crowd”. Due to a pragmatic inference human an-
notators can evaluate this answer as similar to the
answer given by the reference corpus. “A crowd”
implies pragmatically that social distancing can-
not be obtained adequately and this can promote
virus infection. However, none of our automatic
models was able to predict a high similarity be-
tween the reference answer "through contact" and
the participant’s answer “through crowd”. Another
example illustrating problems with pragmatic in-
ferences is the annotation of vaccination side ef-
fects. While human annotators had no difficulties
to classify “thrombosis” as a possible vaccination
side-effect, our automatic methods were not able to
do it. To sum up, one of the biggest challenges
in our tasks was the lack of Natural Language
Understanding and Inferencing (NLI and NLU)
by the computational models we tested. Using
NLI and NLU in the context of low resource is
reserved for future research. In the near future, we
will test models trained on health-related topics,
fragmented answers that represent the majority of
our answers and models trained on NLI-and NLU-
datasets (Kochkina et al., 2023).

Future Work

There are several issues of our methodology that
need to be addressed in future research. The ab-
sence of good resources for indigenous languages
has forced us to work with local translators who
digitized the answers the way they perceived them.
In future we will use transcribed oral data for our
experiments.

Another issue is the use of few human annota-
tions that have provided us the human similarity
score necessary to evaluate computational models.
Even though the inter-speaker agreement was com-
paratively high in our study due to very explicit
training and discussion of annotation guidelines,
we suspect that the inter-speaker agreement will
show a much higher variation in the perception of
semantic similarity if the annotation guidelines are
missing as is often the case in crowd-sourced hu-
man annotations. The trade-off between expensive
human annotators with long training for annota-
tion and cheap crowd-sourced human annotations
without any training is an issue that needs to be
addressed in the future research.
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Task Cosine sim. Synonym-token-sim. Synonym-token-sim.+ stemming
Value 0.2 0.4 0.5
Human Annot. 0.7 1 1
Accuracy loss 0.5 0.6 0.5

Table 3: Accuracy values and accuracy loss per task
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Abstract

Active learning is an algorithmic approach
that strategically selects a subset of examples
for labeling, with the goal of reducing work-
load and required resources. Previous research
has applied active learning to Neural Machine
Translation (NMT) for high-resource or well-
represented languages, achieving significant re-
ductions in manual labor. In this study, we
explore the application of active learning for
NMT in the context of Mapudungun, a low-
resource language spoken by the Mapuche
community in South America. Mapudungun
was chosen due to the limited number of flu-
ent speakers and the pressing need to provide
access to content predominantly available in
widely represented languages. We assess both
model-dependent and model-agnostic active
learning strategies for NMT between Spanish
and Mapudungun in both directions, demon-
strating that we can achieve over 40% reduction
in manual translation workload in both cases.

1 Introduction

Over the course of history, South America has been
home to numerous indigenous cultures and lan-
guages (Campbell et al., 2012), reflecting the re-
gion’s rich linguistic diversity and heritage. Unfor-
tunately, the dominance of the Spanish language
in this region has threatened many indigenous lan-
guages, often leading to their decline or even ex-
tinction. This has resulted in an immeasurable
cultural and historical loss for humanity, as lan-
guage diversity vanishes (Ostler, 1999). Among
the last remaining native languages is Mapudun-
gun, spoken in Chile and Argentina by nearly 1.8
million people (Mapuches), but only 10% of them
handle the language correctly and barely another
10% understand it. In the same spirit, the Conadi
Indigenous Languages Program1 predicts that this

1https://www.conadi.gob.cl/noticias/conadi-lanzo-
aplicaciones-y-realizara-cursos-online-de-mapuzungun-para-
que-miles-de-indigenas-aprend

language will become extinct in a few generations,
mainly due to the lack of individuals that can speak
this language. Despite this, there are still groups
within Chile that only speak Mapudungun, leaving
them sometimes excluded from the rest of soci-
ety. Furthermore, the social tension over the past
few years has raised native indigenous people to
the forefront of discussion, attracting high inter-
est in the community to find ways to include them
in society as equals. Unfortunately, the availabil-
ity of human translators fluent in those languages
is minimal, and no automated translators exist to-
day supporting those languages. In this work, we
present an active learning setting to improve the
efficiency and efficacy of machine translation for
low-resource languages, in this case, Mapudungun.
In other words, we aim to reduce the effort made by
human translators given that the quantity of people
fluent in Mapudungun is scarce. Given this, the task
of translating and reviewing large amounts of text is
unattainable. One of the main tasks of active learn-
ing is choosing the appropriate data points (texts)
to be translated by human translators to train a neu-
ral machine translation (NMT) model with as few
examples as possible. To evaluate our approach, we
utilized an open-source corpus from the AVENUE
project (Levin et al., 2000) and supplemented it
by scraping the web for Spanish-Mapudungun sen-
tence pairs. We assembled a dataset of approxi-
mately 30,000 pairs, creating a comprehensive cor-
pus for our research. We simulate an offline active
learning setting to measure the amount of work that
can be reduced by using different active learning
strategies. The main contributions of this paper are:
(1) Proposing active learning training strategies
to reduce low-resource language speaker transla-
tors workload by more than 40%, (2) Finetuning
a Mapudungun NMT model capable of obtaining
competitive results and (3) Sharing our code for
research reproducibility2.

2https://github.com/OpenCENIA/al4mt
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2 Related work

Active learning
Active learning is an effective machine learning
training approach where the algorithm actively se-
lects informative data to learn from, resulting in
improved performance with fewer labeled instances
(Settles, 2009). While initially applied to text clas-
sification, information retrieval, classification, and
regression tasks (Tong and Koller, 2001; Zhang
and Chen, 2002; Carvallo et al., 2020; Carvallo and
Parra, 2019; Houlsby et al., 2011), active learning
has recently been extended to tasks such as Named
Entity Recognition, Text Summarization, and Ma-
chine Translation (Shen et al., 2017; Zhang and
Fung, 2012; Zhao et al., 2020; Zhang et al., 2018).
This study investigates unexplored potential of ac-
tive learning in machine translation for untrans-
lated examples in Mapudungun, a low-resource
language.

Machine translation for low-resource languages
Efforts to overcome resource scarcity in low-
resource language translation have proposed pre-
training strategies for data generation and per-
formance improvement. Methods include cross-
lingual language model pretraining on high-
resource languages data, then finetuning on low-
resource languages (Zheng et al., 2021), multilin-
gual sequence-to-sequence pretraining (Song et al.,
2019; Xue et al., 2020; Liu et al., 2020), dictio-
nary and monolingual data augmentation (Reid
et al., 2021), and back-translation data augmen-
tation (Sugiyama and Yoshinaga, 2019). How-
ever, these strategies lack human-in-the-loop com-
ponents and don’t guarantee human approval of the
model’s iterative translations under active learning.

Data selection in NMT
The data selection problem in NMT has received
attention from several authors. Some propose
weighted sampling methods to improve perfor-
mance and accelerate training (Van Der Wees et al.,
2017; Wang et al., 2018a), while others focus on
filtering noisy data (Wang et al., 2018b; Pham
et al., 2018) or selecting domain-specific data for
back-translation (Fadaee and Monz, 2018; Ponce-
las et al., 2023; Dou et al., 2020). Furthermore,
Wang et al proposed a method to select relevant
sentences from other languages to enhance low-
resource NMT performance (Wang and Neubig,
2019). As in using data augmentation the task of

selecting data for training a NMT model do not
include a user in the feedback loop.

3 Methodology

In this section we describe in detail the active learn-
ing framework proposed for NMT on low-resource
languages and the type of active learning strate-
gies depending if there is or not a machine learning
model involved in the selection of examples for
being labeled. In Figure 1, we show the active
learning setting used in this work. In the first step,
we initialize an NMT model, then given a mono-
lingual corpus in Spanish and an active learning
strategy, it chooses examples for being translated
by an oracle to Mapudungun. After obtaining the
translated sentences, we fine-tune the NMT model,
update its parameters, and then use this updated
version to select new sentences for labeling. We
use four active learning strategies to select sen-
tences for an oracle’s translation: entropy sampling,
margin sampling, confidence sampling, and decay
logarithm frequency. The strategies chosen are
pertinent to both Spanish to Mapudungun and Ma-
pudungun to Spanish translations in low-resource
scenarios. They address key issues such as un-
certainty, data diversity, and model reliance, thus
optimizing translation models and aiding language
preservation. The strategy’s reliance on the model
varies; model-agnostic strategies don’t need it for
selecting sentences, while model-related ones use
its certainty level. The number of active learning
iterations and oracle translation requests is user-
determined at the start of training.

3.1 Model-related strategies

These strategies use the model to choose the ex-
amples for being labeled and rely on the model’s
confidence level in untranslated examples.

Entropy sampling
In this strategy we consider entropy as a measure
of uncertainty, where the higher entropy indicates
higher uncertainty and more chaos. Therefore this
strategy consists in sampling examples with higher
average entropy given by equation 1.

1

m

m∑

i=1

entropy(Pθ(.|x, ŷ<i) (1)

Minimum margin sampling
This strategy calculates the average probability gap
between the model’s most confident word (y∗i,1)
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Figure 1: Illustration of the active learning approach.

and the second most confident word (y∗i,2). If the
margin is small, the model cannot identify the best
translation from an inferior one, so we sample sen-
tences with a lower margin as shown in the equation
2.

1

m

m∑

i=1

[Pθ(y
∗
i,1|x, ŷ<i)− Pθ(y

∗
i,2|x, ŷ<i)] (2)

Least Confidence sampling
This strategy estimates the model uncertainty by
averaging the predicted probability of each word
the translator generates. We sample those sentences
with a lower level of confidence to force the model
to learn harder sentences, as shown in equation 3.

1

m

m∑

i=1

[1− Pθ(ŷi|x, y<i)] (3)

3.2 Model-agnostic strategy
In this case, we use the decay logarithm frequency
strategy (Zhao et al., 2020) that does not require a
NMT model to choose examples for being labeled
by an oracle. The intuition behind this strategy is
to choose sentences different from the ones that
have already been translated in terms of linguistic
features.

Decay logarithm frequency
We define two sets of sentences: U that are un-
translated and L translated sentences on the current
active learning iteration. In the first step, we define
the logarithm frequency of a word w in U , namely
F (w|U) shown in equations 4 and 5.

G(w|U) = log(C(w|U) + 1) (4)

F (w|U) =
G(w|U)∑

w′∈U
G(w′|U)

(5)

Where C(w|.) measures the frequency of a word
w in a given sentence set that can be U or L. Then
we add a decay factor that favors the diversity of
words and includes two hiper-parameters (λ1 and

λ2) that allow giving more or less importance to
words from the labeled (L) or the unlabeled sets
(U ). Also, we normalize by dividing the obtained
score over the sentence length (K).

fy(s) =

K∑
i=1

F (si|U)× e−λ1C(si|L)

K
(6)

Equation 6 if used as threshold to obtain Û(s)
that is the set of all sentences that have a higher lf
score than s. In this way, we tend to discard repeti-
tive sentences and filter out insignificant function
words. The obtention of the final delfy score is
shown in equations 7 and 8.

delfy(s) =

K∑
i=1

F (si|U)×Decay(si)

K
(7)

Decay(si) = e−λ1C(si|L) × e−λ2C(si|Û(s)) (8)

4 Experiments

4.1 Dataset, preprocessing and NMT model
The dataset consists of 29,829 Spanish to Ma-
pudungun sentence pairs considering only sen-
tences length higher than five words, with 50,840
unique words in Spanish, 67,757 unique words in
Mapudungun, and a vocabulary size of 118,597.
We do not remove stopwords, lemmatization, or
low-case texts, since we aim to capture both lan-
guages’ peculiarities, including punctuation and
idioms. We used a MarianMT (Junczys-Dowmunt
et al., 2018) translation model based on a trans-
former architecture consisting of 12 encoder layers,
16 encoder attention heads, 12 decoder layers, and
16 attention heads. For training on active learning,
we use a learning rate of 0.0002 and a weight de-
cay of 0.01. We train the necessary epochs in each
active training round until the validation perplexity
remains the same. λ1 and λ2 in the delfy are set
to 1.0 each. For training on active learning, we

8
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Figure 2: NTM models training on Active Learning. X-axis indicate the percentage of the corpus used to train each
model choosing examples based on each active learning strategy. Y-axis indicates the BLEU score.

finetune a MarianMT translator from Spanish to
Deutsch. Despite the apparent oddity of linking an
Indo-European language, Deutsch with Mapudun-
gun, our approach harnesses shared agglutinative
traits to enhance translation.

4.2 Active Learning for NMT

Concerning the active learning setting, we run ten
iterations using the 10% of the train set. For evalu-
ating active learning strategies, we used the Sacre-
BLEU3 library and evaluated the model’s outputs
with BLEU (Papineni et al., 2002). As we run an
offline experiment, we assume the oracle is con-
tinuously right, extracting the correct translation
each time and adding those examples to the train
set. In our offline experiment, we used existing la-
beled training data to eliminate the need for human
annotators. Our goal was to assess which strategy
efficiently utilizes a smaller data proportion, re-
ducing manual translation effort while preserving
model performance. This approach enables opti-
mization of active learning strategies without added
annotation costs.

4.3 Results

The results of this study suggest that for Spanish to
Mapudungun translation, the most effective active
learning strategy is Delfy, which achieved a BLEU
score of 65.45 when trained on 60% of the corpus.
Margin and entropy sampling were also effective
strategies, achieving BLEU scores of 62.92 and
62.72, respectively. For Mapudungun to Spanish
translation, margin sampling was the most effec-
tive active learning strategy, achieving a BLEU

3https://github.com/mjpost/sacrebleu

score of 59.378. Both settings showed benefits
of training on active learning, with a reduction in
the workload of approximately 40%. However,
there is space for improvement in further reduc-
ing workload, as other studies on high-resource or
well-represented languages have reduced over 80%
(Zhao et al., 2020) of manual translation work. This
work demonstrated significant progress in translat-
ing a low-resource language such as Mapudungun,
with both active learning strategies outperforming
the baseline strategy of random sampling.

5 Conclusion

In conclusion, this study revealed that Delfy was
the most effective active learning strategy for Span-
ish to Mapudungun translation, while margin sam-
pling outperformed in Mapudungun to Spanish. In
both cases, training with active learning strategies
reduced workload by over 40%. Our compara-
tive analysis, driven by the diverse approaches of
the chosen strategies, identifies the most efficient
methods for low-resource translation tasks. This
research is crucial for languages particularly Ma-
pudungun, as it fosters information access and re-
duces language barriers for indigenous communi-
ties. Future work will focus on designing active
learning strategies specifically for low-resource lan-
guages.
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Abstract

We investigate native language identification
(LangID) for Brazilian Indigenous Languages
(BILs), using the Bible as training data. Our
research extends from previous work, by pre-
senting two analyses on the generalization of
Bible-based LangID in non-biblical data. First,
with newly collected non-biblical datasets, we
show that such a LangID can still provide quite
reasonable accuracy in languages for which
there are more established writing standards,
such as Guarani Mbya and Kaigang, but there
can be a quite drastic drop in accuracy de-
pending on the language. Then, we applied
the LangID on a large set of texts, about
13M sentences from the Portuguese Wikipedia,
towards understanding the difficulty factors
may come out of such task in practice. The
main outcome is that the lack of handling
other American indigenous languages can af-
fect considerably the precision for BILs, sug-
gesting the need of a joint effort with related
languages from the Americas.

1 Introduction

Brazil is home to about 270 indigenous languages,
referred to as Brazilian Indigenous Languages
(BILs) hereafter. All of those language are endan-
gered, spoken by at most 30 thousand people, and
are quite understudied. Serious effort should be put
onto creating resources and tools to help vitalize
the culture of such underrepresented communities.
The creation of AI tools, in special language mod-
els and applications such as language translators,
next-word predictors, spell checkers, can be key for
this endeavour, since all could be used as learning-
aid tools.

One main issue in building AI tools for under-
studied languages, which is the case of BILs, is the
lack of data. There is almost no data available in
ready-to-use formats, such as parallel corpora and
labelled datasets, even monolingual data is scarce.
Finding data for such languages is very difficult,

since documents are stored in varied repositories
and there is no indexing in search engines for such
languages.

Native language identification (LangID) repre-
sent of a crucial approach to help in the task of
gathering and augmenting data for BILs and many
other indigenous languages. Not only LangID can
be helpful to mine data from the web, it can be used
as a tool to validate data that is generated synthet-
ically with back-translation or self-training (Feld-
man and Coto-Solano, 2020; He et al., 2020). Be-
fore putting a LangID system into practice, though,
it is very important to have a clear understanding
of its capabilities, such as the expected accuracy on
unseen domains.

Apart from an evaluation of LangID with indige-
nous languages in isolation (Lima et al., 2021),
or the addition of some language in a publicly-
available LangID dataset (Brown, 2014), in both
cases with only Bible data, the potential of LangID
for BILs in non-biblical, open-world data is quite
understudied. That, again, owns to the lack of data,
since the only source of data available to build a
LangID for BILs is the Bible. And that is quite lim-
iting in terms of understanding of the usefulness of
a LangID for BILs in varied domains.

In this work we focus on expanding the hori-
zons on a LangID for BILs, and present a deeper
investigation on the quality and practical issues of
Bible data for LangID on such languages. For that,
we collected and appended 1.5M sentences from
51 BILs to the existing WiLi2018 LangID dataset,
with 235 languages (Thoma, 2018), to train a ma-
chine learning-based LangID approach, and test
it on different scenarios. We focused on answer-
ing two main research questions: RQ1) what is
the level of accuracy achieved by this Bible-based
LangID on a sample of out-of-domain, non-biblical
data sets? and RQ2) if we apply this LangID on
a large set of texts in the wild, what are the main
difficulty factors?
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For LangID, we implemented an approach
considering bag-of-words on tokens computed
with SentencePiece, and Support Vector Machines
(SVMs) as the classifier. Results show an accuracy
of 73.3% and 95.1% for BILs and non-BIL lan-
guages, respectively. To answer RQ1, we built a
dataset with almost three thousand sentences, com-
prising seven monolingual dataset in six different
BILs. The results indicate that our LangID classi-
fier generalizes quite well to most languages, reach-
ing up to about 90% accuracy. But we see also that
there might be a drop to about 37% with Apurinã,
for which writing standards are not quite well es-
tablished. To answer RQ2, we applied our LangID
on about 13.5M sentences extracted from the Por-
tuguese Wikipedia. As much as 3,821 sentences
were pointed out with a BIL as the most probable
class, but most of them with very low probabil-
ity scores, below 0.1. A further manual inspection
showed a precision of 7% only, uncovering a funda-
mental issue that needs to be overcome in the future
to improve the prediction of LangID in in-the-wild
data, which the need to handle other american lan-
guages to reduce false positive hits.

2 A LangID Dataset for BILs

We built a dataset containing 51 BILs, with data
extracted from the Bible. Although this covers only
a sample of the total of about 270 existing BILs,
according to the last comprehensive assessment of
linguistic diversity in Brazil (IBGE, 2010)1, this
set represents about a third of the estimate of 90
languages that have established standards of writ-
ing (Diniz, 2007). Additionally, we expect that the
results expand to languages that belong to same
families and branches in which the BILs are orga-
nized (Storto, 2019; Rodrigues, 1986).

Besides the languages spoken solely in Brazil,
we include languages that are mostly spoken out-
side of Brazil but with some speakers in the country,
such as the version of Guarani spoken in Paraguay,
and languages that are relatives to some BILs, such
as the eastern and western versions of Guarani spo-
ken in Bolivia.

For data splitting, the test set was composed
of all sentences from the Matthews New Testa-
ment book, for which we tokenized all chapters
with the NLTK sentence tokenizer. Then we per-
form the same procedure to create the training set,

1There is some discussion about the accuracy of those
numbers, see Franchetto (2020); Storto (2019).

with all remaining books from the New Testament,
and books from the Old Testament, when available.
As a result, the total number of training samples
is 1,330,457 samples, and 199,128 test examples.
The average number of samples per language is of
26,087 for the training set, and 3,904 in the test set.

Additional details are presented in Appendix A.

3 The LangID Classifier for BILs

We developed a LangID system using a linear SVM
classifier with Bag-of-words (BOW) features, re-
lying on the SentencePiece tokenizer2, with 100K
tokens. Note that we have evaluated different con-
figurations for vocabulary size and other classifiers,
but found that the linear SVM with 100K tokens
presented the highest mean accuracy in the two test
sets available, i.e. one for the BILs and another
from WiLi-2018. Detailed results are provided in
Appendix B.

As the training set, we considered the concate-
nation of our Bible-based dataset for BILs and the
WiLi-2018 dataset, which contains 235K samples,
evenly distributed over the 235 languages in the
dataset. The accuracy on those sets are, respec-
tively, 73.3% and 95.1%. Notice that our LangID
approach excels pretty well on the WiLi2018 test
set, almost 5 percentage points better than the
89.42% accuracy reported in Thoma (2018). But
the accuracy presented on the BILs test set is 22
percentage points lower, which we believe is re-
lated to the inherited difficulties of doing LangID
for such languages.

4 Accuracy on non-biblical datasets

In order to validate the quality of the LangID sys-
tem proposed in this work, and to answer RQ1, we
performed an evaluation on non-biblical data. We
built seven new datasets, comprising six different
BILs, to measure the accuracy of LangID on do-
mains that are quite unrelated to the training set.
Furthermore, this analysis also helps understand
if the orthography of the training samples match
what is expected in unseen domains.

This data has been collected either from PDF
files, available in repositories in the web, or from
annotation efforts such as the Universal Depen-
dencies Parsing (UDP). For the former, the task
basically consisted of cleaning up any annotation
and generating a file only with the sentences in the
corresponding BIL. But for the PDFs, we had to

2https://github.com/google/sentencepiece
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Table 1: Results on out-of-domain, non-biblical
datasets.

Language Source #sent Acc(%)
gun Books 1,400 88.2
gun Tales 1,022 88.8
myu UDP 157 91.7
kgp Books 146 81.8
urb UDP 83 72.3
apu UDP 59 37.3
xav UDP 20 75.0

mean 412.4 76.4

either copy and paste the contents in the PDF to
text files, or even retype the content given the lack
of standard in encoding for such languages and
the lack of standard for PDFs files. In both cases,
tough, manual inspection of the conversion results
proved necessary to handle special characters such
as some combinations of letters and accents that
are not very usual in non-indigenous languages.
Once the blocks of texts have been inspected and
converted to a text file, we then applied a sentence
tokenizer to split paragraphs into individual sen-
tences. Finally, we filtered all sentences with less
than three tokens, to avoid dealing with such very
short sentences.

In Table 1, we present further details on each
dataset, such as the language, the source, and the
resulting number of sentences. Note that some
datasets consist of groupings of different sources,
such Books in gun and kgp, which are composed of
sentences extracted from multiple school books in
PDF formats, such as Dooley (1985), and Tales in
gun, which comprises several PDF files containing
short indigenous tales (Dooley, 1988a,b).

The accuracy rates, also presented in Table 1,
show that the results vary greatly from language
to language. For the datasets in Guarani Mbya
(gun), our LangID approach was able to achieve
an accuracy of 88.6% on average, which is quite
higher than the 73.3% achieved on held-out bible
data. And the approach was able to achieve accu-
racy as high as 91.7% on myu. For urb and xav,
we observe accuracy that are comparable to what
we found on bible data, i.e. 72.3% and 75%. And
for apu, there is a significant drop to 37.3% . We
suspect that such drop in accuracy is due to differ-
ences in orthography from what is in the Bible and
what is in these test sets, but further inspection with
linguists or native speakers is necessary to check

this assumption. It is worth mentioning that gun
and kgp have quite established written forms, and
for those languages we do not see such a drastic
drop in classification quality.

An additional evaluation was then performed to
understand if the classification of BILs is affected
by non-indigenous languages. For that, we checked
which languages where misclassified the most with
gun in the respective datasets for this language. In
the Books dataset, from the 162 misclassifications,
63 (39%) were associated to languages belonging
to the Tupi-guarani family, which is the same fam-
ily of gun. From those 63 samples, 38 were de-
tected as kgk, and 25 as gug. Similarly, in the Tales
dataset, from the 118 errors, 78 (66%) were from
Tupi-guarani family languages: 48 in kgk and 30 in
gug. Thus, considering the high similarity of such
languages from the Tupi family, it is likely that
the results with gun can be improved with further
development of the LangID classifier, in order to
handle better the classification among these similar
languages.

5 Bringing LangID closer to practice

Aiming at answering RQ2, we expanded the evalua-
tion of the previous chapter to a large, unsupervised
set. Our goal was to understand the main chal-
lenges in a scenario that is closer to practical ap-
plication, which is applying our LangID on in-the-
wild data, to mine for sentences written in one of
the 51 BILs. For that, we considered about 13.5M
sentences extracted from the Portuguese Wikipedia.
Although that data presents limitations, since most
pages are supposedly written in Portuguese and a
totally open set such as Common Crawl represents
better the real world, that is also an advantage since
we can discard all sentences detected as Portuguese
and manually inspect only the remaining smaller
set. And the associated Wikipedia pages can be
used as ground-truth for the results of the classifier.

This evaluation considered an exact total of
13,573,101 sentences, from which our proposed
LangID was able to identify 3,821 sentences as one
of the 51 BILs considered in this work. That cor-
responds to 0.03% of total sentences in the dataset.
We observed, though, the very low prediction score
for such detected sentences, with a mean of around
0.03, and decided to discarded all sentences with
a prediction score below 0.1, resulting in a set of
only 129 sentences. That is a quite small set, but
this number was somewhat expected given the data
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in Portuguese. One the other hand, that allowed us
to conduct a manual inspection on the results.

We manually inspected all of the detected 129
sentences, marking all sentences that ’looked like
being correctly classified’. That is, we inspected
the 129 sentences and marked all sentences that
were written in a latin scripts, but with words that
did not belong to any of the non-indigenous lan-
guages known by the authors, such as Portuguese,
English, Spanish, German, and French, to name a
few. With that approach, we found a total of 50
sentences that could likely be from a BIL. Then,
for each of those 50 sentences, we searched for the
original Wikipedia page of the sentence, by using
its text as a query on Google, and inspected the
resulting pages. The results were, on one hand, dis-
appointing, since very few sentences were correctly
classified. But on the other hand, they were quite
useful in understanding some particular difficul-
ties of this task, and how to approach this problem
better in the future. Details are provided next.

The results were disappointing in the sense that
very few sentences were correctly classified, i.e.
very low precision. From the 50 sentences that
we suspected were correct, only 9 sentences were
extracted from a Wikipedia page that related to the
actual predicted language. That gives a precision
of only 7%. Besides, we uncovered that those nine
sentences consisted of samples of the Lord’s prayer,
which is a content that is very close to what is in
the training for such languages, so these results do
not help in clarifying the potential of LangID in
non-religious content.

Nevertheless, some interesting findings of this
study consist of a better understanding of the
main difficulties that we may face when applying
LangID to mine data for BILs. One clear drawback
of our proposed approach, is the limited handling of
similar low-resource languages, such as indigenous
languages from other South and North American
countries besides Brazil. Most of the classification
mistakes involved Wikipedia entries of languages
spoken in countries such as Peru, Colombia, Mex-
ico, and the United States. Some other few mis-
takes involved languages from more distant loca-
tions, such as Indonesia and the African continent.
These results show that, in order to perform accu-
rate LangID for BILs, it is important to include
as much languages as possible in the training set
to have a more precise classification, or to imple-
ment some mechanism to deal with out-of-scope

detection.

This evaluation also showed that searching for
webpages using sentences in a target language as a
query for a search engine can be helpful to find for
additional data, such as PDFs with additional con-
tent such as the one found for the Amarakaeri lan-
guage3. Even though Amarakaeri is not included in
the set of BILs, with more accuracy in LangID, we
could search for PDF documents is such languages
with greater precision. Furthermore, we found that
misclassifications can be useful to find content in
additional related languages, such as the language
Cocama4, which is spoken in Brazil and belongs
to the Tupi family, but was not included our set of
BILs for LangID.

6 Conclusions and future work

In this paper we present an evaluation of LangID
for Brazilian Indigenous Languages (BILs), using
the Bible as the only source for training data. We
demonstrate that on non-biblical, labeled datasets,
the approach is able to achieve even accuracy in lan-
guages with more establised written forms, such as
Guarani Mbya and Kaigang, but the performance
may drop considerable for less studied languages.
By applying the LangID classifier in an almost in-
the-wild dataset, we saw that the precision is quite
affected by related American indigenous languages
that are not handled by our LangID approach, so a
joint effort must be made to handle as much ameri-
can languages as possible, together, to improve the
quality of the LangID in practice.

As future work, we believe that expanding the
LangID training set, to consider as much languages
as possible, is mandatory. Furthermore, an inspec-
tion of the orthography of some languages should
also be done, by partnering with linguists and/or
native speakers. And we think that we could fur-
ther develop the study in in-the-wild data, either by
searching for BIL data on a more comprehensive
dataset, such as Common Crawl5 and BrWac6, and
by including the search for PDF documents, which
is the most commonly used format containing data
for such languages.

3https://www.ohchr.org/sites/default/files/UDHR/ Docu-
ments/UDHR_Translations/amr.pdf

4https://pt.wikipedia.org/wiki/Língua_cocama
5https://commoncrawl.org/
6https://www.inf.ufrgs.br/pln/wiki/index.php?title=BrWaC

15



Limitations

One limitation of this work is the lack of a more
comprehensive study of LangID methods, which
could impact slightly the results. Another limita-
tion is the number of non-BIL languages, which
can be increased to more than 1,000 languages with
the datasets proposed in (Brown, 2014). Further-
more, the use of Wikipedia data limits the search of
samples, since all pages are supposedly written in
Portuguese. So, relying on a broader set can bring
a more realistic estimate on the in-the-wild search
for data. In addition, a major limitation of this
work is the lack of inspection of the results with
native speakers. We are already engaging with one
mbya guarani community, but it is quite difficult to
extend such engagement to other communities.
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A Details on languages and datasets

In Table 2 we present the full list of Brazilian
Indigenous Languages (BILs) considered for this
work, with the corresponding ISO 639 codes, their
geo-linguistc classification in terms of branches
and families, the estimated number of speakers,
and the number of samples for training and test
sets.

B Detailed results on classifier evaluation

In Table 3 we present the detailed accuracy on each
methods and dataset evaluated in this work. In
terms of classifier, we evaluated two approaches:
Logistic Regression and Support Vectors Machines
(SVMs). For feature extraction, we evaluate the
use of bag of words (BoW) and corpus-based vo-
cabulary extraction with SentencePiece (SP), with
varied number of tokens: 10K, 50K, 100K, and
250K.
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Table 2: Details on the indigenous languages and datasets used in the study.

Name Acron Branch Family Speakers Train Test Total
Apalaí apy No Branch Karib 252 27,763 4,401 32,164

Apinayé apn Macro Jê Jê 1,386 28,069 4,354 32,423

Apurinã apu No Branch Aruak 824 28,629 4,403 33,032

Ashaninka cni No Branch Aruak 302 19,564 2,943 22,507

Bakairí bkq No Branch Karib 173 27,314 4,206 31,520

Boróro bor Macro Jê Boróro 1,035 32,392 5,206 37,598

Desána des No Branch Tukano 95 26,115 4,019 30,134

Guajajára gub Tupi Tupi-Guarani 8,269 33,188 4,818 38,006

Guarani Eastern Bolivia gui Tupi Tupi-Guarani NA 22,681 3,342 26,023

Guarani Kaiowá kgk Tupi Tupi-Guarani 24,368 31,523 4,711 36,234

Guarani Mbya gun Tupi Tupi-Guarani 3,248 18,245 2,857 21,102

Guarani Paraguay gug Tupi Tupi-Guarani 2,464 16,891 2,841 19,732

Guarani Western Bolivia gnw Tupi Tupi-Guarani NA 22,281 3,264 25,545

Hixkaryána hix No Branch Karib 52 37,893 5,797 43,690

Jamamadí-Kanamanti jaa No Branch Arawá 217 21,169 3,121 24,290

Ka'apor urb Tupi Tupi-Guarani 1,241 44,969 6,678 51,647

Kadiwéu kcb No Branch Guaikurú 649 19,773 3,020 22,793

Kaiabi kyz Tupi Tupi-Guarani 673 36,118 5,145 41,263

Kaingáng kgp Macro Jê Jê 19,905 27,778 4,070 31,848

Kanela ram Macro Jê Jê 488 18,342 731 19,073

Karajá kpj Macro Jê Karajá 3,119 22,721 3,646 26,367

Kaxinawá cbs No Branch Pano 3,588 14,590 2,099 16,689

Kayapó txu Macro Jê Jê 5,520 34,066 5,631 39,697

Kubeo cub No Branch Tukano 171 25,216 3,650 28,866

Kulina Madijá cul No Branch Arawá 3,043 27,744 4,318 32,062

Makúna myy No Branch Tukano 6 27,568 4,000 31,568

Makuxí mbc No Branch Karib 4,675 26,942 4,199 31,141

Matsés mcf No Branch Pano 1,144 23,754 3,772 27,526

Mawé mav Tupi Mawé 8,103 27,034 3,035 30,069

Maxakali mbl Macro Jê Maxakali 1,024 20,663 3,045 23,708

Mundurukú myu Tupi Mundurukú 3,563 32,880 5,146 38,026

Nadëb mbj No Branch Makú 326 24,653 3,821 28,474

Nambikwára nab No Branch Nambikwára 951 29,089 4,377 33,466

Nheengatu yrl Tupi Tupi-Guarani 3,771 15,236 2,321 17,557

Palikúr plu No Branch Aruak 925 28,322 4,228 32,550

Paresí pab No Branch Aruak 122 20,759 3,043 23,802

Paumarí pad No Branch Arawá 166 30,389 4,550 34,939

Piratapúya pir No Branch Tukano 81 25,721 4,030 29,751

Rikbaktsa rkb Macro Jê Rikbaktsa 10 35,777 4,841 40,618

Sanumá xsu No Branch Yanomámi 1,788 25,118 3,749 28,867

Siriáno sri No Branch Tukano 2 24,247 3,626 27,873

Tenharim pah Tupi Tupi-Guarani 32 30,277 5,145 35,422

Teréna ter No Branch Aruak 6,314 20,713 3,170 23,883

Tikúna tca No Branch No Family 30,057 20,101 3,218 23,319

Tukáno tuo No Branch Tukano 4,412 26,826 3,952 30,778

Tuyúca tue No Branch Tukano 263 23,973 3,572 27,545

Wanana gvc No Branch Tukano 236 25,487 3,983 29,470

Wapishana wap No Branch Aruak 3,154 20,561 2,930 23,491

Xavante xav Macro Jê Jê 11,733 24,714 3,737 28,451

Yamináwa yaa No Branch Pano 222 24,808 3,680 28,488

Yanomámi guu No Branch Yanomámi 12,301 29,811 4,687 34,498

176,463 1,330,457 199,128 1,529,585

Languages # Aligned Sentences

TOTAL
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Table 3: Detailed results considering different classifiers and feature extraction methods.

BoW SP10K SP50K SP100K SP250K BoW SP10K SP50K SP100K SP250K
WiLi2018 73.87 93.13 92.30 91.37 89.70 89.45 94.15 94.94 95.07 94.63
Bibles-BILs 69.59 72.81 72.31 71.96 71.47 72.85 73.18 73.19 73.28 73.14

mean 71.73 82.97 82.31 81.67 80.59 81.15 83.67 84.07 84.18 83.89
gun Books 71.01 86.67 86.51 85.73 86.06 82.21 89.10 89.25 88.20 89.32
gun Tales 82.19 83.95 83.66 82.88 83.76 86.20 89.53 90.12 88.85 88.65
myu UDP 73.97 95.54 91.08 89.81 90.45 87.67 96.18 91.72 91.72 91.08
kgp Books 73.55 81.25 73.43 70.63 69.23 84.30 89.58 86.01 81.82 81.82
urb UDP 43.84 60.24 61.45 59.04 62.65 63.01 65.06 74.70 72.29 72.29
apu UDP 14.29 28.81 33.90 28.81 32.20 25.00 25.42 33.90 37.29 45.76
xav UDP 47.37 75.00 75.00 60.00 50.00 63.16 75.00 70.00 75.00 18.75

mean 58.03 73.07 72.15 68.13 67.76 70.22 75.70 76.53 76.45 69.67

Logistic Regression Support Vector Machine
Classifier
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Abstract
This paper describes an ongoing effort to
create, from the original hand-written text,
a machine-readable, linguistically-annotated,
and easily-searchable corpus of the Nahuatl
portion of the Florentine Codex, a 16th century
Mesoamerican manuscript written in Nahuatl
and Spanish. The Codex consists of 12 books
and over 300,000 tokens. We describe the pro-
cess of annotating 3 of these books, the steps
of text preprocessing undertaken, our approach
to efficient manual processing and annotation,
and some of the challenges faced along the way.
We also report on a set of experiments evaluat-
ing our ability to automate the text processing
tasks to aid in the remaining annotation effort,
and find the results promising despite the rela-
tively low volume of training data. Finally, we
briefly present a real use case from the humani-
ties that would benefit from the searchable, lin-
guistically annotated corpus we describe.

1 Introduction
The Nahuatl language, an agglutinating and
polysynthetic member of the Uto-Aztecan family
spoken throughout Mexico by about 1.5 million
people today, has a rich literary tradition (Gin-
gerich, 1975; León-Portilla, 1985). With a strong
preconquest oral tradition and a hieroglyphic writ-
ing system, Nahuatl speakers quickly adopted the
Latin alphabet for writing their language after its
introduction almost immediately after the Spanish
invasion. As a result, the volume of the colonial-
era Nahuatl literary canon is unrivalled in Latin
America (Olko and Sullivan, 2013). These texts
are invaluable resources to scholars interested in
the history, culture, and language of colonial and
pre-invasion Nahua communities.

Perhaps the most notable Nahuatl text of the
early colonial period, the Historia General de las
Cosas de Nueva España “General History of the
Things of New Spain” (Florentine Codex, FC) is
an encyclopaedic work in Nahuatl and Spanish

compiled by Indigenous scholars from the Colegio
de Santa Cruz de Tlatelolco and Franciscan friar
Bernardino de Sahagún.

The FC is undoubtedly one of the most valuable
manuscripts of the early modern period. However,
it was forgotten for centuries until Angelo Maria
Bandini described it in 1793. He named it “Codice
Fiorentino” after the Biblioteca Medicea Lauren-
ziana in Florence, where it is still kept. But only
at the beginning of the 20th century did Francisco
del Paso y Troncoso bring it to a wider audience
(Martínez, 1982). Charles Dibble and Arthur An-
derson published a translation of the books into En-
glish throughout the second half of the 20th century.
The original manuscript became available in the
World Digital Library only ten years ago, thanks
to the Library of Congress.

The impetus for the present project was the need
of the third author, a humanities scholar, to search
the text of the FC for specific linguistic construc-
tions and terminology. This proposition is compli-
cated by a number of factors:

First, there are few fully digitised versions of the
FC, and those that do exist are under copyright,
constraining the ability of a scholar to reproduce,
annotate, and/or re-release any part of the text that
results from a given research endeavour.

Second, the FC, having multiple authors and
being written in the early years of Nahuatl alpha-
betic writing, contains numerous orthographic in-
consistencies throughout the 12 books, with many
words written in multiple distinct ways and deci-
sions about word tokenisation not being standard-
ised. Furthermore, due to constraints on column
width in the original manuscript, words are fre-
quently split by line breaks with no indication of
whether the following line continues the word from
the end of the previous one. Keyword searching
this text is a seemingly-futile process involving de-
termining all possible spellings for a given word
and all possible tokenisations of a single syntactic
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fo. 1

Jc macujlli amuxtli, vncan mo

teneoa: intetzaujtl catca, inqujte

tzammatia, in iehoantin mexica.

Jc ce capitulo, vncan mitoa, inte

tzaujtl inqujtetzammatia: iniquac

ioaltica, aca quicaquja: in chocaia:

itla tequanj, inanoce, iuhquj aca

ilamachocaia: auh iequene, intlejn

qujtoaia, tonalpouhque: in mjtova

ia tlamatinjme catca.

I nievecauh, inoc tlateo

toco: injuh quitoa, ce

qujntin veuetque, ve

ue tlaca: inoc titixca

vitoque, inoc titomattoque, inoc to

tlalpan tiqujtoaia: inaia aque tech

nelotoque: inaiaque totlah onoque,

Yzqujtlamantli, y, in quj tetzamma

tia, inquitetzaujttaia, in tetzaujtl ipan

quimatia innetetzaujloia, in tlatetza

ujaia.

Jnic centlamantli, iehoatl, iniquac

aca quicaquia: in tequanj choca, te

quanj ipan choca: injuhquj tecciztli

qujpitza: tepetl qujnanqujlia: teh

cuiooa, tlaoalanja: iuhqujn ilama

pul choca. Ynjn, qujtovaia ie iaomj

qujz: anoço ie mjqujz, tlalmiqujz:

anoço , ie itla com monamjctiz, ic

Figure 1: On the left: first folio of Book 5 of the Florentine Codex “The Omens”. The first paragraph translates
as “Fifth book, where are told the omens, which the Mexicans believed”. On the right: The transcription of the
left-hand column of the folio. [Image credit: Library of Congress]

word into multiple orthographic words.
Finally, Nahuatl is a morphologically complex

language with large amounts of inflection and
derivation, making querying the surface/inflected
form, instead of e.g., a lemma, particularly diffi-
cult.

The present project attempts to address these is-
sues by creating an open-source, retokenised, and
normalised corpus of the FC with queryable lin-
guistic annotations following the Universal Depen-
dencies framework (Nivre et al., 2020a). In the fol-
lowing sections, we describe the corpus, each com-
ponent involved in its creation, and an investigation
into automating the processing. We conclude by
outlining a road map for the project’s completion
and a vision of future applications.

2 Related work

The FC has been the subject of a great deal of
research in the humanities by scholars interested
in the cultural beliefs and practices of the Nahua
people during the early colonial period (Sullivan
et al., 1966; Gingerich, 1988; Sigal, 2007; Mc-
Donough, 2020; Olivier, 2021). It has also served

as a foundational component for work studying
so-called “Classical Nahuatl,” or Nahuatl spoken
during the period (Launey, 1986; Lockhart, 1992,
2001). Both Olko et al. (2015) and Olko (2018)
leverage corpus-based approaches using a multi-
tude of historical Nahuatl documents, but it is un-
clear how much linguistic information was avail-
able in the corpus, and to our knowledge, this cor-
pus has not been released to the public.

Gutierrez-Vasques et al. (2016) released Axolotl,
a large, Spanish-Nahuatl parallel corpus with a fo-
cus on machine translation. It includes Nahuatl
from multiple variants and time periods, including
the early colonial period, but does not include text
from the FC. Furthermore, the text in Axolotl is un-
processed and unannotated.

Other corpora that include Nahuatl texts in-
clude the Johns Hopkins University Bible Cor-
pus (McCarthy et al., 2020), a parallel multilin-
gual corpus that includes numerous contemporary
Nahuatl variants. This corpus has been used to
produce morphosyntactically-annotated resources
for a large number of languages (Nicolai and
Yarowsky, 2019; Nicolai et al., 2020).
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The first open morphosyntactically-annotated
corpus of Nahuatl was recently released by Pugh
et al. (2022) and includes 10,000 tokens of the
Western Sierra Puebla variety. Following this
work, we also select UD as our annotation schema.

Marc Eisinger was the first to publish a comput-
erised version of the FC, which is not freely avail-
able (Eisinger, 1977). The Universidad Autónoma
de México (UNAM) hosts a website, Temoa, con-
taining a large volume of digitised colonial-era
Nahuatl texts, with minimal processing (at the very
least, tokenisation problems in the FC appear to
be corrected (Universidad Nacional Autónoma de
México, 2023). However, the copyright and rights
to use for annotation and re-release are retained by
UNAM,1 making it not possible to create deriva-
tive works, such as the annotated corpus described
in this paper. Furthermore, the original text (before
fixing tokenisation) is not available.

Related to the computational processing of colo-
nial Mexican texts, The “Digging into colonial
Mexico” project (Murrieta-Flores et al., 2022) in-
volves the creation of a number of processed
and machine-readable resources based on colonial
Mexican documents, mostlywritten in colonial-era
Mexican Spanish. As for colonial texts written in
Mexican languages, the Ticha project (Broadwell
et al., 2020), a collaboration between members
of Zapotec-speaking communities and academics
from universities in the United States of America,
offers an “online digital text explorer” for colonial
Zapotec texts and includes morphological analyses
and translations.

3 Corpus
Our corpus comes from a typed transcription up-
holding the original layout, published in the open-
access repository Zenodo2 to allow the semantic
and computational study of the text from the pri-
mary source (de Sahagún, 2022). In Figure 1 we
present a folio from the manuscript where the text
in Spanish (left) and Nahuatl (right) is seen in two
columns, and an example of the transcription out-
put in our corpus.

3.1 Orthography
There is a great deal of orthographic variation
in the FC, in both the Nahuatl and Spanish sec-
tions, with multiple characters used inconsistently

1https://temoa.iib.unam.mx/creditos
2https://zenodo.org/

throughout. For example, the letter [v] can rep-
resent either /w/, e.g. veue /wewe/ ‘big’ (norm.
huehue), or a long /o:/, e.g. vmpa /o:mpa/ ‘there’
(norm. ompa). [j] is used both for the vowel /i/ e.g.,
jnpilhoan /inpilwa:n/ ‘their (pl) children’ (norm.
inpilhuan) and the glide /j/, e.g. jollochicaoac
/jol:otSika:wak/ ‘brave’ (norm. yollochicahuac).
The letter [i] is also observed in both of these con-
texts.

There are also instances where a single sound,
e.g. /S/ can be represented by multiple letters, in
this case [x] or [s]. For example, the word ax-
can /a:Ska:n/ ‘now, today’ can appear as ascan
or axcan. But [s] can also be the voiceless alveo-
lar sibilant /s/ in loan words from Spanish visorrej
/bisorei/ ‘viceroy’ (norm. visorrey).

4 Processing

A major theme of the processing of the FC is the
use of initial detailed hand-annotation in order to
bootstrap automated approaches for the remaining
text. Crucially, the resulting corpus should be us-
able for academic research and, as such, must main-
tain the utmost quality. In this context, then, we
consider automation a strategy to assist in human
annotation, but still require manual auditing of the
entirety of the annotated corpus.

4.1 Sentence segmentation
Full stops (or in dialogue, exclamation marks, and
question marks) are used as sentence boundaries
throughout the corpus, with the colon symbol of-
ten used to separate clauses, making sentence seg-
mentation fairly straightforward. There are a num-
ber of abbreviations, such as xpo. for Christ and p.
for Pedro. Table 5 presents the size of each book
in terms of sentences, space-separated tokens, and
words. Words are only given for the three books
we have processed so far.

4.2 Retokenisation
There are a number of tokenisation inconsistencies
in the original manuscript, resulting from (1) phys-
ical constraints, namely the author running out of
room on one line and splitting a word across a line
boundary (see Figure 1), (2) inconsistent tokenisa-
tion practices by the authors, such as sometimes
writing the article subordinator in and an adjacent
verb together as a single orthographic word, and (3)
possible mistakes introduced during the process of
manually typing up the manuscript.
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Y·njqc·oiuh·ipan·muchiuh, Yn·jqc·oiuh·ipan·muchiuh, In ihcuac oyouh ipan mochiuh,
·y:·njman·ic·iauh,¶qujttaz· ·y:·njman·ic·iauh, qujttaz· y: niman ic yauh, quittaz
intonalpouhquj:·vmpa·quella¶ in·tonalpouhquj:·vmpa· in tonalpouhqui: ompa
quaoa,·qujtlapaloa:·qujlvia.¶ quellaquaoa,·qujtlapaloa:·qujlvia. quellacuahua, quitlapaloa: quilhuia.

Table 1: A sentence from Book 5 of the FC, the sentence reads “When it happened, he went to see the reader
of the day signs, there he encouraged and greeted him and said:” Note that the original tokens Y·njqc have been
retokenised into Yn jqc ‘when’, the token intonalpouhquj has been split into two tokens in·tonalpouhquj ‘the reader
of the day signs’ and the tokens quella¶quaoa which have been split by a newline have been joined into quellaquaoa
‘he encouraged him’.

Our first step in processing the codex, after
obtaining text files transcribed from the original
manuscript, involves “retokenisation”: altering the
word boundaries in the text to align them with
canonical Nahuatl words.3 An example of the in-
put and output of this process is shown in Table 1,
wherein a space is represented by the mid-dot char-
acter, ·, and newline is represented by the pilcrow
character, ¶.

As with the rest of the processing steps, retokeni-
sation starts as a manual process. For each iden-
tified case where retokenisation is necessary, we
use the left and right contexts to write a rule for
handling that case, ensuring that the contexts are
large enough to avoid potential ambiguities (for in-
stance, a minimal-context rule such as “n·c →nc”
will likely produce many false positive matches).
In the event that a rule produces false positives, we
expand its contexts (e.g., “qujn·caoa →qujncaoa”).
We use a left-to-right longest-match (LRLM) algo-
rithm to apply the approximately 4,000 retokenisa-
tion rules.

4.3 Normalisation
Once the text is correctly tokenised, the next pro-
cessing step is orthographic normalisation. We use
the ACK (Andrews, Campbell, Karttunen) ortho-
graphic standard for the target orthography, since it
is designed to reflect colonial-era Nahuatl writing
(Campbell and Karttunen, 1989; Andrews, 2003;
Karttunen, 1992).

For Spanish words we use contemporary orthog-
raphy, so for example, gouernadores is normalised
to gobernadores ‘governors.’

For proper nouns, we also use modern ortho-
graphic conventions where available. For example,
tlatilulco is normalised to Tlatelolco, and motecu-

3Following authoritative resources like Andrews (2003)
and Campbell and Karttunen (1989) in identifying “canonical
words”, which should include subject, object, and aspectual
affixes.

coma is normalised to Moctezuma.
The process uses a hand-curated dictionary map-

ping original word forms to their normalised coun-
terparts (e.g. the normalised form yaoyotl ‘war’ is
written variably as iaoiotl, iauiotl, iaviotl, iaujutl
and iaujotl. Thus, our dictionary has an entry for
each of these forms mapping to the normalised
form). To build the dictionary, we start with a naïve
finite-state transducer (FST) model designed using
general patterns of colonial-era Nahuatl writing.
We then post-edit the output of the FST, adding all
correct word pairs to the dictionary. We update the
FST weights as we add forms to the dictionary to
improve its performance. After processing three
books, the dictionary contains 6,515 entries.

The main motivation for performing the normal-
isation manually is to ensure a high-quality data
set with which to train a model for automating the
process. We discuss the evaluation of such an ap-
proach in §6.2.

4.4 Part-of-speech tagging
The part-of-speech tags are based on the Univer-
sal Part-of-Speech categories (UPOS) defined and
used in the Universal Dependencies framework
(Nivre et al., 2020b).

We accomplish part-of-speech tagging in three
steps. We use a lexicon, a morphological analyser
(see §4.5) and a set of ordered, regular-expression-
based guessing rules applied to the normalised
form, in sequence. We refer to this last component
as ‘the guesser.’

The lexicon is simply a list of normalised sur-
face forms and their part of speech. Of the 10,959
types presently annotated for part-of-speech, 1,478
(6,916 tokens) received their POS from the lexicon.

In the event that a given surface form is not ob-
served in the lexicon, we next run the word through
the morphological analyser. This method accounts
for 13,762 of the tokens thus far annotated (1,705
types).
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Finally, any word not identified in the previous
two steps is passed to the guesser. The guesser con-
sists of 36 rules which use regular expressions to
look for particular prefixes and suffixes and assign
part-of-speech tags with high precision. For ex-
ample, words beginning with nimitz-, a combina-
tion of the first person subject marker and second
person object marker are categorised as verbs, and
words ending in -tzitzin, which is the plural reveren-
tial marker, are categorised as nouns. These rules
are high precision, but low recall: a total of 986
forms out of 10,959 forms (1,471 tokens) in the
three processed books receive guessed analyses.

We randomly sampled and manually checked
200 of these guesses and found that 198 were cor-
rect. In one case the mistake was due to a mis-
taken normalisation (iehoatin → *yehuatin instead
of yehhuantin ‘they, them’), which resulted in the
word being tagged as a noun due to the -tin ‘PL’
ending (plural). The second casewas to dowith the
same plural rule, which resulted in the word xixitin
‘it crumbled’ (from the verb xixintini ‘to crumble’)
being tagged as a noun.

4.5 Morphological analysis
Morphological analysis is the task of producing,
for a given surface form, a lemma and a set of
morphosyntactic tags describing that form. For
example, given the form tictlamacazque /ti-c-tla-
maca-z-que/ ‘We will give something to him’ (or
‘We will make offerings to him’) it would produce,

<s_pl1><i_sg3><o_nn3>maca<v><dv><fut>

Where <s_pl1> stands for 1st person plural sub-
ject, <i_sg3> stands for 3rd person singular sec-
ondary object, <o_nn3> stands for 3rd person inan-
imate indefinite object, <v> stands for verb, <dv>
stands for ditransitive and <fut> stands for future.
Note that there is a long distance dependency be-
tween the prefix ti-, which can be 2nd person sin-
gular or 1st person plural and the suffix -que which
marks a plural subject.

A given token can produce more than one
analysis, so for example, quinchihua ‘They made
them’ or ‘He made them’ produces,

<s_pl3><o_pl3>chihua<v><tv><pres>

<s_sg3><o_pl3>chihua<v><tv><pres>

In this case, because of underspecification in the
orthography, the plural subject-marking suffix -h

is not written, resulting in an ambiguous analy-
sis. The omission of this suffix is quite common
in Nahuatl texts.

For implementing the morphological analyser
we used the Helsinki Finite-State Toolkit (HFST)
(Lindén et al., 2009). The analyser was imple-
mented over the normalised forms. Morphotactics
and the lexicon were implemented using lexc,
while any morphographemic constraints were
implemented with twol. A given surface form,
for example, omoyollochichili ‘He strove strongly’
(lit. “he waited for himself on behalf of the
heart”), consists of three parts, the surface form
(1), the morphotactic form (2) and the lexical
form/analysis (3).

1. omoyollochichili
2. o>mo>«yollo»chichi>lia
3. <aug><s_sg3><o_ref>«yollotl<n>»

chichilia<v><tv><past>

Themorphotactic form is the combination of the
morphs beforemorphographemic rules are applied,
it includes symbols to mark segment boundaries,
such as ‘>’ for an inflectional boundary, ‘«...»’ for
incorporated elements (in this case, the second ob-
ject), ~ for reduplication and ‘·’ for clitic bound-
aries. The symbols around the incorporated ele-
ment allow that part of the surface form to be ex-
tracted for use in the representation of incorpora-
tion (see §5.1).

5 Representations

In this section we discuss a number of features of
Nahuatl that require special attention in the Univer-
sal Dependencies framework.

5.1 Incorporation
Incorporation is the process by which a verb can
incorporate, that is, be syntactically incorporated
with one or more of its arguments or adjuncts. In-
corporation has been understudied in the field of
natural language processing, and there are few arti-
cles that describe annotation projects for languages
exhibiting this feature.

In this project, we follow the proposal laid out
by Tyers and Mishchenkova (2020) in which incor-
porated items are exposed in the enhanced depen-
dency graph annotated with the relation of the slot
that they fulfill in the argument structure.
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# sent_id = Book_01_-_The_Gods.txt:87
# text = [...] : qujlhuja, timotenoatzaz, titlacatlaquaz, timocujtlaxculcaoaz, naujlhujtl: [...]
# text[norm] = [...] : quilhuia, timotenhuatzaz, titlacatlacuaz, timocuitlaxcolzahuaz, nahuilhuitl: [...]
# text[orig] = [...] :·qujlhuja·,·timotenoa¶tzaz·,·titlacatlaquaz·,·timocujtlax¶culcaoaz·,·naujlhujtl·:·[...]
[...]
10 : : PUNCT _ _ _ Norm=:
11 qujlhuja ilhuia VERB _ _ _ Norm=quilhuia
12 , , PUNCT _ _ _ Norm=,
13 timotenoatzaz huatza VERB _ Subcat=Tran|Reflexive[iobj]=Yes† _ Norm=timotenhuatzaz
13.1 ten tentli NOUN _ _ _ Norm=ten
14 , , PUNCT _ _ _ Norm=,
15 titlacatlaquaz tlacatlacua VERB _ Subcat=Intr† _ Norm=titlacatlacuaz
16 , , PUNCT _ _ Norm=,
17 timocujtlaxculcaoaz zahua VERB _ Subcat=Tran|Reflexive[iobj]=Yes† _ Norm=timocuitlaxcolzahuaz
17.1 cujtlaxcul cuitlaxcolli NOUN _ _ Norm=cuitlaxcol
18 , , PUNCT _ _ _ Norm=,
19 naujlhujtl nahuilhuitl NOUN _ _ _ Norm=nahuilhuitl
20 : : PUNCT _ _ _ Norm=:
[...]

Table 2: The second clause from the 87th sentence in Book 1. The sentence reads “He said to him: you will
dry your mouth, you will fast, you will fast your entrails, four days”. The underlined nouns are incorporated. †
Feature=Value pairs Number[subj]=Sing|Person[subj]=2|Tense=Fut|VerbForm=Fin and repeated empty columns
are left out for reasons of space.

Table 2 demonstrates this with the verb moyol-
lochichili, where the verb chichilia ‘enbitter’ takes
the incorporated object yollo- ‘heart.’

5.2 Relational nouns
Relational nouns are nouns which express spatial
and temporal relations when used with other noun
phrases. These may be used as independent words
in a possessive structure (1) or compounded to
other words (2).

1. inepantla in ilhuicatl ‘in the midst of the heav-
ens’ (lit. its-midst the heaven)

2. ilhuicayollotitech ‘in the heart of the heavens’
(lit. heavens-heart-on)

The first case is straightforward, each noun is
analysed as a separate word, with the relational
noun receiving a lexical feature NounType=Relat
in addition to the necessary possessive morphol-
ogy.

In the second, we take advantage of the multi-
token word encoding in the CoNLL-U format and
analyse the compound as consisting of two parts,
the head and the compounded relative noun.

5.3 Lemmas
We also include the lemmas, or the stems, for each
word. Lemmas ignore any of the inflectional mor-
phology on the surface form of the word. Lemma-
tisation is performed first by looking up a surface

form in the lexicon and, if the word is not in the
lexicon, by the morphological analyser.

6 Automated processing
We experiment with the existing processed FC data
to see to what extent we might be able to auto-
mate the retokenisation and normalisation steps.
Following previous work showing that historical
text normalisation can be modelled effectively
as a character-based machine translation problem
(Bollmann, 2019), we train an encoder-decoder
Seq2Seq model with Attention on character se-
quences for both tasks. While a natural inclination
would be to train both retokenisation and spelling
normalisation jointly, we are interested in storing
each intermediate step for potential future research,
and so train a separate model for each task.

For the orthography normalisation model, we
treat each word as a training instance, and map
the unnormalised word (e.g. qujchioa) to its cor-
responding normalised form (e.g. quichihua).

For the retokenisation model, training on each
word would not work since the phenomenon we
are modelling spans word boundaries. Instead, we
split the text on unambiguous punctuation (‘.,:;?!’),
creating numerous subsequences from each sen-
tence.

Since the objective is to evaluate how well
we could automate the text processing for future
books, we used two of the three already-complete
books (Books 1 and 8) for training, and held out
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Book 5 for evaluation. The models used a bidirec-
tional LSTM encoder, and training was done using
OpenNMT (Klein et al., 2020). We trained both
for 100 epochs.

Results of the experiments are listed in Table 3.
They are generally favourable, though perhaps not
quite to the point of being able to completely au-
tomate the low-level processing of the remaining
books.

6.1 Retokenisation
A number of the mistakes we see from the reto-
kenisation model involve a type of ‘hallucinations,’
where the output contains characters not in the in-
put. This is an effect of treating this problem as
one of translation with a relatively low volume of
training data. To remedy this problem, we may try
adding an additional auto-encoding or “copying”
auxiliary task as discussed in Mager et al. (2019),
wherein we add training examples that are already
correctly tokenised in order to provide more exam-
ples of correct outputs.

Alternatively, the task of retokenisation can
be straightforwardly modelled as a one-to-one se-
quence tagging problem, where for each input char-
acter the model must assign one of three “reto-
kenisation actions”: (1) merge, or remove a to-
ken boundary that follows the current character, (2)
split, or add a token boundary after the current char-
acter, or (3) do nothing. For comparison, we also
evaluate this approach, using a bidirectional LSTM
also trained for 100 epochs.4 This approach has a
slightly worse word error rate compared to the MT-
based approach, but has a lower character error rate.
The advantage to this approach is that we don’t risk
transforming characters or inserting substrings dur-
ing the tokenisation step.

6.2 Orthographic normalisation
The orthographic normalisation model correctly
normalises 87% of the words in the held out book.
The errors suggest a similar issue seen in the re-
tokenisation model, namely the insertion of mul-
tiple additional characters not corresponding to
the input (e.g. converting input ie, to *yeyecye
instead of ye). This issue, as mentioned above,
would likely be alleviated with some data aug-

4Given our limited data volume and the interest to simulate
testing on an unseen book, the results we report here do not
include a hyper-parameter tuning step using a heldout devel-
opment set. With an additional held out book we could tune
these models’ hyperparameters and improve performance.

mentation and/or multi-task training to ensure the
model sees enough examples of properly formed
output strings. We plan to leverage this model as a
backup in the case where we are not able to iden-
tify a normalisation via our dictionary-lookup ap-
proach. For example, by first checking if we have
seen a given word in the training data and, if so,
using the corresponding output from training and
using the model’s prediction on unseen words only,
the word error rate drops to 8.3.

7 Use cases

In this section, we provide descriptions of a few
research questions that could be informed by our
corpus. The use cases are based on information
that is available in the corpus and is not found in
other editions of the manuscript.

The first use case concerns the status of the
tlamatinimeh ‘sages, wise men’ (lit. those who
know things). It is widely claimed that there is
no philosophy outsideWestern philosophy (Maffie,
2014), but this claim has been contested by schol-
ars, starting from Ángel María Garibay and his stu-
dent Miguel León-Portilla who identify the tlama-
tinimeh with philosophers and argue that the pre-
contactMexicans had long philosophical traditions
(León-Portilla, 1956). Analysing individual words
has since this work been the basis of understand-
ing Nahua thought. However, to date this process
is difficult and error-prone as it involves carefully
reading through unannotated concordances of sur-
face forms and it is easy to miss examples that ap-
pear in forms that are unknown or unfamiliar to the
researcher.

Our corpus will be able to help by allowing
scholars to extract examples that are morpholog-
ically and syntactically related. For example, by
allowing queries based on lemmas (encompassing
for example tlamatini ‘sage’, tlamatinimeh ‘sages’,
etc.) It will also allow for searching for specific
syntactic constructions, such as those where a tla-
matini is the subject of a speech verb.

The second use case concerns concepts of time.
For instance, consider Maffie (2014)’s statement
about the Mexica conceiving time and space as
a single unit. He argues that the Mexica did not
separate time and space but had a perception of a
“time-place” . This argument is based on the word
cahuitl, which means ‘time’, and the intransitive
verb cahui, which means “to stay or end”. How-
ever, Maffie argues that cahuitl is also related to
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Task Model Train Test CER WER
Retokenisation: NMT 5,245 1,264 3.6 23.1

Sequence labelling 5,245 1,264 2.8 23.9

Orthographic normalisation: NMT 15,208 3,209 4.3 13.3
NMT + Dictionary 15,208 3,209 1.7 8.3

Table 3: Results from experiments on automating text processing tasks (retokenisation and normalisation). The
training set includes books 1 and 8, while the test set includes book 5.

Ret. Action Precision Recall F1
Merge 0.856 0.952 0.902
Split 0.978 0.926 0.952
Nothing 0.997 0.995 0.996

Table 4: Results on predicting the “retokenisation ac-
tions” to correctly tokenise each original sequence. The
corresponding word and character error rates are listed
in Table 3.

the transitive verb cahua, which means “to leave
or abandon”, among other senses.

The morphological annotations (including lem-
mas) in our corpus will allow for searching on
lemma (to be able to distinguish forms of cahui
from forms of cahua). And the syntactic annota-
tions will allow for the extraction of time and place
obliques that are dependents of those two verbs.

8 Concluding remarks

We have outlined the strategies and approaches in-
volved in creating a free and open, linguistically-
annotated corpus of the FC. Having nearly com-
pleted retokenisation, orthographic normalisation,
lemmatisation, part-of-speech tagging, and mor-
phological analysis for 3 of the 12 books, we have
established the key linguistic information to in-
clude in the corpus, and have engineered the foun-
dations of the annotation process. Results of our
preliminary experiments into automatic annotation
suggest that some tasks, like orthographic normal-
isation, can largely be automated with the existing
data, whereas others, e.g., retokenisation, likely
still require more labelled data and/or a more pow-
erful architecture.

8.1 Future work
Our first priority for the future is to continue the an-
notation process, automating some of the text nor-
malisation, expanding the lexica, and enhancing

the morphological analyser. We are optimistic that
with each subsequent book, the additional amount
of available annotated data will enable faster future
annotation via automation. Finally, adding depen-
dency syntax annotations will enable quantitative
analysis of colonial Nahuatl syntax, a field with rel-
atively little prior work.

The study described in §7 is one of many poten-
tial uses of an annotated corpus as described here.
We expect that the release of this corpus with com-
plete morphosyntactic annotations and an unam-
biguous free licence will promote future research
from scholars in a variety of fields.

Additionally, the tools for automatic processing
of the FC will likely be applicable to the numer-
ous additional texts written in Nahuatl during the
colonial period, contributing to the advancement
of language technology development for Nahuatl.

Finally, another important project related to the
development of this corpus involves the transla-
tion of the FC into contemporary Nahuatl variants,
making the rich cultural heritage of theNahuatl lan-
guage more accessible to Nahuatl-speaking com-
munities. It is our hope that the production of this
corpus can aid in the translation process.
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Book Title Sentences Tokens Words
01 The Gods 178 6,066 6,481
02 Ceremonies 664 29,209 –
03 The Origins of the Gods 186 5,794 –
04 The Art of Divination 341 24,283 –
05 The Omens 111 3,546 4,470
06 Rhetoric and Moral Philosophy 1,450 57,021 –
07 The Sun, Moon, Stars, and the Binding of the Years 229 5,189 –
08 Kings and Lords 348 13,711 13,970
09 The Merchants 506 21,022 –
10 The People 1,217 35,196 –
11 Earthly Things 3,074 78,066 –
12 The Conquest of Mexico 667 27,099 –

8,971 306,202 24,921

Table 5: A breakdown of the FC by book. “Tokens” refers to raw whitespace-separated tokens, prior to the reto-
kenisation process described in §4.2. At present, we have processed approximately 637 sentences containing a total
of 25,000 words. We strategically started with the shorter books for manual processing with the idea that we can
leverage this data to mostly automate the processing of the longest books.

A Books of the Florentine Codex
Table 5 presents some statistics about the books of
the Florentine Codex.
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Abstract

We describe a suite of finite-state language
technologies for Maya, a Mayan language spo-
ken in Mexico. At the core is a computa-
tional model of Maya morphology and phonol-
ogy using a finite-state transducer.1 This
model results in a morphological analyzer and
a morphologically-informed spell-checker. All
of these technologies are designed for use as
both a pedagogical reading/writing aid for L2
learners and as a general language processing
tool capable of supporting much of the natu-
ral variation in written Maya. We discuss the
relevant features of Maya morphosyntax and
orthography, and then outline the implementa-
tion details of the analyzer. To conclude, we
present a longer-term vision for these tools and
their use by both native speakers and learners.

1 Introduction

Maya2 is a member of the Yucatecan branch of
the Mayan language family (Figure 23). It is the
second most widely-spoken indigenous language
of Mexico, with around 800,000 speakers primar-
ily in the states of Yucatan, Quintana Roo, and
Campeche in southern Mexico (Collin, 2010) (See
Figure 14), including a substantial speaker popu-
lation in California (Mattiace and de Mola, 2015)
and a modest population in Belize.

