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Abstract 

This paper exploits band-limited cepstral 

coefficients (BLCCs) in forensic voice 

comparison (FVC), with the primary aim of 

locating speaker-sensitive spectral regions. 

BLCCs are sub-band cepstral coefficients 

(CCs) which are easily obtained by a linear 

transformation of full-band CCs. The 

transformation gives the flexibility of 

selecting any sub-band region without the 

recurrent cost of spectral analyses. Using 

multi-band BLCCs obtained by sliding a 

600-Hz sub-band every 400 Hz across the 

full [0-5kHz] range, FVC experiments were 

attempted using citation recordings of the 5 

Japanese vowels from 297 adult-male, 

native speakers. The FVC results give 

locations and ranges for the most speaker-

sensitive sub-bands, and show that 

combining 3-4 of these yields comparable 

FVC performance with full-band CCs. 

Owing to their ability to easily extract 

locally-encoded speaker information from 

full-band CCs, it can be conjectured that 

BLCCs have a significant role to play in the 

search for meaningful interpretations of the 

numerical outcome of forensic analyses. 

1 Introduction 

In forensic voice comparison (FVC), the forensic 

scientist typically needs to compare a pair of 

speech recordings: the source-questioned and 

source-known samples, and to obtain the strength 

of evidence quantified by a likelihood ratio (LR).  

For this purpose, it has become standard practice 

to parameterise the acoustic speech signal using 

low-dimensional vectors of cepstral coefficients 

(CCs). These are automatically extracted from any 

phonetic segments, and have been shown to be 

effective for speech and speaker classification. The 

effectiveness is attributable to the ability of low-

ordered CCs to produce cepstrally-smoothed 

spectra with reduced sensitivity to “noninformation 

bearing variabilities” (Rabiner and Juang 1993: 

169) and, thus, with increased distinctiveness. Such 

spectra may be obtained with full-band CCs which 

yield spectral representations over the full 

frequency range, or with sub-band CCs which give 

access to local regions within the full range. 

Consistent with our long-term goal of 

interpreting the FVC outcome beyond numerical 

LR values, the present study focuses on sub-band 

CCs with the dual aim of (a) locating vowel 

spectral regions that are most sensitive to speaker 

differences, and (b) determining the extent to 

which such regions affect LR values compared to 

the full band from vowel to vowel. The motivation 

for this endeavour stems from an old premise 

(Peterson 1959: 151) that speaker information is 

not uniformly encoded throughout vowel spectra, 

i.e., there exist local regions