1https://github.com/apertium/apertium-yua
2We follow the recommendation of the Open School or

Ethnography and Anthropology and the Community Insti-
tute of Transcultural Change (see §1.1) with respect to ter-
minology, using the term “Maya,” the autonym of the Maya-
speaking people, when referring to the language or cul-
tural/ethnic group, instead of “Yucatec Maya,” commonly
used by linguists, or “Mayan”, which should be reserved for
referring to the language family or proto-Mayan (Castañeda
and Dzidz Yam, 2014).

3Figure 2 was created by user Madman2001
(https://commons.wikimedia.org/wiki/File:
Mayan_Language_Tree.svg)

4Figure 1 is based on work by user Kmusser
(https://commons.wikimedia.org/wiki/File:
Mexico_States_blank_map.svg)

Figure 1: A map highlighting the three Mexican states
where Maya is spoken: Yucatan (Orange), Quintana
Roo (Purple), and Campeche (Yellow).

Text-based language technologies, ubiquitous
for a small number of “mainstream”, mostly colo-
nial languages such as English or Spanish, facili-
tate human-computer interaction and to a large ex-
tent computer-mediated communication, and can
aid in language learning (Shadiev and Yang, 2020).
Furthermore, language technology for endangered
languages can play a useful role in language main-
tenance and revitalization efforts (Reyhner, 1999;
Ben Slimane, 2008; Zhang et al., 2022). Unfortu-
nately, there is a paucity of such technology for
most of the world’s languages, leaving speakers
and language learners without potentially valuable
resources. Consequently, monolingual speakers
face additional barriers to entry in the digital do-
main, and speakers who are bilingual in a domi-
nant, colonial language for which such technology
exists will be more likely to use that language on-
line and on digital devices, further contributing to
language shift.

This paper outlines the design and implemen-
tation of a finite-state morphological analyzer for
Maya. Developed in concert with Maya language
educators, the analyzer is intended for use as a
writing tool for authors, educators, and students
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Figure 2: The Mayan language family. Maya (“Yucatec
Maya”, the focus of this paper) is located on the green
“Yucatecan Branch”.

(to ensure consistent written resources via a spell-
checker), and as a reading-aid that can provide stu-
dents with lexical information (e.g. the root and/or
grammatical features) about an unknown word in
a text. We focus primarily on the grammar of
Maya and the implementation of the analyzer, and
present a prototype of a working spell-checker.

1.1 Motivation and OSEA-CITE
The motivation for the present work stems from a
collaboration with the Open School of Ethnogra-
phy and Anthropology and the Community Insti-
tute of Transcultural Change (OSEA-CITE, hence-
forth OSEA), a Pisté-based organization whose
stated focus is “language revitalization, sustainabil-
ity, cultural ownership, heritage rights, community
health and well-being, the innovation of tradition,
and the interconnections between local, national,
and transnational communities and social forces.”
While designed with Maya speakers, learners, lin-
guists, and language activists in mind, the tech-
nologies described below are particularly informed
by and aligned with OSEA pedagogical materials
(Castañeda, 2014) for use in the classroom as read-
ing and writing tools for both learners and educa-
tors in OSEA programs.

2 Related work

The use of finite-state transducers (FSTs) for mod-
eling human language has a long tradition span-
ning multiple decades (Kornai, 1996) and prov-
ing effective in areas such as morphological analy-
sis (Beesley and Karttunen, 2003), spell-checking

(Pirinen et al., 2014), among others. It is partic-
ularly attractive in the low-resource case since it
requires significantly less data than popular sta-
tistical approaches. Furthermore, finite-state sys-
tems can also be leveraged in order to generate data
to train better statistical machine-learning models
(Moeller et al., 2018).

The application of finite-state language technol-
ogy to indigenous languages of Mesoamerica also
has some precedent, with morphological analyzers
developed for Nahuatl (Maxwell and Amith, 2005;
Pugh and Tyers, 2021; Tona et al., 2023), Zapotec
(Washington et al., 2021), Huave (Tyers and Castro,
2023), and K’iche’ (Richardson and Tyers, 2021).
Nicolai et al. (2020) present the large-scale devel-
opment of morphological analyzers and generators
for over one thousand languages using the Johns
Hopkins University Bible Corpus (McCarthy et al.,
2020), including some Mayan languages.

Kuhn and Mateo-Toledo (2004) is perhaps one
of the earliest published works focused on the
development and application of language tech-
nology to assist in documenting a Mayan lan-
guage, Q’anjob’al (spoken in Guatemala), training
a maximum-entropy part-of-speech tagger. Palmer
(2009) and Palmer et al. (2010) also apply tech-
niques from machine learning and computational
linguistics to the documentation of a Mayan lan-
guage (Uspanteko, also spoken in Guatemala).
More recently, Tyers and Henderson (2021) and
Tyers and Howell (2021) developed an anno-
tated linguistic corpus of K’iche’ and explored ap-
proaches to automated tagging and parsing. Maya
is also included as one of six Mexican languages
aligned with Spanish in the Parallel Corpus for
Mexican Languages (Sierra Martínez et al., 2020).

There has also been interest and some work
leveraging computational technology to annotate
and analyze Classic Maya heiroglyphic writing
(Prager et al., 2018; Vertan and Prager, 2022).

Particularly relevant to motivation and aims of
the present project, Gasser (2011), outlines useful
applications of computational morphological ana-
lyzers for learners of morphologically-rich indige-
nous languages of the Americas.

3 Orthography

The Latin alphabet has been used to write Yucatec
Maya since the 16th century, but the first organized
efforts to standardize the orthography took place in
the mid-20th century (Brody, 2004). The colonial-
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era writing practices are described thoroughly in
Shigeto (2011), and a variant of this orthographic
approach is also used in Bolles and Bolles (2001).
Many linguistic resources for Maya also use an or-
thography inspired by theAmericanist Phonetic Al-
phabet (Bricker et al., 1998; Blair and Vermont-
Salas, 1965), (e.g. using P for the glottal stop). To-
day, the commonly (though by no means unani-
mously) adopted “contemporary orthography” is
laid out in the publication Normas de Escritura
Para la Lengua Maya (SEP & INALI, 2014).

In the classroom, OSEA teaches a writing sys-
tem similar to the contemporary one, with a few
pedagogically-motivated changes, like the explicit
marking of low tone on long low vowels. Addi-
tionally, there are some differences related to the
spelling of specific words. In order to offer stu-
dents a consistent source for spelling questions
(primarily with respect to vowel quantity and tone),
OSEA uses Bricker et al. (1998) as an authorita-
tive reference. This is not to say that alternative
spellings are incorrect from OSEA’s perspective,
but rather that it is valuable for students to have a
thorough and consistent guide to reference when
making spelling decisions5.

Since the project presented here is intended to be
used by students and teachers in the OSEA Maya
language program, we follow these orthographic
norms while still supporting both the colonial and
contemporary orthographies. Details about this
are provided in section 6.5.

4 A brief overview of Maya
morphosyntax

An important linguistic property of Maya worth
mentioning at the outset is that it does not have
tenses, per se. Instead, it inflects verbs for aspect to
reflect whether a given action has been completed,
or how long ago it began (Bricker et al., 1998). De-
tails about this system are explored in greater depth
in section 4.2.

Maya is a split-ergative language, i.e. it fol-
lows ergative-absolutive alignment in all but the
imperfective aspect, where it follows nominative-
accusative alignment.

As will become obvious in the discussion be-
low, Maya has a complex derivational system.
Most word classes can be derived from other word

5It should be noted that our implementation is also flexi-
ble and can be easily-updated to be applied to other writing
conventions and pedagogical environments.

classes, and the transitivity and voice of a verb is
derived morphologically as well.

4.1 Pronouns
Maya has three sets of pronouns: one set (the “in-
dependent pronouns”) is syntactically independent
of verbs while two, called “Dependent Pronouns”
are affixes or clitics on the verb.

Independent pronouns, as the name suggests,
are independent words (e.g. not affixes or clitics).
They may be used to emphasize (Example 1) or
topicalize (Example 2) a verbal argument, or after
prepositions to express indirect objects.

(1) k’abéet
OBLIG

a
S2

bin-e’ex
go-S2PL

te’ex
PRON2PL

‘You all (emph.) must go’.

(2) te’ex-e
PRON2PL-TOP

k’abéet
OBLIG

a
S2

bin-e’ex
go-S2PL

‘As for you all, you must go’.

Set A pronouns (a in examples 1 and 2) which
come before the verb, typically written separated
from the verb, and are sometimes written as
merged or contracted with a preceding aspectual
auxiliary. With respect to case, Set A pronouns
correspond to the A argument (as defined in Dixon
andDixon (1994)) except when in the imperfective,
in which case they are the subject of both transitive
and intransitive verbs, except in copular clauses
where a Set B pronoun is used to mark the subject.
Set A pronouns are also the possessive pronouns.

Set B pronouns are suffixes used to express the S
and O arguments of the verb, i.e. the subject of an
intransitive verb and the object of a transitive verb,
except in the imperfective. They are also used as
the subject in copular clauses.

4.2 Verbs
Verbs are by far the most morphologically complex
words in Maya. The specific components of the
“verb compound” depend on the verb’s transitivity
and the aspectual class of the conjugation. The as-
pectual auxiliaries and Set A pronouns are often
written as separate orthographic words from the
verb itself.

In the imperfective, verbs typically must be pre-
ceded by an aspectual auxiliary followed by a Set A
pronoun. For example, k (habitual), táan (progres-
sive aspect), laili’...e’ (“still doing X”), etc. Note
that some of these auxiliaries, such as laili’ above,
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Orthography Notes Example text
Colonial-style cħ, pp, dz for /tS’/, /p’/, and /ts’/,

no tone or length marking on
vowels

Le cħocħlin, tumen chen kay cu betice
ti le yax kino, ma tu bin u caxte u yoch.

Contemporary..........
(INALI)

j for /h/, marks long high and re-
articulated vowels

Le ch’och’lin, tumen chen k’aay ku
beetike’ ti’ le yáax k’iino’, ma’ tu bin
u kaxtej u yo’och.

Modified contempo-
rary (OSEA)

Similar to Contemporary.
Marks long high, long low, and
rearticulated vowels, h for /h/

Le ch’och’lin, tumèen chen k’àay ku
bèetike’ ti’ le yáax k’ìino’, ma’ tu bin
u kaxteh u yo’och.

Table 1: An example of three different orthographic styles in written Maya. The original text is from Bolles and
Bolles (2001) and is written in a style inspired by colonial-era orthography, which we refer to here as “Colonial-
style.” Note the differences in character choice (e.g. j vs. h), as well as minor spelling differences like tumen vs.
tumèen (the latter’s vowel quantity and tone coming from a particular reference dictionary). The descriptions of
the orthographies are by no means exhaustive, as a complete breakdown of the similarities and differences of each
is beyond the scope of this paper.

Person/Num. Set A Set B Indep.
1Sg in -en tèen
2Sg a -ech tèech
3Sg u Ø leti’
1Pl k -o’on to’on
2Pl a...-e’ex -e’ex te’ex
3Pl u...-o’ob -o’ob leti’o’ob

Table 2: A table of the three sets of Maya pronouns: de-
pendent pronouns (Set A, Set B) and independent pro-
nouns. Note that the second- and third-person plural Set
A pronouns consist of both a prefix and a corresponding
suffix

have a corresponding terminal enclitic that is at-
tached to the end of the verb (Example 3). The as-
pectual auxiliaries often combine with the adjacent
Set A pronoun to form a contraction, e.g. táan+in
→tin.

(3) laili’
still

u
S3

xòok-o’ob-e’
study.APS-3PL-CONT.

‘They (pl.) are still studying’.

There are three important features of verbs that
determine how they are inflected: transitivity, the
derivational processes undergone to achieve that
transitivity (e.g. is the verb a transitive root or an in-
transitive/nominal/adjectival root that has become
transitive via derivation), and voice (Maya has four
distinct voice categories: active, passive, antipas-
sive, and middle).

Intransitive verb stems often take one of a set of
aspectual “status” suffixes6 depending on the as-

6Bohnemeyer (1998), Brody (2004), and others have re-

Root Deriv. Asp. status SetB SetA Pl.
hóok -s -ah -en -e’ex
go.out CAUS PERF O.SG1 S.PL2

Table 3: A simplified template of the verbal compound
in Maya, with each slot’s corresponding value for the
word hóoksahene’ex “You (pl) took me out.” Not all of
the possible verbal morphemes are represented in this
table. To the left of the verb, the verbal compound can
also include a negation marker, an aspectual auxiliary,
and/or a Set A pronoun. These are omitted from the
template above since they are typically written as sep-
arate orthographic words, and thus are treated as such
in our analyzer. On the right side, there can also be a
“terminal enclitic” (Bricker et al., 1998) corresponding
to a previous part of the phrase, such as a negation or
locative particle (-i).

pect and/or mood: -Vl suffix in the imperfective,
where V matches the vowel in the root, a null suf-
fix in the perfective, -a’an in the present perfect,
and -Vk in the subjunctive.

Transitive verb stems in the active voice take as-
pectual status suffixes -ik, -ah, and -mah in the im-
perfective, perfective, and present perfect aspects,
respectively. In the subjunctive mood, no suffix is
added, unless the verb is phrase final, in which case
it takes -eh.

The majority of root transitive verbs follow a
CVC phonological template, which changes sys-
tematically to produce changes in voice: CV̀VC for

ferred to these suffixes as “status suffixes”, and they go by
various other names in the literature. In the OSEA-CITE ped-
agogical literature, these suffixes are referred to as “primary
suffixes”. We use the term “status” in this paper for the sake
of consistency with previous linguistic work.
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antipassive, CV’VC for passive, and CV́VC for the
middle voice. The status suffixes for these verbs
are listed in Table 5. Transitive verbs can become
reflexive with the addition of a suffix of the formula
‘Set A + bah’ (Example 4).

(4) táan
PROG

in
S1SG.A

wil-ik-in-bah
see-STATUS-S1SG.A-REFL

‘I am seeing myself.’

Intransitive roots can be transitivized with either
the -t suffix or the causative -s suffix. They typi-
cally use the same status suffixes as transitive roots.

A third class of verbs with a distinct morpholog-
ical pattern is that of Positional verbs. These verbs
take status suffixes -tal, -lah, -la’an, and -lak in the
imperfective, perfective, present perfect, and sub-
junctive, respectively.

Note that the discussion here is limited only to
regular intransitive roots, regular transitive roots,
and positionals. There are other verb root classes
that follow slightly different inflectional patterns,
but a complete description of them is beyond the
scope of this paper.

4.3 Nouns and adjectives
Nouns and adjectives have notably less
morphologically-complex than Maya verbs.
They inflect for number, with the suffixes -o’ob
and -tak (the latter for expressing a plurality of
types vs. simply plural in number). Both Nouns
and Adjectives can also behave as intransitive
predicates, taking a Set B pronoun as the subject
(Example 5. Commonly, Nouns that are core
arguments of the verb can be topicalized by
placing them at the front of the sentence with
the topic suffix -e. Deixis can also be expressed
using nominal morphology. Gender, while not
a required feature of Nouns, can be indicated
with the prefixes x- and h- (x- is also used as an
instrumental nominalizer on verbs). Verbs can be
derived from either nouns or adjectives using -tal
/ -chahal for intransitives (e.g. ma’alob “good”
→ma’alobtal “to improve”) and -kuns / -kins
for transitives (e.g. wíinik “man” →wíinikkunsik
“make someone into a man/human”).

(5) kòolnáal-o’on
farmer-S1PL
‘We are farmers’.

4.4 Phrase-level morphology
There are a number of cases of words in Maya
which require a corresponding terminal suffix at

Title Sentences Tokens
Simple Sentences 103 553
Tsikbalo’ob 200 1,099
Xkùuruch 85 710
Mam Ku’ukeba 41 376
Hun túul xnùuk òoch 11 129
Ch’och’lin yéetel síinik 11 166

Total 451 3,033

Table 4: A breakdown of the different works that make
up the corpus.

some point later in the phrase. These include the
negation marker ma’a, which typically requires
that the end of the negated word or phrase have
a -i suffix, certain aspectual auxiliaries like laili’
which has a corresponding -e at the end of the verb
phrase, and numerous other cases. Deictic suffixes
-a “this”, -o “that”, and -e “this right here” also cor-
respond to a prenominal article le (See Example 6).

(6) ti’
ADP

le
ART

yáax
first

k’ìino’
day-DEM3

‘At the beginning of that day’.

5 Data
For development, we use a small corpus consist-
ing primarily of pedagogical texts used in the class-
room by OSEA. They include lists of sentences
and a number of tsikbalo’ob (dialogues). We also
include four short stories from Bolles and Bolles
(2001), for which we changed the orthography to
reflect the writing norms of OSEA-CITE (with
permission from the author). Sentence and token
counts are listed in table 4.

6 Implementation
The morphological analyzer is developed within
the Apertium project (Forcada et al., 2011; Khanna
et al., 2021), and is made up of three principle com-
ponents: a model of Maya morphotactics, a model
of phonological processes, and an analysis disam-
biguation step. A sample of the type of analysis
that is produced can be seen in Table 6.

Onemajor advantage of using the Apertium plat-
form is that a single morphological model can triv-
ially be extended to additional applications, such
as spell-checking and machine translation. Here,
we describe the development of the morphological
analyzer, and briefly discuss a spell-checking ap-
plication prototype.
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Aspect/Mood Trans. Intr. Positional Aps Derived Trans Pss
Imperfective -ik -Vl/Ø -t-al Ø -a’al
Perfective -ah Ø -l-ah -nah -a’ab
Present perfect -m-ah -a’an -l-aha’an -naha’an -a’an
Subjunctive -Ø/-eh -Vk -l-ak -nak -a’ak

Table 5: Some of the common aspectual “status suffixes” (“primary suffixes”) for different types of Maya verbs.
Trans. and Intr. refer to transitive and intransitive root verbs, “Aps” = Antipassive, and “Derived Trans Pss” refers
to intransitive roots that are transitivized and then passivized (e.g. hóoken “I went out” →a hóoksahen “You took
me out” →hóoksa’aben “I was taken out.”)

Word Analysis
Ma’ "ma'" neg
ta "t" aux pfv

"a" s_sg2 pron
kaxtah "kax" v tv pfv o_sg3
ba’al "ba'al" n sg
hanteh "han" v tv subj o_sg3

Table 6: An example of the output from our analyzer
for an example sentence from the story “Ch’och’lin
yéetel síinik”: Ma’ ta kaxtah ba’al hanteh? “You
didn’t find something to eat?” The tagset corre-
sponds with common abbreviations used in Aper-
tium: neg=Negation, aux=Auxiliary, pfv=Perfective
s_sg2=Second-person singular subject, pron=Pronoun,
v=Verb, tv=Transitive, o_sg3=3rd-person singular ob-
ject, n=Noun, sg=Singular, subj=Subjunctive.

6.1 Morphotactics
Morphotactics are defined using lexc. For verbs,
we separate intransitive roots, transitive roots, and
positionals. We encode lexical information about
the root, e.g. whether an intransitive root takes
the -Vl ending in the imperfective, in the lexicon
entry. When a word undergoes derivation, we
maintain the original lemma. For example, the
CVC transitive root xok has in its lexicon entry the
two additional voice derivations:

! Study, read
xok<v><tv>:xok TransActive;
xok<v><iv><aps>:xòok TransAps;
xok<v><iv><pss>:xo'ok TransPss;
xok<v><iv><mv >:xóok TransMed;

Each continuation lexicon reflects the specific
set of status suffixes for the given root, aspect, and
mood.

The lexicon entries for intransitive verbs also
include lexical information, e.g. whether a given
verb’s transitive derivation takes the transitivizer -
t, the causative -s, or nothing.

Noun stems are optionally preceded by the gen-
der/agentive prefixes h- or x-, and are followed by
either the nominal inflections (e.g. diminutive, plu-
ral, possessive suffixes) or by denominalizing ver-
bal morphology (e.g. the -tal / -chahal status suf-
fixes).

Since the aforementioned terminal clitics can
be appended to most words, each word optionally
ends with them.

6.2 Phonology
Phonological processes are modeled with twol
rules (Karttunen et al., 1987). As an example, take
vowel harmony, a common process in Maya. In
cases where a morpheme’s vowel harmonizes with
that of the previous morpheme (e.g. the -Vl suffix
for many intransitive roots), we represent these
vowels as archiphonemes, and define the harmony
process in twol as follows:

"Vowel harmony"
V:Vx <=> Vx [Cns | >:0 | ']+ >:0 _
; where Vx in UnaccVow ;

This component is also where we handle com-
mon contractions. For example, the intransitive
verb tàal “come”, when transitivized with the
causative -s, usually drops the last consonant in
the root (tàal-s-ik →tàasik). There are a number
of verbs for which this is the case, irrespective of
which transitivizer they take. For these verbs, we
represent the root with an archiphoneme (e.g. {l}
as the last consonant of the root, which is surfaced
as either ‘l’ or ‘Ø’).

6.3 Analysis disambiguation
Given the complexity of Maya morphology, our
model of morphotactics often produces a number
of potential analyses for the same form. As a sim-
ple example, take the second-person Set A pro-
noun a. This is used for both singular and plu-
ral subjects/possessors, and the number of the sub-
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ject is determined by the presence or absence of
the second-person plural suffix on the adjacent
verb/noun. Similarly, the phrasal terminal suffixes
-i and -e on a verb could signify negation, agree-
ment with one of a subset of aspectual auxiliaries,
or a locative analysis.

We use Constraint Grammar (Karlsson et al.,
2011) to disambiguate analyses using the analyses
and lemmas of words in the surrounding context.
For example, to disambiguate the a Set A pronoun,
we use the following rules:

REMOVE PRO + 2Sg IF (1 VN + SPl2);
REMOVE PRO + 2Pl IF (1 VN - SPl2);

Any time the Set A pronoun a is seen, it will
include both plural and singular analyses. The
first rule above removes the singular analysis if
the following (right-adjacent) word is a verb with
a second-person plural subject analysis. The sec-
ond rule removes the plural analysis if the right-
adjacent word is a verb without a second-person
plural analysis.

The example above is one of a large number
of Constraint Grammar rules needed to effectively
narrow-down themorphological analyses using the
surrounding words as context.

6.4 Spell checking

While the ability to automatically provide a mor-
phological analysis is both interesting and valuable
in itself, our system, thanks to the infrastructure set
up by the Apertium project, is also easily extensi-
ble to a number of other applications. Here, we
briefly discuss how we integrated the morphologi-
cal analyzer to make a spell-checker and spelling-
corrector for a word processor.

The use of finite-state models for efficient spell-
checking of morphologically-rich languages has a
long history (Beesley andKarttunen, 2003; Pirinen
et al., 2014). As a prototype spell-checker and cor-
rector, we use an FSTwhich transduces incorrectly-
spelled words within a fixed edit-distance to the
words in our model. This FST can then be inte-
grated with a spelling and grammar extension de-
veloped by the Voikko7 project to be used with Li-
breOffice Writer8, a free and open source, multi-
platformword processor that is part of the LibreOf-

7https://voikko.puimula.org/
8https://www.libreoffice.org/discover/

writer/

fice suite of software9. Figure 3 shows a screenshot
of the spell-checker in action. Its current status
is a working prototype, but we plan to improve it
by adding common misspellings to the model and
weighting it using proofread written text.

6.5 Supporting variation in written Maya:
normative and descriptive models

An important intended feature of our model is
the ability to simultaneously support a normative
model for pedagogical purposes, and a descrip-
tive model for other natural language processing
tasks. Specifically, the spell-checker, insofar as it
is used by a language teacher to write pedagog-
ical material or to encourage uniformity in writ-
ing practices among students, should adhere to
the principles taught and followed by the educa-
tors. The morphological analyzer on the other
hand, which can be used to help understand, ana-
lyze, or segment a Maya text from a number of po-
tential sources/authors, should be flexible to com-
mon written variation in the language.

The Apertium platform allows for precisely this
flexibility via “Direction” flags in our morphotac-
tics file, and a spellrelax file. The “Direction”
flags are simply commented annotations on a spe-
cific line in the lexc file that specify which di-
rection that line should be included in at compile
time. As an example, take the case of the nomi-
nal classifier. It is commonplace to see the num-
ber, such as hun “one”, and the following nominal
classifier, e.g. p’éel for inanimate nouns, written
as a single orthographic word (in this case with
nasal place assimilation): hump’éel. The OSEA
program teaches its students to write these as two
separate words: hun p’éel. Thus, we would like
for our spell-checker to identify hump’éel as “in-
correctly” spelled, while still recognizing this form
in the analyzer so as to cover common variation in
contemporary Maya writing. We can achieve this
by including the annotation Dir/LR on the entry
for this variant. This is a very minor example, but
is one of many, and is illustrative of the type of
flexibility we want to maintain in our system.

The spellrelax file allows for orthographic
variation in the input of the morphological ana-
lyzer, and the ability to map it to the canonical
written forms used in our lexicon. We use this
file to support the large amount of orthographic
variation that is characteristic of Maya writing.

9https://www.libreoffice.org/
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The following three lines illustrate how we handle
(1) the common use of [j] where the OSEA orthog-
raphy uses [h], (2) the omission of tone marking
on long low vowels also characteristic of the con-
temporary INALI orthography but dispreferred
for pedagogical purposes by OSEA, and (3) the
use of [dz] for [ts’] in texts using the colonial style:

[ h (->) j ] .o. ! j for h
[àa (->) aa] .o. ! opt low mark
[ts' (->) dz] ! colonial ts'

Figure 3: Screenshot of spell-checking for Maya
based on the analyzer discussed in this paper. The
spellchecker correctly identifies the misspelling of
“tàak” (which in our normative spelling requires mark-
ing of the long low vowel) and “wilike’exi’” in the
incorrectly-spelled sentence “ma’ taak in wilikeexi” “I
don’t want to see you (pl).” Note that the form wil-
ike’exi’ is not explicitly listed in a spelling lexicon. In-
stead, the analyzer contains the root verb il, and the mor-
phological model enables the suggestion of the correct
inflected form w-il-ik-e’ex-i’.

7 Coverage

On our modest-sized corpus, the morphological
analyzer’s coverage is about 96% on tokens and
85% on types. Of the forms currently not covered
by the analyzer, many are interjections that may
be author-specific (e.g. “kikiriki”, the sound of a
rooster crowing), and foreign loans (e.g. “cinco”,
“greedy”). Currently, all of the missed words by
our analyzer are hapax legomena.

8 Concluding remarks and future work

We have described in detail a finite-state morpho-
logical analyzer for Maya, and demonstrated its
utility outside of merely performing morphologi-

N Coverage (%)

Tokens 3,033 96
Types 734 85

Table 7: Current coverage of our analyzer on the corpus.
All of thewords not yet covered have a frequency of one.

cal analysis by using the model to build a spell-
checker.

For the near future, our first priority is grow-
ing the corpus. We are in the process of normal-
izing the orthography for a number of additional
texts which we will then add and use to update
the analyzer lexicon. Outside of simply improv-
ing the vocabulary and coverage of the analyzer,
we plan to explore the numerous ways this tool
can be of use to students by incorporating it into a
browser-extension that aids the user’s understand-
ing of Maya texts read in the browser.

We also hope to improve the spell-checker
by adding a better-informed error model that
takes into consideration common spelling mis-
takes. Adding support for the spell-checker in
other popular word processors is a longer-term
goal, as this would greatly improve accessibility of
the tool for teachers and students.
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Abstract
In this paper, we present an FST based ap-
proach for conducting morphological analysis,
lemmatization and generation of Lushootseed
words. Furthermore, we use the FST to gen-
erate training data for an LSTM based neural
model and train this model to do morphologi-
cal analysis. The neural model reaches a 71.9%
accuracy on the test data. Furthermore, we
discuss reduplication types in the Lushootseed
language forms. The approach involves the use
of both attested instances of reduplication and
bare stems for applying a variety of reduplica-
tions to, as it is unclear just how much variation
can be attributed to the individual speakers and
authors of the source materials. That is, there
may be areal factors that can be aligned with
certain types of reduplication and their frequen-
cies.

1 Introduction

A significant proportion of the world’s languages
face the threat of endangerment to varying degrees.
This endangered status poses certain constraints on
the extent to which modern NLP research can be
conducted with such languages. This is due to the
fact that many endangered languages lack exten-
sive textual resources that are readily accessible
online. Furthermore, even with available resources,
there is concern about the quality of the data, as it
may be influenced by various factors such as the
author’s level of fluency, accuracy of spelling, and
inconsistencies in character encoding at the most
basic level (see Hämäläinen 2021).

Reduplication appears in many languages of the
world (Raimy, 2000). While full reduplication is
observed as a repeated word form, partial redu-
plication is associated with extensive variety both
regular and irregular. This paper focuses on a finite-
state description of the partial reduplication pat-
terns found in the Lushootseed language forms (lut)
and (slh). The most predominant forms of redupli-
cation in Lushootseed are distributive (Distr) and

diminutive (Dim), which can, in fact, appear in
tandem, but there are restrictions delimiting their
use (see Broselow 1983, Bates 1986, Urbanczyk
1994). In addition to Distr and Dim, however, we
also find a third and slightly less frequent random
or out of control distributive (OC) (see Bates et al.
1994, Urbanczyk 1996).

The base of these three types of reduplication
can be found in the initial two to three phonemes
of the word root most often referred to with the
notation C1VC2, but the authors of this paper will
surround the vowel with parentheses to indicate
the possibility of its absence: C1(V)C2 and thus
accommodate the radical CC mentioned in (Beck
1999:24; Crowgey 2019: 39, 42).

The radical consist of simple and compound let-
ters alike, e.g., q́w, gw, λ’, all of which add to
the issues of facilitating the extensive variation
in Lushootseed reduplication. First, the concept
of compound letters involved in regular redupli-
cation segments is a very import part of finite-
state description for Lushootseed. Although the
46 phonemes canonize the extensive alphabet, they
create their own demands on the description.

Our facilitation of Lushootseed reduplication
with a finite-state machine1 is based on the use
of a five-place holder segement concatenated di-
rectly before the radical. We number these right-to-
left away from the radical {p5}{p4}{p3}{p2}{p1}
where the odd-numbered place holders represent
consonants, and the even-numbered ones vowels.
The system is set up so that the place holders
{p3}{p2}{p1} are used with Distr, Dim and OC
reduplication, whereas the more remote place hold-
ers {p5}{p4} are used to deal with Distr + Dim
combinations. Albeit, theory sees the distribu-
tive losing the third phoneme due to a principle
of antigemination (see Broselow 1983: 326–329,
and Urbanczyk 1994: 515) referencing also (Hess

1Our code is published in https://github.com/giellalt/lang-
lut
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1967: 7) and (Snyder 1968: 22). We have assumed
the absence of geminates and therefore have left
them out of the equation. Perhaps, further studies
will require their addition to our finite-state descrip-
tion of reduplication in permeating the Lushootseed
vocabulary.

2 Related work

Several different methods are currently in use to
model morphology of endangered languages com-
putationally. In this section, we will covers some
of the existing rule-based, statistical and neural
approaches. Our method embraces the rule-based
tradition because machine-learning based methods
rely on a lot of annoated data we currently do not
have for Lushootseed.

In the rule-based research, morphology has
mainly been modelled using a finite-state trans-
ducer (FST) using one of several technologies such
as HFST (Lindén et al., 2013), OpenFST (Allauzen
et al., 2007) or Foma (Hulden, 2009). Such an ap-
proach has been successful in describing languages
of a variety of different morphological groups such
as polysynthetic languages (e.g. Plains Cree (Snoek
et al., 2014), East Cree (Arppe et al., 2017) and
Odawa (Bowers et al., 2017)), agglutinative lan-
guages (e.g. Komi-Zyrian (Rueter et al., 2021), San
Mateo Huave (Tyers and Castro, 2023), Skolt Sami
(Rueter and Hämäläinen, 2020), Sakha (Ivanova
et al., 2022) and Erzya (Rueter et al., 2020)) and
fusional languages (e.g. Akkadian (Sahala et al.,
2020) and Arabic (Shaalan and Attia, 2012)).

For statistical approaches, Tang (2006) has done
research on English morphology by an approach
that comprises two interrelated components, which
are morphological rule learning and morphological
analysis. The morphological rules are acquired by
means of statistical learning from a list of words.
On another line of work, Kumar et al. (2009) has de-
veloped a machine learning technique that utilizes
sequence labeling and kernel methods for training,
which enables the model to effectively capture the
non-linear associations between various aspects of
the morphological features found in Tamil.

With the emergence of UniMorph (McCarthy
et al., 2020), which continues to include only par-
tial morphological descriptions of each language, a
great deal of neural based research has emerged to
conduct morphological analysis. The typical mod-
els that are used are LSTM (Matteson et al., 2018;
Akyürek et al., 2019) and Transformer (see Kodner

et al. 2022) based models.

3 Materials and methods

The materials used for this paper come from the
Lushootseed dictionary of Bates et al., 1994 and
language learning binders by Zalmai Zahir and
Peggy kwiPalq Ahvakana (Book 1 dzixw First,
Book 2 d@gwi You, Book 3 s.P@ì@d Food, Book
4 PalPal House) as well as a binder of transcrip-
tions to recordings from the University of Washing-
ton archives received in 2003 on the Muckleshoot
Reservation.

The method involves a mnemonic descriptive ap-
proach, implemented for a decidely deterministic
machine and human-friendly solution – if there is
such a thing. To this end, we adhere to a three-
phoneme segment approach to Lushootseed de-
scription and simply start with the labeling 123.
Here ‹1› indicates the first consonant of the rad-
ical (root), ‹2› the vowel (which seems to be ab-
sent/latent in at least a few roots), and ‹3› the sec-
ond consonant. We then introduce a series of five
ordered place holders to precede the root.

The insertion of place holders is convenient in
this finite-state description if they come before the
root. Although there are numerous segments of
regular morphology, inserting a series of five place
holders immediately before the root can be seen
as just another step in regular concatenation. Here
it might be mentioned that theoretic distinctions
between inflection and clitics do not come before
consideration for orthographic practices (cf. Beck
2018).

The five place holder, numbering away from
the first three letters of the root is set so the odd
numbers correlate with the consonants and the even
numbers with the vowels. Thus, {p3} correlates
with kw, {p2} with a, and {p1} with t

{p5} {p4} {p3} {p2} {p1} kw a t
kwatač: kwatač ‘climb’
s‹kwatač: skwatač ‘mountain’
s ‹ {p5}:0 {p4}:0 {p3}:kw {p2}:a {p1}:0 kw a t

a č :
skwakw@tač ‘mountains’
s ‹ {p5}:0 {p4}:0 {p3}:kw {p2}:a {p1}:0 kw a:0

t a č :
skwakwtač ‘hill’
With this as a point of departure, we can then

enumerate four predominant tendencies, one – total
reduplication, one – partial to the left, two partial
to the right. First, total reduplication is 123123,
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which is extremely regular and typically distribu-
tive in meaning. Second, comes the diminutive
with extensive variation: 1213, 12123, 1i13, 1i123,
1iq13. Third, and less frequent in the materials are
123

4 FST models

The finite-state description of Lushootseed involves
several layers of experience. It addresses issues
involving orthography, morphophonology, concate-
nation and symmetric tagging for subsequent ma-
chine readability. The orthography, which is canon-
ized by the language’s reduplication patterns, uses
lower-case letters with multiple diacritics, as no pre-
composed letters are available for nearly half of the
alphabet. The concatenative morphology, which
with the exception of the possessive person mark-
ing strategy, is symmetric but involves abbreviated
or short-hand forms for some consecutive mor-
phemes. The variation in multiple reduplication
patterns appears to be partially monolectic or geo-
graphic in nature, but there is definitely also breath-
ing room for variation in where individual deriva-
tions are used. In general, both preposed and post-
posed affixing is present, and, in particular, there is
asymmetry in the possessive person marking strat-
egy. For language-independent comparison, we use
flag diacritics in our models, which allows us su-
persegmental concatenation and facilitates regular
tagging practices for use in downstream language
technology, even work with Python libraries.

4.1 Orthography

Although there are established keyboard layouts
provided on official language-community sites 2,
there are other keyboards, which may include non-
standard diactritic and letter combinations, that
are visibly present on the net and in easily ac-
cessible language materials. This has meant the
establishment of spellrelax files to allow for rec-
ognizing non-word internal single right quotation
mark, instead of a combining comma above di-
acritic, for example, or even small letter L with
middle tilde ‹U+026B› in place of small letter L
with belt ‹U+026C›.

4.2 Concatenation and Tagging

Reduplication has been dealt with as a prob-
lematic feature in earlier descriptions of the lan-
guages where it is regarded as nonlinear (see Ur-

2https://tulaliplushootseed.com/software-and-fonts/

banczyk 1996). Our solution has been to intro-
duce a segment of five place holders that facil-
itate copying values directly to predefined posi-
tions. As our concatenation in compilation reads
right-to-left, memory retention is minimized to
the three phonemes before the place holder series
{p5}{p4}{p3}{p2}{p1}. If these place holders are
to be used, the machine has already seen the redu-
plication trigger, which appears left of the word
stem.

The relatively mnemonic triggers have been
named according to relative position in the
radical model C1VC2, i.e., 123. Thus, the
distributive reduplication C1VC2C1VC2 is la-
beled distr_trigger_123123. Analogically, the
diminutive reduplications C1VC1C2, C1iC1C2,
C1iPC1C2, C1iPC1VC2 are represented by the
triggers dim_trigger1213, dim_trigger1i13,
dim_trigger1iq13, dim_trigger1iq123, respectively.
OC reduplication (out of control, random) in
C1VC2VC2 is represented by OC_12323.

The reduplication gwaadgwad in
l@ =b@ =l@ cu–gwaadgwad (source Beck 2018:
example 13) ‘talking’ could be illustrated as
C1VVC2C1VC2, i.e., trigger_122123. The
underlying use of our placeholders, however,
would show the following transformation

{p5}:1 {p4}:2 {p3}:0 {p2}:2 {p1}:3 1 2 3
{p5}:gw {p4}:a {p3}:0 {p2}:a {p1}:d gw a d
Reduplication triggers are accompanied by dia-

critic flags, which make it possible to position tags
in the output. Flag diacritics are also used to ad-
dress the symmetrical tagging of prefixes after the
lemma, on the one hand, and to disallow simulta-
neous tagging for two possessive markers, on the
other.

5 Current state

Presently the lexicon is extremely small. It contains
110 verbs and 283 nouns, which might explain the
low coverage rate of 70%, i.e., 1822 unrecognized
tokens out of a total of 6186 tokens in the test
corpus.

The two-level model has 31 rules governing redu-
plication copying patterns in the place holders and
vowel loss or permutation in the root. The vowel
system has be complemented by vowels with acute
and grave accents, which might be useful in ped-
agogical use of the language model, and in work
with language variation across the continuum of
the language community.
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source target
ë u l @ č , i č , č , i č , @ l p y a q i d N Pl Nom
a d d @ x w t u b u P q w @ x w N Sg Nom RemPst Ptc PxSg2 Clt
b @ a d d @ x w t u b u P b u P q w N Pl Nom Anew RemPst Ptc PxSg2

Table 1: Examples of the training data

tag Anew Clt Hab Irr Pl Ptc PxPl1 PxPl2 PxSP3 PxSg1 PxSg2 RemPst Sg
precision 0.77 0.96 1.00 0.98 0.94 0.91 0.90 0.89 0.80 0.83 0.92 0.81 0.87
recall 0.97 0.77 0.89 0.97 0.95 0.89 0.79 0.55 0.61 0.90 0.91 0.99 0.82
F1-score 0.86 0.86 0.94 0.98 0.94 0.90 0.84 0.68 0.69 0.87 0.91 0.89 0.84

Table 2: Per tag results of the neural model

The lexc continuation lexica number at 135.
These continuation lexica provide coverage for reg-
ular nominal and verbal inflection, which utilizes a
mutual set of morphology controlled partially with
flag diacritics.

6 Neural Extension

No matter how extensive an FST transducer is, it
still cannot cover the entire lexicon of a language.
For this reason, we also experiment with training
neural models to do morphological analysis based
on the FST transducer described in this paper. The
goal is not to replace the FST we have described in
this paper, but to develop a neural "fallback" model
that can be used when a word is not covered by the
FST.

We follow the approach suggested by Hämäläi-
nen et al. (2021), we use the code that has been
made available in UralicNLP (Hämäläinen, 2019).
This approach consists of querying the FST trans-
ducer for all the possible morphological forms for
a given lemma. For a given input, the FST will thus
produce all possible inflections and their morpho-
logical readings.

We limit our data to nouns only, and we use a list
of 214 Lushootseed nouns to generate all the possi-
ble morphological forms for. This way, we produce
a dataset consisting of around 756,000 inflectional
form-morphological reading tuplets. This means
that we have an average of 3536 inflectional forms
for each lemma. We split this data into 70% train-
ing, 15% validation and 15% testing. The test data
has words that are completely unseen to the model
in the training data. This means that in the testing,
the model needs to analyze based on lemmas and
word forms it has not seen before even in a partial
paradigm.

For the model itself, we use a Python library

called OpenNMT (Klein et al., 2017) and use it
to train an LSTM based recurrent neural network
architecture with the default settings of the library.
The task is defined as a character-level neural ma-
chine translation problem where each word form
are split into characters separated by a white-space
in the target side and the morphological readings
produced by the FST are split into separate mor-
phological tokens. Examples of the training data
can be seen in Table 1.

The overall accuracy of the model is 71.9%.
This is measured by counting how many full mor-
phological readings the model predicted correctly
for each word form in the test corpus. The re-
sults per morphological tag can be seen in Table
2. These results exclude the N (noun) tag and Nom
(nominative) tag because all morphological forms
had those tags in the dataset.

7 Discussion and Conclusions

In order to further test the accuracy of our Lushoot-
seed description, more test data and descriptions of
regular inflection will be needed. The challenge is
to continue with the outline given for an inflectional
complex (see Lonsdale 2001) and define what can
actually be described as regular.

More time will be required to model more recent
reanalyses of the morphological complexes. This
means we may need to establish whether a six-
placeholder segment is required to aptly describe
Lushootseed reduplication and put our description
in line with a hypothesis of antigemination.

The idea of describing morphological complexes
as series of aligned clitics is very interesting (see
Beck 2018). This will actually provide fuel for
future work with syntax, since most of the semantic
information is already present in the word roots
where the clitics conglomerate.
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Limitations

The FST does not yet have an extensive coverage
of the Lushootseed vocabulary, so it does not work
on all domains of text. Also, writing an FST takes
a lot of time and requires special knowledge of the
language. The neural model is limited to nouns
only, but it can work on out-of-vocabulary words
unlike the FST, however, we have only tested its
accuracy using the words that are known to the FST,
which means that words that follow very different
inflection patterns will, most likely, not be analyzed
correctly. Furthermore, the neural model was not
trained on derivational morphology, which means
that word derivations might also result in erroneous
predictions.

Ethics statement

When dealing with an endangered language it is
important to make sure that the research also con-
tributes to the language community. This is the
reason why we open-source our FST and neural
model. We also work on data that has been given to
us by speakers of Lushootseed with the intention of
us working on building morphological descriptons
and tools for the language. This means that we are
not conducting our research with no regard to the
language community.
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Abstract

Conventional approaches to learning word em-
beddings (Mikolov et al., 2013; Pennington
et al., 2014) are limited to relatively few lan-
guages with sufficiently large training corpora.
To address this limitation, we propose an alter-
native approach to deriving word embeddings
for Wolastoqey and Mi’kmaq that leverages
definitions from a bilingual dictionary. More
specifically, following Bear and Cook (2022),
we experiment with encoding English defini-
tions of Wolastoqey and Mi’kmaq words into
vector representations using English sequence
representation models. For this, we consider us-
ing and fine-tuning sentence-RoBERTa models
(Reimers and Gurevych, 2019). We evaluate
our word embeddings using a similar method-
ology to that of Bear and Cook using evalua-
tions based on word classification, clustering
and reverse dictionary search. We additionally
construct word embeddings for higher-resource
languages — English, German and Spanish
— using our methods and evaluate our em-
beddings on existing word-similarity datasets.
Our findings indicate that our word embed-
ding methods can be used to produce mean-
ingful vector representations for low-resource
languages such as Wolastoqey and Mi’kmaq
and for higher-resource languages.

1 Introduction

Word embeddings (Mikolov et al., 2013; Penning-
ton et al., 2014) are real-numbered vector repre-
sentations of the meanings of words and are a
fundamental component of many natural language
processing (NLP) systems. Although word em-
beddings can often be learnt while training NLP
systems end-to-end, pretrained word embeddings
have been shown to bolster the performance of NLP
systems in tasks such as machine translation (Qi
et al., 2018) and information retrieval (Roy et al.,
2018). Despite their utility, quality word embed-
dings can be difficult to obtain as they generally
require large corpora of running text to train. This

represents a significant limitation of conventional
word embedding methods as, due to these data re-
quirements, quality word embeddings can only be
learnt for relatively few languages. Today, a ma-
jority of languages spoken around the world are
low-resource (Arppe et al., 2016), and thus lack the
text resources required to train high quality word
embeddings. As this is the case, an alternative em-
bedding approach is desirable to make better use
of what data exists for low-resource languages.

In the case of Wolastoqey (also referred to as
Passamaquoddy-Maliseet) and Mi’kmaq, there sim-
ply isn’t enough data available in these languages
to train quality word embeddings using conven-
tional methods. Wolastoqey and Mi’kmaq are both
low-resource Eastern Algonquin languages. There
are currently approximately 300 remaining first lan-
guage speakers of Wolastoqey and 7k speakers of
Mi’kmaq (Statistics Canada, 2017) in Canada. Due
to the low-resource state of these languages, devel-
oping language technologies for Wolastoqey and
Mi’kmaq is challenging because there are no large
corpora or annotated datasets available in these lan-
guages to train NLP systems. Despite not having
large corpora or datasets available, both a bilin-
gual Wolastoqey–English dictionary, known as the
Passamaquoddy-Maliseet Dictionary (Francis and
Leavitt, 2008), and a bilingual Mi’kmaq-English
dictionary, known as the Mi’gmaq/Mi’kmaq On-
line Dictionary (Haberlin et al., 1997), are available.
These dictionaries contain English definitions for
Wolastoqey and Mi’kmaq headwords and consist
of a total of 18.6k and 6.5k entries, respectively. In
our work, we experiment with using these dictionar-
ies to construct word embeddings for Wolastoqey
and Mi’kmaq.

Previous work has demonstrated that bilingual
lexicons and monolingual corpora can be lever-
aged to train cross-lingual word embeddings for
low-resource languages. For example, Adams et al.
(2017) showed that, by combining a large English
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corpus with a small Yongning Na corpus, and by
replacing words with their translations using a
small bilingual lexicon, a pseudo-bilingual corpus
can be created which can be used to train cross-
lingual word embeddings. We do not consider
this approach in our work because Wolastoqey and
Mi’kmaq are polysynthetic languages, and as such,
many tokens that occur in a corpus would not be ex-
pected to be found as dictionary headwords, which
limits the applicability of this approach.

Instead, we look towards approaches based on
sequence representation. Prior work has demon-
strated that, by leveraging bilingual dictionaries,
useful vector representations can be constructed for
Nêhiyawêwin (Plains Cree) words. By averaging
word embeddings corresponding to words that ap-
pear in English definitions of Nêhiyawêwin words,
embeddings can be obtained which can be used to
effectively cluster Nêhiyawêwin words (Harrigan
and Arppe, 2021) and map them to preconstructed
ontologies (Dacanay et al., 2021).

Bear and Cook (2022) extended the methodology
of Harrigan and Arppe (2021) and Dacanay et al.
(2021) to construct word embeddings for Wolas-
toqey. They used the average of word2vec em-
beddings to represent words from their dictionary
definitions, as well as RoBERTa, and sentence-
RoBERTa models to encode definitions into vector
representations. These embeddings were then eval-
uated based on word classification tasks focused
on predicting part-of speech, animacy, and transi-
tivity; semantic clustering; and reverse dictionary
search. In each evaluation, it was found that ap-
proaches using these embeddings outperformed
task-specific baselines, indicating that sentence-
transformer models can outperform approaches
based on word embeddings for this purpose.

As this approach has been shown to perform rel-
atively well, in this paper, we build upon the work
of Bear and Cook (2022) by fine-tuning sequence
representation models for this task. More specifi-
cally, we propose fine-tuning sentence-RoBERTa
models on monolingual dictionary definitions to
determine if doing so could improve the overall
quality of the representations. Using these fine-
tuned models, we construct word embeddings for
Wolastoqey and Mi’kmaq from English definitions
in the Passamaquoddy-Maliseet Dictionary and
Mi’gmaq/Mi’kmaq Online Dictionary.

Following Bear and Cook (2022), we evaluate
our Wolastoqey and Mi’kmaq word embeddings

on word classification tasks focused on predicting
part-of speech, animacy, and transitivity as well as
semantic clustering and reverse dictionary search.
We compare our word embeddings against task-
specific baselines and embeddings produced using
the techniques of Bear and Cook. To assess if this
technique is viable for other higher-resource lan-
guages, we also construct word embeddings for En-
glish, Spanish and German, and evaluate the perfor-
mance of our models on word similiarity datasets,
comparing against previously reported results.

2 Methodology

To obtain embeddings for Wolastoqey and
Mi’kmaq words, we experiment with encod-
ing English definitions of Wolastoqey words
in the Passamaquoddy-Maliseet Dictionary, and
Mi’kmaq words in the Mi’gmaq/Mi’kmaq On-
line Dictionary, into vector representations. To
construct vector representations from English
definitions, we consider fine-tuning and using
sentence-transformer models, masked language
models specifically trained for sequence represen-
tation. More specifically, we consider fine-tuning
sentence-RoBERTa models using three training reg-
imens from Reimers and Gurevych (2019). We
compare our embeddings constructed with this ap-
proach to those created using the methodology of
Bear and Cook (2022).

In our work, we fine-tune our sentence-
RoBERTa models on the dataset of Hill et al.
(2016). This dataset consists of word–definition
pairs collected from several English dictionaries
and WordNet (Miller, 1995). In our experiments,
we use the training and development splits from
Zheng et al. (2020). This gives us a training set con-
sisting of a total of 667.5k word–definition pairs
corresponding to 45k unique types and a develop-
ment set consisting of 75.8k definitions correspond-
ing to 5k unique types. However, due to the data
requirements of our fine-tuning regimens, we filter
out any definitions corresponding to words with
only one unique definition and filter out duplicate
definitions from both our training and development
sets. This reduces our effective training corpus
size to 664.7k definitions corresponding to 42.5k
unique types, and our development set to 75.6k
definitions corresponding to 4.7k unique types. We
use our development set to ensure overfitting does
not occur and to monitor training performance.

To fine-tune our sentence-RoBERTa models,
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we continue training from the nli-roberta-base-v2
model available in the sentence transformer 2.1.0
library.1 This model represents a checkpoint that
has been pretrained on a large natural language
inference dataset, constructed by combining the
Stanford NLI corpus (Bowman et al., 2015) and
the multi-genre NLI corpus (Williams et al., 2018).
We consider fine-tuning three models using the
softmax, cosine, and triplet loss training objectives
outlined in Reimers and Gurevych (2019). Each
of these training objectives requires the model to
be trained in a Siamese configuration in which two
or more examples are passed through the network
independently before being compared to compute
training loss at a given time-step.

The softmax training objective is based on clas-
sification. In our work, the classification task we
fine-tune our model on is determining if two defi-
nitions correspond to the same word. To construct
training pairs for this fine-tuning regimen, we pair
each definition in our training set with another defi-
nition to form either a positive or negative training
example. We assign half of our definitions another
definition corresponding to the same word, forming
a positive pair, and we assign the other half defi-
nitions that do not correspond to the same word,
forming negative pairs. This gives us 664.7k train-
ing examples, equal to the number of definitions in
our training corpus.

The cosine training objective is based on regres-
sion. More specifically, in this fine-tuning regimen,
we attempt to match the cosine similarity between
two output vectors to some ground truth label. To
obtain examples, we form training pairs similarly
to how we did for the softmax fine-tuning regi-
men. However, instead of assigning a binary label
to pairs, we assign a ground truth cosine similar-
ity. For positive pairs, this is simply equal to 1.0.
However, for negative pairs, to obtain ground-truth
cosine similarities, we use the cosine similarities
computed from vectors in a word2vec model. For
this purpose, we use a word embedding model that
has been trained on a Google News corpus consist-
ing of roughly 100 billion words.2 We obtain these
embeddings using gensim 3.8.3 (Řehůřek and So-
jka, 2010). For each negative sample, the ground-
truth cosine similarity used for training is set to
the cosine similarity calculated using the embed-
dings for the words each definition corresponds to.

1https://www.sbert.net/
2https://code.google.com/archive/p/word2vec/

In this training configuration, loss is calculated as
the mean squared error between the cosine similar-
ity of the two input vectors and the ground truth
reference.

Finally, triplet loss considers three inputs, in our
case definitions, at a given timestep. More specif-
ically, this training scheme requires an anchor, as
well as two additional inputs that act as positive
and negative instances. When fine-tuning with this
training objective, we attempt to learn weights such
that the representations produced for each anchor
are closer to their corresponding positive than neg-
ative instance. As this is the case, to form training
examples, we treat each definition in our training
set as an anchor and assign each an accompany-
ing positive instance — a definition corresponding
to the same word — and a negative instance — a
definition corresponding to a different word. Like
before, this gives us a total of 664.7k training ex-
amples to fine-tune our model with.

For each training technique considered, we fine-
tune our models using the default training parame-
ters of the sentence-transformers library. We fine-
tune our models for a single epoch, as, training for
three epochs appeared to degrade performance on
our word classification tasks in early testing. After
fine-tuning, we are left with three models, each
fine-tuned using a different training regimen.

To construct word embeddings using these mod-
els, we first preprocess our input definitions using
the same preprocessing steps as Bear and Cook
(2022). Namely, we consider removing bracketed
content from our input definitions, as, in the dic-
tionaries we use in our work, this typically con-
sists of topical information that does not contribute
to the core meaning of definitions. We then pass
our preprocessed input definitions to our sentence-
RoBERTa models to obtain a vector representation
based on the mean output vectors of our sentence-
RoBERTa models.

3 Word Classification

Following Bear and Cook (2022), we evaluate our
word embeddings on word classification tasks to
determine if they are capable of capturing informa-
tion about the syntactic properties of words. We
consider three word classification tasks focused on
predicting, 1.) part-of-speech, 2.) noun animacy
and 3.) verb type. For each task, we train logistic
regression classifiers to predict the syntactic labels
of words from their embeddings.
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3.1 Experimental Setup

To construct datasets for these evaluations, we
use gold-standard labels from the Passamaquoddy-
Maliseet Dictionary and Mi’gmaq/Mi’kmaq Online
Dictionary. For our part-of-speech classification
tasks, we consider a total of 18k entries from the
Passamaquoddy-Maliseet Dictionary, consisting of
53 pronouns, 231 preverbs, 570 particles, 13.7k
verbs and 3.3k nouns, for Wolastoqey and 6.4k
entries from the Mi’gmaq/Mi’kmaq Online Dictio-
nary, consisting of 16 pronouns, 119 particles, 4.6k
verbs and 1.6k nouns, for Mi’kmaq. For our noun
animacy classification tasks, we remove any entries
corresponding to words that can occur as both ani-
mate and inanimate. In total, we use 1.7k animate,
and 1.3k inanimate nouns for Wolastoqey and 756
animate, and 806 inanimate, nouns for Mi’kmaq.

In both Wolastoqey and Mi’kmaq, verbs are cat-
egorized into four distinct groups based on their
combination of animacy and transitivity. More
specifically, Wolastoqey and Mi’kmaq verbs can be,
animate intransitive, inanimate intransitive, transi-
tive animate, or transitive inanimate. We remove
any entries that correspond to more than one of
these categories. This gives a total of 5.3k ani-
mate intransitive, 2.1k inanimate intransitive, 3k
transitive animate, and 2.7k transitive inanimate
Wolastoqey verbs, and 2k animate intransitive, 753
inanimate intransitive, 1k transitive animate and
847 transitive inanimate Mi’kmaq verbs, for our
verb type classification tasks.

To conduct this evaluation, we first construct
embeddings for each Wolastoqey and Mi’kmaq
word using our proposed methodology. We then
train logistic regression classifiers for each task
and method. For this evaluation, we implement
our logistic regression classifiers using scikit-learn
0.24.2. We use the default training parameters of
this library, except max-iterations, which we set to
6000, so that all models finish converging. We train
and evaluate in a 10-fold cross validation setup. We
use macro-averaged accuracy, precision, recall, and
F1-score as our evaluation metrics and compare our
models to a most-frequent class baseline as well as
the pretrained sentence-RoBERTa based approach
proposed by Bear and Cook (2022) as it has been
shown to achieve strong performance in this task.

3.2 Results

Results are shown in Table 1 for Wolastoqey and
Table 2 for Mi’kmaq. We observe that, for all

Part of Speech
Method Accuracy P R F1
Most Freq. 0.767 0.153 0.200 0.174
sRoBERTa 0.974 0.828 0.801 0.809
Cosine 0.976 0.858 0.829 0.839
Softmax 0.976 0.855 0.829 0.838
Triplet 0.979 0.862 0.823 0.837

Noun Animacy
Most Freq. 0.552 0.276 0.500 0.355
sRoBERTa 0.801 0.800 0.798 0.798
Cosine 0.804 0.804 0.804 0.803
Softmax 0.789 0.791 0.787 0.787
Triplet 0.806 0.805 0.805 0.804

Verb Type
Most Freq. 0.406 0.101 0.250 0.144
sRoBERTa 0.951 0.953 0.953 0.953
Cosine 0.921 0.926 0.925 0.925
Softmax 0.932 0.936 0.934 0.935
Triplet 0.947 0.950 0.950 0.950

Table 1: Results for each Wolastoqey word classification
task using each embedding method, and a most-frequent
class baseline. The best result for each task and metric
is shown in boldface.

Part of Speech
Method Accuracy P R F1
Most Freq. 0.730 0.182 0.250 0.211
sRoBERTa 0.973 0.823 0.795 0.800
Cosine 0.973 0.847 0.839 0.834
Softmax 0.976 0.844 0.819 0.823
Triplet 0.977 0.861 0.841 0.841

Noun Animacy
Most Freq. 0.516 0.258 0.500 0.340
sRoBERTa 0.764 0.766 0.764 0.763
Cosine 0.783 0.786 0.782 0.782
Softmax 0.777 0.777 0.776 0.776
Triplet 0.784 0.785 0.784 0.783

Verb Type
Most Freq. 0.439 0.110 0.250 0.152
sRoBERTa 0.865 0.861 0.860 0.860
Cosine 0.845 0.843 0.840 0.840
Softmax 0.850 0.849 0.845 0.846
Triplet 0.872 0.868 0.868 0.867

Table 2: Results for each Mi’kmaq word classification
task using each embedding method, and a most-frequent
class baseline. The best result for each evaluation metric
and task is shown in boldface.
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tasks and evaluation metrics, all of our models out-
perform a most-frequent class baseline. This indi-
cates that these approaches to representing Wolasto-
qey and Mi’kmaq words capture information about
these syntactic properties.

We observe fine-tuning sentence-RoBERTa on
English dictionary definitions leads to improved
performance on classification tasks involving
Wolastoqey nouns, however, it decreases perfor-
mance on our Wolastoqey verb classification task.
Of our fine-tuned sentence-RoBERTa models, the
model trained with the triplet training objective
performs the best on each Wolastoqey task except
part-of-speech classification.

For Mi’kmaq, we again see that fine-tuning
sentence-RoBERTa with our cosine and softmax
training objectives results in a decrease in perfor-
mance on verb classification but increases perfor-
mance on part-of-speech and noun animacy classifi-
cation. However, here we observe that our sentence-
RoBERTa model fine-tuned with triplet loss outper-
forms all other models considered in all classifica-
tion tasks in terms of accuracy and F1 score. From
these results, and the results from our Wolastoqey
evaluation, of our fine-tuned models, the model
trained with our triplet loss is best able to repre-
sent Wolastoqey and Mi’kmaq words from their
definitions.

4 Clustering

Here we explore using our embedding models to se-
mantically cluster Wolastoqey and Mi’kmaq words.
For this experiment, we largely follow the evalu-
ation procedures of Bear and Cook (2022). For
Wolastoqey, we reproduce the experiments of Bear
and Cook for the purpose of comparison.

4.1 Experimental Setup

To perform our clustering evaluations, we require
ground-truth labels to compare our results to. In
the case of Wolastoqey, we consider using the
same dataset as Bear and Cook (2022) for this pur-
pose. More specifically, we consider obtaining
categorical labels from Wolastoqewatu,3 a web-
site designed to help teach Wolastoqey, and Wolas-
toqey Latuwewakon,4 a mobile application de-
signed to teach Wolastoqey vocabulary. For Wolas-
toqewatu, we use the glossary categories as la-
bels, while for Wolastoqey Latuwewakon, we use

3https://wolastoqewatu.ca
4https://wolastoqey-latuwewakon.web.app/

the top-level categories from the categories tab.
We filter out words that appear in multiple cate-
gories and cross-reference the remaining words
with the Passamaquoddy-Maliseet Dictionary to
obtain word–category pairs. In total, using this ap-
proach, we are left with 1154 entries from Wolas-
toqewatu that correspond to 20 unique categories
and 78 entries from Wolastoqey Latuwewakon that
correspond to 6 unique categories.

To obtain gold-standard labels for our Mi’kmaq
clustering evaluation, we use categories from the
Mi’gmaq/Mi’kmaq Online Dictionary, which con-
tains a glossary consisting of words grouped into
topically-organized categories. We use these cate-
gories as ground truth references for our clustering
evaluation. Using these labels, we create an evalua-
tion set consisting of 6465 items corresponding to
237 classes. However, unlike our aforementioned
Wolastoqey datasets, words in this evaluation set
frequently correspond to more than one class. As
this is the case, we do not remove these words from
the evaluation set.

To cluster the words in each dataset, we use K-
means, setting the number of clusters to the number
of classes in each dataset (i.e., 20 for Wolastoqe-
watu, 6 for Wolastoqey Latuwewakon, and 237 for
the Mi’kmaq dictionary dataset). For this, we use
the default parameters of the scikit-learn 0.24.2
implementation of K-means. We evaluate the clus-
tering using BCubed precision, recall, and F1-score.
We compare our proposed methods to the pre-
trained sentence-RoBERTa approach of Bear and
Cook (2022) to determine if our fine-tuning procee-
dures improve over pretrained sentence-RoBERTa
models for this task.

4.2 Results

Results are shown in Table 3. We observe that ad-
ditionally fine-tuning sentence-RoBERTa on mono-
lingual dictionary definitions results in mixed im-
provements. On the Wolastoqewatu dataset, the
only model that substantially outperforms our pre-
trained sentence-RoBERTa model across metrics
is the softmax model. However, this does not
hold true for the Wolastoqey Latuwewakon dataset,
where all models fine-tuned using monolingual
dictionary definitions outperform the pretrained
sentence-RoBERTa model in terms of BCubed F1
score.

We observe different trends on our Mi’kmaq
evaluation. Here, we observe that our pretrained
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Wolastoqewatu
Method BCubed P BCubed R BCubed F1
s-RoBERTa 0.371 0.324 0.346
Cosine 0.348 0.296 0.320
Softmax 0.392 0.334 0.360
Triplet 0.391 0.316 0.349

Wolastoqey Latuwewakon
Method BCubed P BCubed R BCubed F1
s-RoBERTa 0.668 0.496 0.569
Cosine 0.706 0.546 0.615
Softmax 0.732 0.553 0.630
Triplet 0.722 0.515 0.601

Mi’gmaq/Mi’kmaq Online Dictionary
Method BCubed P BCubed R BCubed F1
s-RoBERTa 0.347 0.122 0.181
Cosine 0.259 0.080 0.122
Softmax 0.329 0.108 0.162
Triplet 0.343 0.113 0.170

Table 3: Clustering evaluation results for each embed-
ding method on each dataset. The best result for each
evaluation metric and dataset is shown in boldface.

sentence-RoBERTa model substantially outper-
forms all other models in each evaluation metric,
and that fine-tuning sentence-RoBERTa results in
worse performance on all metrics.

Unlike the Wolastoqewatu and Wolastoqey
Latuwewakon datasets, which consist mostly of
nouns, the Mi’kmaq dataset is primarily composed
of verbs. This could be why we see different trends
in the results on this dataset. The finding that pre-
trained sentence-RoBERTa outperforms our fine-
tuned models on our Mi’kmaq evaluation is con-
sistent with the findings from 3.2 that our fine-
tuned cosine and softmax models generally per-
formed better than pretrained sentence-RoBERTa
on Mi’kmaq classification tasks involving nouns,
but, worse than pretrained sentence-RoBERTa on
our verb classification task (Table 2). The find-
ings for our triplet model, which performed slightly
better on Mi’kmaq verb classification experiments
than our pretrained sentence-RoBERTa model, are,
however, not consistent with this.

5 Reverse Dictionary

Here we use our Wolastoqey and Mi’kmaq word
representations to create reverse dictionary search
systems. Such systems could potentially help
Wolastoqey and Mi’kmaq learners to more-easily
access language resources.

5.1 Datasets
We build datasets for our reverse dictionary
search evaluations based on the principle that
the English definition for a Wolastoqey word

in the Passamaquoddy-Maliseet Dictionary, or a
Mi’kmaq word in the Mi’gmaq/Mi’kmaq Online
Dictionary, is expected to be similar to an alterna-
tive English definition for that word from another
dictionary. In this evaluation, we use alternative
English definitions for Wolastoqey and Mi’kmaq
words as simulated queries, which we compare
against search spaces composed of reference defini-
tions from the Passamaquoddy-Maliseet Dictionary
and Mi’gmaq/Mi’kmaq Online Dictionary.

As there are relatively few data sources con-
taining English definitions for Wolastoqey and
Mi’kmaq words, we use a similar approach to
Bear and Cook (2022) to obtain alternative def-
initions for the Wolastoqey and Mi’kmaq words
in our search spaces. We leverage the fact that
many definitions in the Passamaquoddy-Maliseet
Dictionary and Mi’gmaq/Mi’kmaq Online Dictio-
nary are composed of a single-word. More specifi-
cally, we use an English dictionary, namely Word-
Net (Miller, 1995), to find alternative definitions for
each Wolastoqey and Mi’kmaq word corresponding
to a single-word definition in the Passamaquoddy-
Maliseet Dictionary and Mi’gmaq/Mi’kmaq On-
line Dictionary. For each single-word definition
in the Passamaquoddy-Maliseet Dictionary and
Mi’gmaq/Mi’kmaq Online Dictionary that also oc-
curs as a lemma in WordNet, we use the definition
for the first WordNet synset associated with that
lemma as a simulated query for this evaluation. Us-
ing the Wolastoqey word amalhihpuwakon, defined
as ‘dessert’ in the Passamaquoddy-Maliseet Dictio-
nary, as an example, we would use the WordNet
definition ‘a dish served as the last course of a meal’
as an alternative definition for this word.

To expand the number of simulated queries avail-
able for our evaluations, we also use this approach
to obtain alternative definitions for words that cor-
respond to definitions that become single-words
after certain words are removed. As dependent
nouns and verbs are given in a third person form
in the Passamaquoddy-Maliseet Dictionary and
the Mi’gmaq/Mi’kmaq Online Dictionary, to ob-
tain alternative definitions for these words, when
identifying single word definitions, we remove the
words s/he and h/ (abbreviations for she/he and
her/his, respectively) as well as it from definitions
in the Passamaquoddy-Maliseet Dictionary and all
instances of he/she, him/her, it, and him/her/it from
definitions in the Mi’gmaq/Mi’kmaq Online Dic-
tionary.
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As both dictionaries contain definitions for a
number of names, we remove all dictionary head-
words corresponding to English names from both
the pool of single-word definitions, as well as our
search spaces, using a list of English names ob-
tained from NLTK (Bird et al., 2009). In total, our
approach gives 1091 Wolastoqey words and 1424
words from the Mi’gmaq/Mi’kmaq Online Dictio-
nary, with alternative English definitions available
in WordNet. We compare these alternative defini-
tions to search spaces consisting of 17.9k Wolasto-
qey words and 6.4k Mi’kmaq words obtained from
the Passamaquoddy-Maliseet Dictionary and the
Mi’gmaq/Mi’kmaq Online Dictionary respectively.

5.2 Experimental Setup
To perform our reverse dictionary search evalua-
tions, we construct vector representations for both
the definitions in our search spaces and our sim-
ulated queries using our proposed embedding ap-
proaches. Using these vector representations, we
calculate the cosine distances between each simu-
lated query and each definition in its corresponding
search space. We then use the resulting rank of the
word corresponding to the simulated queries to cal-
culate our evaluation metrics. Specifically, we con-
sider median rank, mean reciprocal rank (MRR),
and accuracy@k, for k = 1, 5, 10, 20, 50, 100.

5.3 Results
Results are shown in Table 4. Of our fine-tuned
models, we observe that the model trained with the
triplet loss training objective performs best, sub-
stantially improving over both the cosine and soft-
max models in terms of median rank and MRR
for both languages. This model also outperforms
pretrained sentence-RoBERTa for each evaluation
metric and language, except for median rank on
Mi’kmaq.

Despite all models outperforming the random
baseline, the findings for our best model, the
sentence-RoBERTa model fine-tuned using triplet
loss, do not suggest that this could yet be used as
a practical reverse dictionary search system. For
example, the accuracy@100 of 0.544 for Wolasto-
qey indicates that only roughly half the time is this
approach able to rank the correct word among the
top-100. The disparity in length and complexity be-
tween our query definitions from WordNet and the
single-word definitions from the Passamaquoddy-
Maliseet Dictionary, and the Mi’gmaq/Mi’kmaq
Online Dictionary, used in this evaluation could

contribute towards making this experimental setup
a particularly challenging task.

6 Word Similarity

Although our primary interest is methods for learn-
ing Wolastoqey and Mi’kmaq word representations,
here we consider whether the proposed approach
to encoding dictionary definitions can also be ap-
plied to represent words in higher-resource lan-
guages. Word similarity datasets are available for
many languages and are commonly used to eval-
uate how well word embedding models are able
to capture the similarity or relatedness between
words. Here we consider constructing word embed-
dings for English, German and Spanish using our
proposed methodologies and evaluating on word
similarity datasets. As these datasets are frequently
used in other works, where available, we compare
against previously reported results for word2vec
baselines.

6.1 Experimental Setup

In our experiments, we choose to use one Span-
ish, one German and two English word similarity
datasets. For English, we consider SimLex-999
(Hill et al., 2015) as well as the MEN dataset (Bruni
et al., 2014). We use these datasets, as SimLex-
999 reflects word similarity, whereas the MEN
dataset reflects relatedness. For the MEN dataset,
we consider using the full 3000 word pair version
of this dataset in our evaluation. For Spanish, we
consider using a translation of WordSim-353 (ES-
WS353, Finkelstein et al., 2002; Hassan and Mihal-
cea, 2009) and we use GUR350 (Gurevych, 2005)
for German.

We construct embeddings for the words in
these datasets using the same approach used
to obtain word embeddings for Wolastoqey and
Mi’kmaq in our prior evaluations. However, here
we do not remove bracketed text from defini-
tions, a pre-processing step motivated specifically
based on common patterns in definitions of the
Passamaquoddy-Maliseet Dictionary. To construct
our English word embeddings, we consider us-
ing dictionary definitions from WordNet. As
our method requires English definitions for non-
English words, for words in the Spanish and Ger-
man evaluation sets, we construct embeddings
using web-scraped definitions from the Collins
Spanish–English and German–English online dic-
tionaries (HarperCollins, 2011).
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Wolastoqey Search Space
Method Median MRR Acc@1 Acc@5 Acc@10 Acc@20 Acc@50 Acc@100
Random 9164 0.000 0.000 0.000 0.000 0.000 0.002 0.005

Bear and Cook (2022) 107 0.081 0.027 0.128 0.183 0.260 0.397 0.495
Cosine 311 0.056 0.025 0.072 0.118 0.170 0.269 0.350

Softmax 87 0.098 0.044 0.140 0.213 0.302 0.412 0.518
Triplet 70 0.109 0.050 0.155 0.239 0.332 0.448 0.544

Mi’kmaq Search Space
Method Median MRR Acc@1 Acc@5 Acc@10 Acc@20 Acc@50 Acc@100
Random 3300 0.001 0.000 0.000 0.000 0.002 0.006 0.015

Bear and Cook (2022) 27 0.174 0.086 0.263 0.364 0.464 0.568 0.634
Cosine 108 0.111 0.060 0.148 0.215 0.301 0.409 0.493

Softmax 37 0.181 0.099 0.261 0.343 0.435 0.545 0.633
Triplet 28 0.198 0.107 0.296 0.386 0.466 0.581 0.667

Table 4: Median rank, MRR, and accuracy@k for each threshold considered, for reverse dictionary experiments
using each approach to representing Wolastoqey and Mi’kmaq words and a random baseline.

As it is expected that a number of words will not
have definitions in the dictionaries we use, we set
the embedding of any word without a definition to
a vector of zeroes.

To evaluate how well our embeddings perform,
we calculate cosine similarities for word pairs in
each dataset using our embedding models. We
then calculate the Spearman correlation between
the predicted cosine similarities and the human
annotated similarity scores for each dataset.

To establish a baseline, for SimLex-999, ES-
WS353, and GUR350, we compare our models
to previously reported results. More specifically,
for SimLex-999, we compare our models to the
word2vec results published by (Hill et al., 2015).
For ES-WS353 and GUR350, we compare our
models to the skipgram results reported in Bo-
janowski et al. (2017). For the MEN dataset, we
calculate a baseline for comparison directly using
a word2vec model. Here we use the same Google-
News word2vec embeddings as in Section 2. As
many words in the MEN dataset use British English
spelling, and this word2vec model uses primarily
American English spelling, we convert any British
English word-forms not found in this embedding
model to their American English equivalent.

6.2 Results

Results are shown in Table 5. We observe that on
all datasets, except SimLex-999, our proposed em-
bedding approaches do not outperform the chosen
word2vec baselines. Despite this, all our models,
achieve statistically significant correlation on all
word similarity datasets considered. We observe
that pretrained sentence-RoBERTa outperforms a
word2vec baseline on SimLex-999, but fails to do
so on the MEN dataset. This could indicate that

Method Simlex-999 MEN ES-WS353 GUR350
Baseline 0.414 0.78 0.57 0.61

sRoBERTa 0.423 0.568 0.297 0.538
Cosine 0.374 0.524 0.313 0.494

Softmax 0.416 0.560 0.334 0.579
Triplet 0.420 0.560 0.303 0.506

Table 5: Spearman correlations between cosine simi-
larities and human-annotated similarity scores for each
method on each dataset. The best correlation for each
dataset is shown in boldface.

these embeddings better capture word similarity
than relatedness.

Further fine-tuning sentence-RoBERTa does not
improve performance on either English dataset. De-
spite this, all fine-tuned models outperform pre-
trained sentence-RoBERTa on ES-WS353 and our
softmax model outperforms pretrained sentence-
RoBERTa model on GUR350. Definition length
may be a factor here, as the pre-trained sentence-
RoBERTa model performs best on our English
datasets, in which words have an average definition
length of 11 tokens, whereas words in our Spanish
and German datasets have an average definition
length of 1 and 2 tokens, respectively. This would
be consistent with the findings from Table 2, in
which our fine-tuned models performed better in
terms of F1-score on Mi’kmaq classification tasks
involving nouns, which have comparatively short
definitions, and worse on tasks involving verbs
which tend to have longer definitions. However,
definition length alone isn’t enough to explain the
disparity in model rankings, as, in contrast to the
results observed for Mi’kmaq, the softmax model
failed to outperform pretrained sentence-RoBERTa
in Wolastoqey noun animacy classification. As this
is the case, the best model configuration seems
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to be dependant on the language and task being
considered.

7 Conclusions

In this paper, we considered approaches to forming
word embeddings for Wolastoqey and Mi’kmaq
based on their English definitions in bilingual dic-
tionaries. Specifically we considered approaches
to fine-tuning sentence-RoBERTa for this. Our
findings indicate that our proposed approaches can
be used to construct embeddings for Wolastoqey
and Mi’kmaq words that capture syntactic and se-
mantic information, and that fine-tuning often gives
improvements over pre-trained sentence-RoBERTa,
although this improvement is not consistent across
languages, tasks, and approaches to fine-tuning.
Our results from reverse dictionary evaluations in-
dicate that these embeddings cannot yet be used to
build a practical reverse dictionary search system.
We further showed that these approaches can be ap-
plied to form embeddings for higher-resource lan-
guages. Although here these embeddings achieved
significant correlations on word similarity and re-
latedness evaluations, they did not improve over
conventional word2vec embeddings.

In future work, we intend to explore ways to im-
prove the embeddings. Although we observed that
fine-tuning sentence-RoBERTa did not give con-
sistent improvements across tasks, we hypothesize
that an alternative approach could give improve-
ments. Definitions for verbs in the Passamaquoddy-
Maliseet Dictionary in particular tend to be longer,
while definitions for nouns are typically quite short
and often composed of only a single word. This dis-
parity in definition complexity could hinder the ef-
fectiveness of our proposed word embedding tech-
niques. We therefore intend to explore the use of
ULR-BERT (Li and Zhao, 2021), which is capa-
ble of representing words, phrases and sentences
proficiently, for forming improved embeddings for
Wolastoqey and Mi’kmaq words from their English
definitions in bilingual dictionaries.

In addition to using ULR-BERT, we also in-
tend to fine-tune sentence-transformer models that
make use of different network architectures and
pretraining regimens. In our work, we use a single
RoBERTa checkpoint, pretrained on natural lan-
guage inference, as a uniform starting point for fine-
tuning. However, since the release of the original
work on sentence transformers, other models have
been made available through the sentence-BERT

library, for example models based on MPNet (Song
et al., 2020), which have been shown to outperform
sentence-RoBERTa on sentence embedding bench-
marks. As this is the case, the use of these models
in-place of sentence-RoBERTa could potentially
improve the quality of word embeddings produced
using our methodology.

In our work, we demonstrated that we can con-
struct meaningful word embeddings for Wolasto-
qey and Mi’kmaq dictionary headwords. In future
work we will consider evaluating the impact of
these embeddings on down-stream applications.

Limitations

Although improving the performance of our embed-
ding methods is desirable, the most apparent limita-
tion of our work is not the overall quality of repre-
sentations produced, but rather the range of words
our methodologies can be applied to. Currently,
our methodology can only be used to construct
word embeddings for dictionary headwords. This
represents a considerable limitation, as Wolasto-
qey and Mi’kmaq are both polysyntheic languages,
in which speakers often build new words by cre-
atively combining roots. As this is the case, no
dictionary is expected to contain definitions for all
word-forms of these languages. Because of this,
future work is required to extend our approach to
construct embeddings for words that do not appear
in a bilingual dictionary.
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Abstract

The Ojibwe language has several dialects
that vary to some degree in both spoken
and written form. We present a method
of using support vector machines to classify
two different dialects (Eastern and Southwest-
ern Ojibwe) using a very small corpus of
text. Classification accuracy at the sentence
level is 90% across a five-fold cross vali-
dation and 72% when the sentence-trained
model is applied to a data set of individual
words. Our code and the word level data set
are released openly at https://github.com/evan-
person/OjibweDialect.

1 Introduction

The Ojibwe language is an Indigenous language
of the Great Lakes region of Turtle Island (North
America) and is also known by many other names
such as Chippewa, Ojibwemowin, Anishinaabe,
and Anishinaabemowin. Anishinaabemowin can
also refer to the closely related tongues Potawatomi,
Algonquin and Odawa. An Algonquian language,
Ojibwe and its many sub-dialects can be mapped
geographically. Though traditionally understood
to be a prestigious language spoken by several
Peoples trading or living with/near the Ojibwe,
currently, Ojibwe is mostly spoken by Ojibwe
people. While many Ojibwe live on reservations
and reserves of sovereign Ojibwe Tribes/First Na-
tions across Anishinaabewaki, Anishinaabe coun-
try, many also live in towns and cities outside of
reservations and reserves.

The number of native-level fluent speakers is un-
fortunately fast dwindling. It is estimated that there
are around 50 native-level fluent speakers living
today south of the Medicine Line (the American-
Canadian border), virtually all of whom are Elders
(Burnette, 2023). Most of these 50 older speak-
ers are living on two reservations. There are at
least 10,000 fluent speakers north of the Medicine
Line, many of whom are also older (Pangowish,

Figure 1: 2007 distribution of Anishinaabemowin speak-
ers on Turtle Island, including Ojibwe and sister lan-
guages such as Potawatomi and Algonquin. From Lip-
pert (2007)

2023). The approximate distribution of current
Anishinaabemowin speakers is shown in Figure 1.
According to the U.S. Census Bureau (2011) and
Canadian Encyclopedia (Bishop, 2019), there are
about 330,000 Ojibwe living in Anishinaabewaki,
conservatively making around 3% of the Ojibwe
population fluent speakers.

There are many efforts in place to try and stem
Ojibwe’s decline. Passing along the knowledge
and practice of speaking the Ojibwe language is
an important part of maintaining Ojibwe culture;
language is identified as one of the four pillars of In-
digenous Peoplehood by Holm et al. (2003) along
with ceremonies, land, and sacred history. Some
say Ojibwe identity itself is at risk if the language is
no longer spoken (Hartwig, 2012; McInnes, 2014)
and therefore Ojibwemowin revitalization is one of
the highest priorities for many language warriors.
Language courses, as well as immersion and spend-
ing time with Elders, have been traditional tools
of revitalizing Anishinaabemowin (Pitawanakwat,
2018). Over the past couple decades, there have
also been efforts to use more media technology as
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a tool for revitalizing the language (Hermes and
King, 2013). Our work builds on this history.

The rest of this paper is organized as follows.
Section 2 is split into three sub-sections: author
and paper backgrounds are briefly reviewed in Sec-
tion 2.1, a brief overview of Ojibwe dialects is
covered in Section 2.2, and a review of related
work is presented in Section 2.3. Methodology
used and discussion of the written corpus used is
presented in Section 3. A discussion of results is
included in Section 4. We summarize our work in
Section 5. We discuss the limitations of this work
in the Limitations section and share some of the
ethical concerns raised by this work in the Ethical
Statement. Finally, we recognize and give thanks
to the people who made this work possible in the
Acknowledgements.

2 Background

2.1 Positionality
This work was performed as a collaboration be-
tween two of the authors (Hartwig and Lucas) as
an exploratory work looking at ways that Natural
Language Processing (NLP) tools could be used to
aid Ojibwe language learners. The first discussions
held between authors tried to address connections
between the needs and interests of people work-
ing in Ojibwe language education and capabilities
of NLP methods that work with limited text and
varied dialects. To help capture background of the
authors, we have included the following positional-
ity statements:

• Mishkwaa-desi Kalvin Hartwig is a Member
of the Sault Sainte Marie Tribe of Chippewa
Indians. He serves as an independent film-
maker as well as the Anishinaabemowin
gikinoo’amaagewin weninang / Anishinaabe
language-culture coordinator for the Red Cliff
Band of Lake Superior Chippewa Indians. He
is not fluent in Ojibwe, but has been actively
learning it.

• Evan Lucas is a White American who works
as a graduate student studying NLP.

• Timothy Havens is a White American profes-
sor of computer science with research inter-
ests in challenging AI problems.

2.2 Ojibwe dialects
Across the geographic range shown in Figure 1,
there are several dialects found (Valentine, 1994;

Rhodes, 2006). Teachers and speakers of other di-
alects often consider Eastern Ojibwe and Odawa
to be either one in the same or at least very similar.
For this paper, we use “Eastern" to refer to Eastern
Ojibwe, Odawa, or both. We decided to compare
Eastern to the dialect of Southwestern Ojibwe; each
having differences in spelling, some grammar rules,
and sometimes morphological word construction
(Nichols, 1980; Valentine, 2001a). A reader with
familiarity in one dialect, but not another, may be
unfamiliar with some of the word forms used in
a different dialect. Having a tool to help identify
dialects may be helpful to a language learner who
may be reading a work in a different dialect, want
to understand relationships between different di-
alects, and/or want to use spelling and grammar
styles more aligned with a given dialect. Hartwig
has witnessed learners of one dialect unwittingly
use resources from another dialect, which may lead
to confusion around spelling and grammar, but with
the right guidance such confusion may be allevi-
ated. Research with Indigenous Peoples should
be a part of a reciprocal relationship, where work
is done to benefit the People providing informa-
tion by answering questions and exploring topics
highlighted by the given Indigenous People (Smith,
2021).

Ojibwe is an oral language, but multiple writ-
ing systems have been developed to transcribe it
(Treuer, 2010). Ojibwe have used pictographs and
similar symbols to write out stories for an unknown
period of time. As missionaries and others came
to Anishinaabewaki, however, such newcomers de-
cided to develop writing systems for the Ojibwe
language. Various writing systems were created,
including ones based on syllabics and others with
Latin script. Roman character-based writing sys-
tems are most commonly used today, with the Fiero
/ double vowel / long vowel orthography being the
most popularly used by Ojibwe language educators
(Ningewance, 1999). For this reason, this paper
will use examples written using the long vowel
system.

2.3 Related work

Much of the computational language work that has
been performed with Indigenous languages is rule-
based (Mager et al., 2018), which often requires
expert knowledge. Despite this, there have been
attempts to use unsupervised learning methods to
learn morphology of Indigenous languages with
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some success (Johnson and Martin, 2003). One
notable example of a rule-based system that is de-
signed for an Anishinaabe dialect is the construc-
tion of a morphological parser for Odawa (Bowers
et al., 2017).

El Mekki et al. (2020) performs fusion between
an n-gram based support vector machine (SVM)
(Cortes and Vapnik, 1995) and a BERT (Devlin
et al., 2019) model trained on Arabic to determine
dialect across many countries and regions. The n-
grams are computed at the word and character level
and are normalized using term-frequency inverse
document frequency (TF-IDF) before being used in
the SVM.

Hämäläinen et al. (2021) also performs fusion be-
tween dialect classification models; however, their
approach uses both text and audio as inputs and
is focused on classifying 23 separate dialects of
Finnish. A BERT model trained on Finnish is used
to handle the text inputs, which are split at the
sentence level.

Salameh et al. (2018) looks at the problem of
Arabic dialect identification, introducing a commis-
sioned data set that contains common phrases in
dialects from different cities. They find that us-
ing character n-grams as well as individual words
is a preferred method of featurizing inputs for
sentence-level dialect determination with a Multi-
nomial Naive Bayes classifier.

A deep learning approach utilizing pre-trained
models was not considered for this work, due to the
relatively small amount of text collected and the dif-
ficulty in transferring a deep learning model trained
in one language to another. It has been noted by
Singh et al. (2019) that tokenizers trained on one
language do not necessarily transfer to another lan-
guage efficiently. Another work (Maronikolakis
et al., 2021) found that when transferring language
models between languages, unless the tokenizer
was re-trained, it was less efficient on the new lan-
guage and required far more tokens to represent the
same length of text.

3 Method

3.1 Text used

Several stories in Manitoulin Island varieties of
Eastern Anishinaabemowin (Corbiere and Jones,
2012) and several stories from Volume 8 of the
Oshkaabewis Native Journal (Treuer et al., 2012)
for Southwestern Ojibwe were used for this work.
Permission to use each of the works was granted

from the respective editors. Additionally, dictio-
naries (Child and Nichols, 2012; Naokwegijig-
Corbiere and Valentine, 2015) for each of the di-
alects were used to create a word list of common
words that could also be used to evaluate the dialect
classification model.

The amount of text used is quite small—611 sen-
tences of Southwestern Ojibwe and 434 sentences
of Eastern—which limits the use of deep learn-
ing methods that require large bodies of text from
which to learn. For this reason, SVM’s were cho-
sen as a method appropriate for classifying small
bodies of text, which are sometimes referred to
as low-resource use-cases. Some sample statistics
from both sets of text are included in Appendix B.

3.2 Text processing and model selection

Following the work of Hämäläinen et al. (2021)
and El Mekki et al. (2020), the problem is formu-
lated as a dialect prediction for an arbitrary number
of sentences. Based on these works, an SVM using
character n-grams is utilized with n-gram features
combined between the relevant sentences. Stochas-
tic gradient descent was used to train the model,
minimizing hinge loss. The SVM implementation
written by Pedregosa et al. (2011) was used for this
work. N-grams were generated by splitting each
word into all possible sets of n characters and were
combined for varying numbers of sentences. For
example, the word aaniin contains the unigrams of
a, n and i; the bigrams of aa, an, ni, ii and in; and so
on for three and four character combinations. Since
each sentence could not possibly contain all of the
n-grams in the entire text, and because SVM’s re-
quire a consistent input feature set, all possible
n-grams were found from the two combined sets
of text and an n-gram dictionary with zero values
for all n-grams was used to initialize each sentence
set.

These n-grams were counted for each set of sen-
tences and analyzed with the SVM. The two sets of
text were randomly split into five parts, maintain-
ing an equal proportion of each dialect in each split,
and cross validation was performed; the model was
trained on four folds of the data and the unseen
fifth was used to validate the model.
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Table 1: Model performance as a function of number of
sentences used to infer dialect

Number of grouped
sentences

Accuracy

1 0.90
2 0.95
3 0.98
4 0.98
5 0.97

4 Results

4.1 Sentence level model training and
evaluation

The number of correct and incorrect predictions
were summed across all five validation folds and
the resulting average accuracy, weighted by class
membership, is presented in Table 1. The com-
putation and counting of n-grams was performed
using single sentences up to groupings of five sen-
tences. By grouping more sentences together, a
wider sample of word parts is captured and allows
the model to more easily predict which dialect is
present, which is indicated by our results. In our
tests, we were able to achieve nearly zero errors
with five sentences being used to compute each set
of n-grams.

4.2 Interpretability of model
One advantage of using an SVM is that the model
weights—i.e., the support vector weights—can be
used to understand which features are most influ-
ential. In the case of our problem, we are able to
associate the n-grams with the highest weights to
those that are (based on the training data) most as-
sociated with a given dialect. The presence of a
given n-gram does not indicate dialect alone, but
indicates that a word or sentence containing that
n-gram is more likely to belong to a given dialect.
The n-grams most associated with each dialect are
given in Table 2 and are drawn from the full data
set averaged across five folds, and considering all
n-grams from single characters up to 4-grams.

Eastern began to reduce unstressed vowels in
the early part of the twentieth century (Bloomfield,
1957), and Eastern speakers are often playfully
joked about as being vowel droppers. Many vowel-
less n-grams, such as bn picked up by our model
for Eastern, would be rarer to find in Southwestern
Ojibwe. Several examples of vowel dropping can
be found in the word list included in Appendix C

Table 2: Top ten n-grams most associated with each
dialect

N-grams most asso-
ciated with Eastern
Ojibwe

N-grams most associ-
ated with Southwest-
ern Ojibwe

bn ay
bm aye
wi in
oo izhi
gd iz
iinw izh
gs gay
booz gaye
boo ye
hoo ina

such as the word for otter being ngig in Eastern
and nigig in Southwestern.

It is possible that we are observing aspects other
than dialect in our analysis, such as the language
preferences of the authors of our given texts. For
example, the discourse marker izhi, meaning ‘and
so’, is noted by Fairbanks (2016) as being more fre-
quently used by first language speakers of Ojibwe
than second language speakers (among other dis-
course markers). However, it is also possible that
izhi has, much like certain vowels, fallen out of
common use in Eastern; determining the answer to
this question is outside of the scope of our work
and is something that could be explored in future
collaborations with Anishinaabe language keepers.
To address whether our model is overfitting to lan-
guage preferences rather than aspects of dialect,
using writings from a wider range of authors could
be used.

4.3 Applying sentence level model to
individual words

To further evaluate the model developed, a small
dictionary of 50 common words that differ in
spelling between Eastern and Southwestern Ojibwe
was compiled. Applying the model from the sen-
tence level training to evaluation on word level in-
puts is an interesting experiment in model transfer
and has practical value; as many language learners
will encounter unknown words and may want to
determine what dialect they are originating from.
Each individual word from this dictionary was eval-
uated using the model trained on groups of five
sentences. The model was found to be 72% accu-
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Figure 2: Confusion matrix of individual word predic-
tions using sentence-trained SVM

rate. A confusion matrix of the word predictions is
presented in Figure 2, which shows that the model
does not favor either dialect. Due to multiple com-
mon words being used in Eastern for some of the
selected words, three words of Southwestern are
repeated and not included in the confusion matrix.
The full results of this study, including each word
used and its predicted dialect, can be found in Ap-
pendix C. We considered repeating the sentence
level experiment with the individual words, but
found that our dictionary was insufficiently small.

5 Conclusions

In this work, we have proposed and evaluated a
method for identifying dialects in Ojibwe given a
small set of labeled examples. We showed that our
method is 90% accurate at the single-sentence level
and higher still at the multi-sentence scale. We also
achieved a 72% accuracy when the sentence-level
model was applied to a selected set of individual
words. The model proposed also offers insight into
how dialects are classified by the model, demon-
strated by explaining the significance of some of
the n-grams found to be most significant in deter-
mining dialect. This aspect of interpretability could
offer language learners insight into features differ-
entiating written dialects as well as providing a tool
to help determine the dialect of unfamiliar text.

Limitations

This work focuses on using computational tools
to determine dialect based on a small quantity of
writings of a spoken language, using a writing sys-
tem that was adapted recently, rather than one that
evolved alongside the language for thousands of
years. This limitation in orthography leads to dif-
ferences in character usage, frequently between
dialects (which is helpful for this problem), but
there is also variation also within dialects depend-

ing on the author. For example, different writers
will use different methods of transcribing a nasal
sound; Eastern tends to use nh for nasal sounds in
the middle of a word, although some writers will
use a capital N. Southwestern Anishinaabemowin
tends to use ny, ns or nz for these same nasal sounds
within words. As noted by Valentine (2001b), there
are variations in language within dialects, includ-
ing age-stratified language proficiency, where older
speakers tend to be more fluent than younger ones,
largely due to differences in opportunities to learn
the language. These differences might be detected
and interpreted as dialect differences if the diver-
sity in writers is not comparable between the two
sets of texts being compared. Additionally, an in-
dividual’s word choice may change depending on
their gender or occupation (Valentine, 2001b), and
having only a small sample of writings does not
allow us to capture these differences well. To test
how much our model is learning author preferences
over dialects, using some writings from authors not
included in the training data would provide some
insight. Future work could do a better job of track-
ing authorship between cross validation folds as
well as sourcing from a wider set of writers. Only
small quantities of text were used for each dialect,
which was limiting in terms of methods that could
be used. The methods utilized in this paper could
be easily applied to minority languages that do not
have large quantities of written text available, of
course, with permission from and in collaboration
with Indigenous language keepers. Our future work
could involve the collection of larger quantities of
text, which would allow the use of a wider range
of language analysis.

Ethical Statement

Some of the texts used for our samples were tran-
scribed aadizookaanan, a type of traditional story
highly revered by Ojibwe. These particular stories
are not to be spoken out loud during non-winter
months without snow on the ground. There are
particular spiritual reasons for this, and unfortunate
things can happen to individuals telling or hearing
these stories when there is no nearby snow. There-
fore, we will not write out the stories here and we
strongly encourage citation followers to heed pre-
caution. For more information, bring your tobacco
and questions to a trusted Anishinaabe knowledge
keeper.

Indigenous Peoples have experienced a long his-
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tory of colonialism, including by well-meaning
researchers. Please remember that Indigenous
Peoples must maintain sovereignty over their lan-
guages, traditional stories, and other knowledge.
All research involving Indigenous knowledge, in-
cluding that for the development of generative AI,
should be done ethically in reciprocal relationships
with Indigenous Peoples. The research should also
meet their needs and wants, as described by the
given Indigenous Peoples (Smith, 2021).
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A Appendix A: Feature Scale Study

To understand the number of features being cre-
ated and used by the model, a simple scale study
was performed. Model features were counted for
various numbers of n-grams used and model per-
formance as a function of limited n-grams was
computed. To understand how many of the most

Table 3: Overlap in top n-grams

Number of
most common
n-grams used

Number of
overlapping
n-grams

Combined
dictionary
size

100 82 118
500 348 652
1000 650 1350
All 2217 6259

Table 4: Model performance as a function of number
of sentences used per example, using truncated n-gram
dictionary with 118 n-grams.

Number of grouped
sentences

Accuracy

1 0.64
2 0.73
3 0.82
4 0.98
5 0.97

common n-grams are shared between dialects, the
n-gram dictionaries for each dialect were sorted
and compared for overlapping n-grams. The results
of this are presented in Table 3, where it can be
seen that the relative overlap in n-grams decreases
with increasing dictionary sizes. Intuitively, this
makes sense, as a common language would share
the most common features between dialects and dif-
ferences should become more apparent with larger
feature sets. To quantify the performance of our
proposed model with a very limited feature set, the
smallest truncated dictionary was used to repeat the
analysis and is presented in Table 4. Performance
with n-grams derived from single sentences is sub-
stantially lower than when using the full n-gram
dictionary, which shows how important the less
common character combinations are to identifying
the dialect present. Interestingly, when n-grams
from four sentences are combined, performance
between models is comparable.

B Appendix B: Text Statistics

To help illustrate the corpus used for this work,
some statistics are shared in Table 3.1. To help
keep the data set sizes similar, not all of the stories
from Treuer et al. (2012) were used in this work.
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Table 5: Information about texts used

Text Number of
sentences

Average
number of
words per
sentence

Southwestern 611 6.7
Eastern 434 7.6

C Appendix C: Full Results of Individual
Word Classification

The full table of word pairs between Eastern and
Southwestern Ojibwe is presented in Table 6. Fifty
word pairs, along with their approximate English
translation, were selected by choosing words that
a language learner might learn at an early stage in
their learning process. When multiple words are
commonly used for a similar meaning in one di-
alect but not another (for example makwa, mkwa
and mko), the table repeats the word for the dialect
without multiple common words found in the ap-
propriate dictionary. This is done for visual clarity
for the reader. Multliple words were not included
in the statistics computed in Figure 2.
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Table 6: Fifty common words that vary between Eastern and Southwestern Ojibwe and our model’s classification

Ojibwe SW dictio-
nary form

Classified by
our model as

Ojibwe E/Odawa
dictionary form

Classified by
our model as

English (approximate)

aaniin E aanii E hello (pc interj)
daga E bna E please (pc disc)
niin E niinii E me (n)
niin E nii E me (n)
giin E gii SW you (n)
enyanh’ E ehenh E yes (pc disc)
en’ E enh E yes (pc disc)
gaawiin SW gaa E no (pc disc)
gaawiin SW kaa E no (pc disc)
wiindan SW waawiindaan E name (vti)
izhinikaazowin SW zhnikaazwin E name (n)
minawaanigozi SW mnowaan’gozi E is happy (vai)
izhinaagozi SW zhinaagzi E look a certain way (vta)
izhinaagwad SW zhinaagot SW look a certain way (vti)
ojiim SW jiimaa SW kiss (vta)
ojiindan SW jiindaan SW kiss (vti)
wiiisini SW wiisni E eat (vai)
amo E mwaa E eat (vta)
minikwe SW mnikwe E drink(vai)
aabitoojiin SW aabtoojiinaa E hug around middle (vta)
giziibiiga’an SW gziibiignaan E wash something (vti)
opin SW pin SW potato (n)
manoomin SW mnoomin E wild rice (n)
mishiimin SW mshiimin E apple (n)
odaabaan SW daabaan SW car (n)
makwa SW mkwa E bear(n)
makwa SW mko E bear (n)
ma’iingan SW m’iingan SW wolf (n)
nigig SW ngig SW otter (n)
mooz E moos E moose (n)
waawaashkeshi E waawaashkesh E white-tailed deer (n)
giingoo E giigoonh E fish (n)
ogaa SW gawaak SW walleye / pickerel (n)
adikameg SW dikmek E whitefish (n)
mitig SW mtik E tree (n)
nagamo E n’gamo E sing (vai)
giiwese SW giiwse E hunt (vai)
baashkigizige SW baashkzige E shoot (vai)
agindaaso SW n’gidaaso SW read (vai)
babaamose SW bbaamse E walk about (vai)
bikwaakwad SW bkwaakwat E ball (n)
gimiwan SW gmiwan SW rain (n)
waabooz E waaboos E rabbit (n)
bakwezhigan SW bkwezhgan E bread (n)
waasechigan SW waasechgan SW window (n)
wewebizo SW wewebza E swing (vai)
akwaandawe SW kwaandw E climb (vai)
bagizo SW bgiza SW swim (vai)66
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Abstract

We present the first neural machine transla-
tion system for the low-resource language pair
Wayúunaiki–Spanish and explore strategies to
inject linguistic knowledge into the model to
improve translation quality. We explore a wide
range of methods and combine complemen-
tary approaches. Results indicate that incor-
porating linguistic information through linguis-
tically motivated subword segmentation, fac-
tored models, and pretrained embeddings helps
the system to generate improved translations,
with the segmentation contributing most. In
order to evaluate translation quality in a gen-
eral domain and go beyond the available reli-
gious domain data, we gather and make pub-
licly available a new test set and supplementary
material. Although translation quality as mea-
sured with automatic metrics is low, we hope
these resources will facilitate and support fur-
ther research on Wayúunaiki.

1 Introduction

Due to a lack of data (text or speech data), lan-
guages are digitally divided between high and low-
resourced (LRL) (Bender, 2019). Actually, the low-
resource scenario has been identified as one of the
main challenges in the field of Natural Language
Processing (NLP) (Koehn and Knowles, 2017). At
the same time, research conducted and presented
at major conferences often focuses on a few highly
resourced languages, languages with similar char-
acteristics, or a handful of well-studied languages
(Joshi et al., 2020). Fortunately, research in low-
resource settings and with LRLs is slowely becom-
ing quite popular in the NLP community, with a
steadily growing body of work for the low-resource
scenario (Wang et al., 2021). This does not imply
that the division between low- and high-resourced
NLP scenarios has been overcome. In fact, there
are many open challenges for research on and with
LRLs.

The majority of the world’s 7000 languages
are understudied and underresourced (Joshi et al.,
2020), due to the lack of research and resources.
LRLs face a lack of data quality and quantity, NLP
tools, and engagement with native speakers of that
language, which, if overcome, can support the con-
servation and preservation of those languages and
their culture, preserving cultural and linguistic di-
versity.

In this work, we aim at fostering research for
Wayúunaiki by providing data and pretrained Neu-
ral Machine Translation (NMT) models. We
present the first Wayúunaiki–Spanish NMT sys-
tem, and explore different approaches to inject lin-
guistic knowledge to improve translation quality.
We aim at assisting the Wayúu community, whose
language is emerging from an endangered situa-
tion according to Ethnologue.1 Even though the
Wayúu people are the most numerous indigenous
people in Colombia (Departamento Administrativo
Nacional de Estadística, 2021), Wayúunaiki is vul-
nerable, i.e. the language is spoken by children
but only in certain, restricted domains, for instance
at home. Our research hypothesis in this work
is that the injection of linguistic knowledge will
increase the translation quality for the language
pair Wayúunaki–Spanish. We enrich the data to
represent implicit linguistic information (e.g., lin-
guistically motivated subword segmentation, anno-
tating POS tag factors, and pretrained embeddings)
as, if insufficient amounts of training data is avail-
able, linguistic information may help the model
identify patterns present in the text, which may
alleviate the data sparsity problem. We build on
and extend previous work on NMT for LRLs by
Sennrich and Haddow (2016) and Chen and Fazio
(2021). We combine complementary approaches
to maximize improvements. We find that while lin-
guistically motivated subword segmentation helps,
factored models and pretrained embeddings lead

1https://www.ethnologue.com/language/guc/
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to a performance degradation due to data sparsity
and low quality annotations. While the results of
this work do not provide good quality translation
models yet, we expect to contribute to the devel-
opment of NMT systems for LRLs and to inspire
further research. We integrate our best-performing
system for Wayúunaiki to Spanish into the docu-
ment translation interface TransIns2 (Steffen and
van Genabith, 2021) for public use. Our collected
supplementary material, the new general domain
test data set, as well as code are also publicly avail-
able.3

2 Related Work

Various ways of incorporating linguistic knowledge
into NMT systems have been explored. These in-
clude the addition of (linguistic) factors (e.g., Sen-
nrich and Haddow (2016), España-Bonet and van
Genabith (2018), Manzanares, 2020), or using dif-
ferent subword segmentation techniques (e.g., Sen-
nrich et al. (2016), Kudo and Richardson (2018)
Grönroos et al., 2014) with the aim of improv-
ing translation quality. Improvements are possi-
ble, especially in LRL scenarios (e.g., Sennrich
and Zhang, 2019), morphologically rich languages
(e.g., Ortega et al., 2020), and for out-of-domain
texts (e.g., Chen and Fazio, 2021).

Subword segmentation is essential in NMT
since it eases the out-of-vocabulary (OOV) prob-
lem and allows training smaller models (Mielke
et al., 2021). Subword units offer a representation,
that builds a bridge between word and character-
level, based on the statistical properties of the text.
A good choice of subword units will offer a good
balance between the vocabulary size, the size of
the model and therefore the decoding efficiency.

Data-driven, unsupervised subword segmenta-
tion is a statistically-informed process that incorpo-
rates implicit linguistic knowledge present in the
text, like statistical patterns that present regular-
ities of encountered word forms. This approach
is limited to the data used during training the seg-
mentation model, such that text variations (e.g.,
inconsistent orthography or out-of domain context)
might result in segmentation variations and over-
segmentation (Amrhein and Sennrich, 2021).

The Byte-Pair-Encoding (BPE) algorithm (Gage,
1994) is a widely used, unsupervised approach for
subword segmentation. BPE merges the most fre-

2https://transins.dfki.de
3https://github.com/norgrai/wayuunaiki

quent pairs of characters in a corpus to create a new
subunit, and repeats the process until the desired
number of merge operations are performed. With
BPE, common words form a single unit while rare
words are split into subunits. The first application
in MT by Sennrich et al. (2016) lead to a strong im-
provement in performance. Further approaches in-
clude SentencePiece (Kudo and Richardson, 2018),
a tokeniser that implements both BPE and unigram
language model (LM) (Kudo, 2018). In Kudo
(2018) subword segmentation is combined with
a regularization method, offering a robust alterna-
tive to the deterministic BPE. For the segmentation
technique by Kudo (2018), an initial subword set
is pruned, according to the contribution of each
subword to the unigram LM (Mielke et al., 2021).
Another alternative for creating more segmenta-
tion variety in the training data is the regularization
method particularly for BPE called BPE-dropout
(Provilkov et al., 2020).

Semi-supervised segmentation techniques incor-
porate and exploit linguistically labeled training
data to guide the segmentation process. Linguistic
annotation can help to learn the correct segmenta-
tion rules, especially in low quantity and quality
data scenarios (Chen and Fazio, 2021).

The semi-supervised segmentation technique,
Prefix-Root-Postfix-Encoding (PRPE) by Zuters
et al. (2018) is a morphologically guided algorithm,
that incorporates linguistic knowledge without re-
quiring any morphological rules. Nonetheless, a
list of affixes is essential during the construction
of the segmenter. In comparison to the BPE algo-
rithm, subwords that include positional informa-
tion of a word are extracted in form of prefixes,
roots, and postfixes. This subword segmentation
algorithm has been shown to improve translation
quality, measured with BLEU, in comparison to
other systems, in which unsupervised algorithms
were applied (Chen and Fazio, 2021). The algo-
rithm is not thought to be used as a morphological
segmentation tool, even though it produces text that
resembles morphologically segmented text. More-
over, it avoids over-segmentation by sometimes
only partially performing the morphological split-
ting with the motivation that too many subwords
would reduce the translation quality (Zuters et al.,
2018).

FlatCat (Grönroos et al., 2014) is a variant of
the toolkit Morfessor (Smit et al., 2014) for sta-
tistical morphological segmentation which can be
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applied in an unsupervised or semi-supervised man-
ner. The system consists of a category-based hid-
den Markov model (HMM) and a flat lexicon struc-
ture for morphological segmentation. The states
of the HMM are the morph categories (prefix,
stem, suffix, and non-morphs, with the last cat-
egory catching subwords that are not proper mor-
phemes but segments of a longer morph). Mor-
fessor FlatCat is best suited for semi-supervised
training where some morphological splitting guide-
lines are given; in fully unsupervised training
with no annotations over-segmentation or under-
segmentation will probably occur (Grönroos et al.,
2014). Zuters et al. (2018), in their comparison
between PRPE and Morfessor FlatCat, acknowl-
edge previous, small improvements using Morfes-
sor for inflected languages in statistical MT, but
these improvements are not reproduced in their
experiments.

Sennrich and Haddow (2016) were one of the
first to introduce linguistic factors like lemmas,
part-of-speech (POS) tags, dependency labels, and
morphological features as factors into an NMT
model.4 The additional linguistic information is
coupled with each subword by concatenating or
averaging the embeddings. As their main objec-
tive was reducing data sparsity, they tested the fac-
tored architecture on high and LRL pairs, obtain-
ing significant translation improvements in BLEU
for the model with all factors included, for both
high and low resource scenarios. In their experi-
ments, the best results with only one factor were
achieved with a POS tag or lemma factor in a RNN
encoder–decoder architecture with attention for En-
glish to German translation. Similar performance
for lemma factors was observed by Armengol-
Estapé et al. (2021) with the Transformer archi-
tecture (Vaswani et al., 2017). By adding a lemma
factor to the subwords, different inflections of a
words are linked to the same representation. By
introducing POS tags, it is possible to discriminate
between different word categories, that share the
same surface word.

Word embeddings capture both semantic
knowledge (Mikolov et al., 2013; Brunila and
LaViolette, 2022) and, to a lower extent, syntac-
tic knowledge (Mikolov et al., 2013; Andreas and
Klein, 2014). Syntax is more evident in embed-
dings when the training data is scarce (Andreas

4Linguistic information was earlier introduced by Alexan-
drescu and Kirchhoff (2006) in a neural NLP model.

and Klein, 2014). Qi et al. (2018) showed that
leveraging pretrained word embeddings can lead
to significant improvements for certain LRL pairs.
However, Qi et al. (2018) use of pretrained embed-
dings by Bojanowski et al. (2017) limits the scope
of the comparison, since only a few Indigenous lan-
guages, such as Quechua, have access to such rich
representations or have sufficient data available for
training them.

According to Fernandez et al. (2013), there were
very few projects that involve the development of
a translator for Indigenous languages in Colombia
such as Wayúunaiki. At the same time Llerena Gar-
cía (2013) presented the reasons and need for a
“Software traductor de español a lengua wayuu”
(Spanish to Wayúu language translator software).
Unfortunately, to the best of our knowledge, even
now, 10 years after Fernandez et al. (2013) and
Llerena García (2013), there still exists no pub-
licly accessible translation system, that supports
the Wayúu community.

3 Language Description

Wayúunaiki is the native language spoken by a mi-
nority (compared to Spanish) in the Wayúu commu-
nity, located in the Caribbean region, connecting
Colombia and Venezuela. More than half a mil-
lion people of this bi-national community speak
this LRL. The Wayúu community is the most nu-
merous indigenous community in Colombia (De-
partamento Administrativo Nacional de Estadís-
tica, 2021). There are 380,460 Wayúus in Colom-
bia5 and about 415,500 Wayúus in Venezuela (INE,
2012).

Wayúunaiki belongs linguistically to the Arawak
languages. This language family flourished among
ancient, indigenous nations in South America and
consists of polysynthetic, mainly head-marking
languages with different degrees of agglutina-
tion (Méndez-Rivera, 2020). Spanish, the high-
resourced language spoken in the same countries,
is a fusional, inflected language with a flexible syn-
tactic order. The preferred pattern is subject + verb
+ object (SVO), while Wayúunaiki has a VSO order.
Both languages have their own phonological sys-
tem and do not share the same alphabet: Spanish
has 22 consonants and 5 vowels in its phonological
repertoire, while Wayúunaiki has 16 consonant and

5According to the latest census information: the Censo
Nacional de Población y Vivienda (CNPV) was conducted in
2018 by the National Administrative Department of Statistics
(DANE).
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data set # of samples tokens TTR
esp guc esp guc

train 41499 776k 591k 0.029 0.048
development 1001 18.7k 14.0k 0.175 0.220
in-domain test set 1001 18.7k 14.2k 0.181 0.219
Total 43501 814k 620k 0.028 0.047
additional data:
out-of-domain test 1107 15.1k 10.6k 0.203 0.360

Table 1: Description of the bitext data sets: number
of samples, words, and type-token-ratio (TTR) for the
Wayúunaiki (guc) and Spanish (esp) data set from the
Tatoeba MT Challenge with our partitions, and the addi-
tional, manually collected data.

12 vowel phonemes —6 vowel pairs of long and
short ones (Viloria Rodríguez et al., 2022). An in-
consistent writing system for the Wayúu language,
due to the two main "official" orthographic systems,
in combination with a very small amount of writ-
ten material in Wayúunaiki, make the orthographic
situation challenging (Álvarez, 2017).6

4 Data Collection and Preprocessing

Parallel corpora. We use the only online paral-
lel corpus for Wayúunaiki and Spanish available
in the Tatoeba MT Challenge, version v2021-08-
07 (Tiedemann, 2020). The bitext is a subpart of
the no longer available JW300, a parallel corpus
from Agić and Vulić (2019) with religious-themed
data, addressing a wider range of topics including
bible psalms.7 The Wayúunaiki part of the bitext
follows the official writing norm ALIV (Alfabeto
de Lenguas Indígenas de Venezuela, alphabet of
indigenous languages of Venezuela). The corpus
consists of ∼43k sentence pairs, which we divided
into a train, development, and test set. Table 1 gives
a summary of the parallel corpora utilized.

The usage of highly domain-specific (here reli-
gious) data limits the translation quality in other
domains and when used for other domains intro-
duces a strong ideological, and gender-related bias,
given the biblical content: gender pronouns and
person names do not appear in the data with a
balanced frequency,8 nor do they share a similar

6Since 1984, the official Alfabeto de Lenguas Indígenas de
Venezuela, the alphabet of indigenous languages of Venezuela
has been the norm in Colombia and Venezuela, but the system
of Miguel Ángel Jusayú is being utilized alongside.

7The web-crawled data stems from the website jw.org of
a religious society, covering many low-resource languages.
Aside from the Bible, the Jehovah’s Witnesses provide maga-
zines, books, and other multi-media content.

8For instance, the female pronoun ella occurs less than
one-fourth of the times the male pronoun él occurs.

source # of samples parallel sentences
Lozano R. and Mejía V. (2007) 402 yes & aligned text
Álvarez (2016) 211 yes
Álvarez (2011) 425 yes

69 aligned text
Total: 1107

Table 2: Description of out-of-domain data set, collected
bitext for Spanish–Wayúunaiki.

source language # of samples, tokens language unit
de Saint-Exupéry et al. (2016) guc 1933 19.5k sentence
David M. Captain (2005) guc 3177 3.2k word
Total: 5.1k units
WikiDump (Wikipedia, 2020) esp 29.02M 597M sentence

Table 3: Description of monolingual data in Wayúunaiki
(guc) and Spanish (esp).

word context, regarding activities or occupations
(Storks et al., 2019). Furthermore, we asked two
native Wayúunaiki speakers to perform a revision
of random Wayúu sentences in the Tatoeba cor-
pora. The revision showed the low quality of the
resource. Some sentences are not direct translations
and miss important information. In the example be-
low, the personal name (Margaret) is absent in the
Wayúunaiki sentence (a), but given in the official
translation (b). According to bilingual Spanish and
Wayúunaiki speakers, the correct translation would
be (c).

(a) Sü’lakajaaka pireewa sümaa saatsa aainjuushi süka keesü

nayaalu’u na süikeyuukana süka shiain nekaajüin ma’in.

(b) Margaret trajo la comida y la puso en el centro de la mesa,
donde estaban todos sentados.
Margaret brought the food and put it in the center of the
table, where everyone was sitting.

(c) Nos cocinaron fideos en salsa con queso porque es la
comida que comen ellos.
They cooked us noodles in sauce with cheese because
that’s the food they eat.

In order to create a general domain parallel data
set and assess the generalizability of the trans-
lation systems, we collected data from Spanish–
Wayúunaiki dictionaries and illustrative grammar
booklets for non-Wayúunaiki speakers to learn the
language. Table 2 shows the number of samples
and sources we used to build the general domain
test set.

Monolingual corpora Table 3 lists the details
of the monolingual data we collected. We ex-
tracted Wayúunaiki text from the translation9 of

9https://www.academia.edu/37583043/
Pürinsipechonkai
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the book The Little Prince by Antoine de Saint-
Exupery. This corpus is used as monolingual
data, since it does not align at sentence level
with the Spanish version. We also extract from
a bilingual Spanish–Wayúunaiki dictionary (David
M. Captain, 2005) entries in Wayúunaiki, which
we used, one token per line, as additional data. The
Wayúu data follows the the official writing norm
ALIV. For Spanish, we use a subset of 10M sen-
tences from the Spanish Wikipedia dump from May
2020 (Wikipedia, 2020) extracted with WikiTailor
(España-Bonet et al., 2023). Notice the data asym-
metry between Wayúunaiki and Spanish. While we
obtain 5000 sentences in Wayúunaiki, the Spanish
Wikipedia alone has almost 30M sentences. This
reflects the typical data imbalance between high-
and low-resourced languages.

The monolingual corpus is used in our work
combined with the monolingual parts of the parallel
corpus to train word embeddings.

Supplementary Material Some of our experi-
ments require supplementary information in the
form of linguistic annotations, or dictionaries. We
extracted morphological analyses of verb con-
jugations in Wayúunaiki from the work of Ál-
varez (2017) to guide the semi-supervised training
of the segmentation models (Prefix-Root-Postfix-
Encoding and FlatCat). For this, the morph cate-
gories prefix, stem, and suffix were manually an-
notated. An example file is listed in Appendix A
and we make all files available online.10 We per-
form a similar morphological annotation with Span-
ish samples taken from lecture slides from Doctor
Lluís Simarro Lacabra (2014), an educational insti-
tution.

Preprocessing We split the monolingual text into
sentences and tokens using the nltk tokenizer. Since
there is no tokenizer for Wayúunaiki, we use reg-
ular expressions (RE). The character ’ in Wayúu-
naiki, which in the Latin alphabet represents the
glottal stop consonant [P] known as "saltillo", lit-
tle skip, had to be stripped from additional white
spaces. For simplification, all possible saltillos ( ‘ ′

’ ´ ) were mapped to the ' character in the parallel
data sets. Likewise, quotations ( » « “ ” ) were
normalized to ". Bible verses number references
were detected with REs and removed. Enumer-
ations with brackets, numbers with punctuation
at the beginning of the sentence, and URLs were

10https://github.com/norgrai/wayuunaiki

also removed. We train a truecaser with Moses
scripts (Koehn et al., 2007) for each language on
the parallel data and applied them to all data sets
accordingly.

5 NMT Systems

All our models are based on a transformer archi-
tecture (Vaswani et al., 2017) and developed with
Marian v1.11.0 (Junczys-Dowmunt et al., 2018).

5.1 Baseline System

We perform a wide hyperparameter search on a
transformer following van Biljon et al. (2020) (see
Appendix B for the parameters, the ranges we ex-
plore and the best configuration). With the gained
insights from the random search, we chose the con-
figuration of the most promising model, a small
transformer model with 3 encoder, 3 decoder lay-
ers, 4 heads and hidden layers with a size of 1024,
and use it in all systems.

We train a baseline system on unsegmented
data without (BASE) and with (BASE+EMB) pre-
trained embeddings. The embeddings for each
language are trained independently with fastText
(Bojanowski et al., 2017) on the preprocessed, un-
segmented monolingual text, using the continuous
skip-gram model (Mikolov et al., 2010). In our
experiments, the model achieved the best results
with embeddings that have a dimension of 256.

5.2 Subword Segmentation Techniques

We investigate different subword segmentation al-
gorithms and apply them separately for each lan-
guage: BPE without (SUBW-bpe) and with ap-
plied dropout (SUBW-dp), a unigram LM (SUBW-
uni) for segmentation, PRPE (SUBW-prpe), and
Morfessor FlatCat (SUBW-fc).

For SUBW-bpe, we explore both the impact of
separate and joint vocabulary, and of different vo-
cabulary sizes, using the subword-nmt toolkit (Sen-
nrich et al., 2016). The chosen merge operations
range from 100 to 15000 merges. According to
the results (detailed numbers in Appendix C), we
use for SUBW-bpe with 4k merge operations with
separate vocabularies if not stated otherwise.

Reported models with pretrained embeddings
(SUBW-bpe+EMB) are trained with fastText like
the ones for the baseline but with segmented mono-
lingual text.
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5.3 Factored Models

We investigate factored models, where POS tag
information is injected. Since an NLP tool for
POS tagging or lemmatization in Wayúunaiki is
not available, we adapt Spanish–Wayúunaiki dic-
tionaries into linguistic knowledge-based vocabu-
laries: Wayúu vocabulary entries were annotated
with the Spanish translation and POS tag to rep-
resent implicit linguistic information. We use a
bilingual dictionary from the Apertium (Forcada
et al., 2011) GitHub11 and an illustrated dictionary
from David M. Captain (2005). We match their
different POS tag annotations for Wayúu with the
POS tag categories of the FreeLing analyzer (Padró
and Stanilovsky, 2012) for Spanish.12

Approximately 40% of the Wayúu training data
could be annotated in this way, mostly due to anno-
tation of the closed class "punctuation" with makes
up about 15% of the tokens. The high number of
unclassified words is mainly due to the lack of a
lemmatizer: only dictionary entries can be looked
up automatically, so most tokens with inflectional
and derivational variation cannot be matched with
their corresponding POS tag. This stands in stark
contrast to the annotation with FreeLing for Span-
ish, where much more fine-grained classes were
used and every word is assigned a POS tag.

5.4 Evaluation

For the automatic evaluation, we use SacreBLEU
(Post, 2018) to calculate BLEU13 (Papineni et al.,
2002) and chrF2++14 (Popović, 2015). As semantic
metric we use BLEURT15 (Sellam et al., 2020) and
for all cases, we estimate 95% confidence intervals
via bootstrap resampling (Koehn et al., 2003) with
1000 samples.

Since the surface-based n-gram scoring methods
can strongly restrict the expressiveness of aggluti-
native languages like Wayúunaiki, we also include
example model translations for a qualitative manual
comparison.

11https://github.com/apertium/apertium-guc-spa
12See the detailed resulting alignments among languages

and the percentage of categories in our training data in Ap-
pendix A.

13BLEU|nrefs:1|bs:1000|seed:12345|case:mixed|eff:no
|tok:13a|smooth:exp|version:2.3.1

14chrF2++|nrefs:1|bs:1000|seed:12345|case:mixed|eff:yes
|nc:6|nw:0|space:no|version:2.3.1

15BLEURT v0.0.2 using checkpoint BLEURT-20

6 Results and Discussion

We report the translation scores for Wayúunaiki to
Spanish in Tables 4 (religious domain) and 5 (gen-
eral domain) for each method with the best system
per metric boldfaced. In Table 6 we report trans-
lation results for Spanish to Wayúunaiki for the
most representative systems (the best segmentation
approach together with a factored and a pretrained
embeddings model).

Model Architecture. van Biljon et al. (2020)
demonstrated improvements for translating English
text into agglutinative LRLs with a transformer by
halving the model’s depth to 3 encoder and 3 de-
coder layers. We obtain the same conclusion from
the hyperparameter search for translating from and
into Wayúunaiki. Our BASE model is also a small
transformer with 3 encoder and 3 decoder layers
but Wayúunaiki–Spanish turns out to be a challeng-
ing language pair with baseline translation quality
close to zero.

Pretrained embeddings alone do not signifi-
cantly improve the results (BASE+EMB, SUBW-
bpe+EMB), although they have been shown to pro-
vide a better representation of less frequent con-
cepts in LRLs (Haddow et al., 2022). Qi et al.
(2018) showed that pretrained embeddings seem
to be effective for not-too-distant translation pairs.
This may well be the reason for our lack of improve-
ment, Wayúunaiki and Spanish are very distant, but
we conjecture that the most important problem we
face is the lack of sufficient data to train Wayúu
embeddings: the monolingual Wayúu corpus we
use is almost equivalent to the size of the parallel
corpus. Still the results of Qi et al. (2018) indicate
that pretrained embeddings seem to introduce se-
mantic and syntactic information of words improv-
ing translations even for distant translation pairs:
systems are able to capture overall basic language
characteristics and generate more grammatically
well-formed sentences. Qi et al. (2018) indicate
that for very little but sufficient training data, that al-
lows training the system, using pretrained word em-
beddings from (Bojanowski et al., 2017) are most
effective. Their usage of pretrained embeddings
by Bojanowski et al. (2017) make comparison with
our results very difficult, as such embeddings are
trained on billions of tokens.

Notice that our BASE systems trained on unseg-
mented data are well below any subword segmen-
tation we apply. This contradicts the conclusions
for Quechua-Spanish in Chen and Fazio (2021):
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model guc-esp BLEU chrF2 BLEURT
BASE 0.5 ± 0.2 6.0 ± 0.3 0.17 ± 0.01
BASE+EMB 0.7 ± 0.2 11.8 ± 0.4 0.094 ± 0.007
SUBW-bpe 4.2 ± 0.7 20.5 ± 0.8 0.21 ± 0.01
SUBW-dp 3.1 ± 0.5 16.7 ± 0.8 0.22 ± 0.01
SUBW-uni 3.3 ± 0.6 22.0 ± 0.7 0.20 ± 0.01
SUBW-prpe 1.0 ± 0.3 7.0 ± 0.3 0.15 ± 0.01
SUBW-fc 4.5 ± 0.8 21.0 ± 0.8 0.21 ± 0.01
SUBW-bpe+

+FACT 1.0 ± 0.2 8.9 ± 0.4 0.127 ± 0.006
+EMB 0.6 ± 0.2 7.9 ± 0.3 0.090 ± 0.005
+FACT+EMB 0.8 ± 0.2 13.6 ± 0.4 0.115 ± 0.007

Table 4: Automatic evaluation scores of the Wayúu-
naiki to Spanish translations with the religious in-
domain test set.

model guc-esp BLEU chrF2 BLEURT
BASE 0.08 ± 0.04 4.8 ± 0.3 0.106 ± 0.006
BASE+EMB 0.06 ± 0.03 8.8 ± 0.6 0.048 ± 0.004
SUBW-bpe 0.20 ± 0.10 13.2 ± 0.9 0.075 ± 0.006
SUBW-dp 0.14 ± 0.08 8.8 ± 0.7 0.132 ± 0.006
SUBW-uni 0.16 ± 0.08 13.8 ± 0.9 0.070 ± 0.005
SUBW-prpe 0.11 ± 0.08 4.5 ± 0.3 0.104 ± 0.006
SUBW-fc 0.12 ± 0.03 14.0 ± 0.8 0.067 ± 0.005
SUBW-bpe+

+FACT 0.07 ± 0.02 6.5 ± 0.5 0.082 ± 0.004
+EMB 0.07 ± 0.03 6.8 ± 0.6 0.067 ± 0.004
+FACT+EMB 0.03 ± 0.01 9.6 ± 0.6 0.059 ± 0.005

Table 5: Automatic evaluation scores of the Wayúu-
naiki to Spanish translations with the general domain
test set.

in an out-of-domain evaluation their model outper-
formed all of their systems trained with different
segmentation methods (e.g., BPE, unigram LM,
PRPE).

Segmentation technique. Although all segmen-
tation methods yield a statistically significant im-
provement over the baseline, the scores both on
the general and in-domain test set emphasize that
models do not provide good or even reasonable
quality translation yet. Notice also that no single
model outperforms other models in all automatic
evaluation metrics.

While the results show some potential of Mor-
fessor Flatcat to be used as a segmentation tech-
nique,16 the need to tune additional parameters
(perplexity threshold and weight) make the ap-

16Zuters et al. (2018) introduced a method of segmenta-
tion post-processing to control the effective vocabulary size
and support an open vocabulary: they performed the Morfes-
sor subword segmentation in an unsupervised fashion on the
data on which they applied additionally the BPE algorithm.
We tried out this approach but could not achieve comparable
results to the reported SUBW-fc.

proach more complex and provide no statistically
significant improvements with respect to the most
straightforward SUBW-bpe. We therefore use
SUBW-bpe in our factored models.

The unigram LM subword segmentation method
of SentencePiece, used in many NLP systems
(Mielke et al., 2021), offers a non-deterministic
alternative, though with the SUBW-uni model for
the first time in our experiments we observe sub-
words that are ungrammatical. For instance, the
verbs gobernar (Eng: rule) in the reference (2) and
the translation (4), which has an incorrect duplica-
tion of the character "r":

(1) mapa, kettaapa tü miit juya Nuluwataainjachikalü o’u,
nüle’ejireerü tü aluwataayakat nümüin chi nüshikai .

(2) después de gobernar como rey por mil años , le devolverá
el reino a su padre .
and after ruling as king for a thousand years, he will
return the kingdom to his father

(3) finalmente , cuando llegue el día de su vida , comenzó a
gobernarrse con él .
finally, when the day of his life came, he began to govern
himself with it .

Observed word repetitions and hallucinations in
SUBW-uni or SUBW-dp suggest that the training
is still not optimized. The following examples are
common translation outputs (they appear several
times with diffent and unrelated source sentences)
for general domain inputs unrelated to the Bible:

(a) la biblia dice : " el nombre de Jehová

the bible says : " the name of Jehovah

(b) Jesús dijo : " tú , tú , tú ,

Jesus said: " you, you, you,

Fu et al. (2020) argue that the repetition problem
is the expression of human language itself: words
that produce high probabilities tend to be chosen
as the subsequent word again, constructing predic-
tion loops, which result in repetitions. We observe
single-word repetitions; however, word pair repeti-
tions are more common, exemplified with "tú" and
"," in (b).

Similar to the findings of Raunak et al. (2021),
we encounter fluent but “detached”, and non-
grammatical translation outputs with repetitive
structure of hallucinations. The investigation of
Lee et al. (2018) on hallucinations with a medium-
sized corpus (4.5M training sentences) let them
conclude that the noisy and finite characteris-
tics of the data sets are the source for the phe-
nomenon. They propose data augmentation as the
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model esp-guc BLEU chrF2 BLEURT
religious domain:
SUBW-bpe+ 1.2 ± 0.3 13.9 ± 0.4 0.239 ± 0.007

+FACT 0.7 ± 0.2 10.7 ± 0.4 0.240 ± 0.008
+EMB 0.5 ± 0.1 17.1 ± 0.6 0.255 ± 0.008
+FACT+EMB 0.7 ± 0.2 19.3 ± 0.6 0.252 ± 0.008

general domain:
SUBW-bpe+ 0.10 ± 0.06 11.3 ± 0.5 0.205 ± 0.007

+FACT 0.06 ± 0.01 9.9 ± 0.5 0.212 ± 0.007
+EMB 0.01 ± 0.01 9.3 ± 0.7 0.232 ± 0.007
+FACT+EMB 0.02 ± 0.00 13.0 ± 0.8 0.228 ± 0.005

Table 6: Automatic evaluation scores of the Spanish to
Wayúunaiki translations with the religious in-domain
test set (top rows) and the general domain test set
(bottom rows).

most promising approach for preventing halluci-
nations. Still, their techniques require knowledge
of hallucinations and exhaustive filtering of the
training data. Similar conclusions are made by
Raunak et al. (2021); furthermore, they emphasize
that invalid or misaligned sentence pairs that do not
provide accurate translations should be removed.

Although the overall scores are very low, we
find that introduced linguistic knowledge in the
shape of linguistically inspired morphs helps the
system to better accomplish the translation task.
Yet, the segmentation has to be carried out invari-
ably: one possible explanation for the qualitatively
lower translations of the models with applied BPE
Dropout or the SentencePiece unigram LM is the
statistical noise introduced in the segmentation pro-
cess, being both non-deterministic segmentations
contrary to the BPE algorithm.

Linguistic Factors and Embeddings. The per-
formance of the +FACT methods is worse than
the original SUBW-bpe. The same happens when
adding pretrained word embeddings (+EMB). The
introduced linguistic information in the shape of
POS tags, pretrained embeddings, and the com-
bination of both does not help to overcome the
difficulties of this LRL translation pair. The main
reason is the low coverage for Wayúunaiki, both
in the amount of data to train the embeddings and
therefore their quality, and in POS annotations as
explained in Section 5.3.

It is generally acknowledged that introducing
linguistic factors coupled with a word or its sub-
words improves translation quality only to a modest
extent (Sennrich and Haddow, 2016). Hence, for
language pairs in a high resource setting, it is not
advisable to invest time and effort in a factored

NMT approach (Casas et al., 2021). Still, in an
LRL setting that possibly involves morphologically
rich languages, the data sparsity problem can be
eased by converting the plain parallel text into a
factored representation on the source side.

Translation quality should not be evaluated only
automatically though, as low scores are difficult to
compare and different metrics show different trends
(see their correlations in Appendix C). No single
model outperforms all of the others in Table 4 mea-
sured across all three metrics. Although none of the
proposed models achieved a higher BLEU score
than SUBW-bpe for translating into Wayúunaiki in
Table 6, the chrF2 score indicates improvements
(± 3.2), which we verified by manually examining
example translations, e.g., (2) and (3).

(1) input: hablémosle sin prisas .
let’s talk to him without haste .

(2) SUBW-bpe+EMB: püküja nümüin tü alatakat nümüin .
. . ] . ] tell those who cut for him . . . ] . ]

(3) SUBW-bpe: shia süka tü kee’ireekat paa’in .
this is what you want .

(4) reference:
nnojoishii ashapajaainjanain waya waashajaapa nümaa .

7 Conclusion and Future Work

In this work we applied various unsupervised and
semisupervised subword segmentation methods to
enrich the data used to train a transformer-based
NMT model with linguistic information. Addition-
ally, we extended the architecture of the standard
SUBW-bpe model by adding linguistic information
in the form of POS tag factors and/or supplying
the system with pretrained embeddings. In line
with previous research on Indigenous LRL pairs
that include Spanish, we observed that the addi-
tion of subword information is crucial to improve
translation quality (e.g., Ortega et al. (2020), Mager
et al. (2021), Chen and Fazio, 2021). In particular,
the Indigenous languages of America, which are
mostly characterized by a rich morphology, and
part of agglutinative and polysynthetic languages,
benefit from approaches that consider the LRL’s
morphology and apply subword segmentation tech-
niques that are suitable for the language pair. In
contrast, we did not achieve any improvement with
factors and pretrained embeddings. The lack of re-
sources, in terms of data and annotation coverage,
is the likely cause for the low performance of these
models.
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Our next steps are focused on investigating the
effectiveness of injecting linguistic knowledge for
the Wayúu language by exploring datasets without
repetitive sequences and less sparse and noisy anno-
tations. To do this, more sophisticated approaches
to obtain implicit linguistic knowledge from LRL
text, such as introducing linguistic information also
on the target side in the form of POS-tag or lemma
factors are possible.

Problems related to the lack of resources for fac-
tored training could in principle be overcome by
applying a linguistically inspired subword segmen-
tation technique, for instance, Morfessor’s FlatCat.
By splitting a word into its subwords, chances of
determining the stem are higher, if the segmenta-
tion into subwords representing stems and suffixes
is both accurate and consistent. Given the stem, the
word can be annotated with its POS tag from the
linguistic knowledge-based vocabulary. We note
that this is limited to languages without infixation
and would work only for words without assimila-
tory processes between affixes and stem. Still, it
presents a possible approach to obtain labeled data.

Besides enriching the data with linguistic infor-
mation, our observations on word repetitions and
hallucinations indicate that additional cleaning, fil-
tering of unaligned source and target translations,
and orthographic normalization could significantly
enhance data quality and hence translation perfor-
mance.

We believe that injecting linguistic information,
especially for LRL pairs can alleviate the data spar-
sity problem and aid the models with the annota-
tion of implicit linguistic knowledge present in the
data. By enriching the data to represent such in-
formation present in the text (e.g., annotating POS
tags), a model can better identify patterns inherent
in the data. Still, choosing between the different
approaches and techniques requires taking into ac-
count the nature of the LRL pair and the available
resources, particularly supported NMT tools and
data sets.

Limitations

In this work we explored transfer learning ap-
proaches only by using pretrained word embed-
dings. Transfer learning should be explored fur-
ther. Some of the segmentation methods have their
own hyperparameters which are usually obtained
for high-resourced languages and might be sub-
optimal in our case. These hyperparameters should

be systematically explored. Finally, token-free pre-
trained models fine-tuned on our data should be
investigated.

It is costly and difficult to acquire human trans-
lations, due to the limited number of speakers and
exclusive LRL communities; moreover, the fact
that we are not Wayúunaiki speakers limited our
qualitative assessment.
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A Supplementary Material Annotation

A.1 Morph Categories
We manually annotate the morph categories prefix,
stem, and suffix of 26 words in Wayúunaiki and 91
in Spanish for the Morfessor Flatcat approach. To
perform Prefix-Root-Postfix-Encoding, we created
two heuristics that contain the common suffixes,
prefixes and endings for the Wayúu and Spanish
languages. The example below shows 10 words
annotated for Wayúunaiki.

Listing 1 Example annotations for Wayúunaiki
used for semi-supervision in the Morfessor Flatcat
(Grönroos et al., 2014) system. Morph categories
are indicated by PRE (prefix), STM (stem), and
SUF (suffix).
aya’lajaa a/PRE ya’laja/STM a/SUF
aya’lajeewaa a/PRE ya’laja/STM ee/SUF a/SUF
aya’lajiraa a/PRE ya’laja/STM ira/SUF a/SUF
aya’lajünaa a/PRE ya’laja/STM na/SUF a/SUF
apütüshi a/PRE pütü/STM shi/SUF
apütüichi a/PRE pütü/STM i/SUF chi/SUF
apütüeechi a/PRE pütü/STM ee/SUF chi/SUF
apütüinjachi a/PRE pütü/STM inja/SUF chi/SUF
apütüshijachi a/PRE pütü/STM shi/SUF ja/SUF chi/SUF
apütüichipa a/PRE pütü/STM i/SUF chi/SUF pa/SUF

A.2 POS Tagset Alignment
We summarize our alignment between the POS tags
of the different sources in Wayúunaiki and the POS
tag categories of the FreeLing analyzer for Spanish
in Table 7. Due to different categorizations of some
determiners, we replaced entries that were referring
to the determiners as either adverb or pronoun in
David M. Captain (2005) and mapped them uni-
formly to the POS tag D. About 80 references to
another surface form of the same word were looked
up and matched with their corresponding POS tag.

Spanish Wayúunaiki

class abbr. class abbr.

adjective A (1)(2) adjetivo adj.
conjunction C (1) conjunción conj.
determiner D (3) determinante det
punctuation F puntuación punct.
pronoun P (1) pronombre pron.
adverb R (1) adverbio adv.
adposition S (1) posposición posp.

(2) Postposición post.
verb V (1) verbo transitivo v.t.

(1) verbo intransitivo v.i.
(2) verbos vblex

noun N (1) nombre n
(2) Alineable ali.
(2) Inalineable ina.

interjection I (1) interjección interj.
(2) Interjeccion ij

Table 7: Description of Tagset for Spanish (left): POS
classes with the category and the abbreviation used.
Alignment with the Wayúunaiki data (right): (1) refers
to the dictionary in David M. Captain (2005), (2) For-
cada et al. (2011), and (3) the manually extracted, closed
classes in Lozano R. and Mejía V. (2007).
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A.3 POS Tags Distribution

Figure 1: POS tags of the Wayúu training data, which we annotated based on linguistic knowledge-based vocabular-
ies.

Figure 2: POS tags of the Spanish training data, annotated with FreeLing (Padró and Stanilovsky, 2012). We
summarized the subclasses of determiner (D), numbers (Z), and punctuation (F) for representation purposes only.
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B NMT Hyperparameter Exploration

Building upon findings from van Biljon et al.
(2020), we explore different hyperparameters
which are specially relevant in the LR scenario.
Table 8 summarizes the hyperparameter space ex-
plored. Table 9 shows the best configuration that
is used for the baseline system (BASE). Finally,
we show the segmentation-related hyperparameters
used for the segmented-based models (SUBW-*)
in Table 10.

Hyperparameter Values

# attention heads: 2, 4, 8
# of encoder/decoder layers: 2, 3, 4
embedding size: 256, 512, 1024
tied embeddings: True, False
learning-rate: 1e-3, 1e-4

3e-4, 5e-4
warm-up steps: 1000, 4000
adam optimizer beta: 0.98, 0.999
label-smoothing: 0, 0.1, 0.2
layer-normalization: True, False
train-position-embeddings: True, False
exponential-smoothing: 0, 0.0001
clip-norm: 0, 1, 5
seeds: 0, 42, 1111

Table 8: Hyperparameters explored (as required by Mar-
ian software) with the corresponding values considered.

C Systems Evaluation

C.1 Translation Quality vs Vocabulary Size

The size of the vocabulary is very important in
low resourced settings. We therefore perform a
deep exploration of the merge operations in our
SUBW-bpe system. Figure 3 shows translation
quality with the three metrics (BLEU, chrF and
BLEURT) varying the merge operations between
100 and 15000 per language.

Similarly to Ding et al. (2019), we find perfor-
mance drops with increasing merge operations, con-
firming made findings, that in low-resource set-
tings fewer merge operations, hence smaller vocab-
ulary sizes seem to be appropriate (Mielke et al.,
2021). Interestingly, we note a strong decline in
performance for merge operations greater than 2k
and smaller than 4k merges, Figure 3. Since the
merge-depending vocabulary size influences the
final amount of parameters, we suppose that for
2k or 4k, an optimal setting for the SUBW-bpe
architecture is encountered.

type: transformer
hidden layer size: 1024
embedding size: 256
tied embeddings: False
decoder depth: 3
encoder depth: 3
transformer heads: 4
transformer-dim-ffn: 1024
transformer-postprocess: da
transformer-preprocess: n
dropout - transformer: 0.3

- ffn: 0.25
- attention: 0

clip-norm: False
exponential-smoothing: 0
layer normalization: False
label smoothing: 0.1
learning-rate (lr): 3e-4

lr-warmup: 1000
lr-decay-inv-sqrt: 4000

optimizer (betas): adam (0.9, 0.999,1e-9)
seed: 42
early stopping patience: 15
beam size: 5
mini-batch-words: 1000
max-sentence length: 100

Table 9: Network configuration for the baseline BASE.
Operation: d=dropout, a=add, n=normalize. As in Ta-
ble 8, the parameters are those used by Marian.

(0) subword_nmt/learn_bpe.py
bpe_operations: 4000
separate vocabulary setting

(1) subword_nmt/apply_bpe.py
dropout: 0.05

(2) sentencepiece-options:
vocab size: 4000
character coverage: 0.9998
sentencepiece-alphas: 0 0

(3) segmentation:
prefix rate: 32
suffix rate: 500
postfix rate (esp): 180
postfix rate (guc): 500
vocab size: 5000
model training:
dim-vocabs 4000 4000

(4) segmentation:
perplexity (esp): 200
perplexity (guc): 15
α: 0.1
β: 1.0

Table 10: Additional configuration for (0) SUBW-bpe,
(1) SUBW-dp, (2) SUBW-uni, (3) SUBW-prpe, (4)
SUBW-fc.
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1

Figure 3: Automatic evaluation scores of the translations with the religious, in-domain and below the OOD-test set of the
Transformer SUBW-bpe system trained with different BPE merge operations in a seperate vocabulary setting. The confidence
intervals were obtained via bootstrap resampling 82



C.2 The Use of Automatic Metrics
Results in Section 6 show very low scores for the
automatic metrics. Notice, that even if improve-
ments with respect to the baselines are statisti-
cally significant, different metrics point to different
rankings of the systems. This problem appears
generally with low scores and with small differ-
ences between systems, both issues we encounter
in Wayúunaiki–Spanish translation. As result, met-
rics do not correlate well with each other. The
Pearson correlation among pairs of metrics (BLEU,
chrF, BLEURT) is r < 0.6, being far from linearity.
We show in Table 4 the scores of all our systems
projected into the 2D spaces for BLEU-chrF (black
crosses, r = 0.534, ρ = 0.451 ), BLEU-BLEURT
(red stars, r = 0.571, ρ = 0.720) and chrF-BLEURT
(green dots, r = 0.498, ρ = 0.377).

Figure 4: Correlation between the metrics used in the
automatic evaluation. We include all of the model scores
reported in Tables 4, 5 and 6.
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Abstract

Named Entity Recognition is a crucial step
to ensure good quality performance of several
Natural Language Processing applications and
tools, including machine translation and infor-
mation retrieval. Moreover, it is considered as
a fundamental module of many Natural Lan-
guage Understanding tasks such as question-
answering systems. This paper presents a first
study on NER for an under-represented Indige-
nous Inuit language of Canada, Inuktitut, which
lacks linguistic resources and large labeled data.
Our proposed NER model for Inuktitut is built
by transferring linguistic characteristics from
English to Inuktitut, based on either rules or
bilingual word embeddings. We provide an
empirical study based on a comparison with
the state of the art models and as well as in-
trinsic and extrinsic evaluations. In terms of
Recall, Precision and F-score, the obtained re-
sults show the effectiveness of the proposed
NER methods. Furthermore, it improved the
performance of Inuktitut-English Neural Ma-
chine Translation.

1 Introduction

In recent years, Artificial Intelligence has recently
gained much attention in research and development,
particularly when applied to the field of Natural
Language Processing (NLP) and Human Language
Technologies. This paper focuses on Named Enti-
ties Recognition (NER), one of the crucial tasks in
several NLP applications and resources. The latter
consists in identifying and classifying the names
of the specified categories according to predefined
semantic types, such as, the names of people, the
place, the organization and the numerical expres-
sions, in particular, the currency, the date and the
percentage (Nadeau and Sekine, 2007). NER being
among the most important tasks of NLP; however,
the success of such models is highly dependent
on the amount of available annotated data, which
is scarce and difficult to obtain. Furthermore, be-

cause of the unavailability of annotated data, it
is more difficult to apply these NLP methods to
low resourced languages and domains, such as
Inuktitut, one of the main Indigenous languages
in North America and the Canadian Arctic, and
part of a larger Inuit language family, stretching
from Alaska to Greenland1.

According to UNESCO, 75% of Indigenous lan-
guages are threatened with extinction, and language
loss is currently occurring at an accelerating rate
due to globalization. Therefore, the revitalization
of endangered languages has become an important
task for the preservation of cultural diversity on our
planet (Bird, 2020).

In our research, we are interested in Inuktitut.
Our main objective in this framework is to address
the linguistic challenges and to detect named enti-
ties for this language through the following contri-
butions:

• Explore the NER task for the Inuktitut lan-
guage. To our knowledge, works on this task
in related with Indigenous languages such as
Inuktitut are rare, or non-existent. Therefore,
our study will be the first to be carried out for
this task.

• Perform a comparative study between two
methods, using: (i) rule-based projection
based on a morphological analyzer and a word
aligner; and (ii) bilingual word embeddings
based on semantic similarity in a bilingual
vector space.

• Build an annotated corpus in Inuktitut for the
NER task. This corpus will contribute to fu-
ture work for various subfields of NLP, namely
information retrieval, neural machine trans-
lation, and conversational agents (chatbots).

1https://www.thecanadianencyclopedia.ca/en/
article/inuktitut
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Also, this work would contribute to the preser-
vation and revitalization of the Inuktitut as
well as other (related) Indigenous languages.

• Improve the performance of a Neural Ma-
chine Translation (NMT) system by including
a NER module.

The current paper is organised as follows: Sec-
tion 2 introduces Indigenous knowledge including
research on several domains such as language, cul-
ture, and identity, as well as the relevant works
in NER domain. Section 3 presents our method-
ology via several methods to deal with NER task,
and an empirical case study of the Machine Trans-
lation task including the NER. Experiments and
evaluations are presented in Sections 4 and 5. Fi-
nally, Section 6 gives some conclusions and future
research directions.

2 A dive into Indigenous Research and
NLP

Since 2020, new directions for Indigenous research
were put in place by Canada research coordinat-
ing committee2, to help Indigenous peoples and
communities partner with research fields, to sup-
port and to encourage them to conduct their own
research3. As with any culture, language is an es-
sential part of Indigenous knowledge, it is also one
of the important disciplines of Indigenous research
in Canada.

Indigenous languages in Canada have changed
and evolved over time and over generations. Like
all languages, they carry literary, cultural, tradi-
tional, but also historical values (Dorais, 1995).
One of the particularities of the Indigenous lan-
guages of Canada is that, for some, they are not
spoken elsewhere in the world and are specific to
Canada4. As a result, these languages must be
preserved because they represent one of the lin-
guistic and therefore cultural riches of Canada. It

2Canada Research Coordinating Com-
mittee: https://www.canada.ca/fr/
comite-coordination-recherche/priorites/
recherche-autochtone/plan-strategique-2019-2022.
html

3Indigenous Peoples and Communities: https:
//www.rcaanc-cirnac.gc.ca/fra/1100100013785/
1529102490303

4Indigenous languages of First Nations, Métis and Inuit:
https://www12.statcan.gc.ca/census-recensement/
2016/as-sa/98-200-x/2016022/98-200-x2016022-fra.
cfm

is mentioned in the Canadian statistics5, that the
2016 census recorded more than 70 Indigenous
languages divided into 12 language families. The
Inuit languages are considered the second Indige-
nous language family with the largest number of
speakers after the Algonquian languages. The most
used language in this linguistic family is Inukti-
tut, mainly spoken in Nunavut and Quebec. In our
research, we are particularly interested in this lan-
guage, rich and at the same time morphologicall
complex, as presented in the following section.

2.1 Linguistic challenges in Inuktitut
Indigenous languages in Canada are considered as
endangered languages, that reflect the richness of
cultures, the history of a people and the diversity of
knowledge. Inuktitut is one of the four major sets of
dialects of Inuit languages in Canada, from Alaska
to Greenland. Mainly spoken in Nunavut and Que-
bec, it is also spoken in areas of Newfoundland and
Labrador as well as in the Northwest Territories.
In 2016, the census counted 39,770 speakers, with
65% living in Nunavut and 30.8% living in Quebec.

The preservation of Inuit languages is valued
by Indigenous peoples because they are languages
that are not spoken elsewhere in the world and their
transmission to future generations is not easy. In-
deed, Statistics Canada reports that in 2006, 21.4%
of the Indigenous population reported being able to
carry on a conversation in an Indigenous language.
Nevertheless, this percentage decreased to 15.6%
in 2016.

Inuktitut is written with a syllabic system, that
said, it also has an orthography of the Roman al-
phabet and the orientation of the writing of the
sentences is done, as for French or English, from
left to right. The Inuktitut syllabary has differences
between dialects. This is because certain sounds ex-
ist in one dialect and not in the other. This feature is
also found in the spelling system or the spelling of
the Roman alphabet of the Inuktitut language, these
differences are represented by additional symbols.

The Inuktitut spelling, based on the letters of the
Roman alphabet, aims to be more faithful to the
pronunciations and specificities of the language in
order to be standardized and made more systematic
(Compton, 2021).

The Inuktitut language has a particular grammar
and fairly complex word compositions that differ-

5Census record: https://www12.statcan.gc.ca/
census-recensement/2016/as-sa/98-200-x/2016022/
98-200-x2016022-eng.cfm
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entiate it from other languages.
Example6 :
Tusaatsiarunnanngittualuujunga, that means I

don’t hear very well
That sentence word could be segmented as fol-

lows: The root Tusaa- (to hear) is followed by 5
suffixes: tsiag- (well), -junnag- (to be able), -nngit-
(negation), -tualuu- (much), -junga (first person
singular and present tesnse).

2.2 NER for Indigenous languages

In the NER task for Indigenous languages, we clas-
sify mainly two types of methods: (1) the one based
on rules, and (2) the other ones based on transfer
learning, a method that uses the knowledge ac-
quired from one task to be transferred to a second
task, recently relying heavily on deep learning. In
the first category, sets of rules are manually made
for each entity type based on context and morpho-
logical features (Fong et al., 2011). In the second
category, the transfer approach, such as in the NER
model, from rich-resource languages, is an attrac-
tive achievement, due to the large amounts of anno-
tated data available (Collobert et al., 2011; Huang
et al., 2015; Peters et al., 2018). In this research,
we propose methods that use parallel corpora or
word embeddings to project the annotation across
languages.

Recently, the state of the art of NER for low-
resource languages relies on multi-parallel corpora
or word embeddings as proposed by Ehrmann et al.
(2011), with a goal to annotate corpora in several
languages such as French, Spanish, and German. In
their research, they used the IBM model to extract
word-for-word alignments and therefore aligned
entities that represented a group of words.

Other methods used Machine Translation (MT)
to project the annotation between languages. Tiede-
mann et al. (2014) aimed to rule out noisy annota-
tion as to the source language of a parallel corpus.
They relied on manual annotation through the UD
tree bank (Universal Dependencies) combined with
MT. This combination made it possible to train
a fully lexicalized analyzer. On the other hand,
Mayhew et al. (2017) performed word-to-word or
sentence-to-sentence translation using lexicons to
translate available annotated data in rich-resource
languages.

Stengel-Eskin et al. (2019) introduced an align-
ment model based on an encoder-decoder architec-

6https://www.mustgo.com/worldlanguages/inuit/

ture, which was integrated into a MT model based
on Transformers. They evaluated the performance
of their system on the projection of NER data from
English to Chinese and outperformed the fast-align
based model in terms of F-measure.

Jain et al. (2019) proposed a system that im-
proved through three methods of entity projection:
(a) to exploit machine translation systems twice:
first, sentence translation; next, entity translation;
(b) to match entities based on spelling and phonetic
similarity; and (c) to identify matches based on dis-
tributional statistics drawn from the parallel data
set. Their approach achieved improvements on the
cross-lingual NER task and achieved state-of-the-
art F1 score for the Armenian language.

In addition, more relevant research to the NER
task on Nordic languages, are presented as under-
represented or Indigenous languages, such as Ice-
landic (Ingólfsdóttir et al., 2019), Finnish (Hou
et al., 2019; Luoma et al., 2021), Nynorsk (Jo-
hansen, 2019), Danish(Plank, 2019).

Other works, such as Azmat et al. (2020), intro-
duced a named entity annotation transfer method
also based on NMT. Their approach consists in pre-
training an NMT system, from a parallel Uyghur-
Chinese corpus. Then, the boundary informa-
tion that marks the named entities is added to the
source language sentences to re-train the previously
trained model so that it can learn to align the named
entities. The results show that their system obtains
a considerable improvement over the base model
in terms of F_measure.

Hatami et al. (2021) used the fast-align tool to
extract word matchings. Then, two heuristics were
applied to obtain alignments in both directions for
parallel English-Brazilian Portuguese data. The
latter being a low-resource language.

Xie et al. (2018) proposed a method which trains
the monolingual word embeddings, projects the
two spaces of embeddings of the words of the two
languages in the same space, translates each word
into the source language by finding the nearest
neighbor, uses MT to translate named entities.

Adelani et al. (2020, 2022) considered that the
incorporation of word embeddings represents a key
element for NER. First, they used a rule-based
method to identify named entities in addition to en-
tity lists obtained from dictionaries. Second, they
used a noise elimination technique based on the
(Hedderich and Klakow, 2018) method in order to
clean the annotated corpora automatically by the
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rule-based method. The performances shown that
their method was successful for the two Indigenous
languages of Africa: Hausa and Yoruba.

Among the methods that deal with low-resource
languages, Yohannes and Amagasa (2022) intro-
duced TigRoBERTa which was trained on corpora
in Tigrinya, an Ethiopian Semitic language. Then
they performed fine-tuning on downstream tasks
such as NER.

3 Methodology

A promising solution for NER task in low-resource
languages, without annotated data, is from rich-
resource languages using unsupervised transfer
models. Given the unavailable annotated data for
the Inuktitut and the availability of the latter in
English, the main idea of our approach is to trans-
fer the linguistic features of English to Inuktitut.
However, the main challenge of this method is the
mapping of lexical items between languages. In-
deed, this is due to differences in words and word
order across languages.

We present, here, two approaches. The first ap-
proach consists of transferring the NER annotation
from English to Inuktitut by combining rules us-
ing a morphological analyzer with word alignment;
while the second approach is based on the bilin-
gual word embeddings using a bilingual dictionary
(English-Inuktitut) that we built.

3.1 Rules-based approach

In this approach, we used word alignment informa-
tion with a morphological rule set. The main steps
consist of:

• Extracting named entities from the English
corpus. For instance, Ms. Perkison, first Leg-
islative Assembly of Nunavut.

• Performing a morphological analysis of Inuk-
titut sentences. Example: the morphological
analysis of the word Titiraqsimaningit which
means in English First is:
{titiraq:titiraq/1v}{sima:sima/1vv}
{ni:niq/2vn}{ngit:ngit/tn-nom-p-4s}. The
word ending is a tn, which means it’s a noun
ending.

• Identifying nominal groups of Inuktitut text.
For instance, in Inuktitut text, mis puukisan,
sivulliqpaami nunavuup maligaliurvinganni.

• Filtering out nominal groups that do not repre-
sent named entities, by using word alignment.

• Building a dictionary of bilingual named enti-
ties (English-Inuktitut). For instance:

– Ms. Perkison - mis puukisan - PER
– Legislative Assembly of Nunavut -

nunavuup maligaliurvinganni - ORG
– Assembly - maligaliurviup - ORG

• Building a knowledge base in the Indigenous
language (Inuktitut), which will help in carry-
ing out NLP tasks downstream and in preserv-
ing Indigenous culture.

Figure 1 illustrates the pipeline of our rule-based
method.

Figure 1: Architecture of our framework: rule-based
approach.

3.2 Bilingual word embedding-based
approach

Cross-lingual named entities is the transfer of
knowledge from a rich-resource language support-
ing many named entity tags to a low-resource lan-
guage (Ehrmann et al., 2011). In this approach,
we adopt the unsupervised transfer method based
on the bilingual word embeddings. This approach
addresses the two major challenges: how to solve
the word order problem between the languages and
effectively to perform the lexical mapping between
the two languages. The main steps consist of:

• Building a bilingual English-Inuktitut dictio-
nary.

• Recognizing named entity in English source.

• Training monolingual word embedding on
each corpus (English and Inuktitut).

• Translingual projection by performing a linear
mapping between the two monolingual word
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embeddings in the same space and using a
bilingual dictionary.

• Calculating the distance between vectors of
bilingual named entities.

• Selecting the nearest neighbor as the transla-
tion entity.

Figure 2 shows the pipeline of our word
embeddings-based approach.

Figure 2: Architecture of our framework: word
embedding-based approach.

3.3 Machine Translation Downstream Task

Inspired by (Font and Costa-Jussa, 2019), we built
an NMT framework (English-Inuktitut) by taking
advantage of pretrained word embeddings, and also
source-target alignment information as additional
feature.

First, the pretrained word embeddings are used
to initialize the embedding layers of the NMT
model, both in the encoder and the decoder. We
deal with the morphology complexity by applying
the morpheme segmentation for Inuktitut (Le and
Sadat, 2020).

Second, source-target alignment information is
incorporated in the training step. We apply an un-
supervised word aligner (Dyer et al., 2013) to gen-
erate symmetrical source-target alignments.

Third, we inject, in the decoding, the source-
target morphological information, such as bilingual
lexicon. We apply a lexicon extractor from Moses
(Koehn et al., 2007) to prepare a bilingual lexical
shortlist which is passed to the decoder.

4 Experiments

4.1 Data preparation
This corpus includes the proceedings of the 687
days of debates with 8,068,977 words in Inuktitut
and 17,330,271 words in English, which gives ap-
proximately 1,3 million sentence pairs. This corpus
has been used in several research works, particu-
larly in the shared task. The Nunavut Hansard
Inuktitut–English Parallel Corpus 3.0 (Joanis et al.,
2020) is used to train and to evaluate our proposed
models (Table 1).

Dictionary
Using the UQAILAUT7 project database, we were
able to build a bilingual dictionary of 1,560 words.
This constitutes root word meanings as well as
suffix meanings. We used the Microsoft Bing trans-
lator8 to translate the most frequent English words
in the parallel corpora into Inuktitut.

Dataset Train set Dev set Test set
Inuktitut (iu) 1,293,348 5,433 6,139
English (en) 1,293,348 5,433 6,139

Table 1: Statistics of Nunavut Hansard for Inuktitut-
English (Joanis et al., 2020).

4.2 Settings for embeddings pretraining
We setup an experimental environment in Table 2.
To pretrain word embeddings, the hyper-parameters
are configured in Table 2. The fastText toolkit (Bo-
janowski et al., 2017) is used to pretrain them.

Hyper-parameters
Epochs = 50
Dimension size = 300
Window size = 2
Alpha value = 0.03
Loss function = softmax

Table 2: Settings of the hyper-parameters for embedding
pretraining.

4.3 Settings for Neural Machine Translation
Regarding the NMT task, we used the fairseq tool
(Ott et al., 2019) to train the Transformer-based
models with the parameters mentioned in Table

7UQAILAUT project database: https://www.
inuktitutcomputing.ca/Uqailaut/

8Bing translator: https://www.bing.com/translator
(accessed: March 2023)
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3. As pre-processing, we used Moses tool (Koehn
et al., 2007) to tokenize. Additionally, we applied
Byte-Pair Encoding (BPE) subword segmentation
with subword-nmt tool (Sennrich et al., 2015) to
create a 20k vocabulary. In this paper, we per-
formed only two specific experimental models as
follows:

• Baseline: standard Transformer-based model

• Model 1: Transformer-based model with word
alignment information

• Model 2: Transformer-based model with bilin-
gual word embedding information

The relevant hyperparameters of NMT models
are shown in Table 3.

Hyper-parameter Value
Maximum sentence length 128
Batch size 32
Dropout rate 0.3
Transformer layers 12
Transformer hidden layers 768
Learning rate 0.0005
Epoch 40
Optimizer adam

Table 3: Settings of hyper-parameters for NMT models

5 Evaluations

To evaluate our proposed method, we used auto-
matic evaluation metrics such as, Recall, Preci-
sion, F1, alignment error rate (AER), BLEU score
for BiLingual Evaluation Understudy (Papineni
et al., 2002) with SacreBLEU (Post, 2018), chrF++
(Popović, 2015) for calculating character n-gram
F-score, and translation error rate (TER).

5.1 Evaluations on word alignment

Table 4 represents the word alignment results of
words tested using several alignment tools. We also
compare our results with those of the Shared Task
(Koehn et al., 2005) obtained by (Langlais et al.,
2005) namely NUKTI and JAPA in the Table 5.

The word alignment tools were trained on the
Nunavut Hansard Inuktitut–English parallel cor-
pora (Joanis et al., 2020), as our same training
dataset, and were evaluated on a gold alignment
set used in the Shared Task. The performances
obtained with the Eflomal tool (HMM + fertility)

shown a significant improvement in the alignment
error rate compared to the others. This is explained
by the iteration sampling method that this model
uses.

AER P R F1
Fast align 0.643 0.25 0.623 0.25
GIZA 0.669 0.32 0.33 0.33
Eflomal (ours) 0.474 0.367 0.930 0.367
Eflomal
(IBM + HMM)

0.499 0.351 0.874 0.351

Eflomal (IBM1) 0.596 0.281 0.721 0.281

Table 4: Performance of the word alignment tools.

The word alignment results obtained a higher
alignment error rate compared to the shared task
aligners. Our results are close to the results ob-
tained by the NUKTI model combined with the
JAPA model but still remain less efficient than the
NUKTI model.

5.2 Evaluations on rule-based method

In order to evaluate the named entities projection
performance, we built a small annotated dataset
of named entities in Inuktitut. This dataset con-
tains 4 types of named entities: 45 LOC (location)
entities, 38 ORG (organization) entities, 111 PER
(person) entities and 11 MISC (miscellaneous) en-
tities which do not belong to any type. Table 6
presents the evaluation results of our rule-based
method.

The results of this approach could be interesting,
especially for the PER entity in proportion to all
named entities. Due to the morphology of Inuktitut
which is very different from that of English, the
word alignment tool could be misled.

Unlike languages admitting the same morpho-
logical typology, the alignment error rate is much
lower. Moreover, the parts of the text which rep-
resent a PER entity consisting of n words gener-
ally admit a translation of n words (word-for-word
translation). For instance, the translation of the

AER P R F1
Eflomal (ours) 0.474 0.367 0.930 0.367
NUKTI 0.306 0.631 0.659 0.645
NUKTI+JAPA 0.465 0.513 0.536 0.524
JAPA 0.713 0.262 0.745 0.387

Table 5: Comparison about performance of several word
aligners.
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P R F1
PER 0.84 0.73 0.78
ORG 0.81 0.54 0.65
LOC 0.95 0.59 0.73
MISC 0.90 0.20 0.33

Table 6: Performance of our proposed rule-based NER
model, with 4 classes such as Person, Organization,
Location and Miscellaneous.

PER entity "Glenn McLean" is "gilin maklain". On
the other hand, the translation of the LOC entity
"Whale Cove" is "tikirarjuaq".

5.3 Evaluations on bilingual word
embedding-based method

In order to evaluate the translation performance
in the common word embedding space, we con-
structed a bilingual evaluation dictionary consisting
of 30 word pairs.

The evaluation was done by calculating the ac-
curacy of the translation of the words in the neigh-
borhood of k = 1, 5, 10. We took into account the
similarity between the word to be translated and
the neighboring words.

k Precision
1 0.367
5 0.400
10 0.433

Table 7: Results of the word-to-word translation by our
proposed bilingual word embedding-based method, in
terms of precision.

We notice that the performance for the neigh-
borhood of k = 10 is the best, with 0.433 in terms
of precision (Table 7). This is explained by the
fact that the probability of finding the correct word
translation is high when the number of neighbors
is large.

5.4 Results on Neural Machine Translation
downstream task

For the NMT downstream task, we observed a gain
in the performance. The model 1 obtained the best
performance than the baseline and the model 2 in
terms of BLEU, ChrF++ and TER. The reason is
that model 1 succeeds in aligning the entities in the
parallel corpus despite the alignment error rate.

Contrary to the model 2 which performed the
translation of named entities word by word in the
space of bilingual word embeddings by selecting

en2iu BLEU ChrF++ TER
Baseline 31.31 42.02 53.83
Model 1 32.84 44.07 56.46
Model 2 31.70 42.54 54.49

Table 8: Performances on NMT in terms of lowercase
word BLEU score in the direction English to Inuktitut.
BLEU signature: "nrefs:1| case:mixed| eff:no| tok:13a|
smooth:exp| version:2.0.0".

the nearest neighbor. This sometimes distorts the
translation of named entities, particularly Inuktitut
words representing sentences.

5.5 Error analysis and discussion

Regarding the method based on rules and word
alignment, the performance is higher for PER(son)
and LOC(ation) entities. This is explained by the
morphology complexity. However, proper nouns
are usually translated verbatim, while other entities
such as ORG(anization) and MISC(ellaneous) rep-
resent sentences whose the translation in Inuktitut
is just a single word.

Example: the translation of the PER entity
"Hunter Tootoo" is "Hanta tutu", the translation
of the ORG entity "Legislative Assembly" is "Ma-
ligaliurvik".

The morphological difference between the two
languages caused misalignments of words, which
resulted in the erroneous projection of named enti-
ties.

The evaluation results of the three models show
that the model 1 which is based on the words align-
ment is the most efficient, then the model 2 which
is based on the bilingual word embeddings. The
reason is that the model 1, apart from alignment
errors, is still able to align named entities in both
languages.

On the other hand, the model 2 performed word-
to-word entity translations. However, as previously
explained, the Inuktitut language, being a polysyn-
thetic language, a sentence can be represented by a
single word.

We noticed the main error types as follows:
(1) Projection errors due to word alignment er-

rors, as illustrated with the following examples:
(iu) Uqausiksait jain sutuuatmut, maligaliuqti,

inulirijituqakkunnut ministarijaujuq.
(en) Presentation by the Hon. Jane Stewart, MP,

Minister of Indian Affairs and Northern Develop-
ment.
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Here, the PER entity "Jane Stewart" is aligned
with "sutuuatmut", instead of "jain sutuuatmut".

(2) Errors in the identification of nominal groups.
Sometimes, a noun, that follows or precedes an en-
tity named in Inuktitut, is considered part of the
entity, since sequences of names have been consid-
ered named entities, as illustrated in these exam-
ples:

(iu) Nuqqausirutigilugu, uqausirikkanniru-
mavakka katimajiuqatima ukausirisimajangit taivit
alakannuap, sinnattuumajunnaiqpugut.

(en) In closing, I would like to echo comments
by my colleague Ovide Alakannuark, we are no
longer dreaming.

The PER entity Ovide Alakannuark has been
aligned with the whole nominal group ukausirisi-
majangit taivit alakannuap instead of taivit alakan-
nuap.

(3) Translation errors due to out-of-vocabulary
words and restricted data domain.

This is due to the data source which concerns
the legislative assembly. Unlike the dictionary built
from the UQAILAUT project database, the word
pairs come from the general domain, as well as the
out-of-vocabulary words. Examples:

(en) Legislative Assembly Of Nunavut.
(iu) maligaliurvia Ralaa Jumaar Nunavut, in-

stead of nunavut maligaliurvia.
(en) South Baffin
(iu) Nginni baffin, instead of qikiqtaaluup nig-

giani.
Through the conducted error analysis, we found

shortcomings in our models. However, we have
found that the method based on word embeddings
is less efficient than the method based on rules
because of the change it brings to the translation of
named entities.

It is interesting to carry out a hybridization in-
volving the two methods based on rules and word
embeddings.

6 Conclusion and perspective

In this paper, we have built a named entity recog-
nition system for Inuktitut, an Inuit language of
Canada. Counted among the four major dialectal
groups of Inuit languages, Inuktitut is written using
the Native Canadian syllabary. Indeed, it is a low-
resource Indigenous language that has no labeled
data for NER; which presents a great challenge to
the construction of the first NER system. Also, the
Inuktitut language, being a polysynthetic language,

has a particular grammar and fairly complex word
compositions that differentiate it from other lan-
guages. To overcome these problems, the main
idea of our approach is to use English, given that
it is a language rich in resources and that has la-
beled data for NER and a parallel Inuktitut-English
corpus is available. Thus, in this paper, we built a
model capable of detecting named entities in Inuk-
titut, by transferring linguistic characteristics from
English to Inuktitut.

In addition to being the first research on named
entities recognition for Inuktitut Indigenous lan-
guage, this project contributes to the preservation
of this language and its culture. Furthermore, by
building a knowledge base in the Inuktitut language
involving named entities, this will contribute to the
realization of future works that affects other NLP
sub-tasks , such as Information Retrieval, Machine
Translation or question0answering systems.

As a future research, we aim to integrate knowl-
edge bases such as those related to toponymy and
data from Indigenous knowledge in training word
embeddings and improving the performance of our
systems (NER and NMT). In addition, we aim to
emphasize a differentiation between named enti-
ties of Inuktitut origin (such as the names of peo-
ple and places) and those borrowed. All with the
aim of pursuing collaborations with an Indigenous
community in Nunavut whose mother tongue is
Inuktitut.
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Abstract

In this paper, we present a parallel Spanish-
Mazatec and Spanish-Mixtec corpus for ma-
chine translation (MT) tasks, where Mazatec
and Mixtec are two indigenous Mexican lan-
guages. We evaluated the usability of the col-
lected corpus using three different approaches:
transformer, transfer learning, and fine-tuning
pre-trained multilingual MT models. Fine-
tuning the Facebook M2M100-48 model out-
performed the other approaches, with BLEU
scores of 12.09 and 22.25 for Mazatec-Spanish
and Spanish-Mazatec translations, respectively,
and 16.75 and 22.15 for Mixtec-Spanish and
Spanish-Mixtec translations, respectively. The
findings show that the dataset size (9,799 sen-
tences in Mazatec and 13,235 sentences in
Mixtec) affects translation performance and
that indigenous languages work better when
used as target languages. The findings em-
phasize the importance of creating parallel cor-
pora for indigenous languages and fine-tuning
models for low-resource translation tasks. Fu-
ture research will investigate zero-shot and
few-shot learning approaches to further im-
prove translation performance in low-resource
settings. The dataset and scripts are avail-
able at https://github.com/atnafuatx/
Machine-Translation-Resources.

1 Introduction

Natural Language Processing (NLP), a sub-field
of Artificial Intelligence (AI), has been attracting
a lot of attention in terms of research and devel-
opment as a result of the surge in the number of
applications it has in a variety of different indus-
tries (Kalyanathaya et al., 2019). Machine Trans-
lation (MT), Sentiment or Opinion Analysis, POS
Tagging, Question Classification (QC) and Answer-
ing (QA), Chunking, Named Entity Recognition
(NER), Emotion Detection, and Semantic Role La-
beling are currently highly researched areas in vari-
ous high-resource languages (Tonja et al., 2023a).

The domain of machine translation (MT) is ad-
vancing at a rapid pace due to the growing preva-
lence of computational tasks and the expanding
global reach of the Internet, which caters to diverse,
multilingual communities (Kenny, 2018). MT sys-
tems have demonstrated remarkable translation out-
comes for language pairs that possess abundant re-
sources, such as English-Spanish, English-French,
English-Russian, and English-Portuguese. How-
ever, in scenarios with limited or no resources, MT
systems encounter difficulties due to the primary
obstacle of inadequate training data for certain lan-
guages (Mager et al., 2018; Tonja et al., 2021, 2022,
2023b).

Low-resource languages have been suffering
from a lack of new language technology designs.
When the resources are limited and only a small
amount of unlabeled data is available, it is very hard
to reach a true breakthrough in creating powerful
novel methods for language applications (Tonja
et al., 2022), the problem becomes worse if there
is no parallel dataset for certain languages.

Mexico is a multicultural and multilingual coun-
try with 68 officially recognized indigenous lan-
guages, 238 variants, and Spanish, a widely used
language spoken by 90 percent of the population
(Mager et al., 2021). Few language technologies
have been developed for indigenous languages spo-
ken in Northern and Southern America; moreover,
many indigenous languages spoken in the Ameri-
cas face a risk of extinction (Mager et al., 2018).

Indigenous language speakers often experience
feelings of shame or reluctance to use their na-
tive languages, primarily due to limited opportu-
nities for application in the presence of pervasive,
dominant majority languages (Hornberger, 2008;
Skutnabb-Kangas, 2000). This phenomenon can
be attributed to social and cultural pressures that
prioritize the use of majority languages over minor-
ity languages, thereby marginalizing indigenous
linguistic communities and undermining the value
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of their linguistic heritage (Hinton, 2011).
In this paper, we introduce the first parallel cor-

pus for machine translation tasks for two indige-
nous languages that are spoken in Mexico and
benchmark experimental results. The contributions
of our work are the following:

• We introduce the first parallel corpus for ma-
chine translation for Mazatec and Mixtec lan-
guages.

• We evaluate the performance of the collected
corpus and present benchmark results by us-
ing transformers, transfer learning, and fine-
tuning approaches.

• We open-source the parallel corpus and the
scripts used in this paper.

The rest of the paper is organized as follows: Sec-
tion 2 describes previous research related to this
study, Section 3 describes the properties of Maza-
tec and Mixtec languages, Section 4 describes the
statistics of the collected dataset, Section 5 de-
scribes models used for baseline experiments and
their results, and Section 6 describes the conclusion
of the paper.

2 Related works

Due to an increase in the enormous amount of data
for different languages, machine translation is cur-
rently one of the most researched areas in NLP
and has shown promising results in high-resource
languages (Tonja et al., 2022). There are different
MT approaches that have been used by different re-
searchers, neural machine translation (NMT)is one
of the current state-of-the-art approaches trained
on huge datasets containing sentences in a source
language and their equivalent target language trans-
lations (Belay et al., 2022). Basically, NMT takes
advantage of huge translation memories with hun-
dreds of thousands or even millions of translation
units (Forcada, 2017). However, NMT for low-
resource languages still under-performs due to the
scarcity of parallel datasets (Tonja et al., 2022,
2023b).

Many researchers explored different approaches
to solving low-resource machine translation prob-
lems. Zoph et al. (2016) proposed a transfer learn-
ing method to improve the MT performance of
low-resource languages. The authors first train a
high-resource language pair (the parent model),
then transfer some of the learned parameters to

the low-resource pair (the child model) to initial-
ize and constrain training. The data augmentation
approach proposed by Fadaee et al. (2017), targets
low-frequency words by generating new sentence
pairs containing rare words in new, synthetically
created contexts. Pourdamghani and Knight (2019)
proposed using high-resource language resources
to improve MT performance for low-resource lan-
guages without requiring any parallel data. Copy-
ing monolingual data of the target language is pro-
posed by Currey et al. (2017) to improve the per-
formance of low-resource MT. Tonja et al. (2023b)
proposed the use of source-side monolingual data
as another way of improving low-resource MT per-
formance. Transfer learning method, where one
first trains a "parent" model for a high-resource
language pair and then continues training on a low-
resource pair only by replacing the training corpus
was proposed by Kocmi and Bojar (2018). Mixing
low-resource language resources during training,
as proposed by Tonja et al. (2022) showed an im-
provement in MT performance for low-resource
languages.

There have been promising research works done
for indigenous languages; Feldman and Coto-
Solano (2020) presented an NMT model and a
dataset for the Bribri Chibchan language for Bribri-
Spanish translation. Kann et al. (2022) compiled
AmericasNLI, a natural language inference dataset
covering 10 indigenous languages of the Ameri-
cas. They conducted experiments with pre-trained
models, exploring zero-shot learning in combi-
nation with model adaptation. Oncevay (2021)
proposed the first multilingual translation mod-
els for four languages spoken in Peru: Aymara,
Ashaninka, Quechua, and Shipibo-Konibo, provid-
ing both many-to-Spanish and Spanish-to-many
models, outperformed pairwise baselines. Zheng
et al. (2021) presented a low-resource MT sys-
tem that improves translation accuracy using cross-
lingual language model pre-training. The authors
used an mBART implementation of fairseq to pre-
train on a large set of monolingual data from a
diverse set of high-resource languages before fine-
tuning on 10 low-resource indigenous American
languages: Aymara, Bribri, Asháninka, Guaraní,
Wixarika, Náhuatl, Hñähñu, Quechua, Shipibo-
Konibo, and Rarámuri. On average, their pro-
posed system achieved BLEU scores that were 1.64
higher and chrF scores that were 0.0749 higher
than the baseline. Nagoudi et al. (2021) introduced
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IndT5, the first Transformer language model for 10
Indigenous American languages: Aymara, Bribri,
Asháninka, Guaraní, Wixarika, Náhuatl, Hñähñu,
Quechua, Shipibo-Konibo, and Rarámuri. To train
IndT5, they built IndCorpus–a new dataset for ten
indigenous languages and Spanish.

3 Languages

3.1 Mazatec

The Mazatec language comprises a collection of
closely related indigenous languages spoken pri-
marily in the Northern region of Oaxaca, with
smaller populations in the adjacent states of Puebla
and Veracruz in Mexico. Approximately 200,000
individuals speak Mazatec; however, this number
may fluctuate depending on which particular di-
alects or linguistic variations are taken into account
(Léonard et al., 2019).

Mazatec belongs to the Oto-Manguean language
family, a large family of indigenous Mesoamer-
ican languages which also includes Mixtec, Za-
potec, Otomi, among others (Vielma Hernández,
2017). Linguistic characteristics of Mazatec in-
clude tonal distinctions (Garellek and Keating,
2011), complex consonant clusters, and a rich
morphology (Léonard et al., 2012). The Maza-
tec languages are known for their agglutinative
structure, where words are formed by combining
multiple morphemes, each with a distinct meaning
(Vielma Hernández, 2017).

3.1.1 Writing system
Vowels - Mixtec has five basic vowels, similar to
those in Spanish:

• a (as in "car"),

• e (as in "bet"),

• i (as in "bit"),

• o (as in "bore"),

• u (as in "boot").

These vowels can also appear nasalized, indi-
cated by a tilde (ã, ẽ, ĩ, õ, ũ), and long, indicated
by a colon (a :, e :, i :, o :, u :). Tones can be
associated with vowels, too.

Consonants - The Mazatec consonant inventory
includes the following sounds:

• Stops: p, t, k, b, d, g,

• Affricates: ts, tS, dz, dZ,

• Fricatives: s, S, h, z, Z,

• Nasals: m, n, ng,

• Approximants: w, j (pronounced as "y" in
"yes"),

• Lateral approximant: l,

• Rhotics: r.

Numerals/Numbers - Mazatec uses a vesimal
numeral system (base-20). Here are the numbers 1
to 10 in Mazatec: (1) - kia, (2) - chj1, (3) - tsi, (4)-
sti, (5) - nka, (6) - tsj1, (7) - kja, (8) - chj1n, (9) - tsi,
(10) - sti.

Word order - Typically, Mazatec exhibits a
VSO (Verb-Subject-Object) word order; however,
alternative structures such as SVO can also occur
depending on the sentence, the focus of the state-
ment, and the context.

Example sentence:
Kitsaara kji xi makjíñeni kua apana (I gave a pill

for the headache to my father) - VSO order

3.2 Mixtec
The Mixtec language comprises a group of closely
related indigenous languages predominantly spo-
ken in the region known as La Mixteca, which
spans the states of Oaxaca, Puebla, and Guerrero in
Southern Mexico. Estimates indicate that there are
approximately 500,000 speakers of Mixtec; how-
ever, this number may fluctuate depending on the
specific dialects or language varieties considered
(Josserand, 1983).

As Mazatec, Mixtec is a member of the Oto-
Manguean language family (Rensch, 1977; Pike
and Cowan, 1961; Hollenbach, 2000) possessing
the characteristic mentioned in Section 3.1. It also
shares the phonemic system with Mixtec (see vow-
els and consonants inventory in Section 3.1.1) as
well as the word order features and the base-20
number system. Here are numbers from 1 to 10 in
Mixtec: (1)- in, (2) - ña’a, (3) - ta’a , (4) - na’a, (5)
- ma’a, (6) - chiko, (7) - chikue, (8) - chikuiin, (9) -
chikunña’a, (10) - ndo’o.

And here are a couple of examples sentences:

• Ka’nu ña’a nuu ntaa (Sitting on the plain) -
VSO order

• Ña’a nuu ntaa ka’nu (On the plain, sitting) -
SVO order
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Note that the Mixtec language has many di-
alects, so the phonetic inventory, numerals, word
order, and example sentences provided here may
vary across different Mixtec-speaking communities.
The examples given here are intended to provide a
general overview of the language’s features

4 Parallel Dataset

Data is one of the crucial building blocks of any
NLP application (Belay et al., 2022; Tonja et al.,
2023a), and a parallel corpus is essential to the suc-
cess of any machine translation task. For Mazatec
and Mixtec, we were unable to find publicly avail-
able datasets for the MT task. We collected datasets
for these two indigenous Mexican languages from
two main domains: religious and constitution. We
also collected additional resources for the Mixtec
language from different textbooks which have a
similar translation to Spanish. Table 1 shows the
statistics of the collected parallel corpus for Maza-
tec and Mixtec.

Text Alignment - We took a base directory path
where text files were stored as input. Then we
read and merged the content of all text files in the
directory, and obtained a list of lists containing
the content of each file. We proceeded to iterate
through each file in the directory and read their con-
tents line by line. Each line was normalized using
the Unicode Normalization Form KC (NFKC) be-
fore being appended to the resulting list. We added
a function that takes a language code lang as in-
put, which determines the filename of the text file
to be read from a predefined folder. The function
read the file line by line, normalized each line us-
ing NFKC, and concatenated the lines into a single
string. The result was returned as an array.

With another function, we added the two lists as
input: one containing the content of the files to be
aligned, and the other containing the filenames for
the output files. We then iterated through the con-
tent list and aligned the text by iterating through the
chapters and paragraphs of each translation. The
aligned text was written to the corresponding out-
put file as tab-separated values (TSV). Then we
defined the root path where the input files were lo-
cated, initialized the name and content arrays, and
called the function that populated the content array
with the pre-processed text. Finally, the function
that writes the file was called to align and write the
output files.

Pre-processing - After aligning the texts of two

indigenous languages with their equivalent trans-
lations in Spanish, we pre-processed the corpus
before splitting it for our experiments. The pre-
processing steps included removing the numbers
and special character symbols such as ;,",?, etc. For
the baseline experiment, we split the pre-processed
corpus into training, development, and test sets in
the ratio of 70:10:20, respectively. Table 2 shows
the split of the dataset used for our experiments.

5 Baseline Experiment and Discussion

In this section, we discuss the models used for the
baseline experiment, the hyper-parameter used, the
benchmark results, and the discussion. We used
three approaches to evaluate the usability of the
collected corpus. These are :-

• Transformer - is a type of neural network
architecture first introduced in the paper At-
tention Is All You Need (Vaswani et al., 2017).
The key innovation of the Transformer archi-
tecture is the attention mechanism, which al-
lows the network to selectively focus on differ-
ent parts of the input sequence when making
predictions. This is in contrast to traditional
recurrent neural networks (RNNs), which pro-
cess input sequentially and are prone to the
vanishing gradient problem.

In the transformer architecture, the input se-
quence is processed in parallel by multiple
layers of self-attention and feed-forward neu-
ral networks. Each layer can be thought of
as a "block" that takes the output of the pre-
vious layer as input and applies its own set
of transformations to it. The self-attention
mechanism allows the network to weigh the
importance of each element in the input se-
quence when making predictions, while the
feed-forward networks help to capture non-
linear relationships between the elements.

Currently, transformers are state-of-the-art ap-
proaches and are widely used in NLP tasks
such as MT, text summarization, sentiment
analysis, etc. We used the base transformer
configuration as described in (Vaswani et al.,
2017) work.

• Transfer learning- refers to the process of
leveraging pre-trained language models to im-
prove the performance of downstream NLP
tasks. Specifically, transfer learning involves
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Source Mazatec (maq) - Spanish (spa) Mixtec (xtn) - Spanish (spa)
#sentences #tokens (maq) #tokens (spa) #sentences #tokens (xtn) #tokens (spa)

Religion 8,203 269,753 187,773 8,208 278,874 183,050
Constitution 1,596 138,504 68,392 1,185 104,497 68,393
Others - - - 3,842 71,628 70,080
Total 9,799 408,257 256,165 13,235 454,999 321,523

Table 1: Parallel dataset distribution of Mazatec-Spanish and Mixtec-Spanish

Language pairs Number of Sentences
Train Dev Test

Mazatec - Spanish 7,056 784 1,959
Mixtec - Spanish 9,529 1,059 2,647

Table 2: Dataset split used in baseline experiments

using a pre-trained model to initialize the
parameters of an MT system and then fine-
tuning the system on a smaller dataset specific
to the target language pair or domain.

Transfer learning can be especially useful
in MT because training a high-quality MT
system from scratch requires a large amount
of data and computational resources, which
may not be available for all language pairs
or domains. By leveraging pre-trained mod-
els, transfer learning allows MT systems to
achieve high performance with fewer data and
fewer resources. For our baseline experiments,
we used English-Spanish as parent model with
two (opus-mt-es-en1 and opus-mt-tc-big-en-
es 2) pre-trained models available from Hug-
ging Face3 trained for English-Spanish on
the OPUS dataset (Tiedemann and Thottin-
gal, 2020) by Helsinki-NLP group.

• Fine tuning - is the process of taking a pre-
trained MT model and adapting it to a specific
translation task, such as translating between
a particular language pair or in a specific do-
main. The process of fine-tuning involves tak-
ing the pre-trained model, which has already
learned representations of words and phrases
from a large corpus of text, and training it on a
smaller dataset of specific task examples. This
involves updating the parameters of the pre-
trained model to better capture the patterns
and structures present in the target translation
task.

1https://huggingface.co/Helsinki-NLP/opus-mt-es-en
2https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-

es
3https://huggingface.co/

Fine-tuning can be useful in MT because it
allows the pre-trained model to quickly adapt
to a new task without having to train a new
model from scratch. This is especially benefi-
cial when working with limited data or when
there is a need to quickly adapt to changing
translation requirements. We used two com-
monly known pre-trained multilingual MT
models:

– M2M100-48 - is a multilingual encoder-
decoder (seq-to-seq) model trained for
many-to-many multilingual translation
(Fan et al., 2020). We used a model
with 48M parameters due to computing
resource limitations.

– mBART50 - is a multilingual sequence-
to-sequence model pre-trained using the
Multilingual Denoising pre-training ob-
jective (Tang et al., 2020).

Hyper-parameters - For the transformer approach
we tokenized the source and target parallel sen-
tences into subword tokens using Byte Pair Encod-
ing (BPE) (Gage, 1994). The BPE representation
was chosen in order to remove vocabulary overlap
during dataset combinations. For other approaches
we applied the tokenizer of each model, Table 3
shows hyper-parameters used in our baseline exper-
iments.

5.1 Results
Table 4 and Figure 1 shows the benchmark exper-
imental results for bi-directional neural machine
translation for Mazatec(maq) - Spanish(spa) and
Mixtec(xtn) - Spanish(spa). In our baseline ex-
periments, we observed that employing a trans-
former model for low-resource languages shows
sub-optimal results compared to transfer learning
and fine-tuning methodologies. As demonstrated
in Table 4 and Figure 1, the performance of the
transformer was inferior to alternative approaches
utilized in the study. This finding substantiates the
hypothesis that the efficacy of transformer mod-
els is heavily reliant on the availability of exten-
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Approaches Models Parameters

Transformer transformer

- enc_layers: 6
- dec_layers: 6
- heads: 8
- hidden_size: 512
- optimizer: adam
- warmup_steps: 4000
- training_steps: 30000
- learning _rate: 5e-2

Transfer learning
opus-mt-es-en - max_seq_length: 128

- num_train_epochs: 3
- per_device_batch_size: 4
- num_beams: 5

opus-mt-tc-big-en-es

Fine-tuning
mBART50
M2M100-48

Table 3: Hyper-parameters used for baseline experiments

Models xx-spa BLEU score spa-xx BLEU score
maq-spa xtn-spa spa-maq spa-xtn

M1 5.89 6.23 11.41 12.62
M2 6.91 10.47 14.49 13.73
M3 8.45 12.44 19.61 17.27
M4 10.45 15.66 21.2 16.93
M5 12.09 16.75 22.5 22.15

Table 4: Benchmark experimental result for bi-directional Mazatec(maq)-Spanish(spa) and Mixtec(xtn)-Spanish(spa)
neural machine translation, M1, M2, M3, M4, and M5 represents transformer, opus-mt-es-en, opus-mt-tc-big-en-
es,mBART50, and M2M100-48 models respectively.

Figure 1: Benchmark results of selected approaches

sive parallel corpora for machine translation tasks.
Upon further examination of language pair perfor-
mance, we discovered that utilizing indigenous lan-
guages as the target language surpasses the perfor-
mance achieved when using Spanish as the target

language. This observation indicates that translat-
ing from Spanish to indigenous languages is a less
complex task for the model as opposed to translat-
ing indigenous languages to Spanish.

Transfer learning approach showed more
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promising results for the indigenous low-resource
languages than the transformer approach. Out of
the two models used in the transfer learning exper-
iment, the model with transformer-big configura-
tion outperformed the model with transformer-base
configuration. This shows that the transfer learning
approach depends on the size of the model param-
eter. Similarly, when using the transfer learning
approach for indigenous low-resource languages
by utilizing models trained on high-resource lan-
guages, better results were obtained when Spanish
was used as the source language than when Spanish
was used as the target language.

Fine-tuning approach outperformed the rest of
the approaches used in our baseline experiment
in both translation directions. This shows that us-
ing a multilingual pre-trained translation model for
fine-tuning low-resource languages outperforms
other models. From the two multilingual models
used in the experiment, the M2M100-48 model
outperformed the mBART50 multilingual model.
The M2M100-48 model showed 4.7 and 5.5 BLEU
scores on average for Mazatec (maq)-Spanish
(spa) and Spanish (spa)-Mazatec (maq) translation.
For Mixtec (xtn)-Spanish (spa) and Mixtec (xtn)-
Spanish (spa), the M2M100-48 model showed a
10.2 and 7.5 BLEU score improvement on average
when compared to the other models used in the
experiments. When comparing the results of the
two languages in all the approaches used, Mixtec
(xtn)-Spanish (spa) translation showed better per-
formance than Mazatec (maq)-Spanish (spa) trans-
lation when using Spanish as the target language,
This shows that the availability of the parallel cor-
pora for the language pairs has a high impact on the
performance of the translation models. The overall
results show that using multilingual MT models for
fine-tuning in our selected indigenous low-resource
languages gives promising results.

5.2 Discussion

In our analysis, we conducted an error analysis
to identify the strengths and weaknesses of the
three approaches: transformer, transfer learning,
and fine-tuning. We found that the transformer
approach, which relies on large parallel corpora,
yielded sub-optimal results for low-resource lan-
guages. It struggled to capture the linguistic pat-
terns and structures specific to indigenous lan-
guages. This limitation indicates that the trans-
former model’s performance is highly dependent

on the availability of extensive parallel corpora for
effective machine translation.

On the other hand, the transfer learning approach
showed more promising results for low-resource in-
digenous languages. We observed that models pre-
trained on high-resource languages, such as Span-
ish, and fine-tuned on the indigenous languages
improved translation quality. However, even with
transfer learning, the performance was not satisfac-
tory, and there were errors that persisted across all
three approaches.

The general error that all three approaches
failed to address adequately was the translation
of domain-specific and culturally specific terms
in Mazatec and Mixtec. These languages have
unique vocabulary and cultural nuances that re-
quire a deeper understanding and context to en-
sure accurate translation. The limited availability
of domain-specific parallel corpora for these lan-
guages hampered the models’ ability to capture and
translate such terms effectively.

6 Conclusion

In this paper, we presented a parallel corpus for
two indigenous Mexican languages (Mazatec (maq)
and Mixtec (xtn)) for machine translation tasks and
evaluate the usability of the collected corpus using
three different approaches. From the approaches,
fine-tuning multilingual pre-trained MT models
outperformed the rest of the experiments; Face-
book’s M2M100-48 outperformed all other models
with BLEU scores of 12.09 and 22.25 for maq-spa
and spa-maq, respectively, and 16.75 and 22.15 for
xtn-spa and spa-xtn, respectively. We noticed from
the experimental results that the dataset size has
less impact when using indigenous languages as a
target than the source. This observation highlights
the potential benefits of focusing on developing
and fine-tuning models specifically designed for
translation tasks involving low-resource languages.
Moreover, it underscores the value of creating and
employing parallel corpora tailored to indigenous
languages, as these resources can significantly im-
prove machine translation performance, particu-
larly when used in conjunction with advanced mul-
tilingual pre-trained models.

Our BLEU results for Mizatec and Miztec to
Spanish translation were very low on the best con-
figuration to have any usability in real-life applica-
tions, but the translation in the opposite direction
demonstrated BLEU scores above 22 facilitating
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uses, for example in government apps to present
hints to Mixtec and Mazatec native speakers who
have a low level of Spanish comprehension, in the
government web pages. This could significantly
improve the usefulness of the native language of
the speakers, thus promoting communication of the
language and its preservation.

In future research, we plan to investigate the effi-
cacy of advanced techniques, including zero-shot
and few-shot learning, for low-resource languages
in the context of limited parallel datasets. These
methodologies hold promise for effectively lever-
aging sparse data available in low-resource settings,
as they capitalize on pre-existing knowledge from
related tasks or languages without requiring exten-
sive fine-tuning or additional annotated data. By
exploring these approaches, we aim to uncover po-
tential benefits and improvements in the machine
translation performance of low-resource languages,
thus contributing to developing more robust and
accurate translation systems for underrepresented
linguistic communities.
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Abstract

This paper describes the development of
a free/open-source finite-state morphological
transducer for Highland Puebla Nahuatl, a
Uto-Aztecan language spoken in the state of
Puebla in Mexico.1 The finite-state toolkit
used for the work is the Helsinki Finite-State
Toolkit (HFST); we use the lexc formalism
for modelling the morphotactics and twol for-
malism for modelling morphophonological al-
ternations. An evaluation is presented which
shows that the transducer has a reasonable
coverage—around 90%—on freely-available
corpora of the language, and high precision—
over 95%—on a manually verified test set.

1 Introduction

This paper describes a new morphological anal-
yser for Highland Puebla Nahuatl, an endangered
language spoken in the state of Puebla in Mexico
(see Figure 12). The analyser is based on finite-
state technology, which means that it can be used
for both the analysis and the generation of forms
— a finite-state morphological transducer maps be-
tween surface forms and lexical forms (lemmas and
morphosyntactic tags).

An analyser of this sort has a wide variety of
uses, including for automating the process of cor-
pus annotation for linguistic research as well as for
creating proofing tools (such as spellcheckers) and
for lemmatising for electronic dictionary lookup
for language learners — in a language with heavy
prefixing and suffixing morphology, determining
the stem is not a simple matter.

Our approach is based on the Helsinki Finite-
State Toolkit (HFST, Lindén et al. (2011)).

1https://github.com/apertium/apertium-azz
2Figure 1 is based on work by users TUBS

(https://commons.wikimedia.org/wiki/File:
Puebla_in_Mexico_(location_map_scheme).svg)
and Battroid (https://commons.wikimedia.org/wiki/
File:Mexico_Puebla_Puebla_location_map.svg)

2 Prior art

Finite state transducers (FST) for modeling mor-
phology has a long history within the field of com-
putational linguistics (Kornai, 1996; Beesley and
Karttunen, 2003).

Work on morphological analysers for Nahuatl
languages includes an effort, inspired by literate
programming, to use the code for the transducer
as a descriptive grammar of a Nahuatl variety
spoken in the state of Guerrero (Maxwell, 2015),
and morphological analysers specifically targeting
colonial-era Nahuatl, either for the exploration of
colonial texts (Thouvenot, 2009), or as a means
to evaluate similarity between written Nahuatl va-
rieties (Farfan, 2019). One drawback of these
projects is that they are not to our knowledge freely-
available or easily-accessible.

Nicolai et al. (2020) describe the development
of morphological analysers and generators for
more than one thousand languages using the Johns
Hopkins University Bible Corpus (McCarthy et al.,
2020), including some variants of Nahuatl (how-
ever, not Highland Puebla Nahuatl).

Pugh et al. (2021) presents the first open-source
morphological analyser for the Western Sierra
Puebla Nahuatl variant group. Tona et al. (2023)
expand on that system, extending it to support
Huasteca Nahuatl. This latter work, however, has
not been released.

3 Highland Puebla Nahuatl

Nahuatl (or Nahuat, Nahual) is a polysynthetic,
agglutinating Uto-Aztecan language continuum
spoken throughout Mexico and Mesoamerica.
The Mexican Government’s Instituto Nacional de
Lenguas Indígenas (INALI) recognizes 30 distinct
variants (INALI, 2009).

Highland Puebla Nahuatl, (or Sierra Puebla
Nahuatl, also referred to by INALI as Náhuatl del
noreste central, ISO-639-3 azz) is a Nahuatl vari-
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Figure 1: A map highlighting where Highland Puebla
Nahuatl (salmon colour) is spoken in Mexico.

ant group spoken in the Northeastern Sierra region
of the state of Puebla, Mexico, mainly in the mu-
nicipalities of Tetela de Ocampo, Zacapoaxtla, and
Cuetzalan. According to Ethnologue’s 2007 esti-
mate, it is spoken by an estimated 70,000 speakers.

This particular Nahuatl variant has been the sub-
ject of a number of descriptive works (Key, 1960;
Robinson, 1970; Key and Key, 1953) and dictionar-
ies (Key and Richie de Key, 1953; Cortez Ocotlán,
2017).

4 Data
The source data used to develop the FST comes
from three sources: (1) A dataset of transcribed
recordings of interviews and conversations, mainly
about plants (Amith et al.), (2) a subset of texts in
the azz variant from the multi-variant parallel cor-
pus Axolotl (Gutierrez-Vasques et al., 2016), and
(3) technical publications by the Sociedad Mexi-
cana de Física3, which consist of translations of
various scientific texts. The breakdown of volume
for each of these sources is presented in Table 1.

5 Orthography
Writing practices in Nahuatl vary and are charac-
terized by multiple competing views (de la Cruz
Cruz, 2014). The most well-known and widely-
disseminated orthographic standards for Nahuatl
are ACK, a colonial-inspired orthography named
after scholars Anderson, Campbell, and Karttunen,
who popularized it in their work, the standard from
the Instituto Nacional de Lenguas Indígenas (IN-
ALI) (INALI, 2018), and that used by the Sec-
retaría de Educación Pública (SEP). In practice,
Nahuatl writing contains a great deal of ortho-

3https://site.inali.gob.mx/SMF/Libros2.0/
nhtl/index.html

graphic variation, often even within the writing of
a single author.

The orthography used for building the analyser
follows what was taught in the Nahuatl course for
adult learners given in the municipality of Tetela
de Ocampo, Puebla in the summer of 2022 (TO).
This broadly follows the SEP, but with the addition
of the letter h which is used before u for /w/ after
vowels or at the beginning of words. For example
SEP ueueyi, TO huehueyi ‘big’, SEP mochiua, TO
mochihua “it is made”.

We maintain a separate finite-state transducer
to account for orthographic and spelling variation.
This includes rules for orthographic changes like
ts (SEP, INALI) → tz (ACK) (e.g. tejuatsin ‘you-
HON’ → tehhuatzin), spelling changes, such as w$
→ j$ and abbreviations that are found in the tran-
scriptions from the spoken corpora, such as ^t’ →
^tik.

6 Methodology

In this section, we outline some of the implementa-
tion details of the analyzer, including a description
of relevant linguistic features.

6.1 Lexicon
The lexicon consists of around 5,000 lexemes
which were added in frequency order (calculated
using the corpora described in §4) and with ref-
erence to the two available dictionaries (Key and
Richie de Key, 1953; Cortez Ocotlán, 2017) for
part-of-speech classification. The lexicon was cre-
ated in the lexc formalism, which is standard in
HFST.

Closed categories (pronouns, conjunctions, etc.)
were added manually based on class notes and
on existing grammatical descriptions (Key, 1960;
Robinson, 1970; Cortez Ocotlán, 2017).

6.2 Tagset
The tagset is based on the tagset of the Apertium
project (Forcada et al., 2011), each tag is encased
in greater than ‘<’ and less than ‘>’ symbols. The
tag names are mnemonic, some of them coming
from other analysers in the Apertium project and
being based on English, Spanish, or Catalan terms,
and some are based on Nahuatl terms. We include
a conversion from this Apertium-based tagset to
one based on Universal Dependencies (Nivre et al.,
2020).
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Corpus Genre Ortho. Tokens Types Coverage
Tokens Types

Puebla-Nahuatl (Amith et al.) spoken INALI 353,006 23,174 93.02 44.33
Axolotl (Gutierrez-Vasques et al., 2016) non-fiction SEP 18,338 3,492 84.78 48.0
Sociedad Mexicana de Física non-fiction SEP 1,649 599 92.05 84.47

Table 1: A breakdown of the three data sources used for developing the analyser, with information about the genre
(following Müller-Eberstein et al. (2021), orthography used, data volume, and analyser coverage. Note that the
Puebla-Nahuatl dataset’s orthography differs slightly from the INALI norms in that it explicitly represents vowel-
length with the colon ‘:’.

Category Stems Category Stems
Verbs 2,937 Other 116
Nouns 1,284 Numerals 42
Adverbs 222 Pronouns 33
Adjectives 202 Conjunctions 27
Proper nouns 160 Determiners 20

Total: 5,043

Table 2: Composition of the stem lexicon in the lexc
file.

6.3 Morphotactics
The morphotactics of Highland Sierra Nahuatl is
very similar to that of other Nahuatl varieties. It is
characterised by a concatenative affixing morphol-
ogy with a large number of inflectional and deriva-
tional morphemes. It also features long-distance
dependencies between prefixes and suffixes.

6.3.1 Nouns
Nouns inflect for number and possession. They
also have very productive derived forms, such as
the reverential -tsin (1) and less productive deriva-
tions, such as -k(o) for locative, and can appear
as predicates with the addition of subject prefixes.
We implement the morphotactics for inflection and
for the most frequent subset of the derived forms.
Nouns are therefore split into separate continuation
classes for their different combinatorial possibili-
ties.

(1) kikouaj
ki-koua-j
O.SG3-buy-S.PL

in
in
the

tokniuantsitsin
to-kni-uan-tsi~tsin
POSS.PL1-person-PL-PL.HON
“People buy it.” (lit. “Our brethren buy it”)

In (1), the noun (i)kni ‘sibling’ appears with
the first person plural possessive prefix to-, the

possessed plural marker -uan, and the reverential
marker tsi~tsin, where plurality is further marked
with partial reduplication of the -tsin morpheme.

Relational nouns: There is also a subcategory of
nouns, called “relational nouns,” used for express-
ing spatial and temporal relations, as well as other
non-core semantic roles. Unlike common nouns,
these nouns have obligatory possession.

(2) In
In

mochiua
mo-chiua
O.REFL-make

kuoujtaj,
kuoujtaj,
mountains,

in
in

eua
eua
born

talixko,
tal-ix-ko,
ground-RELN-LOC,

amo
amo
NEG

itech
i-tech
POSS.SG3-on

kuapalak.
kuapalak.
tree.trunks
“It grows in the mountains, it comes up
from the ground, it doesn’t grow in tree
trunks.”

In (2) we see two methods in which relational
nouns can be used. The first is talixkowhere the the
relational noun -ixko ‘in front of / on the surface of’
is compounded with the noun tali ‘ground/earth’.
This relational noun itself is composed of ix ‘face’
and ko a locative morpheme.

The second method is using a free-standing re-
lational noun with a complement, itech kuapalak
‘in rotten tree trunks’, is composed of a possessive
form of the relational noun -tech ‘on’ and the noun
compliment kuapalak ‘tree trunk’.

These relational nouns can also appear separated
from their complement, as in (3, where the comple-
ment of iuan ‘with’ is emol ‘beans’, but it appears
to the right of the verbal complex se kikua “it is
eaten”.

(3) uan
uan
and

iuan
i-uan
POSS.SG3-with

se
se
one

kikua
ki-kua
O.SG3-eat

emol
emol
beans

“... and it is eaten with beans”
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They can also receive reverential morphology as
in one of the typical ways of expressing goodbye,
mohuantsin ‘with you’ (4).

(4) mohuantsin
mo-huan-tsin
POSS.2SG-with-HON
“with you”

Locatives: In addition to compounding with re-
lational nouns there is also a locative deriva-
tional suffix -k(o) which forms locative nouns from
places. For example ima ‘her hand’, imako ‘in her
hands’.4

6.3.2 Verbs
Verbs inflect for number and person of subject and
object(s), and for tense, aspect and mood. They
also can be compounded with auxiliary verbs and
can have incorporated adverbial items for both di-
rection of movement and for manner of action. Ad-
ditionally there is reverential agreement for the sec-
ond person.

(5) Xe
Xe
QST

ma
ma
OPT

nimitsonchiya
ni-mits-on-chiya
S.SG1-O.SG2-HON-wait

huan
huan
and

tisentakuaskej?
ti-sen-ta-kua-s-kej
S.PL1-TOGETHER-O.NN3-eat-FUT-S.PL
“Shall I wait for you and we’ll eat to-
gether?”

In (5) we see examples of incorporated adver-
bials, tisentakuaskej “wewill eat together”, affixal
agreement, ti-[...]-kej for the first person plural sub-
ject and ta- for the indefinite object and the future
tense suffix -s. The verb nimitsonchiya has the
on- prefix, indicating reverentiality towards the ad-
dressee.

(6) se
se
one

mokouilia
mo-kou-ilia
O.REF-buy-APP

komo
komo
if

se
se
one

kikuasneki.
ki-kua-s-neki
O.SG3-eat-FUT-want
“One goes and buys it if one wants to eat
it.”

4Although the name is the same, these locatives are unlike
those found in other languages as inflection because: (1) not
every word can take a locative suffix, (2) they are not selected
for by argument structure, (3) the resulting meaning can be id-
iosyncratic. For this reason we categorise them as derivation
as opposed to inflection.

^Ixua/<s_sg3>ixua<v><iv><pres>$
^uan/huan<cnjcoo>$
^moskaltia/<s_sg3>moskaltia<v><iv><pres>$
^,/,<cm>$
^ijuak/ijhuak<cnjsub>$
^motamiti/<s_sg3>motami<v><iv><and>$
^peua/<s_sg3>pehua<v><iv><pres>$
^xochiyoua/<s_sg3>xochiyohua<v><iv><pres>$
^./.<sent>$

Figure 2: Example output of the analyser for the sen-
tence Ixua uan moskaltia, ijuak motamiti peua xochiy-
oua “It sprouts, grows and later starts to flower”.

(7) se
se
one

kiualkui
ki-ual-kui
O.3SG-VEN-bring

“It is brought.” (lit. One brings it (here))

6.4 Morphophonology
Phonological processes are implemented via twol
rules. There are relatively few of these, and they
include degemination (/kk/ →[k]) and nasal assim-
ilation (/n/ →[m] // m).

7 Results
To evaluate the analyzer, we calculate the naïve
coverage for both tokens and types. The naïve cov-
erage is reported for each data source in Table 1.
Naïve coverage is the percentage of surface forms
in a given corpus that receive at least one morpho-
logical analysis. Forms counted by this measure
may have other analyses which are not delivered
by the transducer.

7.1 Evaluation
Since we don’t have a large, annotated dataset for
evaluation, we performed a manual inspection of
two random samples of data to get a sense of the the
system’s precision and to understand the reasons
for any missed words.

First, we sampled 100 random analyses from the
corpora and identified any mistakes. The precision
on this sample was 95%. Next, in order to find out
where the most work remains to be done with re-
spect to coverage, we randomly sampled 100 types
that are currently not recognised by the system.
These words were categorised by part of speech,
and in addition we marked each with one or more
of the following seven error categories: (1)missing
morphotactics, (2) missing orthographic normali-
sation, (3) missing compound word, (4) reduplica-
tion, (5) loan word / code-switching, (6) tokenisa-
tion error, and (7) missing lexicon entry.
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Over half of all unknownwords were verb forms.
Of these, five were caused bymissing orthographic
normalisation rules, for example t’titipitstoti is an
abbreviated form of tiktitipitstoti ‘you will be blow-
ing the fire’, and 10 were due to missing stems in
the lexicon.

Around ten percent of the sampled unknown
words were caused by errors in tokenisation. The
speech corpus contains false starts, for example
amo nike..., amo nikmati “I don’t kn..., I don’t
know”, and these do not currently receive any anal-
ysis.

8 Concluding remarks

We have described a robust finite-state morpholog-
ical analyser for Highland Puebla Nahuatl. This
work contributes to the recent increased focus in
language technologies for Nahuatl, and may play
an important role in supporting further Nahuatl lan-
guage technology in the future.

In future work we would like to expand the lex-
icon to include more stems, to increase the cover-
age of all of the corpora, and to obtain new corpora
for testing. We intend to include support for com-
pounding and incorporation and for weighting the
transducer. We already have 10,000 tokens man-
ually disambiguated and will use these to weight
more probable analyses.
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Abstract

Neural models have drastically advanced state
of the art for machine translation (MT) be-
tween high-resource languages. Traditionally,
these models rely on large amounts of train-
ing data, but many language pairs lack these
resources. However, an important part of the
languages in the world do not have this amount
of data. Most languages from the Americas are
among them, having a limited amount of par-
allel and monolingual data, if any. Here, we
present an introduction to the interested reader
to the basic challenges, concepts, and tech-
niques that involve the creation of MT systems
for these languages. Finally, we discuss the
recent advances and findings and open ques-
tions, product of an increased interest of the
NLP community in these languages.

1 Introduction

More than 7 billion people on Earth communicate
in nearly 7000 different languages (Pereltsvaig,
2020). Of these, approximately 900 languages
are native of the American continent (Campbell,
2000). Most of these indigenous languages of the
Americas (ILA) are endangered at some degree
(Thomason, 2015). This huge variety in languages
is simultaneously a rich treasure for humanity and
also a barrier to communication among people from
different backgrounds. Human translators have
been important in overcoming language barriers.
However, trained translators are not accessible to
everyone on Earth and even scarcer for endangered
and minority languages. The need for translations
is even written in the constitutions of several coun-
tries like Mexico, Peru, Paraguay, Venezuela, and
Bolivia (Zajícová, 2017) to allow native speakers
to have equal language rights regarding law.

This is why developing MT is crucial: it helps
humanity overcome language barriers while simul-
taneously allowing people to continue using their

∗Work done while at the University of Stuttgart.

native tongue. However, the challenges to achiev-
ing these problems are not trivial. It is not only the
amount of available data (a common thesis among
the NLP community) but also a set of challeng-
ing issues (dialectical and orthographic variations,
noisy texts, complex morphology, etc.) that must
be addressed.

MT has always been an important task within
the larger area of natural language processing
(NLP). In 1954, the Georgetown–IBM experiment
(Hutchins, 2004) was the first that showed at least
some effectiveness of MT. Further research resulted
in rule-based systems and statistical models. In
2023, neural models define state of the art for
MT if training data is plentiful – i.e., for so-called
high-resource languages (HRLs) – and have also
achieved impressive results for low-resource lan-
guages (LRLs). MT is also the most studied NLP
task for the ILA (Mager et al., 2018b; Littell et al.,
2018). The common issue among these languages
is the extreme low-resource conditions they are
confronted with. The research interest for these
languages has increased in the last years, including
the recent AmericasNLP 2021 shared task (Mager
et al., 2021) on 10 indigenous languages to Span-
ish, and the WMT (Conference on Machine Trans-
lation) shared task for Inuktitut–English (Barrault
et al., 2020).

In this work we aim to provide a comprehensive
introduction to the challenges that involve creat-
ing MT systems for ILA, and the current status of
the existing work. We organize this work as fol-
lows: We start by introducing state-of-the-art NMT
models (§2). Then, we discuss the current chal-
lenges for these languages (§3); and we introduce
the key concepts related to low-resource NMT and
the implications for endangered languages of the
Americas(§3). This is followed by a discussion of
available data (§4). Afterwards, we introduce the
important concepts for LRL and endangered lan-
guages (§5); then we introduce the main strategies
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aimed at improving NMT with limited training data
(§6); and finally we give an overview of the work
done for ILA on MT (§7). In doing so, we pro-
vide insights into the following questions: Which
systems define the state of the art on low-resource
NMT applied to the ILA? What is the route that
ahead to improve the translations of the ILA?

2 Background and Definitions

Formally, the task of MT consists of converting
text X in a source language Lx into text Y in a
target language Ly that conveys the same mean-
ing.1 Translating text X ∈ Lx into Y ∈ Ly can be
described as a function (Neubig, 2017):

Y = MT(X). (1)

X and Y can be of variable length, such as phrases,
sentences, or even documents.

If other languages are used during the transla-
tion process, e.g., as pivots, we denote them as
L1, . . . , Ln. We refer to a corpus of monolingual
sentences in language Li as MLi = S1, ..., Sn.

Probabilistic Modeling and Data When using
probabilistic MT models, the goal is to find
Y ∈ Ly with the highest conditional probability,
given X ∈ Lx. Under the supervised machine
learning paradigm, a parallel corpus Cparallel =
(X1, Y1), ..., (Xn, Yn) is used to learn a set of pa-
rameters θ, which define a probability distribution
over possible translations. Given Cparallel, the
training objective of an NMT model is generally to
maximize the log-likelihood L with respect to θ:

Lθ =
∑

(Xi,Yi)∈Cparallel

log p(Yi|Xi; θ). (2)

Within this overall framework, there are a num-
ber of design decisions one has to make, such as
which model architecture to use, how to generate
translations, and how to evaluate.

Decoding Decoding refers to the generation of
output Ŷ , given the parameters θ and an input X .
Often, decoding is done by approximately solving
the following maximization problem:

argmaxŶ p(Ŷ |X; θ) (3)

1This is an approximation, since it is in general not possible
to map the meaning of text exactly into another language
(Nida, 1945; Sechrest et al., 1972; Baker, 2018).

Most NMT systems factorize the probability of
Ŷ = ŷ1, ..., ŷT in a left-to-right fashion:

p(Ŷ ) =
T∏

t=1

p(ŷt|ŷ<t, X, θ) (4)

Thus, the probability of token ŷt at time step t is
computed using the previously generated tokens
ŷ<t, the source sentence X and the model param-
eters θ. Common algorithms for finding a high-
probability translation are greedy decoding, i.e.,
picking the token with the highest probability at
each time step, and beam search (Lowerre, 1976).

2.1 Input Representations
The texts X and Y are input into an NMT sys-
tem as sequences of continuous vectors. However,
defining which units should be represented as such
vectors is non-trivial. The classic way is to repre-
sent each word within X and Y as a vector (or em-
bedding). However, in a low-resource setting, often
not all vocabulary items appear in the training data
(Jean et al., 2015; Luong et al., 2015). This issue
especially effects languages with a rich inflectional
morphology (Sennrich et al., 2016c): as many word
forms can represent the same lemma, the vocabu-
lary coverage decreases drastically. Furthermore,
for many LRLs, boundaries between words or mor-
phemes are not easy to obtain or not well defined
in the case of languages without a standard orthog-
raphy. Alternative input units have been explored,
such as characters (Ling et al., 2015), byte pair en-
coding (BPE; Sennrich et al., 2016a), morpholog-
ical representations (Vania and Lopez, 2017; Ata-
man and Federico, 2018), syllables (Zhang et al.,
2019), or, recently, a visual representation of ren-
dered text (Salesky et al., 2021). No clear advan-
tage has been discovered for using morphological
segmentations over BPEs when testing them on
LRLs (Saleva and Lignos, 2021).

Input representations can be pretrained. The two
most common options are: i) word embeddings,
where each type is represented by a vector, e.g.,
Word2Vec (Mikolov et al., 2013), Glove (Penning-
ton et al., 2014), or Fasttext (Bojanowski et al.,
2017)) embeddings, and ii) contextualized word
representations, where entire sentences are being
encoded at a time, e.g., ELMo (Peters et al., 2018)
or BERT (Devlin et al., 2019). However, training
of these methods requires large monolingual train-
ing corpora, which may not be readily available
for LRLs. As most ILA have rich morphology,
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this topic has gathered special interest. The discus-
sion about the usage of morpholigical segmented
input for NMT models is recurrent. (Mager et al.,
2022) show that the unsupervised morphologically
inspired models outperform BPE pre-processing
(experimented on 4 language pares). Similar ex-
periments done on Quechua–Spanish and Inuktitut–
Enlgish (Schwartz et al., 2020), comparing BPEs
against Morfessor (Smit et al., 2014). Also (Ortega
et al., 2020a) improves the SOTA (state-of-the-art)
for Quechua–Spanish MT using a morphological
guided BPE algorithm.

2.2 Architectures

NMT models typically are sequence-to-sequence
models. They encode a variable-length sequence
into a vector or matrix representation, which they
then decode back into a variable-length sequence
(Cho et al., 2014). The two most frequent architec-
tures are: i) recurrent neural networks (RNN), such
as LSTMs (Hochreiter and Schmidhuber, 1997)
or GRUs (Cho et al., 2014), and ii) transformers
(Vaswani et al., 2017), which define the current
state of the art in the high-resource setting.

As for most neural network models, training an
NMT system on a limited number of instances
is challenging (Fernández-Delgado et al., 2014).
There are common problems that arise from lim-
ited data in the training set. One major advantage
of neural models is their ability to learn representa-
tions from raw data, in contrast to manually engi-
neered features (Barron, 1993). However, problems
arise when not enough data is provided to enable
effective learning of features. Another strength
of neural networks is their generalization capac-
ity (Kawaguchi et al., 2017). However, training a
neural network on a small dataset easily leads to
overfitting (Rolnick et al., 2017). Recent studies,
however, show empirically that this does not nec-
essarily happen if the network is tuned correctly
(Olson et al., 2018).

2.3 Evaluation

Accurately judging translation quality is difficult
and, thus, often still done manually: bilingual
speakers assign scores according to provided crite-
ria such as fluency and adequacy (Does the output
have the same meaning as the input?). However,
manual evaluation is expensive and slow. More-
over, in the case of endangered languages, bilingual
speakers can be hard or impossible to find.

Automatic metrics provide an alternative.2

These metrics assign a score to system output,
given one or more ground truth reference trans-
lations. The most widely used metric is BLEU
(Papineni et al., 2002), which relies on token-level
n-gram matches between the translation to be rated
and one or more gold-standard translations. For
morphologically rich languages, character-level
metrics, such as chrF (Popović, 2017), are often
more suitable, as they allow for more flexibility.
In the AmericasNLP ST (Mager et al., 2021) this
metric was used over BLEU, as it fits better to the
rich morphology of many ILA.

To have a concrete example, lets have the follow-
ing Wixarika phrase with an English translation:

yu-huta-me ne-p+-we-’iwa
an-two-ns 1sg:s-asi-2pl:o-brother

I have two brothers

As discussed in (Mager et al., 2018c) it is dif-
ficult to translate back from Spanish (or other Fu-
sional language) the morpheme p+ as it has not
equivalent in these languages. So if we would
ignore these morpheme at all, BLEU would penal-
ize the entire word nep+we’iwa. In contrast, chrF
would give credit to the translation, even if the p+
is missing.

One shortcoming of these evaluation metrics is
that the evaluation is very dependent on the surface
forms and not on the ultimate goal of semantic
similarity and fluency. Recent work uses pretrained
models to evaluate semantic similarity between
translations and the gold standard (Zhang et al.,
2020d), but these methods are limited to languages
for which such models are available. This is not
possible for the ILA, as the amount of monolingual
data is not enough to train a reliable pretrained
language model3.

3 Challenges and open questions

In an overview of the datasets and recent studies
of MT for the ILA, we found the following main
issues to be handled.

Extreme low-resource parallel datasets Even
with the recent advances, the resources available
to train MT systems are extremely scarce, having

2For a detailed overview of automatic metrics for MT we
refer the interested reader to specialized reviews (Han, 2016;
Celikyilmaz et al., 2020; Chatzikoumi, 2020).

3One exception to this is Quechua, that has a large enough
monolingual dataset to train a BERT like model (Zevallos
et al., 2022)
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training set between 4k and 20k sentences (see §4),
with notable exceptions for Inuktitut, Guarani and
Quechua (Joanis et al., 2020; Ortega et al., 2020a).

Lack of monolingual data Most of these lan-
guages are mostly used in spoken form. In recent
years, with the advancement and democratization
of mobile technologies, indigenous languages have
seen a slight increase in massaging systems and
private spheres (Rosales et al.). However, the usage
of these languages on the internet is rather lim-
ited. Even Wikipedia has a limited amount of these
languages (Mager et al., 2018b).

Low domain diversity . As most parallel
datasets are scarce, they are restricted to a small
number of domains, making it challenging to adapt
it, or try to aim for general translation models. This
has been recognized as a major problem during the
AmericasNLP ST (Mager et al., 2021).

Rich morphology An important number of these
languages are morphological highly rich. In many
cases, we find polysynthetic, with or highly ag-
glutinative languages (Kann et al., 2018) or even
fusional phenomenon (Mager et al., 2020).

Distant paired language The most common lan-
guages that we find that ILA is translated into are
Spanish, English, and Portuguese. However, these
languages are distantly related to the ILA, and have
completely different linguistically phenomenons
(Campbell, 2000; Romero et al., 2016).

Noisy text environments Monolingual texts, if
exist, are found in social media that often use a
non-canonical witting (Rosales et al.).

Code-Swithing This phenomenon is strongly
present in ILA, as all of these languages are minor-
ity languages in their own countries. The bilingual-
ism among their communities is strong (and CS is
a common phenomenon in this setup (Çetinoğlu,
2017)). The final result of this phenomenon is the
inclusion of code-switching on a common base
(Mager et al., 2019) in their language.

Lack of orthographic normalization The us-
age of ILA faces the problem of having a unified
orthographic standard. This is not always possible,
as the suggestions of linguists and official entities
do not always match the day-by-day writing of the
speakers. Moreover, in some cases, special sym-
bols present in the orthographic standards are not
accessible in English or Spanish keyboard and need

to be replaced with other symbols. The winner of
the AmericasNLP ST got important improvements
using orthographic normalizers developed specifi-
cally for each American language (Vázquez et al.,
2021).

Dialectal variety The indigenous languages
have a strong dialectal variety, making it hard for
native speakers to understand even speakers from
neighboring villages. The linguistic richness of
entire regions is so diverse that even a single state
like the Mexican Oaxaca could correspond to the
diversity in the whole Europe (McQuown, 1955).

4 Available MT datasets for ILA

The parallel datasets available for MT have been
increasing during the last years. At this moment,
we can show in two folds the development of these
resources: as shown in table 2 work on specific
language has emerged; but also broader datasets
have started to cover the ILA (see table 1).

Language-specific corpus collection work has
been done for many languages, where parallel cor-
pus has been the main component. In recent time
we have seen Cherokee–English (OPUS) (Zhang
et al., 2020c), Wixarika–Spanish (Mager et al.,
2018a), Shipio–Konibo (Feldman and Coto-Solano,
2020), and others (see table 2). The most prominent
of these datasets has been the Inuktitut–English
parallel data. The last version of this dataset cor-
pora (Joanis et al., 2020) is has medium size with
1,450,094 sentences. Previous versions of this cor-
pus are (Martin et al., 2003). This data set was used
for the WMT 2020 Shared Task on Unsupervised,
and Low Resourced MT (Barrault et al., 2020).

For wide-spoken languages like Guarani, it is
even possible to collect a web crawled dataset,
including news articles and social media parallel
aligned data (Chiruzzo et al., 2020; Góngora et al.,
2021) This dataset also includes monolingual data.
This is possible as Guaraní is one of the most spo-
ken indigenous languages of the continent.

In contrast to the language-specific datasets, we
find broader approaches (see table 1). The broad-
est multilingual dataset, which contains the Bible’s
New Testament, includes about 1600 languages
(Mayer and Cysouw, 2014; McCarthy et al., 2020)
of the 2,508 that have been collected by the Sum-
mer Institute of Linguistic (SIL) (Anderson and
Anderson, 2012). Another remarkable effort to ob-
tain broad language coverage is the PanLex project
(Kamholz et al., 2014), which has gathered lexical
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Dataset Paired-languages Authors

AmericasNLI Aymara, Asháninka, Bribri, Guaraní,
Nahuatl, Otomí, Quechua, Rarámuri,
Shipibo-Konibo, Wixarika

(Ebrahimi et al., 2022)

CPML Ch’ol, Maya, Mazatec, Mixtec, Nahu-
atl and Otomi

(Sierra Martínez et al., 2020)

OPUS * (Tiedemann, 2016)
New testament Bible * (McCarthy et al., 2020)

Table 1: Parallel dataset collections that contain one or more indigenous languages of the Americas

Language Paried-language ISO Family Sentences Domain Authors

Asháninka Spanish cni Arawak 3883 (Ortega et al., 2020b)
Bribri Spanish bzd Chibchan 5923 (Feldman and Coto-

Solano, 2020)
Guarani Spanish gn Tupi-Guarani News,

Blogs
(Abdelali et al., 2006)

Guarani Spanish gn Tupi-Guarani 14,531 News,
Blogs

(Chiruzzo et al., 2020)

Guarani Spanish gn Tupi-Guarani 14,792 News, So-
cial Media

(Góngora et al., 2021)

Guarani Spanish gn Tupi-Guarani 30855 8 Domains (Chiruzzo et al., 2022)
Nahuatl Spanish nah Uto-Aztecan 16145 Diverse

Books
(Gutierrez-Vasques
et al., 2016)

Otomí Spanish oto Oto-Manguean 4889 Diverse
Books

https://tsunkua.
elotl.mx

Rarámuri Spanish tar Uto-Aztecan 14721 Dictionary
Examples

(Mager et al., 2022)

Shipibo-Konibo Spanish shp Panoan 14592 Educational,
Religious

(Galarreta et al., 2017)

Wixarika Spanish hch Uto-Aztecan 8966 Literature (Mager et al., 2018a)
Cherokee English chr Uto-Aztecan OPUS (Zhang et al., 2020c)
Inuktitut English iku Eskimo–Aleut 1,450,094 Legislative (Joanis et al., 2020)
Ayuuk Spanish mir Mixe–Zoque 7553 Diverse (Zacarías Márquez and

Meza Ruiz, 2021)
Mazatec Spanish Many Oto-Manguean 9799 Diverse (Tonja et al., 2023)
Mixtec Spanish Many Oto-Manguean 13235 Diverse (Tonja et al., 2023)

Table 2: Parallel datasets that have been released focusing on one indigenous language

translation dictionaries for over 5,700 languages.
However, for most languages, PanLex contains
only a few dozen words. Duan et al. (2020) show
that such dictionaries can be used to create an NMT
system, making bilingual dictionaries relevant for
further studies.

Recently community-driven research groups
have started the creation of own parallel datasets,
such as Masakhane (Orife et al., 2020; Nekoto et al.,
2020) for African languages, and AmericasNLP for
indigenous languages of the Americas (Ebrahimi
et al., 2021; Mager et al., 2021). The AmericasNLI
dataset is an important effort to have a common
evaluation benchmark for the 10 indigenous lan-
guages of the Americas for the MT and NLI tasks.

Given the constitutional rights of indigenous lan-
guages in many countries of the Americas, it is
possible to access this data. Vázquez et al. (2021)
made available this resource during their shared

task system development.
Finally, it is important to mention that many

of the languages spoken in the Americas have
Wikipedia’s set of articles available4.

Collection of New Data A common way to cre-
ate parallel data with the help of bilingual speakers
is via elicitation (translating the foreign text into
another language). It has the disadvantage of bi-
asing the created text to forms and topics, culture,
and even grammatical forms towards the source
language (Lörscher, 2005). A method that avoids
this problem is language documentation, which
consists of storing and annotating commonly used
speech or text (Himmelmann, 2008). However, it is

4The available languages in wikipedia can be con-
sulted at: https://es.wikipedia.org/wiki/Po
rtal:Lenguas_indígenas_de_América. Until the
publication of this article, there were only entries in Nahu-
atl, Navajo, Guarani, Aymara, Klaalisut, Esquimal, Inukitut,
Cherokee, and Cree.
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costly and requires specialists. In this process, in-
volving the community members that are bilingual
speakers is important (Bird, 2020).

5 Low-resource MT

For the purpose of this paper we define LRLs as
languages for which standard techniques are unable
to create well performing systems, which makes it
necessary to resort to other techniques (cf. Figure
1) such as transfer learning. For MT, the amount of
available resources differs widely across language
pairs: some have less than 10k parallel sentences,
while other have more than 500k, with some excep-
tions in the orders of several million.

Emulating a low-resource scenario by down-
sampling available data for high-resource lan-
guages is common and helps understanding a
model’s performance across different settings.
However, further evaluating methods on a diverse
set of low-resource languages is crucial, since many
languages exhibit particular linguistic phenomena
(Mager et al., 2020), that perturb the final results,
especially since most large datasets are from the
Indo-European language family, to which only
6.16% of the world’s languages belong (Lewis,
2009).

Importantly, there is no strong correlation be-
tween the number of resources available per lan-
guage and the number of speakers: Javanese with
95 million speakers and Kannada with 44 million
are considered LRLs, while French, with only 64
million native speakers, is among the most widely
studied languages. Improving models to handle
LRLs will extend access to information online as
well as human language technology to all mono-
lingual speakers of those languages. In the case of
ILA, most languages are endangered at some de-
gree, but most of them have the same issue: they are
low resourced for parallel and monolingual data.

Endangered Languages Krauss (1992) esti-
mates that 50% of all languages are doomed or
dying, and that in this century we will see either the
death or the doom of 90% of all human languages.
The current proportion of languages that are already
extinct or moribund ranges from 31% down to 8%
depending on the region, with the most severe cases
in the Americas and Australia (Simons and Lewis,
2013). To determine how endangered a language is,
Lewis and Simons (2010) proposes a classification
scale called EGIDS with 13 levels. The higher the
number on this scale, the greater the level of disrup-

tion of the language’s inter-generational transmis-
sion.5 MT for endangered LRLs has the potential
to help with documentation, promotion and revital-
ization efforts (Galla, 2016; Mager et al., 2018b).
However, as these languages are commonly spo-
ken by small communities, or indigenous people,
researchers should aim for a direct involvement of
those communities (Bird, 2020).

What is polysynthesis? A polysynthetic lan-
guage is defined by the following linguistic fea-
tures: the verb in a polysynthetic language must
have an agreement with the subject, objects and in-
direct objects (Baker, 1996); nouns can be incorpo-
rated into the complex verb morphology (Mithun,
1986); and, therefore, polysynthetic languages have
agreement morphemes, pronominal affixes and in-
corporated roots in the verb (Baker, 1996), and also
encode their relations and characterizations into
that verb. The most common word orders present
in these languages are SOV, VSO, SVO and free
order. It is important to notice that a polysynthtic
language can have a aggutinative 6 or can have also
fusional characteristics, like Totonaco or Tepehua
(Mager et al., 2020).

6 Low-resource MT paradigms

Most languages of the Americas do not have high
amount of data for MT. Therefore, we introduce
the most important paradigms to improve low-
resourced machine translation. Figure 1 shows a
general overview of the methods and options to im-
prove LRL MT. For a more detailed understanding
of this techniques we refer the reader to specialized
low-resource MT surveys (Haddow et al., 2022;
Wang et al., 2021; Ranathunga et al., 2021).

6.1 Multilingual Supervised Training

With a multilingual set of parallel data
Dparallel between different language pairs
{(L1, L2), . . . , (Lm, Ln)} we can train a model
that is able to map a sentence from any source
language Lx into any target language Ly that is
contained in Dparallel (see 2). These multilingual
NMT models have seen a growth in popularity
and efficiency in recent years. We will now
cover the different training algorithms for these
models: 1) many source languages and one target

5The complete EGIDS scale can be found at https://
www.ethnologue.com/about/language-status

6Agglutination refers to a concatenation of morphemes,
with minimal changes to the surface form.
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Figure 1: What to do when we have low o no data to train our machine translation models? This diagram shows
basic scenarios, solutions, and common requirements for each method, with the section describing the method.

Figure 2: An overview of different multilingual setups.

language (many-to-one), 2) one source and many
target languages (one-to-many), and 3) many
source languages and many target languages
(many-to-many). For a general overview of
multilingual MT, we refer the reader to surveys
dedicated to this topic (Tan et al., 2019; Dabre
et al., 2019). Johnson et al. (2017) are the first
to introduce a multilingual NMT model, trained
on translating from a large number of languages
to English as well as in the opposite direction.
The authors show that these models improve over
single-language pair models for LRLs.

6.2 Multi-task Training

Multi-task training (Caruana, 1997) aims to im-
prove the performance of the main task – MT in
our case – by adding one or more auxiliary tasks
to the training. The easiest way is to share all pa-
rameters of the network, using the ideas already
explored in multilingual NMT (§6.1). This can be
done with a special flag in the input that specifies
the current task. It is also possible to share only the
encoder and have two separate decoders for each
task.

Figure 3: Backtranslation

Multilingual Modeling In order to handle mul-
tilinguality it is also possible to adapt modify the
NMT models. The main proposals to do so has
been: sharing all parameter except the attention
mechanism of a RNN NMT model (Blackwood
et al., 2018); parameter sharing in the transformer
architecture Sachan and Neubig (2018);

6.3 Data Augmentation

Back-Translation A straightforward way to
leverage monolingual data for low-resource MT
is to generate a meaningful signal with the help
of an already initialized MT model (see Figure 3).
This method is called back-translation (BT; Sen-
nrich et al., 2016b): With monolingual data MLx

in source language Lx and a trained model that is
able to translate from Lx into a target language Ly
we can generate a translation M ′Ly . This pseudo
parallel data (MLx ,M ′Ly) is then used to train a
new model in the opposite direction. This process
can be applied iteratively to improve the translation
(Hoang et al., 2018).

Sentence Modification Other methods to gener-
ate more parallel sentences are based on lexical
substitution. Fadaee et al. (2017) explores replac-
ing frequent words with low-frequency ones in both
source and target to improve the translation of rare
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words. This is done using language models (LMs)
and automatic alignment.

Pivoting If no parallel corpus between languages
Lx and Ly is available, but both of them have par-
allel corpora with a third language Lp, pivoting
is an option. The basic idea is to train two MT
systems: one that translates Lx → Lp and another
for Lp → Ly. Pivoting has first been introduced
for SMT (Wu and Wang, 2007; Cohn and Lapata,
2007; Utiyama and Isahara, 2007).

6.4 Semi-supervised and Unsupervised MT

Transfer Learning via Pretraining Transfer
learning refers to using knowledge learned from
one task to improve performance on a related task
(Weiss et al., 2016). In recent years this approach
has gained popularity with big multilingual models
such as Conneau and Lample (2019) that proposes
training the encoder and the decoder separately in
order to get cross-language representations (XLM).
This idea has further been extended by Song et al.
(2019, MASS) to masking a sequence of tokens
from the input (multilingual MASS (Siddhant et al.,
2020)). Another approach is to train the entire trans-
former model as a denoising autoencoder (BART;
Lewis et al., 2019) ( multilingual BART (mBART)
(Liu et al., 2020)). It is also possible to pretrain
a transformer in a multi-task, text-to-text fashion,
where one of the tasks is MT (T5; Raffel et al.,
2020) (multilingual version (Xue et al., 2021)).

Unsupervised MT UMT covers approaches that
do not require any parallel text, relying only on
monolingual data. This differs from zero-shot trans-
lation, which uses parallel data for other language
pairs. Early approaches tackled the problem with
an auto-encoder with adversarial training (Lample
et al., 2017) or with auto-encoders with a shared
encoding space as well as separate decoders for
each target language (Artetxe et al., 2018). The
main problem for these approches is the need of a
big monolingual dataset, that is not available for
most ILA.

7 Advances in MT for the indigenous
languages of the Americas

In recent years the interest in MT for indigenous
languages of the Americas has increased. The task
is not easy. The first usage of NMT systems has
not been successful (Mager and Meza, 2021). How-
ever, with the use of LRL MT methods, we have

witnessed great improvements.

The Cherokee–English (Zhang et al., 2020c) lan-
guage pair has been explored using a pre-trained
BERT (Devlin et al., 2019) for the English side.
A system demonstration of this approach is also
accessible (Zhang et al., 2021). The back transla-
tion strategy for Bribri–Spanish NMT transform-
ers has also been explored (Feldman and Coto-
Solano, 2020) and by (Oncevay, 2021) (for four
Peruvian languages to Spanish) with good results.
The scarce indigenous language monolingual text
can be replaced to some extent with Spanish text
or extracted from PDFs, and other sources (Busta-
mante et al., 2020).

One of the main challenges for the complex mor-
phological languages in the area has been the pre-
possessing step. Schwartz et al. (2020) show that
even if morphological segmentation has less per-
plexity a the language modeling time, it is still
under-performing or equivalent against BPEs for
MT (for Inuktitut-–English, Yupik—English Data,
Guaraní—Spanish Data). A more comprehensive
(on the segmentation modeling side) was done
by (Mager et al., 2022) exploring a wide array
of segmentation models.The latter study showed
that supervised morphological segmentation under-
perform unsupervised. However, unsupervised
morphological segmentation like LMVR (Ataman
et al., 2017) and FlatCat (Grönroos et al., 2014)
perform better than BPEs. (Ngoc Le and Sadat,
2020) studied how better to perform word segmen-
tation for the Inuktitut–English pair. They found
that for this language pair, a morphological segmen-
tation, or a combination of BPEs and morphologi-
cal segmentation, works better than just applying
vanilla BPEs. Also, training word embeddings for
Guarani–Spanish translation is an excellent oppor-
tunity to increase the MT performance of these
languages (Góngora et al., 2022).

The usage of transfer learning from multilin-
gual systems has been tried, with limited results
(Nagoudi et al., 2021) (training an own T5 model
for indigenous languages) and (Zheng et al., 2021).
However, pertaining a Spanish–English model to-
gether with ILA, and then fine-tuning it (together
with a careful prepossessing and filtering step) has
been the most successful strategy (Vázquez et al.,
2021).

The quality of MT systems of ILA has been a
constant debate. However, Ebrahimi et al. (2021)
shows that the quality of MT for these languages is
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enough to improve other tasks like natural language
inference (NLI).

Inuktitut–Enlgish ST The WMT 2020 news
translation task included Inuktitut–English trans-
lation (Barrault et al., 2020). The participating
systems explored the difficulties of working with
a polysynthetic language in a medium resource
scenario. Participating teams in this competition
were: (Kocmi, 2020; Hernandez and Nguyen, 2020;
Scherrer et al., 2020; Roest et al., 2020; Lo, 2020;
Knowles et al., 2020; Zhang et al., 2020e; Kru-
biński et al., 2020).

AmericasNLP 2021 and 2023 ST In 2021, the
AmericasNLP community organized a workshop
on Machine Translation for 10 indigenous lan-
guages of the Americas in 2021 (Mager et al., 2021)
and 2023 (Ebrahimi et al., 2023) with an additional
indigenous language (Chatino). The AmericasNLP
shared task winner was (Vázquez et al., 2021) in
2021, and a more mixed result in 20237. Other
participants in this shared task are (Nagoudi et al.,
2021; Bollmann et al., 2021; Zheng et al., 2021;
Knowles et al., 2021; Parida et al., 2021; Nagoudi
et al., 2021). It is important to point at the im-
portance of clean datata. For Quechua, (Moreno,
2021) got the best results generating an additional
amount of clean data.

AmericasNLP 2022 Competition is a com-
petition on Speech-to-Text translation is or-
ganized and is targeting the following lan-
guage pairs: Bribri–Spanish, Guaraní–Spanish,
Kotiria–Portuguese, Wa’ikhana–Portuguese, and
Quechua–Spanish (Ebrahim et al., 2023)8.

8 Ethical aspects

When working with ILAs are also interacting with
communities and nations that speak these lan-
guages. In most cases, these speakers have been
exposed to a colonial past, or to a local oppression,
by the majority language and culture. It is impor-
tant to point to best practices and recommendations
when performing our research. Bird (2020) and
Liu et al. (2022) advocate to include community
members as co-authors (Liu et al., 2022) as well as
considering data and technology sovereignty. This
is also aligned with the community building aimed

7Up to this moment, no official desciption papers for the
2023 are published.

8http://turing.iimas.unam.mx/americasn
lp/st.html

at by Zhang et al. (2022). Mager et al. (2023) sum-
marizes the main aspects that should be considered
as follows: i) Consultation, Negotiation and Mu-
tual Understanding. It is important to inform the
community about the planned research, negotiating
a possible outcome, and reaching a mutual agree-
ment on the directions and details of the project
should happen in all cases. ii) Respect of the local
culture and involvement. As each community has
its own culture and view of the world, researchers
should be familiar with the history and traditions of
the community. Also, it should be recommended
that local researchers, speakers, or internal gov-
ernments should be involved in the project. iii)
Sharing and distribution of data and research. The
product of the research should be available for use
by the community, so they can take advantage of
the generated materials, like papers, books, or data.

9 Conclusion

Machine translation for ILA has gained interest in
the NLP community over the last few years. Here,
we provide an exhaustive overview of the basic MT
concepts and the particular challenges for MT for
ILA (in the context of low-resource scenarios and
its relation to endangered languages). We addition-
ally survey the current advances of MT for these
languages.

Limitations

This paper’s aim is to give an introduction to re-
searchers, students, of interested community in-
digenous community members to the topic of Ma-
chine Translation for Indigenous languages of the
Americas. Therefore, this paper is not an in-depth
survey of the literature on indigenous languages
nor a more technical survey of low-resource ma-
chine translation. We would point the reader to
more specific surveys on these aspects (Haddow
et al., 2022; Mager et al., 2018b).

Ethical statement

We could not find any specific Ethical issue for this
paper or potential danger. Nevertheless, we want
to point to the reader that working with indigenous
languages (in this case, MT) implies a set of ethical
questions that are important to handle. For a deeper
understanding of the matter, we suggest specialized
literature to the reader (Mager et al., 2023; Bird,
2020; Schwartz, 2022).
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A Appendix

In this appendix we expand the information regard-
ing current work on MT for LRL.

A.1 Expanded LR work on Multilingual
supervised training

Arivazhagan et al. (2019a) introduce a represen-
tational invariance training objective across lan-
guages that achieves comparable results with piv-
oting methods. Promising results of multilingual
models have encouraged experiments with models
trained on a massive amount of language pairs, re-
sulting in large multilingual models: Aharoni et al.
(2019) train a single model on 102 languages to
and from English in contrast to the 58 languages
used by Neubig and Hu (2018).

The negative aspect of this approach is the size
of the network. Arivazhagan et al. (2019b) perform
an extensive study on 102 language pairs to explore
different settings and training setups and achieve
good results for LRLs, while maintaining good
performance for high-resource languages. Related
massively multilingual NMT systems have been
trained for analytic proposes (Tiedemann, 2018;
Malaviya et al., 2017) and general zero-shot trans-
fer learning (Artetxe and Schwenk, 2019). mRASP
(Lin et al., 2020) use for pretraining of the multilin-
gual model and add a randomly aligned substitution
loss that aims to bring words and phrases closer in
the cross-lingual space.

Zhang et al. (2020a) explores the main problems
that arise for such models: multilingual NMT usu-
ally underperforms bilingual models (Arivazhagan
et al., 2019b), the larger the number of languages
gets the more the performance drops (Aharoni et al.,
2019), languages in datasets used for multilingual
training are unbalanced in size, and poor zero-shot
performance compared to pivot models (cf. §6.3).
Zhang et al. (2020a) addresses these problems with
a language-aware input layer, a deep transformer
architecture (Wang et al., 2019b), and an online
back-translation approach. These modifications
boost zero-shot translation performance for multi-
lingual models.

To improve the problem of imbalanced and lin-
guistically diverse training data, mostly heuristic
methods have been proposed: Arivazhagan et al.
(2019b) samples training data from different lan-
guages based on a data size scaled by temperature
term. These heuristics have an impact on perfor-
mance, and ignore other factors that are not size.

Oversampling of data is used by Johnson et al.
(2017); Neubig and Hu (2018); Conneau and Lam-
ple (2019). Wang et al. (2020) proposes a differ-
entiable data selection method that automatically
learns to weight training data, optimizing transla-
tion on all languages.

Multilingual modeling Sharing all parameters
except for the attention mechanism shows im-
provements compared with sharing everything in
an RNN NMT model (Blackwood et al., 2018).
Sachan and Neubig (2018) explores parameter shar-
ing in the transformer architecture for the decoder
in the one-to-many translation setting and shows
that transformers are more suitable than RNNs for
this task. Also, parameter sharing in the decoder
and embedding layer further improves performance.
Lu et al. (2018) proposes a shared layer intended to
capture the interlingua knowledge and an extension
to the typical RNN network with multiple blocks
along with a trainable routing network. The routing
network enables adaptive collaboration by dynamic
sharing of blocks conditioned on the task at hand,
input, and model state (Zaremoodi et al., 2018).
Zhang et al. (2020a) proposes a language-aware
layer to improve such architectures further. With
a similar idea, Zhu et al. (2020a) incorporates two
special language embeddings into the self-attention
mechanism. The first encodes the unique character-
istics of each language, while the second captures
common semantics across languages.

One problem in multilingual NMT systems is
the translation into the wrong language. To address
this problem, Zhang et al. (2020b) add a language-
aware layer normalization and a linear transforma-
tion that is inserted between the encoder and the
decoder to induce a language-specific translation.
Raganato et al. (2021) explore to weight the tar-
get language label with jointly training one cross
attention head with word alignments.

Other modifications of NMT model architectures
to improve their performance on low-resource lan-
guages include: deep RNNs (Miceli-Barone et al.,
2017), normalization layers (Ba et al., 2016), direct
lexical connections (Nguyen et al., 2015), word em-
bedding layers conducive to lexical sharing (Wang
et al., 2019c).

A.2 Extended Multi-task training

Zhou et al. (2019) uses this approach, but extends
it with a cascade architecture: the first decoder
reads the encoder, and the second decoder reads
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the encoder and the first decoder (Niehues et al.,
2016; Anastasopoulos and Chiang, 2018). The aux-
iliary task (first decoder) is a denoising decoder.
With RNN NMT architectures, one can further de-
cide if the attention mechanism should be shared
among tasks (Niehues and Cho, 2017). The au-
thors compare all architectures and find that they
perform similarly, with only sharing the encoder
being slightly better.

Using linguistic information as an auxiliary task
has not yet been explored exhaustively. Niehues
and Cho (2017) studies the usage of part-of-speech
(POS) and named entity (NE) tags, finding that
training on named entity recognition (NER), POS
tagging and MT together improves performance the
most. For agglutinative languages, morphological
auxiliary tasks can be beneficial: Pan et al. (2020)
uses stemming with fully shared parameters.

As an alternative to linguistically informed aux-
iliary tasks Srinivasan et al. (2019) uses multiple
BPE vocabulary sizes to generate different segmen-
tations. Each segmentation is treated as an individ-
ual task.

A.3 Data augmentation

Back-translation Caswell et al. (2019) shows
that adding a special tag to the synthetic data im-
proves performance. A technique that exploits this
idea is training an initial translation model with
synthetic data generated via BT and then finetune
it with gold data (Abdulmumin et al., 2019). This
simple yet effective training algorithm improves
NMT for LRLs; however, it can also degrade per-
formance on HRLs if trained without a tagging
strategy (Marie et al., 2020).

Multiple improvements of BT have been pro-
posed. Edunov et al. (2018) shows that sampling
or noisy beam search can generate more effective
pseudo-parallel data. However, for LRLs an opti-
mal beam search and greedy decoding are better. A
factor that influences BT’s effectiveness is the qual-
ity of the initial MT systems (Hoang et al., 2018).
Using back-translated data from multiple sources
(Poncelas et al., 2019) or optimizing the ranking
of back-translated data yields further gains (Soto
et al., 2020).

BT results in gains when the parallel corpora are
naturally occurring text and not translationese, as
the latter would only improve automatic n metrics
(Toral et al., 2018; Graham et al., 2020). ? shows
that BT produces more fluent text and is preferred

by humans. Additionally, translationese and origi-
nal data can be modeled as separate languages in a
multilingual model (Riley et al., 2020). BT is also
a central part of unsupervised MT (UMT; cf. §6.4)
and zero-shot MT (Gu et al., 2019).

Sentence modification Zhu et al. (2019) pro-
poses to replace a randomly chosen word in a sen-
tence with a soft-word. That means that, instead of
sampling a word from the lexical distribution of a
LM like Kobayashi (2018), the authors use the hid-
den state vector of the LM directly. Wu et al. (2019)
substitutes the RNN LMs from previous work and
use BERT (Devlin et al., 2019) – a transformer
trained with a masked language modeling objec-
tive – instead. The authors finetune BERT with a
conditional masked language modeling objective
that tries to avoid the prediction of words that do
not correspond to the original sentence meaning.

Another way to augmented MT data is by para-
phrasing. If a good paraphrase system exists, this
can increase the number of training instances (Hu
et al., 2019). Paraphrasing can also be used at train-
ing time by sampling paraphrases of the reference
sentence from a paraphraser and training the MT
model to predict the distribution of the paraphraser
(Khayrallah et al., 2020). This helps the model to
generalize. Wieting et al. (2019) propose a similar
approach, using minimum risk training to optimize
BLEU. To avoid BLEU’s constraints to a specific
reference, they use paraphrasing to diversify the
given reference.

Finally, existing data can be augmented by
adding noise. This noise can be continuous or dis-
crete. In the case of applying continuous noise,
noise vectors are added to the word embeddings
(Cheng et al., 2018; Sano et al., 2019). Discrete
noise is realized by inserting, deleting, or replacing
words, BPE tokens, or characters to expand the
training set in an adversarial fashion (Belinkov and
Bisk, 2018; Ebrahimi et al., 2018; ?; Cheng et al.,
2019, 2020).

Pivoting While it is simple to implement and ef-
fective, pivot-based approaches suffer from error
propagation. To overcome that for NMT, joint train-
ing Zheng et al. (2017); Cheng (2019) and round-
trip training (Ahmadnia and Dorr, 2019) have been
proposed.

Pivoting with NMT systems has been used for
translating Japanese, Indonesian, and Malay into
Vietnamese (Trieu et al., 2019), translation of re-

131



lated languages (Pourdamghani and Knight, 2019),
multilingual zero-shot MT (Lakew et al., 2018),
and UMT (cf. §6.4) between distant language pairs
(Leng et al., 2019).

A.4 Recent low-resource Shared Tasks
First, the LoResMT 2020 shared task (Ojha
et al., 2020) explores the case of language pairs
which have no parallel data between them (Hindi–
Bhojpuri, Hindi–Magahi, and Russian–Hindi). The
winning system (Laskar et al., 2020) uses a MASS
model in a zero-shot fashion with additional mono-
lingual data (see §6.4). Second, the WMT 2020
shared tasks on UMT and very low-resource su-
pervised MT (Fraser, 2020) provide text and 60k
aligned phrases for German–Upper Sorbian., The
most important technique in all tracks is transfer
learning, achieving surprisingly good results. For
the AmericasNLP 2021 shared task on open MT
(Mager et al., 2021), 10 indigenous language lan-
guages were paired with Spanish, resulting in an
extreme low-resource setting (4k to 125k paired
sentences), with challenges out as domain, dialec-
tical, and orthographic mismatches between splits
and datasets. The best systems shows that data
cleaning and collection (§??) as well as multilin-
gual approaches (§6.1) result in the best perfor-
mance in this conditions. Finally the shared task
on MT in Dravidian languages (Chakravarthi et al.,
2021) features 3 languages paired with English as
well as Tamil–Telugu. Again, the winning system
uses a multilingual approach. The best performing
systems use BT (§6.3) and BPE word segmentation
(§2.1).

The results from these challenges indicate that
the optimal selection and combination of methods
differs between cases (i.e., amount of monolingual,
parallel data, cleanness of data, domain mismatch,
linguistic closeness of languages). This implies that
data analysis and linguistic knowledge are needed
to improve a final system’s performance.

A.5 Transfer learning
This helps low-resource tasks as a lower amount of
data can be used for training. One application of
transfer learning to MT is the usage of a pretrained
RNN LM (Gulcehre et al., 2015) as the decoder in
an NMT system. Zoph et al. (2016) is the first work
that uses pretrained models to improve NMT sys-
tems. The authors perform two experiments with
an RNN encoder–decoder architecture with an at-
tention mechanism: the model is first pretrained on

a high-resource language pair This works even bet-
ter if related languages are used during pretraining
(Nguyen and Chiang, 2017). Using pretrained LMs
at decoding time and as priors at training time also
improves vanilla models (Baziotis et al., 2020).

To avoid overfitting, models can be finetuned on
both a HRLs pair and a LRLs pair in a multi-task
fashion (Neubig and Hu, 2018).

However, how can we represent best the vocabu-
lary? Zoph et al. (2016) use separate embeddings
for the source and the target language. However,
using tied embeddings has been shown to yield bet-
ter results (Press and Wolf, 2017). Edunov et al.
(2019) employs ELMO (Peters et al., 2018) repre-
sentations as pretrained features in the encoder of
a transformer model. Song et al. (2020) shows that
it is possible to improve performance by combin-
ing monolingual texts from linguistically related
languages, performing a script mapping. It is also
possible to extract features from a BERT model
in the source language and combining these with
an NMT system (Zhu et al., 2020b), but using a
BERT model pretrained with a mixed sentences
from source and target languages lead to even bet-
ter results (Xu et al., 2021).

Encoder-decoder pretrained models have gained
popularity in the last years for low-resource MT.
Conneau and Lample (2019) proposes training the
encoder and the decoder separately in order to get
cross-language representations (XLM). This idea
has further been extended by Song et al. (2019,
MASS) to masking a sequence of tokens from the
input. Training MASS in a multilingual fashion
and using monolingual data for pretraining helps to
improve NMT for low-resource languages and zero-
shot translation (Siddhant et al., 2020). Another ap-
proach is to train the entire transformer model as a
denoising autoencoder (BART; Lewis et al., 2019).
The multilingual version of BART (mBART) is
more suitable for NMT tasks and yields impor-
tant gains (Liu et al., 2020). It is also possible to
pretrain a transformer in a multi-task, text-to-text
fashion, where one of the tasks is MT (T5; Raffel
et al., 2020). All four models can be finetuned for
MT or used in an unsupervised fashion. Improve-
ments to BART can be obtained by augmenting
the maximum likelihood objective with an addi-
tional objective, which is a data-dependent Gaus-
sian prior distribution (Li et al., 2020). Huge LMs
can improve zero-shot and few-shot learning even
further (Brown et al., 2020), but at a high computa-
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tional cost. Pursuing another direction, Wang et al.
(2019a) develops a hybrid architecture between a
transformer and a pointer-generator network. At
training time, the authors jointly train the encoder
and the decoder in a denoising auto-encoding fash-
ion.

One crucial problem for transfer-learning is min-
imizing catastrophic forgetting (Serra et al., 2018).
Chen et al. (2021) show that it is possible to com-
bine a pre-trained multilingual model, with fine-
tuining it with one single language pair, to improve
zero-shot machine translation. Another way to han-
dle this problem is reducing the number of parame-
ter to be updated. Gheini et al. (2021) propose to
only update the cross attention parameters.

A.6 Unsupervised MT

The addition of other components such as masked
LMs and denoising auto-encoding has also been
tried (Stojanovski et al., 2019). Unsupervised meth-
ods are vulnerable to adversarial attacks of word
substitution and order change in the input. Adver-
sarial training can improve performance in such
situations (Sun et al., 2020). Since the initialization
step is crucial for UMT, Ren et al. (2020) aligns
semantically similar sentences from two monolin-
gual corpora with the help of cross-lingual embed-
dings. With these, an SMT system is trained to
warm up an NMT system. However, UMT still
has to overcome a set of challenges. Søgaard et al.
(2018) shows that performance decays dramatically
for languages with different typological features,
since, in such situations, bilingual word embed-
dings (Conneau et al., 2017) are far from isomor-
phic. Vulić et al. (2020) finds that isomorphism is
also less likely if small amounts of monolingual
data are used for training bilingual word embed-
dings. Nooralahzadeh et al. (2020) discovers that
performance quickly deteriorates for a mismatch of
source and target domain and that the initialization
of word embeddings can affect MT performance.
All of this makes UMT for LRLs or endangered
languages challenging.

Some of the described issues have been ad-
dressed: Liu et al. (2019) proposes to combine
word-level and subword-level embeddings to ac-
count for morphological complexity. For the prob-
lem of distant language pairs, Leng et al. (2019)
proposes pivoting (cf. §6.3). Isomorphism of bilin-
gual word-embeddings can be improved with semi-
supervised methods (Vulić et al., 2019).

Garcia et al. (2020) introduces multilingual
UMT systems. The main idea consists of general-
izing UMT by using a multi-way back-translation
objective. Recently, pretrained multilingual trans-
former networks are used to improve UMT even
further (cf. §6.4).

B Ethical Considerations

Ethical concerns when working on MT for endan-
gered languages include a lack of community in-
volvement during language documentation, data
creation, and development and setup of MT sys-
tems. For more information, we refer interested
readers to Bird (2020). Finally, we want to mention
that publicly employing low-quality MT systems
for LRLs bears a risk of translating incorrectly or
in biased (e.g., sexist or racist) ways.
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Abstract

In this paper, we present a new online dictio-
nary of Akuzipik, an Indigenous language of
St. Lawrence Island (Alaska) and Chukotka
(Russia). We discuss community desires for
strengthening language use in the community
and in educational settings, and present spe-
cific features of an online dictionary designed
to serve these community goals.

1 Introduction

Akuzipik (ISO 639-3: ess) is a polysynthetic lan-
guage on the Yupik branch of the Inuit-Yupik-
Unangan language family.1 Akuzipik is spoken
in the two villages — Sivuqaq (English: Gambell)
and Sivungaq (English: Savoonga) — on the island
of Sivuqaq (St. Lawrence Island, Alaska), and by
individuals who grew up on the island and have
since moved to mainland Alaska, and on the far
eastern coast of the Chukotka Peninsula of Russia.

Vakhtin (2001) estimated the total number of
speakers in Russia at fewer than 200, all in their 50s
or older at the time; a scholar working in Chukotka
(Anastasia Panova, p.c. July 2022) estimates the
current total at no more than a few dozen fluent
speakers. In Alaska, the ages of fluent speakers
reflect a generational divide that began in earnest in
the early 1990s (Koonooka, 2005): speakers born
before 1980 (now in their 40s and older) tend to
have grown up with Akuzipik as their first language,
learning English in school, and are essentially all
fully fluent in both Akuzipik and in English. Youth
under 20 are much less likely to speak Akuzipik,
although varying degrees of passive fluency can be
observed. Schwartz et al. (2019) estimated the total
number of L1 Akuzipik speakers to be between 800
and 900 of an ethnic population of approximately
2400 individuals.

1Akuzipik is an in-language name for the language, mean-
ing authentic speech. The language has previously been
known in English as Central Siberian Yupik and St. Lawrence
Island/Siberian Yupik.

Figure 1: Traditional lands where languages in the Inuit-
Yupik-Unangan language family are spoken (adapted
from Krauss et al., 2010) are shown in blue. Arrows
mark Sivuqaq (St. Lawrence Island, Alaska) and the
Chukotka Peninsula, Russia, where Akuzipik is spoken.
Other colors indicate geographically neighboring lan-
guage families (Chukotkan in yellow, Dene in red).

Attitudes towards Akuzipik on Sivuqaq are gen-
erally very positive, including in younger gener-
ations, with widespread community support for
language revitalization. In recent years, commu-
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Figure 2: Example output from our 2019 Akuzipik-English online dictionary (Hunt et al., 2019)

nity members in the village of Sivuqaq established
a language revitalization committee. Current goals
include the short-term aim of a language nest em-
bedding fluent Akuzipik elders within the existing
pre-school program, and a long-term goal of a full
Akuzipik immersion curriculum in the local school.

Over the past four years, we have conducted lin-
guistic fieldwork in the village of Sivuqaq, both
remotely (due to the COVID-19 pandemic) and
more recently in person. During that time, we
have consulted with community members, includ-
ing the language revitalization committee and the
elected tribal council, and have gathered feedback
regarding community priorities and desires regard-
ing technology in the context of language revitaliza-
tion and language education. In this paper, we pro-
vide a brief overview of this feedback and present
a new online dictionary that incorporates what we
have learned.

2 Limitations of Prior Work: 2019
Akuzipik-English online dictionary

Despite the existence of a two-volume bilin-
gual Akuzipik-English dictionary (Badten et al.,
2008), access to this dictionary in its printed form
is largely inaccessible to the average Akuzipik
speaker for everyday use because of its cost and
multi-volume form-factor. A small number of phys-
ical copies of the dictionary are kept in the local
school, but are not generally available to residents
of the village. Overall, this has meant that very few
community members on the island have access to
the Akuzipik-English dictionary; we believe the sit-
uation to be quite similar in Chukotka with respect

to the Akuzipik-Russian print dictionary.
To address this lack of accessibility, following

consultation with the Native Village of Gambell, in
2019 we released the first online Akuzipik-English
dictionary (Hunt et al., 2019).2 Our 2019 online
dictionary, illustrated in Figure 2 above, enabled
basic browsing and lookup of Akuzipik words from
the Badten et al. (2008) bilingual print dictionary.

2.1 Limitation: Exact String Matching

Using an digitized database of the data compiled
for the print dictionary, our 2019 online dictionary
used a simple string match function search through
the database for entries that contained the user-
input string in the entry’s headword. Users could
also search for English words in the gloss or notes
if the English-Akuzipik button was selected. One
major limitation of that method was that users were
required to know exactly how to spell the word
they were looking for, as the string match function
did not take near matches into account. When a
user entered a string, the interface would return all
entries where the search string matched either the
entire headword or part of the headword. If the En-
glish search was enabled, entries were returned in
which the search string was found in its entirety in
the gloss or notes. Notably, the dictionary interface
did not offer any suggestions for words that the
user might be looking for based on the characters
they had entered, as most modern search entries do
with autocomplete/autofill.

Matching entries were then printed in a single

2http://computational.linguistics.illinois.
edu/yupik/index_dictionary_transducer.html
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list below the search bar in the order they were
found (see Figure 2 on the preceding page). All
available data for each entry was printed in a for-
matted text block followed by a horizontal rule to
differentiate separate entries. This formatting strat-
egy, while succinct and easy to produce, was not
easily readable and often left entries with multi-
ple example sentences appearing as large blocks of
undifferentiated text.

2.2 Limitation: Limited morphological
awareness

Given the polysynthetic nature of Akuzipik, most
words are multi-morphemic and sentence-length
words are relatively common (de Reuse, 1994;
Jacobson, 2001). Phonological changes at mor-
pheme boundaries are also common (Chen, 2023).
As such, the simple string matching functionality
described above significantly limited utility. Ba-
sic morphological analysis of searched Akuzipik
words was provided through a Javascript port of
our previously published finite-state morphological
analyzer (Chen and Schwartz, 2018). However, re-
sults of morphological analysis were not presented
to the user, and no mechanism was provided to
the user to match return lexical entries identified
using exact string match with specific morphemes
returned by morphological analysis.

2.3 Limitation: Limited labels

Lexical entries were shown with basic part-of-
speech information, most notably noun root and
verb root. However, these part-of-speech labels are
somewhat underspecified, merging part of speech
groups that could otherwise be meaningfully dif-
ferentiated, such as the types of verb roots (i.e.,
postural roots, emotional roots, etc. were all given
the label "root" with no additional specification).
Additional labels regarding such pragmatic or soci-
olinguistic information as dialectal variation, bor-
rowings, archaisms, and word frequency were also
lacking.

3 Community Consultation Process

Prior to the COVID-19 pandemic, we met in person
with representatives of the Native Village of Gam-
bell (the local elected tribal governing council) and
other community groups, including the local lan-
guage revitalization group, to discuss community
priorities and desires regarding language technol-
ogy in the context of language revitalization and

language education. Our methodology in these
fieldwork excursions are discussed in Schwartz
et al. (2019) and Schreiner et al. (2020). One issue
that arose consistently during discussion with the
tribal council and in informal discussions with com-
munity members was a desire to support Akuzipik
language use by young adults, and especially young
parents. The lack of access to Akuzipik language
resources (including the dictionary) was consis-
tently raised.

Some of the most enthusiastic support we heard
in favor of the development of high-quality online-
accessible Akuzipik language resources was from
members of the language community who had
grown up in or had subsequently moved to cities
such as Nome or Anchorage in mainland Alaska.
Many of these we spoke with were in their 30s and
40s fluent or semi-fluent speakers of Akuzipik, and
often living away from the island. Some speak-
ers wished to consult the dictionary for words they
don’t know or no longer remember, or to help in
their efforts to teach their children the language.
Some English-speaking non-native teachers at the
school also requested access the dictionary.

We continued remote consultation with various
community members and organizations through-
out the COVID-19 pandemic, an undertaking we
present a detailed accounting of in Schreiner et al.
(2022), and in doing so identified the limitations
listed in Section 2 on the previous page. As we
identified shortcomings of our 2019 online dictio-
nary, we began the development of a new online
dictionary designed to explicitly address these lim-
itations and to incorporate additional community-
requested features. We describe these in detail in
Section 4 on the following page.

We resumed in-person visits to the island in the
summer of 2022, the fall of 2022, and the spring of
2023. During these visits, we presented our result-
ing new online dictionary to the Native Village of
Gambell, to the local language revitalization group,
and to students and teachers at the local school.
Overall, reception was positive, with many commu-
nity members expressing their excitement to have
access to the dictionary on their own devices. Mem-
bers of the tribal council expressed their support
for our continued work on the dictionary project
and directed us to a number of community mem-
bers that would be good candidates for eventual
participating in audio recordings of the dictionary’s
content.

136



Our ongoing community consultation resulted in
two additional specific requests that we have since
implemented. In summer 2022, the community
language revitalization group requested a “word
of the day” to be displayed on the front page of
the online dictionary. In November 2022, a com-
munity member voiced concern that the original
compilers of the bilingual dictionary (Badten et al.,
2008) had not been the prominence and credit on
the online dictionary’s main page that it deserved
as a substantial documentary work. We promptly
fulfilled both of these requests, adding a “word of
the day” to the front page of the online dictionary
and prominently crediting Badten et al. (2008) on
both the front page and on all entries and data that
were sourced from that work.

Dissemination of our online dictionary was ini-
tially by word of mouth up through early 2022,
along with some mention through local use of so-
cial media. Later in 2022, several speakers made
Facebook posts about the dictionary which gar-
nered hundreds of responses on the social media
platform. Following these posts, using basic web
analytics, were were able to identify that the ma-
jority of the online dictionary’s regular users are
located on mainland Alaska. In November 2022,
following additional local consultation, we hung
posters with a QR code in public buildings, and left
extra posters with tribal and city officials, at their
request.

4 Resolving prior limitations and
fulfilling community requests: 2023
Akuzipik-English online dictionary

In this section, we present our online Akuzipik-
English bilingual dictionary.3, 4 This dictionary is
the direct result of the ongoing community consul-
tation process described in Section 3 on the previ-
ous page. We present features that address each
of the shortcomings described in Section 2 and the
community requests identified in Section 3. Over-
all, efforts have been made to increase the visibility
of dictionary entries and to make metalinguistic
data and analyses more readable to non-linguists.

4.1 Morphological Parser
Perhaps the most significant improvement in our
2023 online dictionary over our earlier online dic-

3https://bhunt6.github.io/
akuzipigestun-sangaawa

4https://github.com/bhunt6/
akuzipigestun-sangaawa

tionary is the full integration of a finite-state mor-
phological analyzer. This integration allows users
to input fully inflected Akuzipik words and re-
ceive a morpheme-by-morpheme parse and a list of
search results corresponding to the word’s compo-
nent morphemes. This functionality was partially
available in the first version of the dictionary, but
improvements to the parser and the search algo-
rithm now provide users with a clearer parse and
more accurate results. An example parse is shown
in Figure 3 on on the following page.

Morphological analysis is performed by a
Javascript port of our Akuzipik finite-state mor-
phological analyzer (Chen et al., 2020). In cases
where the analyzer provides multiple possibly valid
analyses of a word, we utilize a simple heuristic
that defaults to the most parsimonious result, in
this case the shortest. Following morphological
analysis, the component morpheme sequence is
shown, and the dictionary search algorithm returns
results for each component morpheme individually,
with preference given to exact matches. These fea-
tures mitigate (but do not completely solve) the
limitations raised in Sections 2.1 and 2.2.

We hope that in addition to enabling more ro-
bust search capabilities that morphologically aware
search results will eventually be beneficial to users
in educational settings, such as in the elementary
and high school Akuzipik classes in the school.
The integration of the morphological analyzer was
an important step in targeting this use case, as it
gives learners a simple way to determine the con-
stituent parts of a word they have not encountered
before.

4.2 Rich labels

Search results display a short summary of each
dictionary entry (Figure 4 on the next page) that
includes rich part-of-speech and etymology tags
that address the limitation addressed in Section 2.3.
These rich tags (Figure 5 on the following page)
enable grammatical, pragmatic, and sociolinguis-
tic aspects of each entry to be presented in a
more salient manner. For example, tags for part-
of-speech, root or particle class (postural, emo-
tional, exclamatory, conjunctive, etc.), dialect us-
age (Chukotka, St. Lawrence Island, etc.), and pro-
ductive capabilities of derivational morphemes can
be easily assigned to any entry. This was in part
inspired by the system used in the Yugtun (Yup’ik)
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Figure 3: An example parse for angyaghllangllaghyugtuq (He/she wants to make a big boat).

Figure 4: Example search results with part-of-speech
and etymology tags.

Figure 5: Some example tags

dictionary.5

We intend that this system will be expanded to
include tags for common lexical items, archaisms,
and loanwords.

4.3 Mobile-friendly with auto-complete

The dictionary user interface supports mobile de-
vice aspect ratios and an auto-complete function
in the search bar. The search bar supports auto-
complete functionality in both Akuzipik and En-
glish, as shown in Figure 6.

5https://yugtun.com

Figure 6: Autocomplete in Akuzipik and English

4.4 Word of the day

Based on feedback from the local language revi-
talization group, we implemented a “Word of the
Day” that displays an lexical entry card on the
dictionary landing page and links to the full entry
page (Figure 7). The word of the day is taken from

Figure 7: Word of the day section

a randomized list of the dictionary’s entries, and
will display a new entry daily without repeats until
2045. This was one of the first explicit requests
from the community for a specific functionality, so
its implementation was a priority.

138

https://yugtun.com


Figure 8: The contact form with entry data autofilled

4.5 Citations and feedback

An addition that has been in development since
the beginning of the project is a comprehensive
“About” page containing all information relevant
to the navigation and use of the online dictionary,
including a breakdown of how the analyzer func-
tions, the anatomy of an entry, motivations and
methodology behind the current implementation,
and importantly, in-depth citations of the sources
for the entries.

This page also breaks down the meanings and
functions of the tags in the new tag system as well
as the various symbologies used in the dictionary
source material and includes a list of those con-
tributors that have given their permission for their
names to be publicly displayed.

A simple feedback form has been added to the
contact page (Figure 8), allowing users to submit
error reports and suggestions for improvements and
edits to entries. This form can also be accessed via
a report/feedback button on each entry page to al-
low users to more easily submit feedback related
to a particular entry. The metadata specific to that
entry is sent along with the report automatically
so that users do not need to transfer any informa-
tion to the feedback form and can focus on their
suggestions.

4.6 Full entries

Each lexical entry is displayed on its own full entry
page, containing all of the information available for
that headword. Having a dedicated page for each
entry allows us to add more entry-specific infor-
mation in the future, like images, audio, additional
sources, and usage examples from the corpus or
user-submitted sentences. These dedicated pages

are also much more readable and their appearance
is more like entry pages in popular online dictio-
naries with which users are likely familiar such as
the Yugtun dictionary and most English language
dictionaries. Figure 9 show an example of a full
lexical entry for a noun, while Figure 11 shows an
example of a full lexical entry for a verb.

4.7 Inflection tables

The addition of inflectional tables (Figure 10 on the
next page) for each entry was a large step in improv-
ing the functionality of the dictionary for Akuzipik
learners. These tables are located at the bottom of
each noun (and, eventually, verb) entry and display
all possible inflections of the base word (not includ-
ing any derivational morphology). For noun entries,
each grammatical case paradigm is given its own
collapsible table with layman-readable row and col-
umn headers for person, number, and possession.
Verb entries will receive the same treatment for
each grammatical mood, and headers for person,
number, and transitivity.

4.8 Word wheel

Another addition to the online interface that was
chosen to increase the visibility of entries in the
dictionary is the word wheel. This is a widget on
the right side of each entry page (see Figure 9 and
Figure 11) that displays a handful of words that
are close to the current headword alphabetically in
the dictionary database. This wheel encourages ex-
ploration of the dictionary’s content beyond direct
searches. This may be of particular use given the
polysynthetic nature of Akuzipik; in some cases
there are a number of words with separate entries
that employ the same root and some of the same
derivational morphemes (but in some cases have
distinct lexicalized meanings). A recent addition to
the scroll wheel is an unlimited scroll behavior that
allows users to cycle through the lexicon as much
as they want, further encouraging exploration.

5 Ongoing and Future Work

A number of improvements that have not yet been
implemented are currently in progress.

5.1 Lexical frequency

Taking inspiration from other online dictionaries
such as the Scottish Gaelic dictionary, Am Fa-
clair Baeg [https://www.faclair.com/], and the Yug-
tun dictionary, we plan to integrate an indication
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Figure 9: Full dictionary entry for palutaq

Figure 10: Nominal inflectional tables for palutaq
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Figure 11: Full dictionary entry for angyagh-

of usage frequency into the entry data. Our fu-
ture plans include a similar implementation to the
Gaelic dictionary’s user-submitted usage data and
rating system. In the short term, we plan to in-
clude data on each word’s frequency of occurrence
in the Akuzipik written corpus. This could be ac-
complished using the new tag system by adding a
“Common in Corpus” tag to these entries.

5.2 Improved morphological integration
In its current state, the integrated morphological
parser often returns a number of possible parses for
any given input word form. Our current strategy
has been to display only the least morphologically
complex result (often the shortest result). Active re-
search is needed to develop robust mechanisms for
improving reliability and interpretability of mor-
phological results.

5.3 Word of the day
Currently, the “word” of the day is always an entry
headword which may or may not be a licit Akuzipik
surface form, depending on its part of speech. This
is because of the variance in citation forms between
different parts of speech; e.g. noun citation forms
are given in their absolutive unpossessed singular
form, while verbs are left in an underlying root
form. Members of the community have suggested
a system whereby speakers can submit suggestions
for words of the day; those suggestions could be

displayed as specialized entries with a full morpho-
logical parse and corresponding glosses. This may
better enable the use of the dictionary’s word-of-
the-day in educational settings as a “start of class”
activity, for example.

5.4 Derivational morphemes
Currently, the part of the lexicon accessible by
the dictionary interface includes all noun and verb
bases, particles, demonstratives, and pronouns. The
inclusion of the derivational morphemes known as
“postbases” is the next step in covering the contents
of the print dictionary.

5.5 Audio integration
A major long-term goal is to add audio recordings
of each entry to the database. The production of
these recordings is a substantial undertaking given
the size of the lexicon. Recording has begun, and
community linguists (currently training with aca-
demic team members) will facilitate this process.

6 Conclusion: Process and Ownership

Throughout our work with the Akuzipik-speaking
community, we have sought to humbly and respect-
fully provide the tools and expertise that we as
academic researchers are able to bring to the table.
We have sought to build and will continue to seek
meaningful and long-lasting relationships with in-
dividuals and governing bodies on St. Lawrence
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Island. And yet, it remains the case that we are not
Indigenous.

As we seek to ethically engage in this work
through continual relationship-building and mean-
ingful consultation with community members and
elected tribal leadership, we continue to bear
in mind the moral obligations of cognizance,
beneficence, accountability, and non-maleficence
(Schwartz, 2022) as we work with Indigenous data.

A critically important consideration in this work
is the goal of a mechanism for community input
and ownership over the data contained in the dic-
tionary. In addition to integrating feedback from
users regarding word usage and glossing, indicat-
ing differences in usage between individuals, clans,
and language varieties is important for demonstrat-
ing the community’s ownership of the data. We
hope that an eventual crowd-sourced community-
governed data framework will also contribute to the
tool’s longevity and help to accomplish one of the
core objectives of the Akuzipik reclamation project
at large, namely, its self-sustainability. Ultimately,
we intend feedback in the form of word frequency,
clan/individual variation, and other fine-tuning of
the documentary record to be received and inte-
grated into the dictionary by a team of community
linguists trained in and devoted to the upkeep of
the project.

Ethics Statement

The work described in this paper, as well as the
accompanying work on Akuzipik that our team
has engaged in, has been undertaken with ongoing
discussions with rights holders in the Akuzipik-
speaking community in the village of Sivuqaq
(Gambell).

Limitations

One major limitation of the current methodology
is its predication on the existence of a recorded
lexicon in some form that can be ported into an
online format. This approach may not be ideal as
a framework for the development of a new dictio-
nary, as its express goal is to increase accessibility
to existing resources and facilitate the expansion
of those resources. Additionally, the development
of a bespoke, dependency-free web-application for
showcasing existing resources is likely low on the
list of viable strategies for a community-led recla-
mation effort, especially if there are no community
members already familiar with web-development.

Any replication of the work described here is more
suited for a group with a set of existing resources,
access to developers, and a need to quickly get
those resources into the hands of community mem-
bers.

The other primary limitation of this tool and
its development methodology in its current form
is the potential lack of accessibility in the types
of communities for which it is intended. Despite
the increase in access to internet-capable smart de-
vices in communities such as that on St. Lawrence
Island, in many such places, the availability of reli-
able wireless internet access remains relatively low.
Users are often forced to use expensive cellular
data plans to conduct any amount of web-browsing.
While the ultimate vision for this dictionary is for
it to be packaged in a downloadable, offline format,
replications of the tool in its current live-web im-
plementation may leave many people unable to use
it with the frequency that they would like. Though
this is certainly a limiting factor in the effectiveness
of this tool, the deployment of an offline version
of the dictionary remains a preeminent goal of the
project.

Akuzipik Dictionary Website

https://bhunt6.github.io/
akuzipigestun-sangaawa

Akuzipik Dictionary Code

https://github.com/bhunt6/
akuzipigestun-sangaawa
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Abstract

Modern machine learning techniques have pro-
duced many impressive results in language
technology, but these techniques generally re-
quire an amount of training data that is many
orders of magnitude greater than what exists for
low-resource languages in general, and endan-
gered languages in particular. However, dic-
tionary definitions in a comparatively much
more well-resourced majority language can pro-
vide a link between low-resource languages
and machine learning models trained on mas-
sive amounts of majority-language training
data. Promising results have been achieved
by leveraging these embeddings in the search
mechanisms of bilingual dictionaries of Plains
Cree (nêhiyawêwin), Arapaho (Hinóno’éitíit),
Northern Haida (Xaad Kíl), and Tsuut’ina
(Tsúùt’ínà), four Indigenous languages spoken
in North America. Not only are the search re-
sults in the majority language of the definitions
more relevant, but they can be semantically
relevant in ways not achievable with classic
information retrieval techniques: users can per-
form successful searches for words that do not
occur at all in the dictionary. Not only this,
but these techniques are directly applicable to
any bilingual dictionary providing translations
between a high- and low-resource language.

1 Introduction

This paper presents an approach for improv-
ing the searchability of electronic dictionaries
of low-resource languages, exemplified using
bilingual dictionaries of Plains Cree (endonym:
nêhiyawêwin; Glottocode: plai1258; ISO 639-3
code: crk), Arapaho (Hinóno’éitíit; Glottocode:
arap1274; ISO 639-3 code: arp), Northern Haida
(Xaad Kíl; Glottocode: haida1248; ISO 639-3
code: hdn), and Tsuut’ina (Tsúùt’ínà; Glottocode:
sars1236; ISO 639-3 code: srs), leveraging exist-
ing semantic embedding technology for majority
languages in the novel context of low-resource mi-
nority languages.

Broadly speaking, search and information re-
trieval revolves around determining the means by
which one may reliably find the most relevant dis-
crete entries (or document(s)) from a set of multiple
such documents. In the case of bilingual dictio-
naries, presenting entry headwords in an minority
Indigenous language with definitions in a major-
ity target language, the definitions in the major-
ity language (in our case, English) of each entry
may be considered the“documents” one searches
when using target language (English) search terms.
The challenge, therefore, is determining how to
find the most relevant Indigenous language words
(which are the headwords of the entries) for these
queries. This is particularly challenging when the
sought-after target language definitions do not con-
tain the exact search terms, but instead use related
target language words; in these cases, even exact
search word matches do not necessarily translate
to the highest relevance. For instance, Indigenous
languages that have a complex morphological sys-
tem can store large amounts of information and
meaning within a single lexeme, which in a mor-
phologically simpler languages (such as English)
may need to be represented with multiple words
or phrases. Consider, for example the Plains Cree
words nôtamiskwêw for ‘s/he hunts beavers’, and
êskêw for ‘s/he makes a hole in the ice to hunt
beaver; s/he breaks up a beaver lodge (i.e. in hunt-
ing)’, which would both require a combination of
the English search terms ‘hunt’ and ‘beaver’ to
be accurately matched. In contrast, an entry such
as mâmawohkamâtowak, meaning ‘they do things
together, they cooperate; they work (at it/him) to-
gether as a group; they assemble themselves to help
one another.’ would be matched with the search
terms ‘cooperate’, or ‘work’ and ‘together’, but
would be missed with the obvious synonym ‘col-
laborate’.

Thus, the general problem remains determining
the means to capture and represent the underlying
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meanings of both 1) the targets, the entries repre-
sented by their (English) definitions, and in 2) the
(English) search terms, particularly when they may
be more than the sum of the words in isolation. For
endangered languages which are often also less-
resourced ones, this challenge becomes greater as
the vocabulary contents in their dictionaries (and
definitions) are typically much more limited than
those in majority languages, resulting in even fewer
words to potentially match. For example, even
many high-frequency English words, such as na-
tional, administration, and network (all within the
top 1000 most frequent content words in large cor-
pora such as COCA), have no matches whatsoever
in the English definitions in any bilingual dictionar-
ies of the four Indigenous languages named above.
Searching with these words using typical methods
would therefore result in "No results" – a dis-
couraging outcome for a user – even when these
dictionaries actually do contain relevant entries that
could be shown.

Word-embeddings present one possible solution
for this. Because they represent the underlying con-
cepts that the individual words are pointing at, this
allows us to represent concepts, or combinations
of concepts, that individual words are pointing at.
In turn, this allows for comparing the concepts
referred to by the search terms and the entry defini-
tions, rather than the individual words themselves.
This paper discusses the implementation and evalu-
ation of this solution to four bilingual dictionaries
between an Indigenous language and English, all
of which we have made available on-line.1

2 Background and previous related work

2.1 How Indigenous lexical resources are
(often) limited

The majority of endangered and Indigenous lan-
guages are extremely low-resourced, with corpora
and lexical databases that are a fraction of the
size of even basic learner’s dictionaries in ma-
jor languages such as English. Often these lex-
ical databases are the product of fieldwork con-
ducted by just one or a small number of linguists,
in projects where financial and temporal constraints
prevent the kind of extensive data collection that

1These on-line dictionaries are the following: itwêwina
(Plains Cree-to-English) https://itwewina.altlab.app;
Nihíitono (Arapaho-to-English) https://nihiitono.
altlab.dev; Gúusaaw (Northern Haida-to-English)
https://guusaaw.altlab.dev; and Gūnáhà (Tsuut’ina-to-
English) https://gunaha.altlab.dev.

occurs for well-resourced languages.

For example, in a survey of 284 published dic-
tionaries and lexical databases of lesser-resourced
languages (Hieber, in progress), the mean number
of entries per language is 5,772 and the median
is 4,321, with only 39 sources containing more
than 10,000 entries, and only five having more than
20,000. Only two sources—Mundari (Glottocode:
mund1320; ISO: unr) and Marwari (Glottocode:
raja1256; ISO: mwr)—reach 50,000 entries. By
comparison, the Cambridge Learner’s Dictionary
of English (O’Shea et al., 2012)—marketed as cov-
ering only vocabulary relevant to the B1–B2 (inter-
mediate) levels of CEFR (the Common European
Framework of Reference, used for assessing lan-
guage proficiency)— contains over 35,000 entries.
This intermediate-level dictionary therefore con-
tains more entries than all but two dictionaries in
the history of Indigenous language documentation.

In addition to the aforementioned temporal and
financial limitations limiting dictionary sizes in
many Indigenous languages, many such languages
also suffer from lexical attrition accompanying the
process of language obsolescence (or "language
death") (Sands et al., 2007). The remaining speak-
ers may simply not remember as many words as
their predecessors once did. For other languages,
the number of lexemes may in fact be smaller than
speakers of major Indo-European languages are ac-
customed to. Words in some languages may cover a
broader semantic field, on average, than their Indo-
European counterparts. Jack Martin (p.c.) notes
for his lexical databases on U.S. Southeastern lan-
guages that “these numbers, while low by English
standards, actually reflect a very high percentage
of the words that are used".

Other languages have fewer lexemes by virtue
of how their grammar operates. The Tsafiki lan-
guage (a.k.a. Colorado; Glottocode: colo1256;
ISO: cof), for example, has 4,000 lexical entries
and only 32 true verbs, but includes another 6,000
subentries formed by adding suffixes to those 4,000
base entries to create new words (Dickinson, 2000).
Inuit languages are likewise renowned for possess-
ing thousands of lexical suffixes that can derive
new words, even though the number of base roots
is actually rather small. If dictionaries of these
languages are based on roots rather than stems (as
is often the case), lookup and search can become
quite difficult for dictionary users, who must first
locate the relevant main entry, and then the target
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subentry.

All this is to say that, for most documentary lex-
ical databases, the number of entries is quite small
compared to well-resourced languages. This fact
creates a significant problem for potential users of
these databases: because there are so few entries,
it can be difficult to locate the entry most relevant
to the user’s search term. This problem arises in
primarily two ways: 1) the language may not have
a specific term for the (majority language) concept
the user is searching for; and 2) the language has
a term for the (majority language) search query,
but no definition exactly matches that query. For
instance, searching the Plains Cree-to-English dic-
tionary (http://creedictionary.com/search/
?q=collaborate) gives no result for the English
search term collaborate, though this resource does
provide matches for the semantically synonymous
word cooperate and as well as synonymous multi-
word expression work together (mâmawatoskêwak
’they work together´). Neither does one get a match
for procrastinate, though the same dictionary does
contain many entries concerning the semantically
related concept delay, e.g. otamihtwâsow ’s/he
delays him/herself with work´.

In the first case, it would be useful if the dic-
tionary could display results that are semantically
related to the search term, or in a neighboring se-
mantic field, or have some sort of semantic rela-
tionship to the search term (hypernymy, meronymy,
antonymy, etc.), preferably with the results sorted
by relevance. Thereby, one would hope to be given
the same Plains Cree result mâmawatoskêwak for
the search term collaborate, as for what is already
provided for co-operate and work together. This
is not how most electronic dictionaries historically
have worked, and those dictionaries that do incor-
porate some measure of semantic association rely
on massive datasets to accomplish it (see §2.3) – an
approach not feasible for low-resource languages.

There are many causes for the second case,
wherein a lexical database contains an entry that
would be considered a correct match for the user’s
search term, but the user is unsuccessful in locat-
ing it. It may be the case that the language has
a word for the search term, but the definition of
that word does not encompass the entirety of the
semantic breadth of the term. This is quite com-
mon for documentary lexicons, which are often
based as much on wordlist elicitation as corpus
data (usually more so), often resulting in only fre-

quent, ‘core’ meanings of polysemous word entries
being gathered. However, documentary lexicons
are also more likely to focus on what are called
basic level terms, that is, terms which are consid-
ered the most cognitively and linguistically salient
(Taylor, 2003), to the exclusion of others. As a
consequence, documentary lexicons often lack en-
tries for terms that are either very high or low in
ontological specificity; for example, they are likely
to contain entries for ‘arm’ and ‘leg’ but less likely
to contain entries for the more abstract ‘appendage’
or more specific ‘paw’. In the above case, one
would hope to be shown the results for delay, when
searching with procrastinate (if no exact matches
are to be found for this search term).

Entries that are multi-word expressions (MWEs)
may also lead to less-than-ideal search results. In
Plains Cree, for instance, there is a verb stem
mihcêtohk- meaning ‘to work together on some-
thing’. In a non–semantically-informed dictionary,
the user must search for the exact phrase “work to-
gether” to find this entry. Searching for just “work”
or “together” will likely return a host of irrelevant
results such as atoskê- ‘to work’ or miyopayin- ‘to
work well’ before mihcêtohk-, and searching with
a synonym such as ‘collaborate’ would not yield
mihcêtohk- among the results.

The definitional conventions of a dictionary can
also significantly affect searchability. Definitions
may be either intensional (describing the proper-
ties or necessary and sufficient conditions for a
concept) or extensional (specifying the range or
types of entities that fall within the concept (Sven-
sén, 2009, 218–222)); for example, an intensional
definition of motor vehicle would mention the need
for a motor and use for transport/transit, etc., while
an extensional definition might mention cars, mo-
torcycles, mopeds, etc. If a user searches for one
type of definitional style but the database adopts the
other, lookup may fail if a semantically-informed
search algorithm is not used.

Idiomatic expressions also cause difficulties for
lookup, since users may search for the idiomatic
meaning rather than the literal one (or vice versa).
For example, the West Danish (Jutlandic) word
ræv ‘fox’ also means ‘sly, cunning person’, and
this idiomatic meaning is only sometimes included
in dictionaries (Arboe, 2015, 162). In a traditional
dictionary, if this sense were not included, users
would not be able to find it in a search for “sly" or
“cunning". For a semantically-informed dictionary,
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however, a search for either of these terms would
very likely include ræv as a result.

As outlined, all of these problems may be ad-
dressed by a semantically-informed search algo-
rithm which returns results based on semantic rele-
vance to the search string. A more general advan-
tage of this approach is that it allows users to search
using nearly any semantic relationship (meronymy,
hypernymy, etc.), and facilitates searching for less
canonical types of entries, such as multi-word ex-
pressions, idioms, slang, etc. This is especially
important given that the majority of lexical items
sought by dictionary users tend not to be the canon-
ical, single-word lexical item that dictionaries are
often designed around. Research has found that
users hardly ever look up common words; most
searches are for idioms, encyclopedic-like infor-
mation, culture-specific words, abbreviations, and
slang (Svensén, 2009, 466).

As mentioned, however, implementing
semantically-informed search has historically
been no easy task for low-resource languages.
In §3, we show how we implemented such a
semantically-informed search algorithm for several
low-resource languages.

2.2 Quantifying the challenge

The small size of most low resource language dic-
tionaries inevitably results in a large number of
high frequency majority language lemmata simply
not occurring in any entries, resulting in a signifi-
cant portion of even fairly innocuous majority lan-
guage search queries returning no exact matches us-
ing traditional search methods. For Plains Cree, for
example, only 88% of the top 1000 most frequent
English lemmata are present within the definitions
of the current dictionary, and for languages such as
Tsuut’ina (Glottocode: sars1236; ISO 639-3 code:
srs), this proportion is as low as 44.7% (Table 1).

The nature of the high-frequency vocabulary
which tends to be missing in these four dictionar-
ies is variable, but follows some general patterns,
with common words relating to government, leg-
islature, technology, and abstract concepts often
being absent (such as ‘national’, ‘policy’, ‘data’,
and ‘theory’, ranked by frequency in COCA at po-
sitions 311, 406, and 417, and 896 respectively).
In total, 26 of the top 1000 most frequent English
content lemmata did not occur in any of the four
dictionaries mentioned in Table 1 (see Appendix
A).

Top Plains Northern
Lemmata Cree Arapaho Haida Tsuut’ina

100 99 100 93 91
200 194 198 174 145
300 287 295 249 197
400 374 393 315 237
500 462 486 378 280
600 554 578 441 325
700 639 668 494 348
800 719 759 543 385
900 809 853 598 418
1000 880 939 641 447

Table 1: Counts among the 1000 top most frequent En-
glish lemmata (as per COCA – the one-billion word
Corpus of Contemporary American English), exclud-
ing function words (Davies, 2008)) not found in any
definitions in dictionaries of Plains Cree (~23 000 en-
tries), Arapaho (~25 000 entries, with some repeated
lemmata (Cowell, 2012)), Northern Haida (~5500 en-
tries (Lachler, 2010)), and Tsuut’ina (~12 500 entries,
but primarily inflectional wordforms and paradigms,
with a total lemma count in the low thousands)

As Table 1 demonstrates, lacunae such as afore-
mentioned become markedly more prevalent as less
frequent terms are used as search queries. How-
ever, even in instances where an exact match can
be found, it may be useful for users (particularly
learners) for semantically related terms to be re-
turned as well. For instance, if a user searches for
“yellow hat”, it may be of use for them to also re-
ceive entries such as “orange toque”. However, this
strategy poses the further problem of sorting and
presenting results in terms of relevance, as well as
of determining the relative relevance of individual
words in multi-word searches.

2.3 Previous approaches to expanding search

General search engines sort their search results
using what is typically a proprietary sorting algo-
rithm, making it difficult to build off of widely ac-
cepted forms of search relevance (Sullivan, 2002).
Instead, it is best to examine other approaches to
search retrieval and ranking, innovating and adapt-
ing these practices for the task at hand. This section
outlines a number of prior approaches for search
and ranking.

2.3.1 The Boolean model
The earliest approach to search result ranking is
the Boolean retrieval model. This model creates a
weight for each entry given the query terms, using
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the sum of all individual query term weights as the
document weight. If a query term is in the entry,
the model represents that with a 1, and with a 0
otherwise (Larson, 2012). The method then returns
all entries marked as 1, with no ranking system for
the results

2.3.2 Machine-learning-aided search
A more complex approach to sorting relevant
search results is to use deep learning or some form
of matrix to determine how alike a search result
is to the query entered (McDonald et al., 2018).
However, these approaches require large amounts
of training data, often more than exists in a given
low-resource language. These models can still be
leveraged by training them on the definitions in a
bilingual dictionary, which are entered in a major-
ity language, and providing a relevance ranking
from majority language query terms to majority
language definitions. This process is explained in
further detail below.

2.3.3 Search by translation
In one previous description of multilingual informa-
tion access, texts were translated from one source
language into another target language for easier
querying by the end user. This translation process
was at first done manually and eventually automat-
ically (Oard, 2012). This method presents some
challenges, such as determining the original lan-
guage of a text, that do not apply to the dictionary
use case as the source and target languages of the
dictionary are known. Applying this method to
an online dictionary would mean translating each
source language headword into its target language
counterpart, or translating all query terms to match
the dictionary entry language. However, since the
dictionary already has definitions provided in the
majority language, this work would be redundant.
Thus, the information retrieval system should in-
stead query on the definitions, as our approach
does.

2.3.4 Search by synonym expansion
One successful example of improving search re-
sults through defining synonyms for entries may
be seen in Shi et al. (2005). In their study, which
specifically concerned biological terminology, they
used pre-existing databases of similar terms for
all biology-related entries to generate a network
of synonyms, but relied on manual classification
(using the Princeton WordNet (Miller, 1995; Fell-

baum, 1998)) for general words and phrases, i.e.
the non-medical information, in the database texts.

To circumvent the need for manual synonym
classification, Zhang et al. (2017) derived a method
for automatically determining synonymy. This ap-
proach, however, is only available for languages
with large corpora, as it relies on creating a machine
learning model in the source language to create a
synonym web. This approach was successful in
improving how results are clustered; as such, we
used a tool based on the same word vector model
below (namely, word2vec).

2.3.5 Semantic expansion
A final approach, would involve starting with a
large pre-existing database, such as WordNet, and
pairing it down to only the relevant terms for ef-
ficiency and ease of use, as was done by Turcato
et al. (2000). However, this approach assumes that
each low resource language entry has at least one
direct synonym in the high resource language, and
that the semantic hierarchies and relationships of
a majority language WordNet would be applicable
outright to the target language, two facts which are
often untrue.

In the absence of pre-existing models to lever-
age for the creation of a synonym table, creating
a synonym network for a low-resource language
dictionary would require many hours of manual
input while consulting a pre-existing word net-
work database, such as WordNet. This has been
done before for Plains Cree with some success (Da-
canay et al., 2021a); however, in addition to being
highly time-consuming, this method also relies on
the aforementioned, typically incorrect assumption
that majority language semantic categories can be
applied uncritically to target language vocabulary.

2.3.6 Issues with previous approaches
While these approaches suffice for a variety of
search-based problems, they do not tackle the prob-
lem in the context of a bilingual dictionary with
minority language headwords. The last four ap-
proaches assume that users will only ever use ma-
jority language search terms, which is an unfair
assumption. Furthermore, the data required to train
any sort of neural network or to automatically clas-
sify entries into a word net or a group of synonyms
is much larger than the data available for low re-
source languages, such as Plains Cree. As such, a
new approach was required to adequately solve this
search and ranking scenario.
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3 Our approach

We will present our approach primarily with exam-
ples from itwêwina (itwêwina.altlab.app), an
online intelligent bilingual dictionary application,
making use of our morphodict platform2 for Plains
Cree – English, although we have implemented this
feature also for bilingual on-line dictionaries for
Arapaho, Northern Haida, and Tsuut’ina, and will
present examples from the first two languages in
the evaluation section further below.3 itwêwina is
freely accessible to the public and receives roughly
20,000 searches per month. It combines multi-
ple dictionary sources (Wolvengrey; Maskwachees
Cultural College, 2009; LeClaire and Cardinal,
1998), and has approximately 22,000 headwords4,
of which only about 10,000 appear in any Plains
Cree corpus that we know of. Through modeling
with finite-state transducers (FST) (Snoek et al.,
2014; Harrigan et al., 2017), it can dynamically
recognize wordforms and display paradigm tables
for millions of additional inflected word-forms.

Searches can be entered in either English or
Plains Cree. We break the search process into
two phases: retrieval, and ranking. The goal of
retrieval is to find potentially relevant definitions
for the input query. For Cree-language searches,
a spell-relaxed finite state transducer identifies po-
tential matching headwords. For English-language
searches, the application uses classical informa-
tion retrieval techniques of matching stemmed key-
words between queries and definitions. Ranking
is necessary because an unsorted list of matches
would provide a poor user experience: there may
be many hundreds of potentially matching words.
Therefore, results returned by the finite-state trans-
ducer analyzer or classical information retrieval
methods are ranked using a combination of result
features5 (Turnbull and Berryman, 2016) such as
corpus or dictionary frequency, or edit distance.

In an attempt to improve the relevance of the
top search results returned by itwêwina, we added
in spring of 2021 a new result feature to feed into
the relevance ranking function: a semantic distance

2The codebase which implements this ranking feature for
all these languages is publicly available: https://github.
com/UALbertaALTLab/morphodict

3Tsuu’ina examples have been left out, as its bilingual
dictionary source is only a glossary based on a small collection
of texts with a relatively restricted and skewed vocabulary.

4This was the value in 2021 when the the quantitative study
presented in this paper was done, after which this number has
grown to more than 25,000 entries.

5https://web.stanford.edu/class/cs276/

measure, based on word embeddings, between in-
put queries and resultant definitions. While this did
improve relevance, the most novel and surprising
feature which this revealed was the ability of word
embeddings to allow the retrieval of useful search
results for words that are not even in the dictionary
(target language definitions), in addition to improv-
ing the search results for multi-word phrases.

4 Method

4.1 Word embeddings

A word embedding is a dimensionality reduction
technique that assigns a relatively low-dimensional
vector to each element of a set of words, in a way
that captures relationships between words. The vec-
tor typically consists of first-layer model weights
learned during the training of a neural network. For
example, the 2013 word2vec model of Mikolov
et al. (2013a,b) provides for each of 3 million
words and phrases, not a 3-million-dimensional
vector without semantic relationships, but instead
a 300-dimensional vector with semantic relation-
ships. The word embedding model is trained on a
portion of a corpus of approximately 100 billion
words6 of Google News articles. The training pro-
cess attempts to minimize the errors in predicting
which words are most likely to occur surrounding
any given input word. This necessarily assigns sim-
ilar vectors to words that frequently occur in similar
contexts in the corpus; thus, words corresponding
to similar vectors are semantically related. Further-
more, these semantic relations are often seemingly
algebraic in nature, allowing (in some instances
(Ethayarajh et al., 2019) (Rogers et al., 2017)) for
the automated solving of word analogy equations.

4.2 Application to low-resource languages

We do not have 100 billion words of Plains Cree
text to train an equivalent model on, or for any of
the three other Indigenous languages discussed in
this paper. The largest Cree corpus has some 150
thousand word tokens (Arppe et al., 2020). How-
ever, we can use the vectors for English, and their
algebraic nature, to compute vectors for every En-
glish definition as an average of their constituent
individual English words, and compare those to
the input query; this has the additional benefit
of working for bilingual dictionaries for any low-
resource language for which there are pre-trained

6https://code.google.com/archive/p/word2vec/
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word embeddings for the language used in the def-
initions; indeed, as mentioned, we have already
implemented this search feature for bilingual on-
line dictionaries of Arapaho, Northern Haida, and
Tsuut’ina, all with definitions in English.

When the dictionary data is loaded into the sys-
tem, we use the Google News vectors to compute
a vector for the English definition of every Plains
Cree entry by adding up vectors for each word
of the definition (Harrigan and Arppe, 2021; Da-
canay et al., 2021a,b). For example, for the def-
inition “yellow hat” of osâwastotin, we compute
v(yellow hat) := v(yellow) + v(hat) and save
that. This yields a vector for the definition over-
all, v(osâwastotin1) := v(yellow hat). When
there are multiple definitions for a Plains Cree
word, we save a vector for each one so that we
can show the word as a result if any definition is a
good match.

When someone searches for “yellow hat,” we
again use the news vectors to compute a vector for
the input query, v(yellow) + v(hat), and measure
its distance to every definition in the dictionary (as
the cosine between the two vectors). This is one
instance in which the small available lexicons of
these language is actually an advantage, as it is
much faster to compare the search query vector
to each of the over 22,000 Plains Cree definitions
than it would be for the much larger number of
definitions in a more comprehensive dictionary. In
this case, while classical information retrieval tech-
niques would have had little difficulty finding re-
sults for ‘yellow’ or ‘hat’ individually, the word
embedding-based model retrieves not only ‘yellow’
and ‘hat’, but also other combinations of colour
and clothing not specified in the search:

1. osâwastotin: yellow hat
2. nîpâmâyâtastotin: purple hat
3. astotin: hat, cap, headgear
4. osâwêkin: yellow material, yellow cloth
5. osâwasâkay: yellow dress, coat

However, as mentioned, this search method can
also return relevant results for queries entirely ab-
sent from the database. For example, despite hav-
ing no definition for ‘freighter’ (indeed, no defini-
tion even containing that word), using the word em-
beddings, a search for ‘freighter’ turns up nâpihk-
wân “ship, large boat” as the top result. This is
because the word embeddings of the definition sug-
gest semantically related concepts: ‘boat,’ ‘ship.’
Our approach is similar to the reverse dictionary

lookup for Wolastoqey (Passamaquoddy-Maliseet)
evaluated by Bear and Cook (2022).

This word embedding method can also be used to
automatically cluster words into semantic classes.
In its most basic form, this can be done simply by
making use of hierarchical agglomerative cluster-
ing based on a distance matrix of the word vectors.
While this technique produces useful and valuable
clusters out-of-box, further manual adjustment sig-
nificantly improves results (Harrigan and Arppe,
2021).

5 Results and evaluation

5.1 Qualitative assessment

In practice, our semantic search functionality re-
turns results for ‘missing’ words (in the English
definitions) with varying degrees of quality; for the
sake of qualitative assessment, we may divide these
result qualities into three (subjective) categories:
high, moderate, and poor. A high quality result
describes an instance in which the top search result
for a missing word is either synonymous with, or
highly semantically related to, the query word in
question. Examples of missing words with high
quality top matches include ‘policy’, which returns
the Cree entry wiyasiwêwin (“law, rule, decision,
council, band council, office”), ‘attorney’, which
returns oyasiwêwiyiniw (“band councillor, court
judge, lawyer”), and ‘pdf’, which returns masi-
nahikan (“book, letter, mail, written document, ...”).
Among the top 26 highest frequency English lem-
mata from COCA which do not appear in any of
the low-resource language dictionaries previously
mentioned in section 1.1, Anglophone manual an-
notators evaluated 18 of the top results for Plains
Cree and Arapaho, and 5 of the top results for
Northern Haida as being of high quality.

Moderate quality results describe those in which
the top match is broadly, but not precisely, semanti-
cally related to the query word; examples of this in-
clude ‘international’, which returns the Cree entry
for opîtatowêw “Ukrainian, European”, a related,
but decidedly non-synonymous term. Three of the
top 26 missing words for Plains Cree and Arapaho,
and 11 for Northern Haida were evaluated as hav-
ing top matches of moderate quality.

Poor quality results are those in which the top
match is either entirely semantically unrelated, or
sufficiently irrelevant to be of no use. Examples
of poor quality results include ‘percent’, which
returns the Cree entry for nisto-sôniyâs “three quar-
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ters, seventy-five cents”. For a term such as ‘per-
cent’, the most appropriate match in current Plains
Cree dictionaries would be one relating either to
portions (such as pahki- “portion of”) or relating
to the number one-hundred (mitâtahtomitanaw),
however, neither of these results are returned. An-
other example is ‘career’, for which the top match
is the Cree entry for ispîhtaskîwin “season”, rather
than the more fitting atoskêwin “work, labour, em-
ployment, job, contract, industry”. 5 of the top 26
missing words for Plains Cree and Arapaho, and 10
for Northern Haida were evaluated as having poor
quality top matches.

In total, for the two larger bilingual dictionaries
(for Plains Cree and Arapaho), a substantial major-
ity of top results for missing words were of high
or moderate quality (21 out of 26 in both cases),
with the smaller Haida dictionary performing more
poorly outright (likely because of its reduced se-
mantic coverage by virtue of size; if no entries
corresponding even to the basic semantic domain
of a search query are to be found, then even a theo-
retically perfect semantic search would not return
semantically relevant results). However, even with
the Haida dictionary, a majority (16 out of 26) of
top results for missing words were of high or mod-
erate quality. Results for the mean number of high,
moderate, and poor matches in the top ten search
results of the top 26 highest frequency missing
English lemmata for these three dictionaries are
detailed in Table 2.

When considering the position among all re-
turned results of the single most semantically rel-
evant match for these 26 missing word search
queries (as per a manual annotator), the median
position of this match was 2 for Plains Cree, 3 for
Arapaho, and 4.5 for Haida. As such, even for the
relatively small Haida dictionary, a user would typi-
cally only need to scroll through the top five search
results when searching for a missing word to find
the most relevant match.

High Moderate Poor

Plains Cree 3.08 3.23 3.08
Arapaho 3.65 3.15 3.19

Northern Haida 0.54 3.23 6.23

Table 2: Mean number of high, moderate, and poor
quality results in the top ten matches for missing English
lemma search queries.

5.2 Search terms with metaphorical meaning

As mentioned in section 1, this search method also
allows for the use of (English) metaphorical terms
as search queries; for example, when searching the
English term ‘soapbox’ in Plains Cree, the top two
results are kakêskihkêmowinâhtik “pulpit, lecturn”
and kîhkâwitaskiw “s/he likes to scold, s/he is al-
ways cross and scolding in a loud voice”, and the
top result for ‘snowballing’ is asascikêwin “piling
things together”, with kîpikin “it grows quickly” be-
ing in 7th. However, the success of these metaphor-
ical search queries remains inconsistent. For ex-
ample, the top ten results for ‘snake’ contain only
entries related to reptiles, and none related to de-
ceitful, malicious humans. Similarly, multi-word
metaphors tended to return results relating to the
literal meaning of their constituent elements (for
example, “cabin fever” returns only results relat-
ing to cabins, e.g. wâskâhikanis “small house,
cabin”, and fevers, e.g. sîkwâspinêwin “spring
fever”, rather than to loneliness or boredom).

5.3 Polysemous search terms

On a related note, one of the most notable errors
in general with our semantic search method con-
cerns polysemous English search queries, this be-
ing largely a product of word2vec generating em-
beddings on the level of the individual word, rather
than the sentence. In addition to affecting the ac-
curacy of metaphorical search terms, this also has
the effect of semantically grouping target language
words based on irrelevant English collocations. For
example, when given the search term ’administra-
tion’, all three dictionaries returned entries con-
taining the word ‘bush’ within their top ten results
(such as hlk’awáng “for S to clear C [land] of bush
or trees” in Northern Haida) due to the frequent
occurrence of the collocation ‘Bush administration’
in news corpora, and matches for the search query
‘reality’ contained the word ‘television’ (such as
wó3onikúu3o.o “movie, television show, picture,
photograph” in Arapaho) within the top ten results
of all three dictionaries.

5.4 Multi-word search terms

The quality of search results for multi-word expres-
sions tended to vary depending on the semantic
transparency of the expression’s constituent ele-
ments. For example, when searching for the ex-
pression ’simmer down’ (in which all of the con-
stituent words are transparently related to the end
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meaning of the expression), the top result in the
Northern Haida dictionary is sahl ts’asäláng ‘for S
to let C boil without stirring it [said of fish only]’.
However, when searching for an expression such
as ‘blow up’ (whose constituent words are only
idiosyncratically related to the action described),
the top results (shown here in the Plains Cree dic-
tionary) relate to the more conventional meanings
of both words individually (pôtâtam “s/he blows at
s.t. ...”, matwêtahikêw “s/he strikes blow”), rather
than to the more fitting meaning of the full phrase
(which might rather best be expressed through
pahkitêw “it explodes”). Similarly, idiomatic multi-
word phrases behaved in much the same way as
idiomatic expressions in general, overwhelmingly
returning results relating to the literal meanings of
their constituent elements; for example, ‘see eye to
eye’ returns top results relating to eyes and sight
(e.g. miskîsikos “eye, small eye, little eye”, but
no results related to the phrasal meaning of under-
standing.

These results are perhaps unsurprising, given
the means by which our word embeddings were
generated; word2vec being a tool which creates
embeddings for individual words with their context
taken only as a bag-of-words, rather than for cre-
ating them for whole phrases, it is to be expected
that the isolated meanings of each individual word
in a multi-word expression would take precedence
over the meaning of the phrase as a whole. One
possible means of addressing this would be the use
of a sentence-based language model such as BERT
((Devlin et al., 2019)), which is able to generate
contextualised word embeddings based on specific
sentential surroundings, possibly allowing for a
better modelling of common, semantically opaque
multi-word phrases.

5.5 Preliminary quantitative assessment

In addition to its ability to return useful results for
entries not present in the dictionary, the use of word
embeddings can also improve relevance ranking for
results which are present. Although more rigorous
analysis is needed, preliminary results indicate that
use of word embedding distance increases one of
our key search quality metrics from 0.61 to 0.70
(this metric being a measure of the frequency with
which certain desirable results appear as a top-10
result on a test set of 549 sample core vocabulary
item queries).

6 Future work and conclusion

One potentially promising research theme to ex-
plore is the improvement of multi-word vec-
tor creation methods for definitions and search
strings, perhaps through the use of term-
frequency—inverse-document-frequency weights
when adding word vectors to form definition vec-
tors. Similarly, investigating whether newer pre-
trained word embedding models (Pennington et al.,
2014; Speer et al., 2017) could produce higher-
quality results. Advances in the use of word em-
beddings for other NLP tasks in low-resource lan-
guages (e.g. Adams et al. 2017) may also translate
to improved dictionary search.

7 Limitations

When a dictionary for a low-resource language
lacks a word, but has several related ones in terms
of synonymy or semantic similarity, it is a definite
benefit to be able to provide those to the dictionary
user instead of merely saying, “No results found.”
However, there are some potential drawbacks here:
for example, this could increase the rate at which
words acquire connotations by analogy with En-
glish. ‘Locomotive’ and ‘train’ are closely related
concepts in English; but that does not necessarily
hold for every language, and there is some risk in
implying that it does.

Language instructors will be all too familiar with
students using tools like Google Translate to do
their homework for them instead of doing the hard
work of learning the language. On a larger scale,
Google Translate itself was formerly available as
a free service that software developers could use
to do automated machine translation in bulk; this
was abruptly discontinued in 2011. Industry ru-
mour7 held that the bulk service was being used
to generate so much of the parallel text appearing
on the internet—parallel text needed to train ma-
chine translation models—that those models could
no longer improve sufficiently if they continued to
inadvertently be fed primarily their own outputs.
This highlights the possible risk that applying ma-
chine learning tools like word embeddings can end
up distorting language. To this end, we believe that
the use of word embeddings to provide analogous
words to dictionary users is beneficial, but does not
and cannot replace actual lexicography.

7https://kv-emptypages.blogspot.com/2011/06/analysis-
of-shutdown-announcements-of.html
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The following is a list of all 26 English lemmas
within the top 1000 most common content lemmas
in COCA (Davies, 2008) which are not present in
the definitions of any of entries in the consulted dic-
tionaries of Plains Cree, Arapaho, Northern Haida,
and Tsuut’ina, along with their frequency rank in
COCA overall (including function words).

1. percent (265)
2. national (311)
3. policy (406)
4. data (417)
5. international (616)
6. campaign (634)
7. author (680)
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8. administration (744)
9. career (796)

10. candidate (830)
11. network (882)
12. district (885)
13. theory (896)
14. reality (956)
15. democratic (1020)
16. democratic (1028)
17. politics (1059)
18. user (1081)
19. attorney (1102)
20. budget (1107)
21. senator (1144)
22. Senate (1155)
23. violence (1156)
24. civil (1171)
25. institution (1190)
26. professional (1192)
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Abstract

We present the LCT-EHU submission to the
AmericasNLP 2023 low-resource machine
translation shared task. We focus on the
Spanish-Quechua language pair and explore the
usage of different approaches: (1) Obtain new
parallel corpora from the literature and legal
domains, (2) Compare a high-resource Spanish-
English pre-trained MT model with a Spanish-
Finnish pre-trained model (with Finnish being
chosen as a target language due to its morpho-
logical similarity to Quechua), and (3) Explore
additional techniques such as copied corpus
and back-translation. Overall, we show that
the Spanish-Finnish pre-trained model outper-
forms other setups, while low-quality synthetic
data reduces the performance.

1 Introduction

The LCT-EHU team participated in the Americas-
NLP 2023 low-resource machine translation shared
task. The task involved machine translation from
Spanish to 11 different indigenous languages. The
languages in question are very much low-resource,
with the number of speakers spanning from a few
tens of thousands to a few million and with lim-
ited availability of parallel data. Monolingual data
is not easily obtained either - Wikipedia is avail-
able only in a few of these languages, with the
number of articles not being very high. Our team
focused on Spanish-Quechua language pair with
the approach consisting in:

• Finding and aligning new parallel data. We
obtained bilingual legal documents of the
Government of Ecuador (the constitution and
some laws); the novel "The Little Prince", and
the UN Declaration of Human Rights.

• Using pre-trained machine translation mod-
els trained on other language pairs. We ex-
perimented with Spanish-English, as a high-
resource language pair, and Spanish-Finnish,

with the linguistic intuition that using an ag-
glutinative language on the target side would
provide a closer set-up to the problem we were
working on, as previously explored by Ortega
and Pillaipakkamnatt (2018) and Ortega et al.
(2020).

• Synthetic and monolingual data. We exper-
imented with a copied corpus approach and
synthetic parallel corpus creation from mono-
lingual Spanish data.

The official metric used in the shared task is
chrF++ (Popović, 2017). In the previous edi-
tion of the AmericasNLP shared task, the chrF
score of 34.6 was obtained by the REPUcs team
(Moreno, 2021) for the Spanish-Quechua language
pair. However, this year’s shared task takes the
second-best result of 34.3 as a baseline.

All of the source code and newly collected data
are available in the Github repository 1.

2 Related Work

Some previous work and approaches that were im-
portant for our experiments are explained in the
following sub-sections.

2.1 AmericasNLP 2021 Shared Task

In the first edition of the AmericasNLP low-
resource MT shared task, various contributions
to the field of machine translation of American
indigenous languages were published. The orga-
nizers provided training data collected from vari-
ous sources, alongside manually translated devel-
opment and test data. Two tracks were available:
(1) development set used for training, and (2) de-
velopment set not used for training.

Helsinki team (Vázquez et al., 2021) won the
task in the majority of language pairs in both tracks,

1https://github.com/nouman-10/
MT-SharedTask
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using a two-phase transformer training. They also
obtained additional parallel and monolingual data
for Spanish-Quechua. Their Model A was a multi-
lingual model with 11 languages, trained for 200
000 steps, which was then trained independently
for each of the target indigenous languages for ad-
ditional 2 500 steps. Model B was a multilingual
model with Spanish as the only source language,
and with 11 target languages (10 indigenous lan-
guages + English). The two-phase training was
performed again. In the first phase, they trained the
model with 90% of Spanish-English data, while
the remaining 10% was divided between 10 indige-
nous languages, each taking 1% . In the second
phase, the proportion of Spanish-English data is re-
duced to 50%, while including backtranslated data
as well. Different versions of both Model A and
Model B were trained, depending on whether the
development data was used during training or not.

2.2 Synthetic translations and copied corpus
The use of synthetic translation approaches is born
out of a common concern in machine translation:
the lack of high-quality parallel data for many lan-
guage pairs. To solve this, various solutions have
been proposed. One of the most common ones is
known as back-translation (Sennrich et al., 2016),
which involves creating a synthetic parallel corpus
by translating monolingual data from the target
language into the source language (or source to tar-
get, in other approaches) and using this to augment
the existing parallel data for training models. An-
other approach (Currey et al., 2017) involves using
monolingual data from the target and aligning it
with itself, to mimic parallel data (this is known
as copied corpus). The authors try to explain the
success of this approach by stating that there might
be an improved accuracy on named entities and
words that are identical in both source and target
texts.

3 Data

In this section, we will describe the data used in
the experiments.

3.1 Original parallel data
The following corpora were provided by the orga-
nizers of the competition (Agić and Vulić (2019)
and Tiedemann (2012):

• JW300 (quz & quy) A collection of Jeho-
vah’s Witnesses Texts, both in Cuzco and Ay-

acucho Quechua.

• MINEDU (quy): Sentences extracted from
the official dictionary of the Ministry of Ed-
ucation (MINEDU) in Peru for Quechua Ay-
acucho.

• Dict_misc (quy): Dictionary entries and sam-
ples collected by Diego Huarcaya.

The counts of sentences and domain information
are presented in Table 1. The column Count refers
to the number of sentences in this table and all
subsequent ones.

Name Domain Count
JW300 Religious 121064
MINEDU Dictionary 643
Dict misc Dictionary 8998

Table 1: Original data of the AmericasNLP 2023 com-
petition.

3.2 Additional resources

We also used resources that were introduced by
some of the teams that participated in the 2021
competition. Details of the data introduced by the
Helsinki-NLP team (Vázquez et al., 2021) are pre-
sented in Table 2.

Name Domain Count
Peruvian Constitution Legal 1276
Bolivian Constitution Legal 2193
Tatoeba (OPUS) Misc. 163
Bible Religious 31102

Table 2: Data introduced by the Helsinki-NLP 2021
team.

In Table 3 the details of the corpora used by the
REPUcs-AmericasNLP2021 (Moreno, 2021) team
are shown.

Name Domain Count
Web Misc Misc. 985
Lexicon Dictionary 6161
Handbook Educational 2296
Peruvian Constitution Legal 999
Regulations of the
Amazon Parliament Legal 287

Table 3: Data introduced by the REPUcs-
AmericasNLP2021 team.
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In addition to the data collected in the previous
AmericasNLP task, we found some parallel data
that was used to build A Basic Language Tech-
nology Toolkit for Quechua (Rios, 2016) 2. The
parallel data was used to create a multilingual tree-
bank in the three languages of the machine transla-
tion systems, Spanish-German and Spanish-Cuzco
Quechua. The majority of the corpus was Spanish-
German, with the Quechua counterpart being trans-
lated by several native speakers in Peru. There
were multiple aligned documents available here but
most of them needed further cleaning and align-
ment. The three documents that were selected are:

• Strategy paper of the Swiss Agency for Devel-
opment and Cooperation on the cooperation
with Peru 3

• 2009 Annual report of the Deutsche Welle
Academy about Development and the Media
4

• 2008 Annual report of a private foundation
dedicated to education 5

The sentence count of the documents is also shown
in Table 4.

Name Count
Cosude 529
DW 856
Fundeducation 440

Table 4: Additional resources of Cuzco Quechua

3.3 New resources
Apart from using the already existing resources,
we have gathered, processed, and aligned pub-
licly available documents found around the web.
The summary of these resources is shown in Table
5. It is important to emphasize that, theoretically,
Quechua should be regarded as a linguistic family
rather than a single language, given that its vari-
ous varieties exhibit limited mutual intelligibility
when they are geographically distant. Within the
specialized literature, the term "Quechua" is em-
ployed to refer to the varieties spoken in Bolivia
and Peru, while the term "Quichua" is preferred

2https://github.com/a-rios/squoia
3https://www.cooperacionsuiza.pe/

cosude/
4http://www.dw.de/
5http://www.fundeducation.org/

for those spoken in Ecuador and Argentina, as in-
dicated by Avellana (Avellana). For the sake of
simplicity, when uncertainty arises regarding the
specific Quechua variety being discussed, we adopt
the que code as a macrolanguage identifier.

The documents were found in pdf format
and were transformed into plain text using the
pdftotext 6 tool, trying to keep the layout of
the original pdf as intact as possible. Since most of
the documents contained word wrapping to keep
the fixed width of the document, we performed the
unwrapping in such cases by joining the words at
the ends of the lines which ended with the - sign.
In this step, we made an effort to preserve the orig-
inal document structure whenever feasible. For
instance, with "The Little Prince," we maintained
the chapter arrangement of the novel. Similarly,
when dealing with the Ecuadorian constitution and
laws 7, we retained the individual article divisions.

In the subsequent stage, we performed sentence
segmentation at the chapter level while preserving
the chapter boundaries. Our team experimented
with several sentence segmenters such as NLTK,
spaCy, and stanza. Following careful consid-
eration, we ultimately chose stanza based on a
higher alignment score, as explained in the next
paragraph. For stanza, we opted for the Spanish
sentence segmentation model for both Spanish and
Quechua texts.

The HunAlign (Varga et al., 2007) tool was uti-
lized to align the sentences. Additionally, we used
a dictionary provided by AmericasNLP organizers
as an input to the tool to improve the alignments.
Overall, the legal document alignments were quite
accurate, whereas the alignments of "The Little
Prince" were slightly less precise. This could be
attributed to the greater freedom often allowed in
translations of literary works compared to the strict
and rigid translations necessary in legal contexts.
Even though HunAlign gives a confidence score
for each alignment, we did not perform any filter-
ing of the aligned sentences and decided to use all
obtained alignments.

3.4 Synthetic translations
We collected three history books in Spanish. Specif-
ically, old Chronicles of the Indies about the Incan
empire and the subsequent colonial period. We
hypothesized that because these books have plenty

6https://www.xpdfreader.com/
7https://www.asambleanacional.gob.ec/

es/contenido/publicaciones
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Name Domain Quechua variety Count
The Little Prince Literature que 1312
UN Human Rights Declaration Legal qus 91
The Constitution of Ecuador Legal que 2243
Ley Soberania Alimentaria Legal que 174
Ley Consumo Drogas Legal que 69
Ley Organica Alimentacion Legal que 186

Table 5: Description of the gathered new parallel data

of words in Quechua language, they would be from
a suitable domain. The three books were turned
into plain text files and their sentences were seg-
mented in the way described in the previous section.
After that, the texts were translated into Quechua
with the Spanish-Finnish model we fine-tuned on
the original datasets and the additional resources
introduced by participating teams in the 2021 com-
petition (train + extra). Table 6 shows the
final sentence counts of these books after being
processed.

Name Domain Count
Comentarios Reales History 1032
Nueva Cronica y Buen
Gobierno History 3578
Cronica del Peru History 1798

Table 6: Chronicles of the Indies description.

3.5 Monolingual (Copied Corpus)
Following the approach in (Currey et al., 2017), we
decided to add some monolingual Quechua data
and copy it as is to create a parallel corpus. We
used publicly available datasets on Huggingface
and segmented the sentences based on line breaks,
without any post-processing. The datasets included
data cc100 (Conneau et al. (2020) and Wenzek
et al. (2020) which was an attempt to recreate the
dataset used for training XLM-R, and data from
(Zevallos et al., 2022), which is a monolingual
corpus of Southern Quechua and includes the Wiki
and OSCAR corpora. Table 7 shows the sentence
counts of these datasets

Name Count
cc100 113931
Llamacha 182669

Table 7: Description of monolingual data used for
Copied Corpus Approach

4 Models & Results

We experimented with 2 major model setups and 5
different kinds of dataset combinations. The two se-
tups were based on fine-tuned machine translation
models of Spanish-English and Spanish-Finnish
(Tiedemann and Thottingal, 2020). On the one
hand, the reason behind using a fine-tuned Spanish-
English model was that both of them are high-
resource languages, and thus the model has been
trained on large amounts of data. This probably
means that the model has learned a good Spanish
encoder, and thus could be useful for further fine-
tuning. On the other hand, the reasoning behind
choosing a Spanish-Finnish model and fine-tuning
on Spanish-Quechua was the similarity between
Finnish and Quechua (specifically the agglutina-
tive morphology of both languages), and Finnish
having comparably more data than Quechua. All
models were trained for 20 epochs, with evalua-
tion being done after every 1000 steps. The best
model was selected based on the chrF score on the
development set. Here, we will define the different
combinations of datasets used for our experiments:

• train : The original parallel-data provided
in the AmericasNLP-2023 Shared Task (as
mentioned in Table 1).

• train + extra: This includes the com-
bination of original parallel data and extra
Ayacucho Quechua (Quy) data gathered from
different sources.

• train + extra + aligned: This in-
cludes the data above plus our newly gathered
parallel data (as mentioned in Table 5).

• train + extra + aligned +
copied: In addition to the above data,
it also includes the monolingual copied
corpus, (Table 7).
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Model name Pre-trained Data Dev Test Sub
model chrF BLEU chrF BLEU

baseline 33.80 3.47 34.3 3.63 -
es_en_orig train 36.70 3.11 - - -
es_en_extra train+extra 36.57 2.42 - - -
es_en_aligned es-en train+extra+aligned 36.96 2.81 37.71 3.47 4
es_en_copied train+extra+aligned+copied 31.48 1.22 - - -
es_en_quz train+extra+quz 36.86 2.72 - - -
es_fi_orig train 36.93 2.86 - - -
es_fi_extra train+extra 37.51 3.04 38.21 3.11 2
es_fi_aligned es-fi train+extra+aligned 37.34 2.90 38.59 3.45 3
es_fi_copied train+extra+aligned+copied 32.01 1.66 - - -
es_fi_quz train+extra+quz 37.70 3.36 38.40 3.08 1
es_fi_all all 36.40 2.54 37.26 3.06 5

Table 8: Results of the experiments on the development data, and official results on test data of Spanish-Quechua
language pair. Column "Sub" describes the submission number to the official shared task evaluation.

• train + extra + aligned + quz:
It includes all the data above excluding copied
corpus, but also includes the additional data
gathered from different sources pertaining
to Cuzco Quechua (Quz). The reason for
removing copied corpus was that it resulted
in a decrease of the chrF score in all the
experiments.

• all: It includes all the data above excluding
the copied corpus, but includes the synthetic
translations, as mentioned in Section 3.4.

4.1 Fine-tuned Spanish to English
Following (Vázquez et al., 2021), where includ-
ing a majority of Spanish-English parallel data
while building an MT system for low-resource
languages improved the performance across all
the languages, we decided to use an already fine-
tuned Spanish-English MT model and fine-tune
it again on our Spanish-Quechua parallel corpus.
Concretely, we used the opus-mt-es-en model
available at Huggingface 8. As expected, we can
see that these models perform quite close to the
baseline system. Including more data seems to
help as well, with the exception of copied cor-
pus. The reason for this, we suspect, is due to
the quantity of the data being higher than our total
Spanish-Quechua parallel corpora (no analysis was
done on the quality of the data). The best model
in this case was fine-tuned on train + extra
+ aligned achieving a chrF score of 36.96 and

8https://huggingface.co/Helsinki-NLP/
opus-mt-es-en

37.71 on the development and test set respectively
with the train + extra + quz performing
quite similarly as well.

4.2 Fine-tuned Spanish to Finnish

Lastly, we tried using a fine-tuned version of the
Spanish-Finnish MT model. The model we used
was opus-mt-es-fi, available at Huggingface
9. The reason for choosing this specific model
was firstly because of the similarity between
Finnish and Quechua, i.e, both being agglutinative
languages, and secondly, Finnish being a relatively
high-resource language as compared to Quechua.
This proved to be the best model among our
experiments, which we believe is due to the
reasons mentioned above. We can see in Table 8
that adding aligned data from Ayacucho Quechua
seems to help more than adding Cuzco Quechua
parallel sources. The best model among the
experiments was trained on train + extra +
aligned and achieved a chrF score of 37.34 and
38.59 on the development and test set respectively.

One final experiment was conducted on all of
the collected data meaning train + extra +
aligned + quz + bcktr. The model was
able to achieve a chrF score of 36.40 and 37.26
on the Spanish-Quechua development and test set
respectively. All the models are available on Hug-
gingface 10

9https://huggingface.co/Helsinki-NLP/
opus-mt-es-fi

10https://huggingface.co/
americasnlp-lct-ehu
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5 Conclusion

To summarize our findings, in our submission to the
AmericasNLP 2023 low-resource machine transla-
tion shared task for the Spanish-Quechua language
pair, we have explored fine-tuning existing mod-
els in different language pairs, combining them
with different data setups. We have collected and
aligned new parallel data, created synthetic trans-
lations, and made use of copied corpus approach.
The highest-performing model on the development
data achieved 37.70 chrF. This model was obtained
by fine-tuning OPUS MT’s Spanish-Finnish model
on the original training data, augmented with ad-
ditional data presented by previous year’s teams,
both for Ayacucho and Cuzco Quechua. In the test
set, however, the highest performing model was dif-
ferent, obtaining a chrF score of 38.59. This model
was the same as the previous one, but the data con-
sisted of the original training data, data from previ-
ous year’s submissions (excluding Cuzco Quechua)
and the novel alignments introduced in this work.
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Abstract

This report investigates the continuous chal-
lenges of Machine Translation (MT) systems
on indigenous and extremely low-resource lan-
guage pairs. Despite the notable achievements
of Large Language Models (LLMs) that ex-
cel in various tasks, their applicability to low-
resource languages remains questionable. In
this study, we leveraged the AmericasNLP com-
petition to evaluate the translation performance
of different systems for Spanish to 11 indige-
nous languages from South America. Our team,
LTLAmsterdam, submitted a total of four sys-
tems including GPT-4, a bilingual model, fine-
tuned M2M100, and a combination of fine-
tuned M2M100 with kNN-MT. We found that
even large language models like GPT-4 are
not well-suited for extremely low-resource lan-
guages. Our results suggest that fine-tuning
M2M100 models can offer significantly better
performance for extremely low-resource trans-
lation.

1 Introduction

This paper presents the participation of the Lan-
guage Technology Lab (LTL) from the University
of Amsterdam in the AmericasNLP 2023 Shared
Task, which aims to develop Machine Transla-
tion (MT) systems for indigenous languages of
the Americas. We submitted translation results for
Spanish into all indigenous languages: Hñähñu
(oto), Wixarika (hch), Nahuatl (nah), Guaraní (gn),
Bribri (bzd), Rarámuri (tar), Quechua (quy), Ay-
mara (aym), Shipibo-Konibo (shp), Asháninka
(cni), and Chatino (czn). In the face of limited par-
allel and monolingual data, our approaches focus
on maximizing the potential of available resources
and models. Specifically, our objectives include:
1) evaluating the performance of GPT-4, a state-of-
the-art language model, in extremely low-resource
settings; 2) utilizing a carefully optimized trans-
former setting for low-resource NMT (Araabi and
Monz, 2020; Zwennicker and Stap); 3) exploring

the effectiveness of a fine-tuned version of the mul-
tilingual M2M100 (Fan et al., 2021) model; and 4)
investigating the potential of augmenting a neural
model with a k-nearest-neighbor machine transla-
tion (kNN-MT) (Khandelwal et al., 2021) compo-
nent. Our experiments show that, while GPT-4
demonstrates comparable performance to bilingual
models trained from scratch, it significantly lags
behind the fine-tuned M2M100 models. Notably,
our M2M100+kNN-MT system emerged as our
top-performing approach.

2 Data and preprocessing

2.1 Data
We used the parallel data provided by the shared
task organizers for training across all South Ameri-
can languages (Ebrahimi et al., 2023). For Chatino,
we used the Chatino Speech Corpus Archive
Dataset.1

2.2 Pre-processing
We apply punctuation normalization, tokenization,
data cleaning, and true-casing using the Moses
scripts (Koehn et al., 2007). The sentence length is
limited to a maximum of 175 tokens during train-
ing. After replacing phrases with variables, we also
apply BPE segmentation (Sennrich et al., 2016)
with the BPE parameter effective for each data
size (Araabi and Monz, 2020). Table 2 presents the
number of training samples following preprocess-
ing.

3 Models and experiments

3.1 GPT-4
Large Language Models (LLM) such as ChatGPT
are strong translation models for high-resource lan-
guages (Jiao et al., 2023). For low-resource lan-
guages, ChatGPT produces relatively few halluci-

1https://scholarworks.iu.edu/dspace/handle/
2022/21028
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The translations provided may not be entirely accurate but are the closest possible translations using available resources.

Here is the translation for [TGT]

(Note: The provided text does not contain correct Ashaninka punctuation.)

The 10th sentence cannot be translated since it goes against Bribri cultural values, as the language has certain rules that
may prevent imperative structures or indications that may go against tribal communication.

These translations are based on the Mezquital Ñahñu dialect.

(Note: Nahuatl is an indigenous language spoken in Mexico and there exists variation in vocabulary and grammar across
different dialects, regions and time periods, so these translations may differ from other possible versions)

(Seq items above included due to impossibility of translating Mary Todd, Abe Lincoln, Illinois, and A Christmas Carol.)

The translations provided are approximations based on the Bribri language structure and available lexical resources.

(Note: Unfortunately, there isn’t much appropriate vocabulary available online for Hnahnu/Ñähñu Language, which is an
indigenous language of Mexico. I tried my best to give some translations, but the result may not be accurate.)

Table 1: Some examples of unwanted output produced by ChatGPT during translation.

Language code #sentences #subwords

Asháninka cni 3869 5k
Aymara aym 13000 10k
Bribri bzd 7502 5k
Guaraní gn 26011 20k
Nahuatl nah 15898 20k
Hñähñu oto 4838 5k
Quechua quy 250709 20k
Rarámuri tar 13754 10k
Shipibo shp 29126 20k
Wixarika hch 8963 10k
Chatino czn 310 5k

Table 2: Number of training samples and vocabulary
size after preprocessing.

nations under perturbation, and its hallucinations
are qualitatively different from conventional trans-
lation models (Guerreiro et al., 2023). It remains
unclear how well LLMs perform when translating
into extremely low-resource languages.

We use the ChatGPT (gpt-4) API2 to translate
Spanish source languages into the indigenous tar-
get languages. Following (Jiao et al., 2023) we use
the following translation prompt: “Please provide
the [TGT] translation for these sentences:”. We
add the following role content: “You are a machine
translation system.” (Peng et al., 2023). Initial
experiments with Temperature set to 0 (Peng et al.,
2023) produce results that are inferior to the default
Temperature value, so we stick to the latter. During
translation, ChatGPT frequently added boilerplate

2https://platform.openai.com/docs/
api-reference/chat

text to translations such as “Feel free to make ad-
justments if you have a better understanding of the
language.”. See Table 1 for additional examples
of unwanted ChatGPT boilerplate outputs. While
some of these outputs, such as the warnings about
inaccurate translations, can be valuable to machine
translation users, we remove this boilerplate text in
a post-processing step before evaluating the trans-
lations.

3.2 Bilingual
To conduct our bilingual experiments, we employ
Transformer models (Vaswani et al., 2017) with
parameters proposed by Araabi and Monz (2020),
specifically tailored to extremely low-resource data
regime. We use the Fairseq library (Ott et al., 2019)
for our experiments.

3.3 Finetuned M2M100
Following Adelani et al. (2022), we fine-tuned the
multilingual M2M100 model (Fan et al., 2021) for
translations from Spanish to Indigenous languages.

M2M100 necessitates specifying the target lan-
guage tag during decoding. Given that the Indige-
nous languages of interest are not part of M2M100,
we adopted the approach suggested by Adelani
et al. (2022) and selected a language tag that is rep-
resented in the pre-trained model. Preliminary re-
sults indicated that the translation quality remained
unaffected by the choice of the target language tag,
so we chose Swahili as the target language.

We used the 418M parameter version of
M2M100 and trained individual models for each of
the 11 target languages. These models were fine-
tuned using the HuggingFace toolkit (Wolf et al.,
2020). We employed the default learning rate of
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model oto hch nah gn bzd tar quy aym shp cni czn avg

GPT-4 0.119 0.169 0.161 0.160 0.106 0.141 0.264 0.203 0.180 0.194 − 0.170
bilingual 0.073 0.185 0.072 0.120 0.113 0.113 0.133 0.146 0.129 0.217 0.293 0.145
M2M100 0.131 0.287 0.299 0.301 0.198 0.141 0.360 0.295 0.203 0.262 0.146 0.238
+kNN 0.178 0.458 0.527 0.402 0.401 0.292 0.475 0.459 0.470 0.425 0.158 0.386

GPT-4 0.117 0.157 0.159 0.155 0.094 0.130 0.258 0.183 0.162 0.189 − 0.160
bilingual 0.078 0.210 0.070 0.119 0.123 0.114 0.150 0.140 0.124 0.216 0.366 0.155
M2M100 0.139 0.304 0.260 0.329 0.214 0.151 0.368 0.252 0.198 0.260 0.144 0.238
+ kNN 0.145 0.319 0.273 0.341 0.261 0.180 0.370 0.276 0.279 0.300 0.152 0.263

Table 3: Chrf++ scores for Spanish→X directions on the development set (top rows) and test set (bottom rows).
Best results are depicted in bold, and best results that do not encode the development set are underlined.

5e−5, set the maximum source and target length to
200, and stop training after 3 epochs.

3.4 Finetuned M2M100 + kNN-MT
We made the decision to withdraw this model from
the competition track due to its encoding of the
development set. Although it does not technically
violate the competition rule (which states: "The
only limitation is that we ask participants to not
have the test input translated by hand or train on
the development or test sets"), our solution oper-
ates in a grey area and confers an unfair advantage
over other submissions. That said, we describe the
approach below.

We operated under the assumption that the pro-
vided development data is similar to the test data.
Using the development data during training or
an additional fine-tuning step is a clear strategy
for leveraging this similarity when aiming for en-
hanced performance on the development and test
set domains. However, we opted for an alternative
approach that permits more fine-grained control
over the degree to which the resulting model de-
pends on the development data as opposed to the
training data. Furthermore, we explicitly sought
to prevent encoding information about the devel-
opment set within the resulting model weights, as
this could potentially lead to overfitting and re-
duced generalization capabilities. Such an outcome
would undermine the primary objective of creating
a robust and versatile MT system that can effec-
tively handle a wide range of input data in the con-
text of Indigenous languages.

k-nearest-neighbor machine translation (kNN-
MT) is a semi-parametric model that combines a
parametric component with a nearest neighbor re-
trieval mechanism that allows direct access to a
datastore of cached examples (Khandelwal et al.,
2021). The datastore consists of key-value pairs,
where each key is a decoder output representation,
and the value is the corresponding target token.

At inference time, the model searches the datas-
tore to retrieve the set of k nearest neighbors, and
combines the resulting distribution with the NMT
distribution through interpolation.

For our submissions, we encoded the develop-
ment sets of all Spanish to X directions in separate
datastores. We do a grid search over kNN hyper-
parameters λ ∈ {0.2, 0.3, ...0.7}, k ∈ {8, 16, 32}
and T ∈ {50, 100} on oto and hch. Based on these
results we fix λ to 0.3, k to 32, and T to 50 and re-
port results for those. We use the kNN-transformers
library (Alon et al., 2022) for our experiments.

4 Results

We report Chrf++ scores (Popović, 2017) in Ta-
ble 3. In general, we observe similar patterns for
the development and test sets. Comparing GPT-4
and our bilingual models, we conclude that GPT-4
is better for 7/10 directions on both the develop-
ment and test set. Scores for both models are very
low; neither ChatGPT nor bilingual NMT are good
indigenous translators.

Our kNN approach yields best results for 10/11
language directions, and the fine-tuned M2M100
is the best model that does not encode the develop-
ment set.

Compared to other submissions, our kNN model
ranks first for Spanish-Bribri, Spanish-Asháninka,
and Spanish-Nahuatl, but we decided to withdraw
this model (see Section 3.4).

5 Conclusion

In this paper, we describe our submissions to the
AmericasNLP 2023 Shared Task on Machine Trans-
lation into Indigenous Languages. We submitted
translations for all 11 languages. Our best system
is the result of finetuning M2M100 on an unseen
indigenous language, and augmenting this model
with a k-nearest-neighbor datastore based on the
development set.
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This model ranked first in the Spanish-Bribri,
Spanish-Asháninka, and Spanish-Nahuatl language
pairs in the competition. However, we have made
the decision to withdraw this model due to its oper-
ation in a grey area with respect to the competition
rules. The uncertainty surrounding its compliance
raises concerns about fairness among all partici-
pants, prompting us to take this action after discus-
sion with the organizers.
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Abstract

This paper presents the experiments to train a
Spanish-Aymara machine translation model for
the AmericasNLP 2023 Machine Translation
shared task. We included the English-Aymara
GlobalVoices corpus and an English-Aymara
lexicon to train the model and limit our train-
ing resources to train the model in a few-shot
manner.

1 Introduction

Aymara is a language spoken in Bolivia, Peru and
Chile. It is one of the larger languages in the Amer-
icas, and has more than 2 million speakers1, yet it
has received worryingly little attention from NLP
researchers. The development of language tech-
nologies encourage potential work in the documen-
tation, promotion, preservation and revitalization
of the languages (Galla, 2016; Mager et al., 2018).
Recent initiatives to promote research on languages
of the Americas brings NLP researchers closer to
the Americas languages communities and activists
(Fernández et al., 2013; Coler and Homola, 2014;
Hois and Ruiz, 2018; Kann et al., 2018; Zhang
et al., 2020; Ortega et al., 2020). Particularly, ma-
chine translation is a useful tool that encourages
more research in the languages as it bridges the
communication gaps in NLP researchers’ under-
standing of the models’ capabilities and limitations.

The AmericasNLP 2021 workshop hosted the
Open Machine Translation (OMT) shared task fo-
cusing on indigenous and endangered Americas
languages (Mager et al., 2021). The organizers
provided a seed collection of publicly available cor-
pora and highlighted the various nuances and vari-
ability of the translations due to the geographical
and linguistic diversity between the language vari-
eties. The Spanish data for development and test
sets created in the AmericasNLP 2021 shared task

1Statistics retrieved from Catalogue of Endangered Lan-
guages (2023)

are translated into the Aymara La Paz jilata variant,
which is the same variant used in the Global Voices
corpus (Tiedemann, 2012; Prokopidis et al., 2016).
While Aymara is mutually intelligible across differ-
ent dialects, they might differ in specific terminolo-
gies and minor grammatical preferences.

This paper presents our submission to the Amer-
icasNLP 2023 machine translation shared task
(Ebrahimi et al., 2023). We submitted our sys-
tem that focuses only on translating from Span-
ish into Aymara. We fine-tuned a multilingual T5
model (Xue et al., 2021) by adding an Aymara-
English lexicon2 to the existing Spanish-Aymara
and English-Aymara Global Voices corpus and the
Spanish-Aymara shared task training data (Con-
neau et al., 2018; Ebrahimi et al., 2022).

Other than presenting the results of our Amer-
icasNLP shared task submission, parts of this pa-
per will also serve as a demonstration of how the
model was modified from typical model training
using HuggingFace suite of libraries (Wolf et al.,
2020; Lhoest et al., 2021; McMillan-Major et al.,
2021), this is especially useful for low-resource
sequence-to-sequence tasks.

2 Pre-trained Tokenizer and New
Languages

While the current state of vogue in using massively
multilingual pre-trained models on low-resource
languages allows researchers to extend the models’
sub-word tokenizers, the models implicitly re-use
the tokens from how it was previously pre-trained
and simply ignore the new tokens by labelling them
as [UNKNOWN]. In cases where the character set of
the low-resource languages’ orthography matches
the languages that the models were pre-trained on,

2The lexicon is created from the notes of a student learn-
ing Aymara as a foreign-language, it is hosted on HuggingFace
dataset hub. The original sources of the lexicon attributes to
Parker (2008) Webster Aymara-English thesaurus and Peace
Corps (1967) Beginning Aymara book.
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it is possible that the models repurpose the sub-
words to learn new parameter behaviors given suf-
ficient computes and hyperparameter tuning exper-
iments.

from transformers import AutoTokenizer
from datasets import load_dataset

lexicon_dataset = load_dataset(
"alvations/aymara-english", on_bad_lines='skip')

tokenizer = AutoTokenizer.from_pretrained('google/mt5-base')

# Train a new tokenizer using the new dataset
# and the old tokenizer object.
new_tokenizer = tokenizer.train_new_from_iterator(

lexicon_dataset, vocab_size=50_000)
new_tokens = set(new_tokenizer.vocab).difference(tokenizer.vocab)

# Before: 250100
print('Before:', len(tokenizer))
tokenizer.add_tokens(list(new_tokens))

# After (adding vocab): 251152
tokenizer.add_tokens(

lexicon_dataset['train']['Aymara'] +
lexicon_dataset['train']['English'])

print('After (adding vocab):', len(tokenizer))

To preserve the learned model parameters, a re-
searcher using the multilingual model can extend
its tokenizer’s sub-word vocabulary by relearning
the sub-word tokenizer from scratch, then apply it
to dataset with the new language and finally extend-
ing the new sub-words to the pre-trained vocabu-
lary. To assign new parameters in the model for
these new sub-words tokens, the embedding layer
of the model needs to be extended. The code snip-
pet above demonstrates the function to extend the
new language’s vocabulary to existing pre-trained
mT5 model.

The following snippet below presents the differ-
ences of the input token indices depending on how
the tokenizer was extended for a new language.

from transformers import AutoTokenizer

tokenizer_old = AutoTokenizer.from_pretrained('google/mt5-base')
tokenizer_new = AutoTokenizer.from_pretrained('alvations/mt5-aym-lex')

sent = "1899n ahuicha yuriwayi"

tokenized_old_ids = tokenizer_old(sent)['input_ids']
tokenized_new_ids = tokenizer_new(sent)['input_ids']

tokens_old = [tokenizer.decode([s]) for s in tokenized_old_ids]
tokens_new = [tokenizer.decode([s]) for s in tokenized_new_ids]

print(tokens_old)
# Ouputs: ['1899', 'n', '', 'ahu', 'icha', 'yuri', 'way', 'i', '</s>']

print(tokens_new)
# Outputs: ['1899', 'n', '', 'ahuicha', 'yuri', 'way', 'i', '</s>']

Instead of using the subword tokenizer, users
can pre-tokenize the new language data using a
linguistic motivated rule-based tokenizer and add
the tokens without further splitting these tokens
into subwords to the models’ vocabulary. How-
ever the tokenizer does not automatically recog-
nize/determine spelling variants, e.g. "ahuicha"

(i.e. "grandma" in English and "abuela" in Span-
ish) can also be spelled as "awichajax" in Aymara.

3 Experimental Setup

All models fine-tuned in this paper uses the mT5
architecture using A100 GPUs with 40GB RAM.
We use the all default hyperparameters of the Hug-
gingFace’s Seq2SeqTrainingArguments except:

• warmup_steps3 was set to 500, instead of the
default 0

• auto_find_batch_size is enabled with the
default algorithm to determine batch size au-
tomatically

• max_steps is set at 200,000. We cap the max-
imum number of model updates to 200K to
limit the computing resources used for our
experiments to approximately 24 hours per
model, vis-a-vis ‘few-shot’ training.

We fine-tuned a zero-shot lexicon-enriched sys-
tem mT5 model with Aymara-English lexicon,
the Spanish-Aymara and English-Aymara Global
Voices corpus and Spanish-Aymara XNLI training
data split for the training data. And we use the
Spanish-Aymara XNLI development data split pro-
vided by the shared task organizers to select the
best performing model.

Training Data mt5-base mt5-zero mt5-lex

XNLI Train
(spa-aym) D D D
Global Voices
(spa-aym) D D D
Global Voices
(eng-aym) D D
Lexicon
(eng-aym) D

Table 1: Training Datasets used by the mT5 Variants

Our official submission to the shared task is
selected from the best-performing system that
scored the lowest perplexity loss and highest
BLEU score. Other than the best performing zero-
shot lexicon-enriched system (mT5-lex), we ex-
perimented and a baseline model that only fine-
tuned Spanish-Aymara Global Voice and XNLI

3This hyperparameter is used to gradually increased the
learning rate to make training more stable (Huang et al., 2020).
The original transformer (Vaswani et al., 2017) set the warmup
to 4,000.
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dataset (mT5-base) and a second baseline that
adds on the English-Aymara Global Voices data to
Spanish-Aymara Global Voices and XNLI dataset
(mT5-zero). Table 1 summarizes the datasets used
to train the corresponding mT5 models.

4 Results

Our official submission to the shared-task scored a
measly 0.12 BLEU (Papineni et al., 2002) and 9.22
ChrF score (Popović, 2015) on the AmericasNLP
2023 shared task test set. The best performing team
in the shared task achieved 4.45 BLEU and 36.24
ChrF. The target Aymara text from the test set was
not released publicly, hence we present the results
of our model variants on the development set.

System ChrF BLEU

mt5-base 30.59 2.78

mt5-zero 23.98 2.99
mt5-lex 22.01 1.38

Table 2: Results on AmericasNLP 2023 Spanish-
Aymara Development Set

We note the oracle effect of selecting the best
model during training based on the development
set, thus the results from Table 2 might be inflated.

As a sanity check, we translated the lexicon used
to train mt5-lex from English into Spanish using
the NLLB machine translation model (Costa-jussà
et al., 2022) and count the tokens from the lexicon
that matches the development texts. We found that
the lexicon has little matches to the tokens in the
development sets, see Appendix A for more details.

5 Conclusion

In this paper we present our participation in
the AmericasNLP 2023 Spanish-Aymara machine
translation shared task. We experimented with
adding an English-Aymara lexicon and training

We share the follow resources created in our
participation for future researchers to improve
English/Spanish-Aymara translations.

• English-Aymara Lexicon
• mt-base model
• mt-zero model
• mt-lex model
• Model training script
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A Lexicon Matches in Development Set

There are 81 unique words that matches the Spanish
translated lexicon to the tokens in the development
set. The matches sum up to a frequency of 373 out
of a total number of 53,135 in the development set
on the Spanish source. However when we match
the target Aymara text with the lexicon and we find
only 4 unique words matches that occurred 9 times
in the development set. Looking at the sentences
that contains the Aymara word matches to the lexi-
con, the Aymara sentences from the development
set contains loan words either from Spanish or En-
glish,

The 4 unique Spanish - Aymara lexicon matches
are:

• el vuelo -> fly
• mayo -> may
• firme -> firm
• hijo -> son

The sentences that contains the target side
matches are:

• The firm Uk ullartatï.
• Tamax may maya temanakanw yatiñ munapx-

chixa.
• Aka jan walt’awix may may lup’iy-

pachatamxa, ukampis samart’awim suyt’am.

• Jichhurux awkixan nayra jakawipat
arst’awaya ukatx kunawsatix Estados
Unidos markar sarawayjix may may kast
sarawinak utjirinakaw uñicht’ayätani

• I’ll fly away uk ajlliristxa.
• Aruskipt’aw Hilbert, Las mariposas son libres,

El mago de Oz, Tierra de juguetes y Vue-
los ukanakatx purt’anirinakax uñjtawayapx-
aniwa.

• Ukampirus, niyapunix may uñjiristwa, uh, V6
inas.

We note that the underlined loan phrases matches
contributes to the matching counts in the lexicon.
And when it comes to the Aymara lexicon entry
‘may’, it is a false-friend match, in both develop-
ment setences that contains ‘may may’, it phrase
seems to be a grammatical/syntactic construct.

With the above anecdote, we find that lexicon
effects in machine translation might not be evident
in metrics scores if the lexicon matches in the test
set is low, unlike previous studies of using lexicon
in high resource languages (Tan et al., 2015; Yvon
and Rauf, 2020).
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Abstract

This paper presents PlayGround’s submission
to the AmericasNLP 2023 shared task on ma-
chine translation (MT) into indigenous lan-
guages. We finetuned NLLB-600M, a multilin-
gual MT model pre-trained on Flores-200, on
10 low-resource language directions and exam-
ined the effectiveness of weight averaging and
back translation. Our experiments showed that
weight averaging, on average, led to a 0.0169
improvement in the ChrF++ score. Addition-
ally, we found that back translation resulted in
a 0.008 improvement in the ChrF++ score.

1 Introduction

We participated in the AmericasNLP 2023
(Ebrahimi et al., 2023) shared task with the goal
of advancing previous studies (Mager et al., 2021)
on indigenous American languages. The task is
to translate Spanish into 10 indigenous languages,
including Ashaninka, Aymara, Bribri, Guarani,
Hñähñu, Nahuatl, Quechua, Raramuri, Shipibo-
Konibo, and Wixarika. Additionally, there was
another language, Chatino1, for which we did not
participate in.

We started with the monolingual and bilingual
data from Mager et al. (2021) and finetuned NLLB-
600M, a multilingual pre-trained MT model from
Meta’s No Language Left Behind (NLLB) project
(NLLBTeam et al., 2022) both bilingually and mul-
tilingually. On top of that, we employed weight
averaging and back translation. For back transla-
tion, we additionally filtered the back translated
sentence pairs to improve the data quality.

We demonstrate that training on model weights
averaged from multiple checkpoints improves trans-
lation quality, as indicated by a 0.0169 increase in
the ChrF++ score on average, without requiring ad-
ditional computation resources. Additionally, we
found that back translation can enhance translation

1https://scholarworks.iu.edu/dspace/handle/
2022/21028

quality for low-resource languages, although it is
sensitive to the quality of synthetic data. To address
this, we introduced a data filtering technique to im-
prove the quality of synthetic data. With filtered
back translation, our system achieved an average
improvement of 0.008 in the ChrF++ score. Fur-
thermore, our study reveals that multilingual fine-
tuning achieves comparable translation quality to
bilingual fine-tuning for low-resource languages.

We selected the bilingual model with weight
averaging and back translation as our final submis-
sion. The implementation of this study is available
in our Git repository2.

2 Methods

2.1 Data

We adopted the data preparation method described
by the University of Helsinki’s submission to Amer-
icasNLP 2021 (Vázquez et al., 2021) for our sys-
tem. The details of the dataset can be found in
Table 1. Our model training utilized the filtered
parallel data (referred to as parallel data), which
consisted of the training data provided by the orga-
nizers as well as additional data collected by the
University of Helsinki (Vázquez et al., 2021). In
order to generate synthetic parallel data (referred to
as synthetic data), we employed monolingual data
and applied back translation techniques (refer to
Section 2.3). The development data was used for
model selection purposes.

2.2 Pre-trained Model

Our models are based on the NLLB-600M Seq2Seq
pre-training scheme introduced by the NLLB team
(NLLBTeam et al., 2022). For tokenization, we
utilize the SentencePiece tokenizer (Kudo and
Richardson, 2018), following the NLLB config-
uration. The NLLB model was initially trained on

2https://github.com/KaieChen/ameircasnlp2023
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Lang Filtered Monoling Dev
Ashaninka 3858 13195 883
Aymara 8352 16750 996
Bribri 7303 0 996
Guarani 14483 40516 995
Hñähñu 7049 537 599
Nahuatl 17431 9222 672
Quechua 228624 60399 996
Raramuri 16529 0 995
Shipibo-Konibo 28854 23595 996
Wixarika 11525 511 994

Table 1: Number of segments in dataset. Filtered data
and monolingual data are collected and filtered by Uni-
versity of Helsinki team (Vázquez et al., 2021) from
AmericasNLP 2021.

the Flores-200 dataset, which consists of Aymara,
Guarani, Quechua, and Spanish.

2.3 Fine-tuned Models

We fine-tune NLLB-600M using the data men-
tioned in Table 1. For both X-to-Spanish and
Spanish-to-X directions, we fine-tune NLLB-600M
using filtered parallel data in both bilingual and
multilingual way. This produces 20 bilingual mod-
els and 2 multilingual models.

We leverage the above X-to-Spanish models to
generate back translated data to enrich the training
corpus. Then we further fine-tune the Spanish-to-X
models with parallel dataset extended with back
translated sentence pairs.

The final models are obtained with weight aver-
aging since the training can be unstable with insuf-
ficient data.

2.3.1 Back Translation
In order to make use of monolingual data in in-
digenous languages, we employed back transla-
tion. Specifically, we froze the decoder layers of
NLLB model and performed fine-tuning of an X-
to-Spanish model using parallel data. Then, we
utilized this model to generate synthetic sentences.

Data filtering: Synthetic sentences may con-
tain noise. To address this issue, we implement
a data filter to select a subset of synthetic sen-
tences that will expand the original parallel dataset
(Ranathunga et al., 2023). In our task, we initially
fine-tuned a Spanish-to-X model using the parallel
data. Subsequently, we evaluated this model on the
synthetic sentences and selected the top N samples
with the lowest cross-entropy loss. The value of N

is determined by the following:

N = min(|Ypar|, |Ysyn|) (1)

where |Ypar| represents the number of segments
in the parallel dataset, and |Ysyn| represents the
number of segments in the synthetic dataset.

Finally, we combined the selected synthetic data
with the parallel data and proceeded to perform
additional fine-tuning of the NLLB model.

2.3.2 Weight Averaging
Studies have shown that averaging the weights of
multiple finetuned models can enhance accuracy
(Wortsman et al., 2022). In our training approach,
the weights of the next epoch are trained based on
the average of the model weights from the previous
K epochs. For inference, we compute the final
model by averaging the model weights from the last
K epochs. The model can be defined as follows:

NLLB(x; Θt) = NLLB(x;
1

K

K∑

k=1

Θt−k) (2)

where Θt represents the model parameters at epoch
t.

This technique shares similarities with training
different models using various hyperparameters
(Wortsman et al., 2022; Xu et al., 2020). How-
ever, as we only need to train a single model, this
technique can be particularly efficient for large lan-
guage models. The effectiveness of this approach
is further discussed in Section 3.

2.3.3 Hyperparameters
In the fine-tuning process, we froze the encoder
layers of the NLLB model, considering its prior
training on a vast amount of Spanish sentences. We
optimized the model using AdamW (Loshchilov
and Hutter, 2017) with hyperparameters β =
(0.9, 0.999), ϵ = 10−6. We employed a learning
rate of 3×10−4 for a total of 10, 000 iterations. For
regularization, we utilized the same dropout rate
as the original NLLB model and a weight decay
of 0.01. Furthermore, for weight averaging, we set
the value of K to be 5.

2.4 Evaluation
We report the results using ChrF++ (Popović,
2017), following the evaluation script3 provided
by the AmericasNLP 2023 shared task. ChrF++

3https://github.com/AmericasNLP/
americasnlp2023
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Target language Baseline (Test) Multi Multi+ Multi++ Bi Bi++ Bi++ (Test)
Wixarika 0.304 0.277 0.294 0.294 0.266 0.279 0.288
Hñähñu 0.147 0.129 0.133 0.138 0.144 0.141 0.148
Aymara 0.283 0.291 0.328 0.326 0.336 0.326 0.300
Shipibo-Konibo 0.329 0.224 0.238 0.253 0.261 0.283 0.277
Nahuatl 0.266 0.241 0.252 0.275 0.282 0.283 0.237
Guarani 0.336 0.304 0.316 0.321 0.315 0.303 0.331
Asháninka 0.258 0.222 0.238 0.272 0.269 0.286 0.280
Quechua 0.343 0.324 0.341 - 0.337 - 0.344
Rarámuri 0.184 0.161 0.175 - 0.184 - 0.145
Bribri 0.165 0.210 0.237 - 0.231 - 0.148

Table 2: Result in ChrF++ on develop dataset, except for baseline and Bi++(test). Baseline model is the best
submission for AmericasNLP 2021. The effectiveness of weight averaging (Multi+ and Bi+) and back translation is
compared (Multi++ and Bi++). We also compared the performance of bilingual (Bi) and multilingual (Multi).

captures the character-level performance, making
it particularly suitable for evaluating the polysyn-
thetic properties observed in many indigenous lan-
guages (Zheng et al., 2021).

3 Results

The results are presented in Table 2 for both the
development and test datasets. Our Bi++ model
demonstrates improvements in four languages:
Hñähñu, Aymara, Asháninka, and Quechua, com-
pared to the Baseline model provided by the orga-
nizer. In general, the trends in results for the de-
velopment and training datasets are similar, except
for Rarámuri and Bribri. This discrepancy may
be attributed to the test dataset containing more
unknown tokens, to which our model is sensitive.

Previous study (Mager et al., 2021) has pri-
marily focused on fine-tuning bilingual machine
translation models. However, the results from our
Multi++ and Bi++ models demonstrate the promis-
ing potential of multilingual fine-tuning (Tang et al.,
2020). On average, the ChrF++ score for Multi++
is only 0.0012 lower than that of Bi++.

We also compared the effectiveness of weight
averaging and back translation. Weight averaging
improved translations for all target languages. On
average, Multi+ achieved a ChrF++ score that was
0.0169 higher than Multi. These results indicate
that our simple technique can enhance low-resource
machine translation without requiring additional
computational resources.

However, the impact of back translation varied
across languages, as observed in the results for
Multi+ and Multi++. On average, the implemen-
tation of back translation resulted in a 0.008 im-

provement in the ChrF++ metric. For Wixarika
and Aymara, there was a slight drop in the ChrF++
scores after back translation. Despite performing
data filtering, the quality of synthetic data largely
depends on the performance of the X-to-Spanish
model.

In summary, our fine-tuning technique has
shown improvements in performance. However,
with further refinements and design enhancements,
there is potential for our model to achieve higher
levels of performance.

4 Conclusion

In this paper, we presented our submission to the
AmericasNLP 2023 shared task. Our system uti-
lized the NLLB-600M pre-trained model to trans-
late Spanish into 10 indigenous languages. We also
investigated the potential of multilingual translation
models, which showed promising results. Addition-
ally, we found that averaging model weights from
previous epochs proved to be an efficient and effec-
tive approach. While back translation demonstrated
performance improvements, further methods are
necessary to address noisy data. These findings
highlight the positive outcomes of our study and
provide valuable insights for future advancements
in low-resource machine translation techniques.
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Abstract

The Helsinki-NLP team participated in the
AmericasNLP 2023 Shared Task with 6 sub-
missions for all 11 language pairs arising from
4 different multilingual systems. We provide a
detailed look at the work that went into col-
lecting and preprocessing the data that led
to our submissions. We explore various se-
tups for multilingual Neural Machine Transla-
tion (NMT), namely knowledge distillation and
transfer learning, multilingual NMT including
a high-resource language (English), language-
specific fine-tuning, and a system with a mod-
ular architecture. Our multilingual Model B
ranks first in 4 out of the 11 language pairs.

1 Introduction

This paper presents the submission of the Helsinki-
NLP team to the AmericasNLP 2023 Shared
Task. The task consisted in developing Machine
Translation (MT) systems for 11 indigenous lan-
guages of the Americas: Aymara (aym), Bribri
(bzd), Asháninka (cni), Chatino (czn), Guarani
(gn), Wixarika (hch), Nahuatl (nah), Hñähñu (oto),
Quechua (Quy), Shipibo-Konibo (shp), and Rará-
muri (tar). The AmericasNLP task has been run-
ning for two years: in 2021 (Mager et al., 2021)
it was first introduced, and in 2022 it consisted
of Speech-to-Text Translation (STT).1 This year’s
task is similar to the one held in 2021, but it in-
cludes an additional language (Chatino) and the
use of the development set in training is not al-
lowed. Our 2021 submission (Vázquez et al., 2021)
reached the first rank in nine out of ten languages
and serves as the baseline for this year’s task.

The 11 target languages involved in the task
vary a lot in terms of “resourcedness”. On one
side of the spectrum, there are languages like
Quechua and Guarani with millions of native speak-
ers, whereas on the other end, the variety of Hñähñu

1http://turing.iimas.unam.mx/americasnlp/st.
html

used in the development and test sets only has
about 100 elder speakers.2 Many of the target lan-
guages show dialectal variation, and some have
different spelling norms and conventions. Fur-
thermore, some datasets contain instances of code-
switching with Spanish, and some of the languages
are polysynthetic. All these factors make the task
at hand particularly challenging.

A large part of our effort focuses on increasing
the amount of parallel data for training. Building on
our work for the 2021 shared task, we employ sev-
eral strategies: mining, extraction and alignment
of publicly available parallel resources, backtrans-
lation of monolingual data (Sennrich et al., 2016),
and data augmentation by pivoting through English
(Xia et al., 2019).

On the modelling side, our winning 2021 sub-
mission was based on a multilingual (one-to-many)
model that was pretrained mostly on the Spanish-
to-English task and later fine-tuned on the low-
resource indigenous languages. We keep this gen-
eral approach in most of this year’s submissions,
but provide some variations to this theme:

Model A uses knowledge distillation and transfer
learning instead of training from scratch. In
this context, we also experiment with different
data labeling schemes.

Model B reproduces our 2021 setup with updated
data.

Model C reimplements Model B’s strategy us-
ing OpusTrainer3 and introduces a language-
specific fine-tuning step.

Model D uses a modular architecture in a multi-
lingual setting with language-specific decoder
modules.

2https://github.com/AmericasNLP/
americasnlp2023/blob/main/data/information_
datasets.pdf

3https://github.com/hplt-project/OpusTrainer
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Our best-performing model is Model B. The col-
lected data and our code are publicly available on
our fork of the organizers’ Git repository.4

The rest of the paper is organised as follows.
Section 2 provides a detailed description of our
data collection and preparation efforts. Section 3
describes in detail the models presented. Section 4
outlines the results and, finally, section 5 concludes
our work.

2 Data collection and preparation

Similar to our 2021 submission, we worked on
finding relevant corpora from additional sources
and cleaning and filtering them. We utilised the
OpusFilter toolbox5 (Aulamo et al., 2020), which
provides both ready-made and extensible methods
for combining, cleaning, and filtering parallel and
monolingual corpora. OpusFilter uses a configu-
ration file that lists all the steps for processing the
data; in order to make quick changes and exten-
sions programmatically, we generated the configu-
ration file with a Python script.

2.1 Data collection
We combined the data previously collected for our
2021 participation with some new resources. An
overview of the resources, including references and
URLs, is given in Table 4 in the appendix.

Organizer-provided resources The shared task
organizers provided parallel datasets for training
for all 11 languages. These datasets are referred to
as train in this paper. For some of the languages
(e.g., Ashaninka, Wixarika and Shipibo-Konibo),
the organizers pointed participants to repositories
containing additional data. We refer to these re-
sources as extra. Furthermore, the organizers pro-
vided development (dev) and test (test) sets for all
11 language pairs of the shared task (Ebrahimi et al.,
2023).

OPUS The OPUS corpus collection (Tiedemann,
2012) provides only few datasets for the relevant
languages. We utilized the GNOME, MozillaI10n
and Ubuntu corpora, which consist of localization
files. Additionally, we made use of the Tatoeba and
Wikimedia corpora, which have been recently up-
dated on the OPUS website.6 These bitexts contain

4https://github.com/Helsinki-NLP/
americasnlp2023-st

5https://github.com/Helsinki-NLP/OpusFilter,
version 2.6.

6https://opus.nlpl.eu/

384 sentence pairs for Aymara, 25233 for Guarani,
169 for Nahuatl and 1187 for Quechua parallel with
Spanish.

To ensure collecting data only for the relevant
languages, we ran language detection on the cor-
pora. For language identification we used HeLI-
OTS (Jauhiainen et al., 2022), which includes lan-
guage models for Guarani, Nahuatl and Quechua.
We kept only pairs where both the source and the
target sentences are detected to be in the correct
language. For the Spanish side, we also accepted
sentences identified as other Romance languages,
namely Catalan, Galician, French, Portuguese, Ex-
tremaduran and Occitan. For Aymara and Nahuatl,
we chose to accept sentences where the detected
language is not English or Spanish, as Aymara is
not included in the language model and only a small
proportion of sentences were detected to be Nahu-
atl. The language identification filtering leaves 320
sentence pairs for Aymara, 19751 for Guarani, 153
for Nahuatl and 718 for Quechua.

FLORES The FLORES-200 development and
test sets (NLLB Team et al., 2022) cover Aymara,
Guarani and Quechua. Since this is a multiparallel
dataset, we paired the indigenous languages with
their corresponding Spanish sentences. We con-
catenated the development and test sets and added
them to our training data.

Bibles The JHU Bible corpus (McCarthy et al.,
2020) covers all languages of the shared task with
at least one Bible translation. When several Bibles
were available for a given indigenous language,
we scored them with a character 6-gram language
model trained on the development sets and chose
the Bible(s) with the lowest average cross-entropy
scores. We paired them with the available Spanish
Bibles using the product method in OpusFilter
to randomly take at most 3 different versions of
the same sentence (skipping empty and duplicate
lines).7

Legal texts, educational material and news In
2021, we collected constitutions and laws of var-
ious Latin American countries with their transla-
tions into indigenous languages. We expanded this
collection by adding the Chatino–Spanish Mex-
ican constitution. We also added the Universal
Declaration of Human Rights (UDHR) where avail-

7We sampled three Spanish sentences when there was a
single Bible version for the the indigenous language, two for
2–3 versions, and one for more than three versions.
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able in the Universal Declaration of Human Rights
Translation Project.8 Furthermore, we extracted
Nahuatl and Bribri educational material as well as
Guaraní parallel news items from PDF documents
and websites. The document and sentence align-
ment was done semi-automatically using source-
specific heuristics and the hunalign9 (Varga et al.,
2005) tool. We provide a script in our repository to
replicate these data gathering and alignment proce-
dures.10

Spanish–English data All submitted models
take advantage of abundant parallel data for
Spanish–English. The resources come from
OPUS (Tiedemann, 2012) and include the fol-
lowing sources: OpenSubtitles, Europarl, Glob-
alVoices, News-Commentary, TED2020, Tatoeba,
bible-uedin. The Spanish–English WMT-News cor-
pus, also from OPUS, is used for validation.

2.2 Back-translations of monolingual data

The organizers also provided some monolingual
resources for some indigenous languages. We also
obtained monolingual Wikipedia dumps for some
languages through the Tatoeba Translation Chal-
lenge project (Tiedemann, 2020). We used the 2021
reverse Model B to translate these resources to
Spanish (thereby fixing the processing for Quechua
reported in the 2021 paper).

2.3 Pivot translations of English-aligned data

Some parallel datasets provided by the organizers
or available on OPUS were aligned with English.
Furthermore, the No Language Left Behind (Costa-
jussà et al., 2022) project released training data for
Aymara–English and Guarani–English. We used
a publicly available English-to-Spanish MT sys-
tem from the OPUS-MT project11 to translate the
English side to Spanish in order to constitute addi-
tional Spanish–Indigenous data.

2.4 Data normalization, cleaning and filtering

We noticed that some of the corpora in the same
language used different orthographic conventions

8https://www.ohchr.org/en/human-rights/
universal-declaration/universal-declaration-
human-rights/about-universal-declaration-human-
rights-translation-project

9https://github.com/danielvarga/hunalign
10under data/getdata2023.py
11We used the opusTCv20210807+bt_transformer-big_

2022-03-13 model from https://github.com/Helsinki-
NLP/Tatoeba-Challenge/tree/master/models/eng-
spa.

and had other issues that would hinder NMT model
training. We applied various data normalization
and cleaning steps to improve the quality of the
data, with the goal of making the training data
more similar to the development data (which we
expected to be similar to the test data).

For Bribri, Raramuri and Wixarika, we found
normalization scripts or guidelines on the organiz-
ers’ Github page or sources referenced therein (cf.
Ô entries in Table 4). We reimplemented them as
custom OpusFilter preprocessors. For Chatino, we
implemented a preprocessor that normalized the
tone characters variations in the different datasets.

The organizer-provided training sets for Bribri,
Hñähñu, Nahuatl, and Raramuri were originally
tokenized. We detokenized these corpora with the
Moses detokenizer supported by OpusFilter, using
the English patterns. Finally, for all datasets, we ap-
plied OpusFilter’s WhitespaceNormalizer prepro-
cessor, which replaces all sequences of whitespace
characters with a single space.

We filtered some of the datasets using predefined
filters from OpusFilter. Not all filters were applied
to all languages; instead, we selected the appropri-
ate filters based on manual observation of the data
and the proportion of sentences removed by the
filter. Appendix A describes the filters in detail.

2.5 Data tagging

Since all our models are multilingual models with
several target languages, we include a target lan-
guage tag at the beginning of the source sentence.
Furthermore, we add two more tags: variant tags
and quality tags.

Variant tags represent the different variants of
a particular language and they were inferred either
from the documentation of the data source or from
a manual inspection focusing on the character set
of the specific text. In the end, we only used vari-
ant tags for two languages: Chatino and Quechua.
The <default> variant is always the variant of the
development and test sets. Besides the <default>
variant, for Chatino we define the <plain> vari-
ant, which does not use tones. It is important to
mention that 95% of our training data for Chatino
belongs to the <plain> variant. For Quechua, the
development and test data is in Ayacucho Quechua
(quy), whereas other data are in Cuzco Quechua
or a Bolivian variety of Quechua. We define the
variant labels <quz> and <quh> for the latter two.

Quality tags refer to the origin of the data:
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<default> for relatively clean data sources,
<noisy> for unreliable data sources or with noisy
sentence alignment, <bt> for back-translations,
and <bible> for Bibles. The statistics of the qual-
ity tags for the training corpora are provided in
subsection 2.8.

If not specified otherwise, all tags are used dur-
ing the training phase. When generating test trans-
lations, we use the language tag, followed by the
default variant and quality tags.

2.6 Concatenation and deduplication
After tagging, the different training sets were con-
catenated, and all exact duplicates were removed
from the data using OpusFilter’s duplicate removal
step. Note that because of the language variant tags,
some duplicates marked as different variants may
have remained.

For the Spanish–English data, duplicates were
removed separately from the OpenSubtitles part
and the rest of the data.

2.7 Data postprocessing
We apply data postprocessing steps for two target
languages: Chatino and Hñähñu.

Chatino has a tonal structure, where each word
is tagged at the end with a superscript tone charac-
ter (ABcEfGHIJK), for example: KyqyaA noA shtyaH

renqJ 2/2022-CC qoE 4/2022-CC. Sometimes, the
character J can also be found within a word. A
manual inspection of the results allowed us to see
that our models were not producing the superscript
characters, presumably due to Unicode normaliza-
tion performed during subword segmentation with
SentencePiece. Therefore, we opted for substitut-
ing the characters in the character set mentioned
above by their superscript counterparts if they were
found at the end of a token. For J, we replaced all
occurrences regardless of their position.

Regarding Hñähñu, organizers already acknowl-
edge that the training variant (Valle del Mezquital)
is a different one from the development and test sets
(Ñûhmû de Itxenco), a severely endangered variant
spoken by less than 100 people. The training data
did not contain any sample from the development
and test set variant, having some characters in the
training data that never appear in the development
set. In consequence, we chose to substitute all oc-
currences of the character set that only appear in
the training data, by their non-diacritic counterpart.
For example, ë becomes e, è becomes e and ě be-
comes e. The full character substitution can be

consulted in our GitHub repository.

2.8 Data sizes

Table 1 shows the sizes of the used datasets. train
refers to the official training data and extra to all
other datasets except the Bibles. The data sizes
are listed separately before and after filtering, as
well as after concatenation and duplicate removal
(combined). There is a difference of almost two
orders of magnitude between the smallest (czn) and
largest (quy) combined training data sets. Including
the Bibles data (bibles) evens out the situation a
bit, but Quechua has still significantly more data
than any of the other languages. The development
sets comprise 500–1000 sentences for each of the
languages.

As discussed in subsection 2.5, we use different
quality tags for different data sources. Table 1 also
shows the amount of the different tags in the com-
bined set. In addition, <bible> was used always
for bibles.

Finally, Table 2 shows the sizes of the Spanish–
English datasets before and after filtering. Model
A uses different data than models B, C and D; see
section 3 for details.

3 Models

We tested four major model configurations, which
we refer to as A, B, C and D. All models are mul-
tilingual neural MT (NMT) models and include
the Spanish–English translation task in some form.
Models B and C also include language-specific fine-
tuning steps. All models are based on the Trans-
former architecture (Vaswani et al., 2017). Models
A and C are trained using the MarianNMT Toolkit
(Junczys-Dowmunt et al., 2018), while B and D are
implemented with OpenNMT-py 2.0 (Klein et al.,
2020). All models were trained on a single GPU,
except Model D, which was trained on 4 GPUs.

We use subword SentencePiece segmentation
(Kudo and Richardson, 2018) for the training data.
We train a shared vocabulary for all languages with
size 32k that is used in all the models. Further de-
tails of the configurations are listed in Appendix B.

3.1 Model A

Model A is a multilingual one-to-many model
based on knowledge distillation (Kim and Rush,
2016), where you distill a smaller student model
from a powerful teacher; and transfer learning
(Zoph et al., 2016), where you train a parent model
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Data type train extra combined (train+extra) bibles

Processing none filtered none filtered filtered+deduplicated filtered

Quality tag all <default> <noisy> <bt> <bible>

Ashaninka cni 3,883 3,878 13,195 8,593 12,448 3,855 – 8,593 23,321
Aymara aym 6,531 6,039 34,551 27,265 33,136 22,380 288 10,468 92,082
Bribri bzd 7,508 7,490 659 588 7,853 7,519 334 – 23,103
Chatino czn 357 354 4,841 4,798 4,804 4,804 – – 47,570
Guarani gn 26,032 26,012 82,703 72,597 86,698 36,435 16,833 33,430 23,687
Hñähñu oto 4,889 4,888 9,013 8,593 13,401 13,331 70 – 23,849
Nahuatl nah 16,145 15,863 26,892 22,558 35,360 27,839 1,473 6,048 47,674
Quechua quy 125,008 109,372 261,055 209,814 306,999 268,020 617 38,362 123,829
Raramuri tar 14,720 14,495 2,255 2,194 16,529 16,529 – – 23,678
Shipibo-Konibo shp 14,592 14,553 40,317 36,029 49,428 29,977 78 19,373 47,638
Wixarika hch 8,966 8,960 3,165 2,932 11,784 11,518 – 266 23,867

Table 1: Numbers of segment pairs used for training (train: official training set provided by the organizers; extra:
additional training data collected by the organizers and us, including back-translations and pivoted data but excluding
Bibles; bibles: generated Bible data segments). The table also shows the effect of filtering and deduplication, as
well as the repartition of data over the different quality tags (<default> for relatively clean data sources, <noisy>
for unreliable data sources or with noisy sentence alignment, and <bt> for back-translations).

news opensubs bibles dev

Processing none filtered+deduped none filtered+deduped filtered none

Quality tag <default> <noisy> <bible> <default>

Model A – – 61,434,251 26,158,993 – 9,122
Models B, C, D 3,761,249 3,346,060 61,447,674 20,343,327 61,198 14,522

Table 2: Spanish–English dataset sizes: news is the combination of other training corpora (Europarl, GlobalVoices,
News-Commentary, TED2020, Tatoeba) than OpenSubtitles and Bibles. The dev set for Model A consists of Spanish
side of the official development sets machine-translated to English, and the WMT-News corpus for the other models.
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on a high-resource pair and then continue training
a child model on the low-resource data.

Regarding transfer learning, we train a parent
model on a high-resource language pair (es–en)
and then we continue training on the indigenous
languages’ data. Furthermore, for the es–en parent
model, we apply knowledge distillation. We distill
a es–en system from the No Language Left Behind
(NLLB) model12 (Costa-jussà et al., 2022) by sim-
ply training a new model on NLLB translated data
from Spanish into English. The rationale behind
this decision is to benefit from the advantages of a
large pretrained NMT model while optimizing its
size to enable effective fine-tuning.

In contrast to the other models, we exclusively
use the OpenSubtitles dataset for Spanish–English
training. This dataset consists of relatively brief
sentences discussing general subjects. The moti-
vation to use only this dataset was based on an
examination of the development sets, which exhib-
ited similar content characteristics. For develop-
ment, we translate the source Spanish counterpart
of the development sets provided by the organizers
into English with the NLLB model with the hope
that the distilled model will overfit to its teacher’s
distributions.

For the child model, we experiment with differ-
ent data labeling schemes and submit three differ-
ent versions:

• A.1: Parent model fine-tuned on indigenous
data with all tags.

• A.2: Parent model fine-tuned on indigenous
data without quality tags (keeping only the
language and variant tags)

• A.3: Ensemble model of A.1 and A.2

3.2 Model B

Model B is a multilingual one-to-many model that
reproduces the Model B setup from 2021 with up-
dated training data.

The training takes place in three phases. In the
first phase, the model is trained on 91% of Spanish–
English data and 9% of data coming from the in-
digenous languages. The two English sets, news
and opensubs, were assigned the same weight to
avoid overfitting on subtitle data. In the second
phase, the proportion of Spanish–English data is

12We use the NLLB-200’s 3.3B variant as the teacher.
https:/huggingface.co/facebook/nllb-200-3.3B

reduced to 37%, with the remainder sampled to
equal amounts from the indigenous languages.

We train the first phase for 100k steps and pick
the best intermediate savepoint according to the
English validation set, which occurred after 80k
steps. We initialize phase 2 with this savepoint
and continue training until 200k steps. We then
pick the five most promising savepoints based on
the accuracy of the concatenated development sets,
and select the best out of these five for each target
language separately.

Starting from these savepoints, we added a third
phase with language-specific finetuning, using 40%
of English data and 60% of the individual target-
language data. We trained these models for an addi-
tional 12k steps and selected the best intermediate
savepoint. However, language-specific finetuning
only increased the results for Ashaninka, Guarani
and Raramuri. For the other languages, we used
the best model savepoint from the second phase.

3.3 Model C

Model C is a set of 11 different language-specific
models following the same strategy as Model B,
trained with OpusTrainer.13 OpusTrainer is a tool
for curriculum learning, especially designed for
multilingual scenarios, since it allows to specify the
desired mixture of datasets from different language
sources.

Similarly to Model B, the training takes place in
three phases. We train our models with all the avail-
able data for all language pairs with the following
configuration: (1) First, we train for one epoch with
90% of the es–en data and 10% of indigenous data,
coming from each of the 11 indigenous languages.
(2) Then, we train two epochs with a 50/50 dis-
tribution. Finally, (3) we add a language-specific
fine-tuning step, where we train with a distribution
of 10% of es–en data, 10% of es–indigenous and
80% of the desired language until convergence with
early-stopping.

For inference, we ensemble the last four check-
points with different combinations (1, 1-2, 1-2-3,
1-2-3-4) for each model. We select the best ensem-
ble approach for each language pair based on the
development set scores.

3.4 Model D

Model D is a multilingual modular sequence-to-
sequence Transformer model (Vázquez et al., 2020;

13https://github.com/hplt-project/OpusTrainer
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Escolano et al., 2021). It is trained to perform
Spanish-to-many translation, as well as a denoising
auto-encoding objective (Lewis et al., 2020) for
each of the 11 indigenous languages as well as
English. Each model consists of 12 layers: a 6-
layer Spanish encoder and decoders that share s
layers followed by 6− s language-specific layers.
We trained distinct models with s = 1, 2, 3. Model
D is set to s = 1 since it outperformed the others
with respect to ChrF scores in the development set.
Training details are given in Appendix B.

4 Results

Our results are shown in Table 3 with the official
automatic evaluation metric, ChrF (Popović, 2015).
We also include the results of this year’s baseline
and the best of the contenders for each of the target
languages.

The baseline turned out to be quite hard to beat:
for five languages (hch, nah, oto, shp, tar), the
best submission was less than 2 ChrF points above
the baseline. The competition among participants
was also very tight this year: for the same five lan-
guages, there is less than 1 ChrF point difference
between the first and second participant. Differ-
ences of less than 2 ChrF points can be observed
for two additional languages (cni, gn). We believe
that conducting significance testing to compare the
participants’ results would be beneficial in this sce-
nario.

Regarding our models, Model B is our clear best-
performing system. It reached first rank on 4 out of
the 11 language pairs and third rank on two other
occasions. Model B consistently outperformed
all our other models. Its good performance can
be attributed to its pre-training phase on Spanish-
English data including a small percentage of the
indigenous data. For this model, we also focused
our efforts in checkpoints’ selection. Further anal-
ysis will be required to investigate the performance
differences between our models B and C, which
used the same overall setup but show various minor
differences in terms of toolkits, hyperparameters
and curriculum definition.

The variants of Model A perform very similarly
to each other, although removing the quality tags
(A.2) leads to a significant increase for es–shp.
Comparing models A and model B, our results indi-
cate that training a multilingual model jointly from
scratch is more beneficial than transfer learning
approaches.

Model C seems to be on par with models A, al-
though it works particularly well for es–czn. With
Model C, we expected that language-specific fine-
tuning would boost results. If we compare mod-
els B and C, our results match previous research,
where it is stated that low-resource translation bene-
fits from jointly-trained multilingual models (John-
son et al., 2017).

Finally, while Model D works well for es–shp,
outperforming models C and A.2, we observe that
in general it yields poor results. Nonetheless, we
decided to use it anyway to test it in a real use
case. Specifically for Model D, we were inter-
ested in testing the knowledge transfer capabili-
ties of modular systems in low-resource multilin-
gual scenarios. Indeed, these systems have demon-
strated efficient transfer learning properties (Es-
colano Peinado, 2022). However, in this set of
experiments, Model D lags behind our other non-
modular systems for all other languages, indicating
that perhaps the data available to train the language-
specific modules was insufficient or that the param-
eter sharing strategies we chose were not optimal.
In our experiments we also noticed that the modular
systems ignore the variant and quality tags, which
hampers their performance due to the imbalance
of training resources. This can be seen in the case
of es-czn, where the model is unable to learn the
variant of the test set due to the unbalanced amount
of that variant in the training data (only 5%).

5 Conclusions

In this paper, we have presented our contribution
to the AmericasNLP 2023 Shared Task. We have
described our efforts in terms of data collection
and processing. We presented our 6 submissions to
the task for all language pairs. We explore various
setups for multilingual NMT, including knowledge
distillation, transfer learning, multilingual NMT
with English, language-specific fine-tuning, and a
multilingual modular system.

Our strongest system follows the same architec-
ture as our winning submission in 2021, which was
used as the baseline for this year. There are two
main differences between our current submission
and the baseline:

• Additional training data: the amount of added
resources varies across the languages, and not
all of our collection efforts seem to have paid
off. While results improved substantially for
Guarani, no significant improvements could
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Data Model Run aym bzd cni czn gn hch nah oto quy shp tar Average

dev baseline 32.7 23.8 26.8 – 31.1 29.9 29.8 14.7 33.8 31.7 19.6 27.39

A.1 1 36.0 19.6 26.0 13.5 34.8 29.3 27.6 13.1 35.9 22.4 18.4 25.15
A.2 2 35.3 18.2 26.9 13.0 34.8 28.8 27.8 13.1 35.9 27.2 18.1 25.37
A.3 4 36.4 19.7 26.0 13.5 36.0 29.3 29.0 13.2 36.4 23.7 18.0 25.56
B 6 37.2 21.9 29.2 17.0 38.3 31.7 31.2 14.5 34.0 34.3 20.3 28.15
C 3 34.8 18.9 26.5 14.4 35.1 29.0 27.3 13.2 33.9 21.5 18.6 24.84
D 5 23.1 10.4 20.5 7.0 29.7 19.8 21.4 9.4 26.5 22.5 13.3 18.51

test baseline 28.30 16.50 25.80 – 33.60 30.40 26.60 14.70 34.30 32.90 18.40 26.15
best contender 36.24 26.08 29.98 39.97 39.34 32.25 27.33 14.81 39.52 33.43 18.74 –

A.1 1 32.31 20.18 25.18 21.89 37.23 29.47 23.96 13.93 36.22 19.66 17.67 25.25
A.2 2 31.98 19.19 25.99 21.67 36.60 29.48 25.61 14.23 36.49 25.41 17.45 25.83
A.3 4 32.52 20.28 25.14 22.61 37.97 29.90 25.82 14.11 37.19 20.51 17.04 25.74
B 6 33.44 22.45 28.41 32.07 40.42 32.34 26.87 15.30 33.29 33.35 19.15 28.83
C 3 32.34 20.06 25.62 26.73 37.38 30.76 23.72 13.92 34.97 19.68 18.43 25.78
D 5 21.86 11.16 19.60 7.17 31.15 21.01 19.87 10.66 27.72 22.85 12.92 18.72

Table 3: ChrF scores for the six submissions, computed on the development and test set. The Run column provides
the numeric IDs with which our submissions are listed in the overview paper. In addition, we provide the baseline
and the best competitor scores for each target language.

be observed for Nahuatl and Quechua. For
Bribri, the model generalizes better to the test
set than in 2021, but is still far behind the best
contender.

• Inclusion of variant and quality tags: the ex-
periments with Model A suggest that variant
and quality tags can help, but that our current
attribution of tags was not optimal. It could
be promising to base the tags on more objec-
tive criteria like character and word overlap or
alignment quality.

These two additions have allowed us to beat our
own baseline.
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A OpusFilter settings

The following filters were used for the training
data except for back-translated data, Bibles and the
OpenSubtitles data for Model A:

• LengthFilter: Remove sentences longer than
1000 characters. Applied to Aymara, Chatino,
Nahuatl, Quechua, Raramuri.

• LengthRatioFilter: Remove sentences with
character length ratio of 4 or more. Ap-
plied to Ashaninka, Aymara, Chatino,
Guarani, Hñähñu, Nahuatl, Quechua, Rara-
muri, Wixarika.

• CharacterScoreFilter: Remove sentences for
which less than 90% characters are from the
Latin alphabet. Applied to Aymara, Quechua,
Raramuri.

• TerminalPunctuationFilter: Remove sen-
tences with dissimilar punctuation; threshold
-2 (Vázquez et al., 2019). Applied to Aymara,
Quechua.

• NonZeroNumeralsFilter: Remove sentences
with dissimilar numerals; threshold 0.5
(Vázquez et al., 2019). Applied to Aymara,
Quechua, Raramuri, Wixarika.

The Bribri and Shipibo-Konibo corpora seemed
clean enough that we did not apply any filters for
them.

After generating the Bible data, we noticed that
some of the lines contained only a single ’BLANK’
string. The segments with these lines were removed
afterwards.

From the provided monolingual datasets, we fil-
tered out sentences with more than 500 words.

The back-translated data was filtered with the
following filters:

• LengthRatioFilter with threshold 2 and word
units

• CharacterScoreFilter with Latin script and
threshold 0.9 on the Spanish side and 0.7 on
the other side

• LanguageIDFilter with a threshold of 0.8 for
the Spanish side only.

The OpenSubtitles data for Model A was filtered
with the following filters:
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• LengthRatioFilter with threshold of 3 and
word units.

• CharacterScoreFilter with Latin script and
threshold 0.75 on both sides.

• AlphabetRatioFilter with a default threshold
of 0.75.

• LongWordFilter with a default maximum
length of 40.

• AverageWordLengthFilter with default values
of minimum length of 2 and maximum length
of 20.

B Hyperparameters

Models A use a 6-layered Transformer with 8
heads, 512 dimensions in the embeddings and
2,048 dimensions in the feed-forward layers. The
batch size is 1,000 sentence-pairs. The Adam op-
timizer is used with β1=0.9 and β2=0.98. The
models are trained until convergence with early-
stopping on development data after ChrF has
stalled 10 times.

Model B uses a 8-layered Transformer with 16
heads, 1,024 dimensions in the embeddings and
4,096 dimensions in the feed-forward layers. The
batch size is 9,200 tokens in phase 1 and 4,600
tokens in phase 2, with an accumulation count of
4. The Adam optimizer is used with beta1=0.9 and
β2=0.997. The Noam decay method is used with
a learning rate of 2.0 and 16000 warm-up steps.
Subword sampling is applied during training (20
samples, α = 0.1). As a post-processing step,
we removed the <unk> tokens from the outputs of
Model B.

Model C uses a 6-layered Transformer with
8 heads, 512 dimensions in the embeddings and
2,048 dimensions in the feed-forward layers. The
batch size is 1,000 sentence-pairs. The Adam opti-
mizer is used with β1=0.9 and β2=0.98.

Model D was trained for a total of 150K steps
to minimize the negative log-likelihood of the
target translation. We accumulate gradients over
all translation directions before back-propagation,
using AdaFactor (Shazeer and Stern, 2018) with
learning rate of 3.0. We trained the model on 4
AMD MI100 GPUs for ∼48hrs. The 8-headed
Transformer layers have 512 dimensions in the self
attention and 2,048 in the feed forward sub-layers.
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Aymara
aym

� GlobalVoices (Tiedemann, 2012; Prokopidis et al., 2016)

⋆ BOconst: https://www.kas.de/c/document_library/get_file?uuid=
8b51d469-63d2-f001-ef6f-9b561eb65ed4&groupId=288373

⋆ FLORES-200: https://github.com/facebookresearch/flores

⋆¹ NLLB-MD: https://github.com/facebookresearch/flores

⋆ OPUS: Mozilla-I10n, wikimedia (Tiedemann, 2012)

⋆ UDHR: https://searchlibrary.ohchr.org/search?ln=en&cc=UDHR+
Translation+Collection

⋆¹ GlobalVoices (en-aym) (Tiedemann, 2012; Prokopidis et al., 2016)

⋆� OPUS: Wikipedia (Tiedemann, 2020)

[ ayr-x-bible-2011-v1

Bribri
bzd

� (Feldman and Coto-Solano, 2020)

⋆ MEP: https://mep.go.cr/educatico/minienciclopedias-pueblos-
indigenas

⋆ IUCN: https://portals.iucn.org/library/sites/library/files/
documents/2016-071.pdf

[ bzd-x-bible-bzd-v1

Ô https://github.com/AmericasNLP/americasnlp2021/blob/main/
data/bribri-spanish/orthographic-conversion.csv

Ashaninka
cni

� https://github.com/hinantin/AshaninkaMT (Ortega et al., 2020; Cushi-
mariano Romano and Sebastián Q., 2008; Mihas, 2011)

⋆� ShaShiYaYi (Bustamante et al., 2020): https://github.com/iapucp/
multilingual-data-peru

[ cni-x-bible-cni-v1

Chatino
czn

� https://scholarworks.iu.edu/dspace/handle/2022/21028

⋆ MXconst: https://constitucionenlenguas.inali.gob.mx/

⋆¹ CTP-ENG: https://github.com/AmericasNLP/americasnlp2023

[ cta-x-bible-cta-v1, ctp-x-bible-ctp-v1, cya-x-bible-cya-v1

Guarani
gn

� (Chiruzzo et al., 2020)

⋆ PYconst: http://ej.org.py/principal/constitucion-nacional-en-
guarani/

⋆ News: https://spl.gov.py/es/index.php/noticias & https://www.
spl.gov.py/gn/index.php/marandukuera

⋆ Jojajovai: https://github.com/pln-fing-udelar/jojajovai

⋆ FLORES-200: https://github.com/facebookresearch/flores

⋆¹ NLLB-seed: https://github.com/facebookresearch/flores

⋆ UDHR: https://searchlibrary.ohchr.org/search?ln=en&cc=UDHR+
Translation+Collection

(Continues on next page)
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Guarani
(cont.)

⋆ OPUS: GNOME, Mozilla-I10n, Tatoeba, Ubuntu, wikimedia (Tiedemann,
2012)

⋆� OPUS: Wikipedia (Tiedemann, 2020)

[ gug-x-bible-gug-v1

Wixarika
hch

� https://github.com/pywirrarika/wixarikacorpora (Mager et al.,
2018)

⋆ MXconst: https://constitucionenlenguas.inali.gob.mx/

⋆ corpora.wixes, paral_own, segcorpus.wixes: https://github.com/
pywirrarika/wixarikacorpora

⋆� social.wix: https://github.com/pywirrarika/wixarikacorpora

[ hch-x-bible-hch-v1

Ô https://github.com/pywirrarika/wixnlp/blob/master/normwix.py
(Mager Hois et al., 2016)

Nahuatl
nah

� Axolotl (Gutierrez-Vasques et al., 2016)

⋆ MXConst: https://constitucionenlenguas.inali.gob.mx/

⋆ Educational: https://nawatl.com/category/textos/

⋆ Dict: https://nahuatl.wired-humanities.org/

⋆ Short stories: https://nahuatl.org.mx/cuentos-nahuatl-14-
ejemplares-para-descargar/

⋆ INPImonograph: https://www.gob.mx/inpi/documentos/monografia-
nacional-los-pueblos-indigenas-de-mexico & https://www.gob.
mx/inpi/documentos/libros-en-lenguas-indigenas

⋆ UDHR: https://searchlibrary.ohchr.org/search?ln=en&cc=UDHR+
Translation+Collection

⋆ OPUS: Tatoeba, wikimedia (Tiedemann, 2012)

⋆� OPUS: Wikipedia (Tiedemann, 2020)

[ azz-x-bible-azz-v1, ncj-x-bible-ncj-v1, nhi-x-bible-nhi-v1

Hnähñu
oto

� Tsunkua: https://tsunkua.elotl.mx/about/

⋆ MXConst: https://constitucionenlenguas.inali.gob.mx/

⋆ Dictionary: http://xixona.dlsi.ua.es/~fran/ote-spa.tsv

⋆ UDHR: https://searchlibrary.ohchr.org/search?ln=en&cc=UDHR+
Translation+Collection

[ ote-x-bible-ote-v1

Quechua
quy

� JW300 (quy+quz) (Agić and Vulić, 2019)

⋆ MINEDU, dict_misc: https://github.com/AmericasNLP/
americasnlp2021/tree/main/data/quechua-spanish

⋆ PEconst: https://www.wipo.int/edocs/lexdocs/laws/qu/pe/pe035qu.
pdf

(Continues on next page)
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Quechua
(cont.)

⋆ BOconst: https://www.kas.de/documents/252038/253252/7_
dokument_dok_pdf_33453_4.pdf/9e3dfb1f-0e05-523f-5352-
d2f9a44a21de?version=1.0&t=1539656169513

⋆ UDHR (3 versions): https://searchlibrary.ohchr.org/search?ln=en&
cc=UDHR+Translation+Collection

⋆ FLORES-200: https://github.com/facebookresearch/flores

⋆¹ JW300 (en–quy, en–quz) (Agić and Vulić, 2019)

⋆ OPUS: GNOME, Mozilla-I10n, Tatoeba, Ubuntu, wikimedia (Tiedemann,
2012)

⋆� OPUS: Wikipedia (Tiedemann, 2020)

[ quy-x-bible-quy-v1, quz-x-bible-quz-v1

Shipibo-
Konibo
shp

� (Galarreta et al., 2017; Montoya et al., 2019)

⋆ Educational, Religious: http://chana.inf.pucp.edu.pe/resources/
parallel-corpus/

⋆ LeyArtesano: https://cdn.www.gob.pe/uploads/document/file/
579690/Ley_Artesano_Shipibo_Konibo_baja__1_.pdf

⋆ Tsanas: http://chana.inf.pucp.edu.pe

⋆ Covid19: https://github.com/iapucp/covid19-multilingue-peru

⋆ UDHR: https://searchlibrary.ohchr.org/search?ln=en&cc=UDHR+
Translation+Collection

⋆� ShaShiYaYi (Bustamante et al., 2020): https://github.com/iapucp/
multilingual-data-peru

[ shp-SHPTBL

Raramuri
tar

� (Brambila, 1976)

⋆ MXConst: https://constitucionenlenguas.inali.gob.mx/

[ tac-x-bible-tac-v1

Ô https://github.com/AmericasNLP/americasnlp2021/pull/5

English
en

⋆ OPUS: Europarl, GlobalVoices, News-Commentary, TED2020, Tatoeba, Open-
Subtitles (Tiedemann, 2012)

[ OPUS: bible-uedin (Christodoulopoulos and Steedman, 2015)

Spanish [ spa-x-bible-americas, spa-x-bible-hablahoi-latina, spa-x-bible-lapalabra, spa-
x-bible-newworld, spa-x-bible-nuevadehoi, spa-x-bible-nuevaviviente, spa-x-
bible-nuevointernacional, spa-x-bible-reinavaleracontemporanea

Table 4: Data resources used for training. � refers to the official training data provided by the organizers. ⋆
marks datasets from the extra categories already used in 2021, and ⋆ refers to new extra data. [ designates Bible
identifiers from the JHUBC. Datasets marked with � are created using backtranslation, datasets marked with ¹
using pivot translation from English to Spanish. Conversion tables and scripts are listed under Ô.
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Abstract

In this paper we describe the University of
Sheffield’s submission to the AmericasNLP
2023 Shared Task on Machine Translation into
Indigenous Languages which comprises the
translation from Spanish to eleven indigenous
languages. Our approach consists of extending,
training, and ensembling different variations
of NLLB-200. We use data provided by the
organizers and data from various other sources
such as constitutions, handbooks, news articles,
and backtranslations generated from monolin-
gual data. On the dev set, our best submission
outperforms the baseline by 11% average chrF
across all languages, with substantial improve-
ments particularly for Aymara, Guarani and
Quechua. On the test set, we achieve the high-
est average chrF of all the submissions, we rank
first in four of the eleven languages, and at least
one of our submissions ranks in the top 3 for
all languages.1

1 Introduction

The 2023 AmericasNLP Shared Task (Ebrahimi
et al., 2023) involves developing machine trans-
lation systems for translating from Spanish to
eleven low resource indigenous languages: Ay-
mara (aym), Bribri (bzd), Asháninka (cni), Chatino
(czn), Guarani (gn), Wixarika (hch), Nahuatl (nah),
Hñähñu (oto), Quechua (quy), Shipibo-Konibo
(shp), and Rarámuri (tar). Developing machine
translation systems for these languages is chal-
lenging since many of them are polysynthetic (i.e.,
words are composed of several morphemes) and
word boundaries are not standardized; they present
different orthographic variations (e.g., classical
vs. modern Nahuatl variations); presence of code-
switching is common, among other difficulties of
low resource settings.

1We release code for training our models here: https:
//github.com/edwardgowsmith/americasnlp-2023-she
ffield

Previous work has explored the effectiveness of
pretrained machine translation models in low re-
source settings (Haddow et al., 2022) showing their
impact on improving translation quality and ad-
dressing data scarcity challenges. Following this
approach, our submissions to the 2023 Americas-
NLP shared task consist of extending and finetun-
ing various versions of NLLB-200 (Costa-jussà
et al., 2022), a state-of-the-art machine transla-
tion model specifically designed for low resource
settings. NLLB-200 is trained on 202 languages
across 1 220 language pairs, including three of the
languages present in the AmericasNLP shared task:
aym, gn, and quy.2 We further train our models
on data from various sources such as constitutions
and news articles, and we leverage multilingual
training and ensembling to improve their perfor-
mance. Models are evaluated using chrF (Popović,
2015), the official metric of the task. On the test
set, we achieve the highest average chrF across all
languages, and the best chrF for four of the lan-
guages.

The rest of the paper is organised as follows:
Section 2 describes the data sources for training our
models, Section 3 explains our three submissions in
detail, Section 4 presents the results on the dev and
test sets, Section 5 analyses the impact of different
factors to the model’s performance, Section 6 looks
at zero-shot capabilities, and we draw conclusions
in Section 7.

2 Data

2.1 Data Collection

We collect data from a variety of data sources, in-
cluding training data provided by the organisers
(AmericasNLP 2023), data from prior submissions
to the AmericasNLP shared task (Helsinski and
REPUcs) and relevant datasets specific to the in-

2We present inference results on the dev set for these mod-
els in Table 4.
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Language AmericasNLP 2023 Helsinki REPUcs NLLB Train Total Backtranslations Bibles

aym 15,586 149,225 10,729 8,809 173,620 16,750 154,520
bzd 7,508 7,508 38,502
cni 3,883 3,883 13,192 38,846
czn 3,118 3,118
gn 26,032 1,713 7,906 33,938 40,515 39,457
hch 8,966 2,404 11,370 510 39,756
nah 16,145 19,993 8,703 39,772
oto 4,889 3,834 8,723 537 39,726
quy 542,914 3,634 557,277 154,825
shp 14,592 14,656 29,248 23,592 79,341
tar 14,721 3,856 18,577 39,444

Table 1: Amount of parallel data collected for each language. AmericasNLP 2023: parallel training data provided
by the organizers, Helsinski: data taken from Vázquez et al. (2021), REPUcs: data taken from Moreno (2021),
NLLB: data from Costa-jussà et al. (2022), Backtranslations: back-translations created from monolingual data,
Bibles: data from The JHU Bible corpus (McCarthy et al., 2020).

digenous languages included in the task (NLLB).
Table 1 shows the size of the training data for each
language. The total amount of training data is un-
evenly distributed among datasets, with Quechua
(557 277), Aymara (173 620), and Guarani (33 938)
having the greatest amount of training data.

AmericasNLP 2023 Data provided by the or-
ganisers of the 2023 AmericasNLP Shared Task
includes parallel datasets for training the eleven
languages. Table 8 contains all datasets and refer-
ences.

Helsinski We take data from OPUS (Tiedemann,
2012) and other sources (including constitutions)
provided by the University of Helsinski’s submis-
sion (Vázquez et al., 2021) to the AmericasNLP
2021 Shared Task (Mager et al., 2021). The col-
lected data from constitutions includes translations
of the Mexican constitution into Hñähñu, Nahuatl,
Raramuri and Wixarika, of the Bolivian constitu-
tion into Aymara and Quechua, and of the Peruvian
constitution into Quechua.

REPUcs We use data collected for the REPUcs’
submission to the 2021 AmericasNLP shared task
(Moreno, 2021). They introduce a new parallel
corpus with Quechua data from three sources: (1)
Duran (2010), which contains poems, stories, rid-
dles, songs, phrases and a vocabulary for Quechua;
(2) Lyrics translate (2008) which provides differ-
ent lyrics of poems and songs; and (3) a Quechua
handbook (Iter and Ortiz Cárdenas, 2019).

NLLB We use two datasets introduced by Costa-
jussà et al. (2022) as part of the training and evalu-
ation for NLLB-200: (1) the NLLB Multi-Domain
dataset, which provides 8 809 English-Aymara ex-

amples in the news, health, and unscripted chat
domains and (2) the NLLB Seed dataset, which
contains 6 193 English-Guarani examples consist-
ing of professionally-translated sentences.

Bibles We also collect translations from the JHU
Bible corpus (McCarthy et al., 2020), which pro-
vides translations of the bible for all languages of
the Shared Task except for Chatino. However, we
do not observe performance improvements from
using this data in our experiments (Section 5).

2.2 Backtranslations

We generate backtranslations using the monolin-
gual data sourced by Vázquez et al. (2021) for
seven languages. This data comes from Busta-
mante et al. (2020), Tiedemann (2020), Mager et al.
(2018), Tiedemann (2012), and Agić and Vulić
(2019). We train NLLB-200 3.3B on X-es for all
11 languages, X, in the task. We take two check-
points of this model at different stages of training
(backtrans 1 and backtrans 2). We find this data
improve performance for two of the languages in
the task (gn and shp, see Section 4).

2.3 Data Overlap

We note that NLLB-200, the pretrained machine
translation model we base our experiments on (see
Section 3) is trained on a portion of the collected
data. Specifically, Spanish-Aymara and English-
Aymara data from GlobalVoices, and Spanish-
Quechua data from Tatoeba, both as part of OPUS.
We believe that the inclusion of this data will still
be beneficial to the model, since NLLB-200 is not
optimised for the languages we are interested in as
part of this task.
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Model aym bzd cni czn gn hch nah oto quy shp tar mean

Baseline
(Vázquez et al., 2021) 32.7 23.8 26.8 - 31.1 29.9 29.8 14.7 33.8 31.7 19.6 27.4

Submission 3
NLLB-1.3B (single best) 39.1 24.5 30.5 40.1 35.5 31.8 30.1 14.7 35.8 32.2 19.4 29.4

Submission 2

30.3

NLLB-1.3B (best per lang) 24.6
NLLB-3.3B 38.8
NLLB-1.3B (- NLLB Seed) 41.1
NLLB-1.3B (+ backtrans 1) 36.9
NLLB-1.3B (+ backtrans 2) 35.4

Submission 1

30.5

Ensemble 1 25.1
Ensemble 2 40.2
Ensemble 3 31.8
Ensemble 4 39.1
Ensemble 5 20.0

Table 2: Dev set chrF scores for our three submissions. Here, the mean excludes czn.

2.4 Data Processing
The training data provided by the organisers is to-
kenised for nah and oto. We detokenise it to put
it in line with the rest of the training data. We
replace punctuation not included in NLLB-200’s
vocabulary. For oto, we find that 7% of the dev
set contains characters not in the vocabulary, since
these characters do not occur in the training sets,
we don’t take steps to handle them. For czn, we
replace all superscript tone markings at the end of
words with their standard counterparts, and then
replace them naively back at inference.

3 Models

To tackle the 2023 AmericasNLP task on auto-
matic translation of eleven low resource indige-
nous languages, we use NLLB-200 (Costa-jussà
et al., 2022), a state-of-the-art machine translation
model specifically designed for low resource set-
tings. We experiment with different distilled ver-
sions of NLLB-200 with 600M and 1.3B param-
eters, and the version with 3.3B parameters. Al-
though inference results on three languages3 show
that the largest version, NLLB-3.3B, performs bet-
ter than smaller versions (see Table 4), due to the
large computational cost of using NLLB-3.3B we
run most of our experiments with the 1.3B distilled
version. Models are fine-tuned on all the training
data (Train Total), i.e. all data sources in Section 2
excluding Bibles and backtranslations, unless in-
dicated. Moreover, we look at ensembling as an
approach to improve the overall performance.

3NLLB-200 training data includes aym, gn and quy.

Submission 3 We train NLLB-200 1.3B distilled
on the training data4 and we choose the best check-
point based on average chrF across all languages.
We submit translations for all languages using this
model (NLLB-1.3B (single best)).

Submission 2 We take the best-performing single
model per language, excluding ensembles. We find
that for the majority of languages, the best single
model (by dev chrF) is the same as Submission 3,
so we only submit additional translations for five
languages:

• NLLB-1.3B (- NLLB Seed) - aym NLLB-
1.3B trained on all data (Train Total) except
for NLLB Seed.

• NLLB-1.3B (best per lang) - bzd NLLB-
1.3B trained on all data.

• NLLB-1.3B (+ backtrans 1) - gn NLLB-
1.3B trained on all data plus backtranslations
from checkpoint 1.

• NLLB-3.3B - quy NLLB-3.3B trained on all
data.

• NLLB-1.3B (+ backtrans 2) - shp NLLB-
1.3B trained on all data plus backtranslations
from checkpoint 2.

Submission 1 We experiment with various en-
sembles of models in attempt to improve perfor-
mance further – we only find improvements over
Submission 2 through ensembling for five of the

4We exclude Bibles data and backtranslations.
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Submission aym bzd cni czn gn hch nah oto quy shp tar mean

3 35.3 24.5 28.5 39.9 39.1 32.0 27.3 14.8 37.2 28.6 18.4 29.6
2 36.2 24.4 39.3 39.3 33.4 30.3
1 25.0 40.0 32.3 39.5 18.7 30.5

Table 3: Test set chrF scores for our three submissions. Here, the mean includes all languages.

Model quy aym gn

Baseline
(Vázquez et al., 2021) 33.8 32.7 31.1

Inference
600M distilled 30.0 34.2 32.5
1.3B distilled 31.0 35.2 35.2
1.3B 31.2 34.5 34.3
3.3B 32.9 35.4 35.6

Submission
3 35.8 39.1 35.5
2 38.8 41.1 36.9
1 39.1 - -

Table 4: Dev set chrF results for various NLLB-200
models, compared to the baseline and our submissions.

languages in the task. These selected ensembles
are as follows:

• Ensemble 1 - bzd The best NLLB-1.3B model
for bzd and an NLLB-600M model trained on
all languages.

• Ensemble 2 - czn The best average NLLB-
1.3B model and an NLLB-3.3B model trained
on all languages.

• Ensemble 3 - hch The best average NLLB-
1.3B model and an NLLB-600M model
trained on all languages.

• Ensemble 4 - quy NLLB-3.3B trained on all
languages, NLLB-3.3B trained on just the
three supported languages (aym, gn, and quy),
and NLLB-1.3B trained on all languages.

• Ensemble 5 - tar NLLB-1.3B trained on all
languages, NLLB-600M trained on all lan-
guages, and NLLB-1.3B trained on all lan-
guages with a label smoothing of 0.2 (rather
than 0.1).

3.1 Experimental Setup

We train the models in a multilingual fashion across
all 11 language pairs present in the task, extending
the embedding matrix to cover the tags for the new
languages. We experiment with freezing various

parameters, but find best results from training ev-
erything. We run our experiments on a single A100
GPU with batch sizes of 64, 16, and 2 for the 600M-
, 1.3B-, and 3.3B-parameter models, respectively.
We run our experiments in fairseq (Ott et al., 2019).
Full hyperparameters for all of our runs are pro-
vided in Table 7. To evaluate our models, following
the official evaluation, we use chrF (Popović, 2015)
computed using SacreBLEU (Post, 2018) with sig-
nature: nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.1.0.

4 Results

4.1 Dev Set Results

Table 2 presents the results of our models on the dev
set. We observe that for all languages, at least one
of our models outperforms the baseline (Vázquez
et al., 2021), with the exception of oto where we
obtain comparable performance. The greatest im-
provements over the baseline model are on the
three NLLB supported languages: aym (41.1 com-
pared to 32.7), gn (36.9 compared to 31.1) and quy
(39.1 compared to 33.8). We note that backtransla-
tions only lead to improved performance on gn and
shp, which are the two languages with the greatest
amount of available monolingual data.

Inference results NLLB-200 is trained on data
from three of the languages in this shared task: quy,
aym, gn. Table 4 shows the inference results for
these languages on the dev set for different vari-
ations of NLLB-200 models, along with our sub-
missions. We observe a considerable improvement
from the distilled 600M to 1.3B distilled models,
with the greatest improvement over the baseline
model for gn. We note that the 1.3B and 3.3B mod-
els outperform the baseline model for aym and gn.
For quy, the inference results are worse than the
baseline, likely due to the large amount of training
data available in the task. We are able to improve
substantially upon the inference results for quy and
aym, but much less so for gn – this may be due
to much less training data being available for gn
compared to the other two languages.
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Model aym bzd cni czn gn hch nah oto quy shp tar mean

NLLB-1.3B (single best) 39.1 24.5 30.5 40.1 35.5 31.8 30.1 14.7 35.8 32.2 19.4 30.3
NLLB-3.3B only quy 35.3
NLLB-3.3B all langs 38.3
1.3B random initialisation 21.9 17.6 24.2 33.7 22.8 25.1 24.3 13.7 22.9 22.2 16.9 22.3
NLLB-1.3B + bibles 38.3 24.1 30.0 38.0 35.5 30.0 28.0 14.7 35.2 31.9 18.9 28.7

Table 5: Dev set chrF scores for our additional experiments. For comparison, we reproduce the best single model as
the first row.

4.2 Test Set Results

Results on the test set are shown in Table 3. Overall,
our best submission achieves the highest average
chrF across all languages from all submissions to
the task (the second-best average is 29.4, compared
to our 30.5). We also rank first for four of the
eleven languages: aym, czn, quy, and shp. Our
biggest improvement upon the second-place team
is for czn, where we achieve 40.0 compared to
36.6. Submissions 1 and 2 rank in the top 3 for all
languages. Surprisingly, the best chrF score was
obtained on czn (40.0), the language with the least
amount of training data (3 118 examples), followed
by quy (39.5), and aym (36.5).

5 Additional Experiments

We provide the results of additional experiments
to better understand the impact of various factors
to our model’s performance. The results of these
experiments are shown in Table 5.

Multilingual training We look into whether mul-
tilingual training is beneficial to the model. For
this, we train a 3.3B-parameter model on the quy
data only, and compare this version (NLLB-3.3B
only quy) to the one trained on all languages
(NLLB-3.3B all langs) at the same number of up-
dates (480 000). We find that multilingual training
greatly improves the performance on quy, suggest-
ing the model benefits from transfer learning across
the languages. We suspect the benefit of the multi-
lingual approach is related to the fact that although
the languages included in the task are from different
linguistic families, they share linguistic properties
(e.g., polysynthetic or agglutinative).

Random initialization To analyse the benefit
of starting from NLLB-200, we train an equiv-
alent model to the 1.3B parameter version with
randomly-initialised parameters. We see that this
model performs much worse than the equivalent
NLLB-200 model. As expected, we observe the

es-shp quy-shp aym-shp gn-shp

NLLB-1.3B (+ backtrans 2) 35.4 30.5 29.3 26.7

Table 6: Dev set chrF scores for three zero-shot transla-
tion directions with our best model for es-shp.

greatest differences on the languages supported by
NLLB-200 (aym, gn, quy).

Bibles data Similar to findings of Vázquez et al.
(2021), we observe a drop in average performance
through training on the Bibles data for the major-
ity of languages except for gn and oto, where we
obtain comparable performance.

6 Zero-shot Performance

We investigate whether our models have any zero-
shot capabilities, i.e. translating a language pair
for which the model has not seen any training data.
For this, we take the best-performing model for
es-shp (NLLB-1.3B + backtrans 2), and evaluate it
on translating quy-shp, aym-shp, and gn-shp.5 The
results of these experiments are shown in Table 6.
We find that our model is able to retain decent
performance for these three zero-shot directions
(maximum 25% drop in chrF), despite training all
of the parameters of the machine translation model.

7 Conclusions

In this paper we describe our submissions to the
AmericasNLP 2023 Shared Task. We participated
with three submissions which consist of training
different versions of the NLLB-200 model on pub-
licly available data from different sources. Models
are trained in a multilingual fashion and we ex-
periment with different ensembles of models to
further improve performance. We improve upon
the inference scores for NLLB-200 3.3B for its
three supported languages, and our best submis-
sion achieved the highest average chrF across all
languages of any submission to the task.

5This is possible due to multiparallel dev sets across all
languages.
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A Hyperparameters

Hyper-parameter Value

Batch size 16†

Update freq 1
Max learning rate 0.01

Schedule inverse square root
Warmup steps 10 000
Adam betas 0.9, 0.98

Label smoothing 0.1‡

Weight decay 0.0001
Dropout 0.3

Clip norm 1e-6
Language pair temperature 3⋆

Number of updates 1M
Valid freq 40K updates + every epoch
Beam size 5

Table 7: Hyper-parameters used to train our models.
†: 64 for NLLB-600M, 2 for NLLB-3.3B.
‡: 0.2 for one of our models, used in Ensemble 5.
⋆: 1 for NLLB-3.3B models (including for backtransla-
tions)

Figure 1: Valid chrF scores during training of our best
single model (Submission 3).

Figure 2: Valid losses during training of our best single
model (Submission 3).

Dataset Source

Ortega et al. (2020)
Cushimariano Romano and Sebastián Q. (2008)ashaninka-spanish
Mihas (2011)

aymara-spanish GlobalVoices (Tiedemann, 2012)

Adolfo et al. (1998)
Solórzano (2017)
Jara Murillo (2018)
Murillo and Segura (2013)
Jara Murillo (1993)

bribri-spanish

Enrique (2005)

guarani-spanish Chiruzzo et al. (2020)

hñähñu-spanish Tsunkua https://tsunkua.elotl.mx/about/

wixarika-spanish Mager et al. (2020)

Montoya et al. (2019)shipibo_konibo-spanish
Galarreta et al. (2017)

raramuri-spanish Brambila (1976)

JW300 (Agić and Vulić, 2019)quechua-spanish GlobalVoices (Tiedemann, 2012)

nahuatl-spanish Axolotl (Gutierrez-Vasques et al., 2016)

chatino-spanish IUScholar Works
https://scholarworks.iu.edu/dspace/handle/20
22/21028

Table 8: Data provided by the organisers of the 2023
AmericasNLP
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Abstract

This paper describes CIC NLP’s submission
to the AmericasNLP 2023 Shared Task on ma-
chine translation systems for indigenous lan-
guages of the Americas. We present the sys-
tem descriptions for three methods. We used
two multilingual models, namely M2M-100
and mBART50, and one bilingual (one-to-one)
— Helsinki NLP Spanish-English translation
model, and experimented with different transfer
learning setups. We experimented with 11 lan-
guages from America and report the setups we
used as well as the results we achieved. Overall,
the mBART setup was able to improve upon the
baseline for three out of the eleven languages.

1 Introduction

While machine translation systems have shown
commendable performance in recent years, the per-
formance is lagging for low-resource languages
(Hadgu et al., 2022; Tonja et al., 2023). Since low-
resource languages suffer from a lack of sufficient
data (Siddhant et al., 2022; Haddow et al., 2022),
most models and methods that are developed for
high-resource languages do not work well in low-
resource settings. Additionally, low-resource lan-
guages are linguistically diverse and have divergent
properties from the mainstream languages in NLP
studies (Zheng et al., 2021).

Though low-resource languages lack sufficient
data to train large models, some such languages
still have a large number of native speakers (Zheng
et al., 2021). While the availability of language
technologies such as machine translation systems
can be helpful for such linguistic communities, they
could also bring harm and exposure to exploita-
tion (Hovy and Spruit, 2016). Borrowing from
human-computer interaction (HCI) studies (Schnei-
der et al., 2018), we want to acknowledge our be-
lief that low-resource language speakers should
be empowered to create technologies that benefit
their communities. Many indigenous communi-

ties have community-rooted efforts for preserving
their languages and building language technologies
for their communities 1 and we hope that methods
from Shared Tasks like this will contribute to their
efforts.

Improving machine translation systems for low-
resource languages is an active research area and
different approaches (Zoph et al., 2016; Karakanta
et al., 2018; Ortega et al., 2020a; Goyal et al., 2020;
Tonja et al., 2022; Imankulova et al., 2017) have
been to improve the performance of systems geared
forward low-resource languages. We participated
in the AmericasNLP 2023 Shared Task in hopes
of contributing new approaches for low-resource
machine translation that are likely to be helpful for
community members interested in developing and
adapting these technologies for their languages.

In recent years, large pre-trained models have
been used for downstream NLP tasks, including
machine translation (Brants et al., 2007) because of
the higher performance in downstream tasks com-
pared to traditional approaches (Han et al., 2021).
One trend is to use these pre-trained models and
fine-tune them on smaller data sets for specific
tasks (Sun et al., 2019). This method has shown
promising results in downstream NLP tasks for lan-
guages with low or limited resources (Tars et al.,
2022; Zhao and Zhang, 2022). In our experiments,
we used multilingual and bilingual models and em-
ployed different fine-tuning strategies for the eleven
languages in the 2023 Shared Task (Ebrahimi et al.,
2023).

In this paper, we describe the system setups we
used and the results we obtained from our exper-
iments. One of our systems improves upon the
baseline for three languages. We also reflect on
the setups we experimented with but ended up not
submitting in hopes that future work could improve
upon them.

1https://papareo.nz/
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2 Languages and Datasets

In this section, we present the languages and
datasets used in our shared task submission. Ta-
ble 1 provides an overview of the languages, their
linguistic families, and the numbers of parallel sen-
tences.

Language ISO Family Train Dev Test
Aymara aym Aymaran 6,531 996 1,003
Bribri bzd Chibchan 7,508 996 1,003
Asháninka cni Arawak 3,883 883 1002
Chatino czn Zapotecan 357 499 1,000
Guarani gn Tupi-Guarani 26,032 995 1,003
Wixarika hch Uto-Aztecan 8,966 994 1003
Nahuatl nah Uto-Aztecan 410,000 672 996
Hñähñu oto Oto-Manguean 4,889 599 1,001
Quechua quy Quechuan 125,008 996 1,003
Shipibo-Konibo shp Panoan 14,592 996 1,002
Rarámuri tar Uto-Aztecan 14721 995 1002

Table 1: This table provides information about the lan-
guages with which we experimented including ISO lan-
guage code and language family as well as the number
of sentences in training, development, and test sets for
each language.

Aymara is an Aymaran language spoken by the
Aymara people of the Bolivian Andes. It is one
of only a handful of Native American languages
with over one million speakers (Homola, 2012).
Aymara, along with Spanish and Quechua, is an
official language in Bolivia and Peru. The data for
the Aymara-Spanish come from the Global Voices
(Tiedemann, 2012).

Bribri The Bribri language is spoken in Southern
Costa Rica. Bribri has two major orthographies:
Jara2 and Constenla3 and the writing is not stan-
dardized which results in spelling variations across
documents. In this case, the sentences use an inter-
mediate representation to unify existing orthogra-
phies. The Bribri-Spanish data (Feldman, 2020)
came from six different sources.

Asháninka Asháninka is an Arawakan language
spoken by the Asháninka people of Peru and
Acre, Brazil4. It is primarily spoken in the Satipo
Province located in the Amazon forest. The par-
allel data for Asháninka-Spanish come mainly
from three sources (Cushimariano Romano and
Sebastián Q., 2008; Ortega et al., 2020b; Mihas,
2011) and translations by Richard Castro.

2https://www.lenguabribri.com/se-tt%C3%B6-bribri-ie-
hablemos-en-bribri

3https://editorial.ucr.ac.cr/index.php
4https://www.everyculture.com/wc/Norway-to-

Russia/Ash-ninka.html

Chatino Chatino is a group of indigenous
Mesoamerican languages. These languages are
a branch of the Zapotecan family within the Oto-
Manguean language family. They are natively spo-
ken by 45,000 Chatino people (Cruz and Woodbury,
2006) whose communities are located in the south-
ern portion of the Mexican state of Oaxaca. The
parallel data for Chatino-Spanish can be accessed
here5.

Guarani Guarani is a South American language
that belongs to the Tupi-Guarani family (Britton,
2005) of the Tupian languages. It is one of the of-
ficial languages of Paraguay (along with Spanish),
where it is spoken by the majority of the popula-
tion, and where half of the rural population are
monolingual speakers of the language (Mortimer,
2006).

Wixarika Wixarika is an indigenous language of
Mexico that belongs to the Uto-Aztecan language
family (de la Federación, 2003). It is spoken by the
ethnic group widely known as the Huichol (self-
designation Wixaritari), whose mountainous terri-
tory extends over portions of the Mexican states of
Jalisco, San Luis Potosí, Nayarit, Zacatecas, and
Durango, but mostly in Jalisco. United States: La
Habra, California; Houston, Texas.

Nahuatl Nahuatl is a Uto-Aztecan language and
was spoken by the Aztec and Toltec civilizations
of Mexico6. The Nahuatl language has no stan-
dard orthography and has wide dialectical varia-
tions (Zheng et al., 2021).

Hñähñu Hñähñu, also known as Otomí, belongs
to the Oto-Pamean family and lived in central Mex-
ico for many centuries (Lastra, 2001). Otomí is a
tonal language with a Subject-Verb-Object (SVO)
word order (Ebrahimi et al., 2022). It is spoken in
several states across Mexico.

Quechua The Quechua-Spanish data (Agić and
Vulić, 2019; Tiedemann, 2012) has three different
sources: the Jehova’s Witnesses texts, the Peru Min-
ister of Education, and dictionary entries and sam-
ples collected by Diego Huarcaya. The Quechua
language, also known as Runasimi is spoken in
Peru and is the most widely spoken pre-Columbian
language family of the Americas (Ebrahimi et al.,
2022).

5https://scholarworks.iu.edu/dspace/handle/
2022/21028

6www.elalliance.org/languages/nahuatl
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(a) Spanish-English (Helsinki) model (b) mBART50 model (c) m2m100-48inter model

Figure 1: Experiments on (a) fine-tuning bilingual model, (b) and (c) fine-tuning multilingual models. For (a) we
fine-tuned the bilingual Spanish-English model on Spanish-Indigenous pairs, for (b) we fine-tuned the multilingual
mBART50 model on Spanish-Indigenous pairs, and for (c) we fine-tuned the multilingual m2m100-48 model first
on Spanish-All to produce m2m100-48inter model and then fine-tuned the m2m100-48inter model on Spanish-
Indigenous pairs.

Shipibo-Konibo Shipibo-Konibo - Spanish data
(Montoya et al., 2019; Galarreta et al., 2017) come
from three different sources: samples from flash-
cards translated to Shipibo-Konibo, sentences trans-
lated from books for bilingual education, and dic-
tionary entries.

Rarámuri Rarámuri, also known as Tarahumara
is a Uto-Azetcan language spoken in Northern
Mexico (Caballero, 2017). Rarámuri is a polysyn-
thetic and agglutinative language spoken mainly
in the Sierra Madre Occidental region of Mexico
(Ebrahimi et al., 2022).

3 Models

We experimented with two multilingual and one
bilingual translation model with different transfer
learning setups. We used M2M-100 and mBART50
for the multilingual experiment and the Helsinki-
NLP Spanish-English model for the bilingual ex-
periment. Figure 1 shows the models used in this
experiment.

3.1 Bilingual models

For the bilingual model, as shown in Figure 1a,
we use a publicly available Spanish - English7

pre-trained model from Huggingface8 trained by
Helsinki-NLP. The pre-trained MT models re-
leased by Helsinki-NLP are trained on OPUS, an
open-source parallel corpus for covering 500 lan-
guages (Tiedemann and Thottingal, 2020; Tiede-
mann, 2020). This model is trained using the frame-
work of Marian NMT (Junczys-Dowmunt et al.,
2018). Each model has six self-attention layers in
the encoder and decoder parts, and each layer has
eight attention heads.

7https://huggingface.co/Helsinki-NLP/opus-mt-es-en
8https://huggingface.co/

We used this model with the intention that
the model trained with high-resource languages
will improve the translation performance of low-
resource indigenous languages when using a model
trained with high-resource languages. We fine-
tuned the Spanish-English model for each of the
Spanish-to-Indigenous language pairs.

3.2 Multilingual models

For multilingual models, we used the Many-to-
Many multilingual translation model that can trans-
late directly between any pair of 100 languages
(M2M100) (Fan et al., 2021) with 48M parame-
ters and a sequence-to-sequence denoising auto-
encoder pre-trained on large-scale monolingual
corpora in 50 languages (mBART50) (Tang et al.,
2020). We fine-tuned multilingual models in two
ways:

1. We fine-tuned two multilingual models on
each Spanish-Indigenous language pair for 5
epochs and evaluated their performance us-
ing the development data before training the
final submission system. As shown in Fig-
ure 1b, for the final system, we only fine-
tuned mBART50 on Spanish-indigenous data
based on the development set evaluation per-
formance.

2. Fine-tuning multilingual models first on the
Spanish - All (mixture of all indigenous lan-
guage data) dataset to produce an intermedi-
ate model and then fine-tuning the intermedi-
ate model for each of the Spanish-Indigenous
language pairs as shown in Figure 1c. For
this experiment, we combined all language
pairs’ training data to form a Spanish - all
parallel corpus, and then we first fine-tuned
m2m100-48 using a combined dataset for five
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Data Model aym bzd cni czn gn hch nah oto quy shp tar Average
Baseline 28.3 16.5 25.8 - 33.6 30.4 26.6 14.7 34.3 32.9 18.4 -

M1 12.25 20.3 26.65 - 23.83 11.09 29.55 6.57 35.04 20.99 14.12 20.03
M2 20.65 18.59 20.63 - 20.40 12.7 18.66 10.17 33.53 21.03 13.54 18.99
M3 14.70 19.9 25.62 - 23.62 11.82 29.94 7.94 35.3 21.32 14.19 20.43Dev

M4 20.89 12.17 23.59 - 20.84 13.51 22.63 7.16 30.86 18.02 12.60 18.22
M2 19.05 19.90 23.50 14.41 19.35 12.05 21.88 9.22 34.15 20.43 13.86 18.89
M3 18.52 21.17 25.85 15.61 21.75 13.88 26.57 7.40 35.62 21.26 14.87 20.22Test
M4 18.59 13.24 23.79 13.64 20.94 14.67 22.60 7.28 32.75 18.13 12.07 17.97

Table 2: chrF2 scores for the three submissions, computed on the development and test sets. M1, M2, M3, and M4
represent M2M100-48, M2M100-48inter, mBART50 and Helsinki-NLP models respectively. The development set
evaluations are used to select the best-performing model before working on submission data. The development set
was not trained when evaluating the dev set, but we included the dev set during training for the final submission.
The bold results show the models that out-preforms the baseline (Vázquez et al., 2021) results. The bold results
show out-preforming models from our three model setups(excluding the baseline) for each individual language.

epochs and saved the model, here referred
to as m2m100-48inter model. We fine-tuned
the m2m100-48inter model again on each
Spanish-Indigenous language pair for another
5 epochs and evaluated the performance on
the development set before training the final
submission system.

Evaluation We used chrF2 (Popović, 2017) evalu-
ation metric to evaluate our MT systems.

4 Results

We submitted three (two multilingual and one
bilingual) systems, as shown in Table 2, namely
m2m100-48inter, mBART50, and Helsinki-NLP.
We included the dev set performance for all the
models we trained before the final model to com-
pare the results with the final model evaluated by
using test set data. From the dev set result, it can
be seen that fine-tuning the multilingual model on
the Spanish-Indigenous language pair outperforms
the fine-tuned result of the bilingual and m2m100-
48inter models. From all the models evaluated us-
ing the dev set, mBART50 outperformed the others
on average.

Our test results show comparable results when
compared to the strongest baseline shared by the
AmericasNLP 2023, and our model outperformed
the baseline for Spanish-Bribri (es-bzd), Spanish-
Asháninka (es-cni), and Spanish-Quechua (es-quy)
pairs. Similarly, mBART50 outperformed the other
models on average on the test set.

5 Conclusion

In this work, we present the system descriptions
and results for our submission to the 2023 Ameri-
casNLP Shared Task on Machine Translation into

Indigenous Languages. We used pre-trained mod-
els and tested different fine-tuning strategies for
the eleven languages provided for the shared task.
We used one bilingual (Helsinki NLP English-
Spanish model) and two multilingual (M2M-100
and mBART50) models for our experiments. In ad-
dition to fine-tuning the individual languages’ data,
we concatenated the data from all eleven languages
to create a Spanish-All dataset and fine-tuned the
M2M-100 model before fine-tuning for the indi-
vidual languages. Our mBAERT50 model beat the
strong baseline in three languages.
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Abstract

In this work, we present the results of the Amer-
icasNLP 2023 Shared Task on Machine Trans-
lation into Indigenous Languages. This edi-
tion of the shared task features eleven language
pairs, one of which – Chatino–Spanish – uses
a newly collected evaluation dataset, consist-
ing of professionally translated text from the
legal domain. Seven teams participated in the
shared task, with a total of 181 submissions.
Additionally, we conduct a human evaluation
of the best system outputs and compare them to
the best submissions from the 2021 shared task.
We find that this analysis agrees with the quan-
titative measure we use to rank submissions,
ChrF, which itself shows an improvement of
9.64 points on average across all languages,
compared to the prior winning system.

1 Introduction

The majority of Indigenous languages, including
those native to the Americas, are under-represented
in modern natural language processing (NLP), as
technological advances are often concentrated on
the small set of languages that have large amounts
of easily available data (Joshi et al., 2020). Beyond
the lack of data, linguistic factors like morpholog-
ical complexity, non-standard orthographies, and
language isolates make it even more challenging
to adapt existing NLP methods to Indigenous lan-
guages (Mager et al., 2018; Schwartz et al., 2020).

However, there are multiple benefits of develop-
ing technologies that support Indigenous languages
– building NLP models for under-represented lan-
guages can bring equitable access to informa-
tion and technology to speakers of these lan-
guages (Mager et al., 2018). Additionally, several
Indigenous languages in the Americas are endan-
gered, and language technologies have proven to be
beneficial to Indigenous communities and linguis-
tic researchers in the documentation, preservation,
and revitalization of endangered languages (Galla,

Language ISO Family Train Dev Test

Asháninka cni Arawak 3883 883 1002
Aymara aym Aymaran 6531 996 1003
Bribri bzd Chibchan 7508 996 1003
Chatino ctp Oto-Manguean 357 499 1000
Guarani gn Tupi-Guarani 26032 995 1003
Nahuatl nah Uto-Aztecan 16145 672 996
Otomí oto Oto-Manguean 4889 599 1001
Quechua quy Quechuan 125008 996 1003
Rarámuri tar Uto-Aztecan 14721 995 1002
Shipibo-Konibo shp Panoan 14592 996 1002
Wixarika hch Uto-Aztecan 8966 994 1003

Table 1: The languages in the AmericasNLP 2023
shared task. Chatino (bolded) is the new language for
this edition of the competition.

2016; Anastasopoulos, 2019; Zhang et al., 2022;
Rijhwani, 2023). The AmericasNLP workshop
seeks to highlight NLP and linguistic research on
Indigenous languages spoken across the Americas,
and promote the development of computational ap-
proaches which work well for these languages. The
AmericasNLP Shared Task on Machine Translation
into Indigenous Languages is hosted as part of the
workshop to specifically focus on improvements
in machine translation (MT) systems for these lan-
guages. In this work, we describe the third edi-
tion of the shared task. For this year, a new gold-
standard parallel dataset for translation evaluation,
between Spanish and Chatino, was developed. This
dataset uses text from the legal domain, with source
sentences taken from press releases of the Supreme
Court of Mexico. This allows for evaluation on
technical and challenging text, which are likely to
be relevant to speakers of the language.

This work is structured as follows: in Section
2, we present a brief overview of related work on
MT and Indigenous languages; in Section 3 and
4, we provide details on the shared task rules, and
newly collected data; in Section 5, we summarize
the submitted systems; and, in Sections 6 and 7, we
provide an analysis of the main results and further

206



Team Andes CIC-NLP Helsinki-NLP* LCT-EHU LTLAmsterdam Playground Sheffield*
Langs 1 11 11 1 11 10 11
Subs 1 33 66 5 33 10 33

D
at

a

Crawl ✓ ✓
Ext. Bilingual ✓ ✓ ✓
Opus ✓
Religous ✓ ✓ ✓
Wikipedia ✓
Prior Year ✓ ✓ ✓ ✓
No Addtl. ✓
Monolingual Trans ✓ ✓ ✓ ✓
Pivot Trans. ✓
Cleaning/Norm ✓ ✓ ✓

Pr
et

ra
in

in
g

ChatGPT ✓
Encoder-Decoder ✓ ✓ ✓ ✓
M2M-100 ✓ ✓
mBART ✓
mT5 ✓
NLLB ✓ ✓

Tr
ai

n Ensemble ✓
Multistage ✓ ✓ ✓ ✓
Multilingual ✓ ✓ ✓ ✓

Table 2: Participating teams (Team) with system description paper. The information contained in this table is
as follows: number of languages with a corresponding submission (Langs.), total number of submissions (Sub.).
(Data) presents a summary of any external data collection, or No Add. if no external data was used, as well
as if preprocessing steps are described. The Pretraining section describes if a pretrained translation model, or
from-scratch encoder-decoder architecture was used. The Train section provides a summary of the training process
for submissions. For more details we refer to the system description paper of each system, and note that certain
external datasets or preprocessing steps may have been used within a system and not described in the description
paper. We describe how each feature is defined in Appendix A.2.

experiments.

2 Related Work

2.1 NLP for Indigenous Languages
Low-resource languages are often referred to as
‘less studied’, ‘resource-scarce’, ‘less computer-
ized’, ‘less privileged’, ‘less commonly taught’, or
‘low-density’ (Magueresse et al., 2020). Indigenous
languages are largely included under this umbrella
term, and they represent a unique challenge when
dealing with NLP tasks.

First, most of the Indigenous languages world-
wide are generally understudied, which means that
even though we can grasp some of their general
grammatical features based on other previously
studied languages from the same linguistic families,
there are still particular traits which haven’t been
described. Second, Indigenous languages are typo-
logically different: some of them are polysynthetic,
such as the languages belonging to Uto-Aztecan
family (e.g. Nahuatl, Wixarika) with rich mor-
phophonemics and a large number of inflections
(Mithun, 2001). Other languages are highly ana-

lytic with simpler morphology, but with complex
tonal systems such as Chatino and Chinantec, from
the Oto-Manguean family. Due to the lack of prior
study, it becomes challenging to even define what
constitutes a language versus a language variety
among Indigenous languages.

Finally, another major challenge is the diversi-
fication of orthographies and the scarcity of writ-
ten corpora in such languages. However, in lieu
of these challenges, there has been a substantial
increase in NLP applications for Indigenous lan-
guages (Mohanty et al., 2023). For example, Hed-
derich et al. (2020) survey common methods used
in low-resource scenarios, such as data augmen-
tation, distant supervision, and cross-lingual lan-
guage models. Mager et al. (2018) provide an
overview of research in NLP related to the Indige-
nous languages of the Americas, with an accom-
panying, and continually-updated,repository of re-
search works and other resources for Indigenous
languages. Recently, ACL 2022 featured a theme
track on Language Diversity: from Low-Resource
to Endangered Languages, which highlights papers
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RANK TEAM VERSION COUNT TOT. CHRF TOT. BLEU AVG. BLEU AVG. CHRF AVG. BLEU ALL AVG. CHRF ALL
1 Sheffield 1 11 335.04 61.29 5.57 30.46 5.57 30.46
2 Sheffield 2 11 333.57 60.35 5.49 30.32 5.49 30.32
3 Sheffield 3 11 325.51 57.59 5.24 29.59 5.24 29.59
4 Helsinki-NLP 6 11 317.09 56.17 5.11 28.83 5.11 28.83
5 Helsinki-NLP 2 11 284.11 43.60 3.96 25.83 3.96 25.83
6 Helsinki-NLP 3 11 283.62 40.57 3.69 25.78 3.69 25.78
7 Helsinki-NLP 4 11 283.09 47.19 4.29 25.74 4.29 25.74
8 Helsinki-NLP 1 11 277.71 44.22 4.02 25.25 4.02 25.25
10 LTLAmsterdam 3 11 261.83 35.53 3.23 23.80 3.23 23.80
11 PlayGround 1 10 249.71 30.52 3.05 24.97 2.77 22.70
12 CIC-NLP 2 11 222.50 17.38 1.58 20.23 1.58 20.23
13 CIC-NLP 1 11 207.80 18.49 1.68 18.89 1.68 18.89
14 Helsinki-NLP 5 11 205.96 15.63 1.42 18.72 1.42 18.72
15 CIC-NLP 3 11 197.69 14.46 1.31 17.97 1.31 17.97
16 LTLAmsterdam 2 11 171.11 18.70 1.70 15.56 1.70 15.56
17 LTLAmsterdam 1 10 160.42 12.68 1.27 16.04 1.15 14.58
18 LCT-EHU 3 1 38.59 3.45 3.45 38.59 0.31 3.51
19 LCT-EHU 1 1 38.40 3.08 3.08 38.40 0.28 3.49
20 LCT-EHU 2 1 38.21 3.11 3.11 38.21 0.28 3.47
21 LCT-EHU 4 1 37.71 3.47 3.47 37.71 0.32 3.43
22 LCT-EHU 5 1 37.26 3.06 3.06 37.26 0.28 3.39
23 Andes 1 1 9.22 0.12 0.12 9.22 0.01 0.84

Table 3: Ranking of the submissions to the shared task. For each team and submission version, COUNT represents
the number of languages supported with TOT. CHRF and TOT. BLEU representing the sum ChrF and BLEU
scores over all supported languages by a submission. While AVG. BLEU and AVG. CHRF represent the average
of all supported languages by a submission, the AVG*ALL columns represent the average over all 11 shared task
languages, with AVG. CHRF ALL determining the final ranking of the submissions.

focusing on Indigenous languages, and featured a
keynote discussion on how to best support linguis-
tic diversity (Muresan et al., 2022).

2.2 Low-Resource MT
Low-Resource MT (LRMT) tackles the challenge
of developing translation systems for language
pairs with limited parallel data. Traditional neu-
ral machine translation approaches struggle in such
scenarios due to data scarcity.

Multilingual transfer learning has been success-
ful in enhancing translation quality in LRMT
by leveraging knowledge from related languages
(Zoph et al., 2016; Nguyen and Chiang, 2017; Aha-
roni et al., 2019). By utilizing shared representa-
tions across languages, multilingual models can
generalize well to unseen language pairs with lim-
ited data.

One effective LRMT approach using transfer
learning is finetuning large multilingual language
models on specific language pairs. This involves
adapting pretrained models like mBART, M2M-
100, and NLLB-200 to target specific language
pairs or domains of interest (Liu et al., 2020;
Fan et al., 2020; Team et al., 2022). Refining
the model’s parameters through this technique en-
hances translation quality for low-resource lan-
guages (Thillainathan et al., 2021; Liu et al., 2020).

Back-translation is another effective technique

employed in LRMT, which generates synthetic par-
allel data by translating and re-translating mono-
lingual data (Sennrich et al., 2016; Feldman and
Coto-Solano, 2020; Lample et al., 2018). By incor-
porating this technique, LRMT systems can benefit
from additional training examples, leading to im-
proved translation performance.

3 Task and Evaluation

The shared task focuses on open machine transla-
tion: outside of the development set and any pro-
hibited datasets, teams are allowed to collect and
train on an unlimited amount of external data. As
translation performance for low-resource Indige-
nous languages is generally low, we choose this
setting to allow models to achieve the best possi-
ble performance, in hopes that usable translation
models become more quickly developed.

Metrics Translation evaluation is done with ChrF
(Popović, 2015), as implemented in SCAREBLEU

(Post, 2018), as the target languages are morpholog-
ically rich. While teams are not required to submit
a system for all languages, the final score for each
submission is calculated by taking an average over
all eleven languages; if there is no model output
for a given language, the score is taken as 0.

208



4 Languages and Data

For development and evaluation, the AmericasNLP
2021 shared task used multi-way parallel trans-
lations of the Spanish XNLI test set across 10
languages: Asháninka, Aymara, Bribri, Guarani,
Nahuatl, Otomí, Quechua, Rarámuri, Shipibo-
Konibo and Wixarika (Ebrahimi et al., 2022). For
this edition of the shared task, we use the same eval-
uation set and additionally introduce a new evalua-
tion dataset, created from Mexican court proceed-
ings, for Spanish–Chatino. This set was released as
a surprise language near the end of the competition,
along with a small amount of Spanish–Chatino
and English–Chatino data for training. In this sec-
tion, we describe the Chatino language, Spanish
source data, and translation process. For a detailed
overview of the ten other evaluation languages, we
refer the reader to Ebrahimi et al. (2022) and Mager
et al. (2021).

4.1 Chatino
San Juan Quiahije Chatino (SJQ, ISO 639-3 ctp),
spoken by about 5000 people, is an Oto-Manguean
language spoken in Oaxaca, Mexico and by Chati-
nos who live in many cities throughout the United
States, with a high concentration in the Southeast-
ern United States in the states of North Carolina,
Alabama, and Georgia. The Chatino languages are
some of the most complex tonal languages in the
world. SJQ has 10 tonemes and 15 morphological
tonal categories. In the created corpus, tones are
represented as superscripts.

4.2 Evaluation Dataset
Source Data A main motivation for this dataset
is to create a resource which could be more directly
applicable to the real life needs of the communities
involved, while at the same time limiting negative
ethical implications (Mager et al., 2023). As such,
we choose to use legal text as the source domain.
The Mexican Constitution and the General Law
of Linguistic Rights of Indigenous Peoples (Ley
General De Derechos Lingüísticos de los Pueb-
los Indígenas1) states that the 68 Indigenous lan-
guages spoken in the country before the Spanish
conquest are National Languages. This gives all
people the right to perform bureaucratic and legal
actions in their native language. As a first approxi-
mation of this text, we gather press releases from

1https://www.diputados.gob.mx/
LeyesBiblio/pdf/LGDLPI.pdf

the Mexican Supreme Court.2 This allows us to
avoid the potential harms of directly generating
low-quality translations of written laws and court
decisions, while still allowing for insights into the
issues and challenges of translating legal terms and
text. Furthermore, the text generated by the Mexi-
can Supreme Court is public domain, allowing for
free usage.

Translation Process To create the dataset, we
crawl 10,000 instances from the Supreme Court
press releases, and randomly select a subset for
translation. Translations are jointly done by two
professional translators, who are native San Juan
Quiahije Chatino speakers. Legal terms in Spanish
are translated into Chatino, in order to reduce code-
switching and borrowed words. This translation
of domain-specific terms represents the most chal-
lenging aspect of the translation process, with trans-
lators investigating the context and meaning of spe-
cific words in order to create accurate translations.
For more difficult cases, translators consulted with
lawyers to clarify the meaning of certain texts. For
all translations, both translators worked together
to reach an agreement on the translated text. Ex-
amples of difficult to translate words and entities
include “dismissal, approval, jurisprudence, regula-
tions among others and Chamber of Deputies, the
nation’s Supreme Court of Justice and Magistrate.”

5 Baseline and Submitted Systems

In this section, we describe the 2023 baseline sys-
tem and each team’s approach. We present a sum-
mary of all approaches in Table 2.

5.1 Baseline
The AmericasNLP 2021 shared task used a trans-
former encoder–decoder model (Vaswani et al.,
2017) along with hyperparameters shown to work
well for low-resource settings (Guzmán et al.,
2019). For this year’s edition of the shared task,
we use the winning 2021 system (Vázquez et al.,
2021) as the baseline, as it greatly outperformed
the previous baseline and other submissions on all
languages.

5.2 Andes
The Andes team (Gillin and Gummibaerhausen,
2023) submitted a translation system for Spanish–
Aymara. The system is based on mT5 (Xue et al.,

2https://www.scjn.gob.mx/multimedia/
comunicados
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Figure 1: Main results of the shared task, in ChrF. In the left chart, we plot the performance of every submission,
for each language. On the right, we show the distribution of per-team performance, across all submissions and
languages. We note that distributions may not be directly comparable depending on the number of submissions
from each team.

2021) and is further finetuned on English–Aymara
data, in addition to the provided Spanish–Aymara
data. The English parallel data consists of a lexicon,
collected from books meant for language learning
(Wexler and Programs, 1967; Parker, 2008)

5.3 CIC-NLP
The CIC-NLP team (Tonja et al., 2023) submit-
ted three different models across all languages,
based on either mBART50 (Tang et al., 2021) and
M2M100 (Fan et al., 2020) or a publicly released
English–Spanish translation model.3 The multilin-
gual models were first optionally finetuned on a
concatenation of the es-XX training data across all
languages. Language-specific models were then
created by further finetuning on data for a specific
target language. The English–Spanish model was
only finetuned on data for a specific language pair.

5.4 Helsinki-NLP
The Helsinki-NLP team (Vázquez et al., 2023) sub-
mitted six different models across all languages,
following four main modeling approaches. Model
B is a copy of the team’s winning multilingual
one-to-many 2021 model, and Model C is a re-
implementation of this approach using OpusTrainer
and a language specific-finetuning step. Model
A focuses on knowledge distillation and transfer
learning: a parent English–Spanish model is dis-
tilled from the NLLB model, and is then further
finetuned on target-language data. Model D uses
language-specific decoders as part of a modular ar-
chitecture: a specified number of decoder layers are

3https:huggingface.co/Helsinki-NLP/
opus-mt-es-en

shared across languages, while others are trained
separately per language. The team also focused
heavily on data collection and cleaning. In addition
to the data provided by the shared task, the team
collected data from OPUS (Tiedemann, 2012), the
FLORES-200 (Team et al., 2022) evaluation sets,
the Bible (McCarthy et al., 2020), the Universal
Declaration of Human Rights, and various texts
extracted from websites or PDFs of educational
materials and news. MT was also used to leverage
monolingual Wikipedia data as well as parallel data
between the target languages and English. Texts
were detokenized and whitespace normalized if
necessary. Data from all sources was concatenated
and deduplicated to create the final training data,
and special tags denoting the quality and language
variety of the source material were added to each
example.

5.5 LCT-EHU
The LCT-EHU team (Ahmed et al., 2023) focused
on the Spanish–Quechua language pair and sub-
mitted five different models to the competition.
Among their contributions, they collected new par-
allel corpora, experimented with high-resource
bilingual systems as pretrained models, such as
Spanish–English and Spanish–Finnish, and gener-
ated synthetic parallel data from monolingual texts
using back-translation and the copied corpus tech-
nique (Currey et al., 2017). The best result on the
test set was obtained by using a model pretrained
on Spanish–Finnish and by including new parallel
data from the literature and legal domains, despite
originating from different variants of Quechua Ay-
acucho.
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Team AYM BZD CNI CTP GN HCH NAH OTO QUY SHP TAR

2021 Baseline 15.70 6.80 10.20 - 19.30 12.60 15.70 5.40 30.40 12.10 3.90
2021 Best 28.30 16.50 25.80 - 33.60 30.40 26.60 14.70 34.30 32.90 18.40

Andes 9.22 - - - - - - - - - -
CIC-NLP 19.05 21.17 25.85 15.61 21.75 14.67 26.57 9.22 35.62 21.26 14.87
Helsinki-NLP 33.44 22.45 28.41 32.07 40.42 32.34 26.87 15.30 37.19 33.35 19.15
LCT-EHU - - - - - - - - 38.59 - -
LTLAmsterdam 25.23 21.36 26.04 36.61 32.89 30.38 26.03 13.85 36.81 19.8 15.06
PlayGround 29.98 14.80 28.01 - 33.17 28.75 23.68 14.75 34.38 27.66 14.53
Sheffield 36.24 24.96 28.53 39.97 39.34 32.25 27.25 14.81 39.52 33.43 18.74

↑ 2021 12.60 9.70 15.60 - 14.30 17.80 10.90 9.30 3.90 20.80 14.50
↑ 2023 7.94 8.46 2.73 - 6.82 1.94 0.73 0.60 5.22 0.53 0.75

Table 4: Summary of best performing submission from each team per language. Note that values can come from
multiple submissions, making these scores different than what is used to calculate the overall shared task ranking.
↑2021 marks the difference between the 2021 Baseline and 2021 winning system. ↑2023 marks the difference
between the 2021 best (i.e., 2023 baseline) system and the best 2023 system.

5.6 LTLAmsterdam
The LTLAmsterdam team (Stap and Araabi, 2023)
submitted four different models for all language
pairs. Their approaches included a bilingual sys-
tem, an off-the-shelf commercial large language
model used for translation, and a finetuned mul-
tilingual model with additional adaptation. The
bilingual systems were trained using transformer
models with parameters specifically tailored for
low-resource languages (Araabi and Monz, 2020).
For the large language model, they utilized the
ChatGPT API4 and followed the prompts proposed
by Jiao et al. (2023). Additionally, they finetuned
the M2M100 multilingual model (Fan et al., 2021),
specifically choosing the 418M parameter version
and training a model for each language pair. It is
important to highlight that none of the target lan-
guages in the shared task were originally included
in the set of languages of M2M100. Finally, they
augmented the finetuned M2M100 model with a
k-nearest neighbor (kNN) datastore for inference
(Khandelwal et al., 2021), effectively creating a
semi-parametric model that combines the paramet-
ric M2M100 model with a nearest neighbor re-
trieval mechanism.

5.7 PlayGround
The PlayGround team (Gu et al., 2023) submit-
ted one model for each language pair, except for
Spanish–Chatino. Their approach focused on utiliz-

4https://platform.openai.com/docs/
api-reference/chat

ing the pretrained NLBB-200 model (Team et al.,
2022), which they finetuned using the available
monolingual and parallel data for the shared task.
They conducted a comparison between bilingual
and multilingual finetuned models, incorporating
back-translated data through finetuning the NLBB-
200 model with Spanish as the target language.
Additionally, they adopted a weight-averaging ap-
proach (Wortsman et al., 2022).

5.8 Sheffield
The Sheffield team (Gow-Smith and Villegas) sub-
mitted three models for all languages. Approaches
were based off various versions of the NLLB-200
model (Team et al., 2022). In addition to the pro-
vided training data, the team used data from teams
which participated in prior editions of the shared
task (Moreno, 2021; Vázquez et al., 2021). Data
from other sources, such as the Bible (McCarthy
et al., 2020) and NLLB project were also consid-
ered, however the authors found that Bible data did
not improve performance on the development set,
and did not include it in the final systems. Back-
translation was also used to create additional par-
allel data. The submissions include specific pre-
processing steps to prepare the data, such as deto-
kenization and replacement of tone markings for
Chatino. The team experimented with the distilled
600M, 1.3B and 3.3B versions of NLLB, and mod-
els were first finetuned on a concatenation of all
available training data. The checkpoint with best
average ChrF across all languages was considered
as Submission 3. For Submission 2, the best check-
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point per language was used. Submission 1 con-
sists of ensembles of the various NLLB models. As
NLLB relies on specific tags to denote the target
languages, the embedding matrix was extended and
new languages tags were created for the shared task
languages which are unsupported.

6 Results

We present the overall ranking of submissions to
the shared task in Table 3 and the best score per
language for each team across all submissions in
Table 4.

The overall winner of the shared task, the
Sheffield Submission 1, achieves the best perfor-
mance for 7 languages: Aymara, Bribri, Asháninka,
Chatino, Nahuatl, Quechua, and Shipibo-Konibo.
The Helsinki Submission 6 (i.e., Model B) has
the highest performance for 4 languages: Guarani,
Wixarika, Otomí, and Rarámuri. Systems are much
more competitive than prior competitions, achiev-
ing extremely close ChrF scores for many lan-
guages, such as Asháninka, Guarani, Wixarika, and
Shipibo-Konibo. The Sheffield and Helsinki teams
both collect additional data, and train models in
a multilingual and multi-stage fashion. Both also
mention data cleaning and preprocessing in their
pipeline, and we hypothesize that this step is likely
vital for good performance, due to noise, domain
mismatch, and differences in variants between the
training and evaluation sets. For all languages ex-
cept for Aymara, all teams have at least one sub-
mission which improves (often by a large margin)
over the original 2021 baseline.

Comparison with Prior Years As the evaluation
set for 10 of the languages is the same as for 2021,
we can analyze the performance of submitted MT
systems over time. In this year’s shared task, we
see improvements over the best 2021 system, the
2021 Helsinki submission (Vázquez et al., 2021),
for all languages, but to varying degree. The largest
improvements are for Bribri, Aymara, Guarani
and Quechua. We also see small improvements
for Asháninka and Wixarika. However, improve-
ments for Nahuatl, Otomí, and Shipibo-Konibo are
marginal. Overall, the improvements over Vázquez
et al. (2021) are smaller in magnitude, compared to
the improvements in 2021. This can be expected,
however, as the baseline for this year’s shared task
represents a much stronger lower bound. Of the
four languages with largest improvement, three
are achieved by a Sheffield submission: Aymara,
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Figure 2: Results of the qualitative human evaluation.
Ratings of fluency are displayed in the left column, and
meaning in the right. Results are shown as a proportion
of all evaluated sentences.

Bribri, and Quechua. This may be attributed, in
part, to the use of the NLLB model by the team,
which supports Aymara and Quechua in its original
set of pretraining languages. On average across
the 10 shared languages, we see a further 9.63 im-
provement in ChrF over 2021 results by the best
submitted systems.

7 Additional Experiments

7.1 Qualitative Analysis
As quantitative measures of translation perfor-
mance do not paint a complete picture, we also
conduct a qualitative analysis of the system outputs
for Bribri, Chatino, and Otomí. We randomly sam-
ple 50 parallel examples across the 2021 baseline,
the 2021 winning system (Vázquez et al., 2021),
and the 2023 submission with best performance for
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each language: Sheffield Submission 1 for Bribri
and Chatino, and Helsinki Submission 6 for Otomí.
Examples are shuffled and presented to a native
speaker of each language, along with the Spanish
source and gold reference. Annotations are done
across two dimensions: meaning and fluency, using
a categorical 1-5 scale. The guidelines given to
annotators can be found in Appendix A.1.

The results of this analysis are shown in Fig-
ure 2. Similar to the trend of improvement in ChrF,
we also see improvements in the rating of meaning
and fluency across the three systems in this analysis.
For Bribri, a strong majority of translations from
the original 2021 baseline has a score of 1 across
both dimensions. While we see some improve-
ments from the Helsinki 2021 system, the 2023 sys-
tem provides a considerable increase in translation
quality; ratings of between 2-4 are now assigned to
the majority of examples. For Chatino, the baseline
system is stronger than for Bribri, and the improve-
ment between the two systems is smaller when
considering the proportion of examples rated as 1.
For the 2023 system, we see the largest increase
in quantity for ratings of 3. Otomí sees the worst
performance of the three languages, with the ma-
jority of examples being rated as 1, across all three
systems. Fluency does improve slightly, with an in-
crease in the number of 2 ratings. However, exam-
ples with higher ratings are effectively non-existent.
We also see a difference in improvement across flu-
ency and meaning, with the former showing higher
improvement. For all languages, even if we see
an increase in the proportion of higher rated exam-
ples, the number of near-perfect (i.e., rating of 5)
remains consistently small.

7.2 Impact of In-domain Data
The LTLAmsterdam team (Stap and Araabi, 2023)
describes systems which make use of kNN and an
external data store (Khandelwal et al., 2021) during
decoding. It was jointly decided in a discussion
between the organizers and team that submissions
which use this approach – Submissions 4,5,6,7, and
8 – fall in a grey area with respect to the competi-
tion rules and would not be included in the main
results, due to the fact that development set ex-
amples were included in the data store. However,
these submissions can give insights into the poten-
tial improvements one can expect if there is access
to parallel examples which are in-domain with re-
spect to an expected test set. If we consider these

submissions, they achieve the best performance for
three languages: Bribri, Asháninka, and Nahuatl.
Improvements over the next best team submission
is 0.88 ChrF on average over the three languages.
As such, given that systems still struggle with pro-
ducing outputs with the highest qualitative rating
(§7.1), this approach may be beneficial for produc-
ing more constrained and higher-quality outputs,
given that access to high-quality parallel data is
available.

8 Conclusion

In this paper we present the results of the Amer-
icasNLP 2023 shared task. For this iteration, we
collect a new dataset for translation evaluation be-
tween Spanish and Chatino, consisting of legal text
from court press releases. Additionally, we keep
the prior 10 evaluation languages used in 2021.
Overall, 7 teams participated in the shared task. For
all languages, multiple submissions improve over
the previous best ChrF, but the magnitude varies
per language. The best results were achieved by ei-
ther finetuned versions of NLLB or a from-scratch
transformer encoder–decoder model. To confirm
the improvement in ChrF from the previous shared
task, we conduct a human evaluation of system out-
puts, which, although it supports the quantitative
improvement, highlights the fact that systems are
still not able to produce translations of the high-
est quality. Furthermore, there is still variability
in the absolute performance across languages. As
such, while the results of the shared task mark a
promising trend in increasing translation quality
for Indigenous languages, there are still improve-
ments which can be made in order to create usable
translation systems for Indigenous languages.
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Appendix
Lang. Team Ver. ChrF BLEU

aym Sheffield 1 36.24 4.45
aym Sheffield 3 35.27 4.03
aym Helsinki-NLP 6 33.44 3.37
aym Helsinki-NLP 4 32.52 3.15
aym Helsinki-NLP 3 32.34 3.04
aym Helsinki-NLP 1 32.31 3.30
aym Helsinki-NLP 2 31.98 2.44
aym PlayGround 1 29.98 1.96
aym LTLAmsterdam 3 25.23 1.68
aym Helsinki-NLP 5 21.86 1.10
aym CIC-NLP 1 19.05 1.13
aym CIC-NLP 3 18.59 0.56
aym CIC-NLP 2 18.52 0.84
aym LTLAmsterdam 1 18.28 0.96
aym LTLAmsterdam 2 14.00 0.09
aym Andes 1 9.22 0.12

bzd Sheffield 1 24.96 6.35
bzd Sheffield 3 24.49 6.21
bzd Sheffield 2 24.38 6.18
bzd Helsinki-NLP 6 22.45 5.64
bzd LTLAmsterdam 3 21.36 5.23
bzd CIC-NLP 2 21.17 4.72
bzd Helsinki-NLP 4 20.28 5.02
bzd Helsinki-NLP 1 20.18 4.66
bzd Helsinki-NLP 3 20.06 4.44
bzd CIC-NLP 1 19.90 3.92
bzd Helsinki-NLP 2 19.19 4.36
bzd PlayGround 1 14.80 2.04
bzd CIC-NLP 3 13.24 1.66
bzd LTLAmsterdam 2 12.32 0.97
bzd Helsinki-NLP 5 11.16 1.10
bzd LTLAmsterdam 1 9.44 1.38

cni Sheffield 1 28.53 3.23
cni Helsinki-NLP 6 28.41 4.45
cni PlayGround 1 28.01 3.53
cni LTLAmsterdam 3 26.04 3.03
cni Helsinki-NLP 2 25.99 3.39
cni CIC-NLP 2 25.85 2.72
cni Helsinki-NLP 3 25.62 2.31
cni Helsinki-NLP 1 25.18 3.40
cni Helsinki-NLP 4 25.14 3.44
cni CIC-NLP 3 23.79 3.28
cni CIC-NLP 1 23.50 2.84
cni LTLAmsterdam 2 21.63 0.59
cni Helsinki-NLP 5 19.60 0.13
cni LTLAmsterdam 1 18.91 2.35

ctp Sheffield 1 39.97 12.33
ctp Sheffield 3 39.90 12.26

Lang. Team Ver. ChrF BLEU

ctp LTLAmsterdam 2 36.61 8.45
ctp Helsinki-NLP 6 32.07 8.59
ctp Helsinki-NLP 3 26.73 3.75
ctp Helsinki-NLP 4 22.61 4.01
ctp Helsinki-NLP 1 21.89 3.49
ctp Helsinki-NLP 2 21.67 3.73
ctp CIC-NLP 2 15.61 1.20
ctp CIC-NLP 1 14.41 1.09
ctp LTLAmsterdam 3 14.37 0.98
ctp CIC-NLP 3 13.64 0.87
ctp Helsinki-NLP 5 7.17 0.00

gn Helsinki-NLP 6 40.42 8.40
gn Sheffield 1 39.34 6.96
gn Sheffield 3 39.07 7.18
gn Helsinki-NLP 4 37.97 7.99
gn Helsinki-NLP 3 37.38 7.49
gn Helsinki-NLP 1 37.23 7.55
gn Helsinki-NLP 2 36.60 6.90
gn PlayGround 1 33.17 5.56
gn LTLAmsterdam 3 32.89 5.43
gn Helsinki-NLP 5 31.15 4.69
gn CIC-NLP 2 21.75 1.84
gn CIC-NLP 3 20.94 1.54
gn CIC-NLP 1 19.35 1.34
gn LTLAmsterdam 1 15.50 1.21
gn LTLAmsterdam 2 11.91 0.10

hch Helsinki-NLP 6 32.34 11.49
hch Sheffield 1 32.25 12.04
hch Sheffield 2 31.98 11.43
hch Helsinki-NLP 3 30.76 10.98
hch LTLAmsterdam 3 30.38 11.56
hch Helsinki-NLP 4 29.90 12.59
hch Helsinki-NLP 2 29.48 11.30
hch Helsinki-NLP 1 29.47 12.30
hch PlayGround 1 28.75 9.90
hch LTLAmsterdam 2 21.04 7.69
hch Helsinki-NLP 5 21.01 6.24
hch LTLAmsterdam 1 15.66 0.71
hch CIC-NLP 3 14.67 1.46
hch CIC-NLP 2 13.88 0.08
hch CIC-NLP 1 12.05 1.58

nah Sheffield 1 27.25 2.33
nah Helsinki-NLP 6 26.87 2.05
nah CIC-NLP 2 26.57 1.36
nah LTLAmsterdam 3 26.03 1.33
nah Helsinki-NLP 4 25.82 1.75
nah Helsinki-NLP 2 25.61 2.00
nah Helsinki-NLP 1 23.96 1.41
nah Helsinki-NLP 3 23.72 1.75
nah PlayGround 1 23.68 0.90
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Lang. Team Ver. ChrF BLEU

nah CIC-NLP 3 22.60 1.22
nah CIC-NLP 1 21.88 1.07
nah Helsinki-NLP 5 19.87 0.14
nah LTLAmsterdam 1 15.93 0.96
nah LTLAmsterdam 2 7.02 0.03

oto Helsinki-NLP 6 15.30 1.95
oto Sheffield 1 14.81 1.71
oto PlayGround 1 14.75 1.07
oto Helsinki-NLP 2 14.23 1.45
oto Helsinki-NLP 4 14.11 1.51
oto Helsinki-NLP 1 13.93 1.41
oto Helsinki-NLP 3 13.92 1.43
oto LTLAmsterdam 3 13.85 1.25
oto LTLAmsterdam 1 11.70 1.34
oto Helsinki-NLP 5 10.66 0.12
oto CIC-NLP 1 9.22 0.26
oto LTLAmsterdam 2 7.77 0.02
oto CIC-NLP 2 7.40 0.07
oto CIC-NLP 3 7.28 0.05

quy Sheffield 1 39.52 4.61
quy Sheffield 2 39.26 4.54
quy LCT-EHU 3 38.59 3.45
quy LCT-EHU 1 38.40 3.08
quy LCT-EHU 2 38.21 3.11
quy LCT-EHU 4 37.71 3.47
quy LCT-EHU 5 37.26 3.06
quy Sheffield 3 37.24 4.33
quy Helsinki-NLP 4 37.19 4.28
quy LTLAmsterdam 3 36.81 3.00
quy Helsinki-NLP 2 36.49 3.77
quy Helsinki-NLP 1 36.22 3.49
quy CIC-NLP 2 35.62 2.55
quy Helsinki-NLP 3 34.97 2.74
quy PlayGround 1 34.38 2.53
quy CIC-NLP 1 34.15 2.59
quy Helsinki-NLP 6 33.29 2.99
quy CIC-NLP 3 32.75 2.05
quy Helsinki-NLP 5 27.72 0.91
quy LTLAmsterdam 1 25.75 1.47
quy LTLAmsterdam 2 14.97 0.33

shp Sheffield 1 33.43 6.32
shp Helsinki-NLP 6 33.35 6.10
shp Sheffield 3 28.57 4.00
shp PlayGround 1 27.66 2.81
shp Helsinki-NLP 2 25.41 3.13
shp Helsinki-NLP 5 22.85 1.05
shp CIC-NLP 2 21.26 1.83
shp Helsinki-NLP 4 20.51 2.25
shp CIC-NLP 1 20.43 2.28
shp LTLAmsterdam 3 19.80 1.83

Lang. Team Ver. ChrF BLEU

shp Helsinki-NLP 3 19.68 2.04
shp Helsinki-NLP 1 19.66 2.03
shp CIC-NLP 3 18.13 1.66
shp LTLAmsterdam 1 16.20 1.59
shp LTLAmsterdam 2 12.42 0.34

tar Helsinki-NLP 6 19.15 1.16
tar Sheffield 1 18.74 0.95
tar Helsinki-NLP 3 18.43 0.60
tar Sheffield 2 18.39 0.88
tar Helsinki-NLP 1 17.67 1.18
tar Helsinki-NLP 2 17.45 1.13
tar Helsinki-NLP 4 17.04 1.21
tar LTLAmsterdam 3 15.06 0.22
tar CIC-NLP 2 14.87 0.17
tar PlayGround 1 14.53 0.23
tar CIC-NLP 1 13.86 0.38
tar LTLAmsterdam 1 13.04 0.72
tar Helsinki-NLP 5 12.92 0.14
tar CIC-NLP 3 12.07 0.09
tar LTLAmsterdam 2 11.42 0.09

Table 5: Main results of the AmericasNLP 2023 shared
task.
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A Annotation and Table Guidelines

A.1 Human Evaluation Guidelines
Annotators were given the following guidelines for
their evaluation:

Fluency: Is the output sentence easily readable
and similar to a human-produced text?

1. Extremely bad: The output contains mainly
repetitions or hallucinations [> 80%], and is
largely illegible. The text is clearly not pro-
duced by a human.

2. Bad: The output may contain repetitions or
erroneous characters [> 60%], but also some
correct words or phrases.

3. Acceptable: The output does not contain a sig-
nificant number of repetitions, and mainly con-
tains correct words, however may still have
grammatical errors.

4. Sufficiently good: The output seems like a
human-produced text in the target language,
without repetitions or erroneous characters,
but may still contain some grammatical errors.

5. Excellent: The output seems like a human
produced text in the target language, and is
readable without issues.

Meaning: How well does the translation reflect
the meaning of the reference?

1. Extremely bad: The meaning of the source
sentence can not be inferred at all.

2. Bad: A small number of words or phrases
allow the reader to guess the meaning or se-
mantic content of the sentence

3. Acceptable: A larger number of correctly
translated phrases and words allow a stronger
understanding of the meaning.

4. Sufficiently good: The general meaning of
the source sentence is conveyed, while some
details may be missing.

5. Excellent: The meaning of the source sen-
tence, along with all relevant details, is con-
veyed completely.

A.2 Guidelines for System Summary
Data

• Crawl: Does the team collect additional data
from websites, PDFs, documents, books, etc.

• External Bilingual: Does the team leverage
existing parallel data for language pairs not
used for evaluation?

• Opus/Religious/Wikipedia: Does the team use
additional data from the respective resource?

• Prior Year: Does the team use data collected
from the 2021 or 2022 Shared Tasks?

• Monolingual Translation: Does the team cre-
ate synthetic training data by translating a
monolingual dataset?

• Pivot Translation: Does the team leverage ex-
iting parallel data, between an unsupported
language pair, through translation?

• Cleaning/Normalization: Does the team
specifically describe any cleaning or normal-
ization steps?

• No Additional: Does the team solely use the
data provided from the competition?

Pretraining: A check is given if the team de-
scribes a submission which uses one of the pre-
trained systems. Encoder-Decoder represents a
vanilla encoder-decoder transformer model trained
from scratch.

Train

• Ensemble: Does the team describe a submis-
sion which makes use of multiple models for
translation?

• Multistage: Does the team describe the train-
ing procedure as multiple stages, with varia-
tions in hyperparameters or training data?

• Multilingual: Does the team describe the train-
ing as multilingual, or create models which
are trained on multiple language pairs?
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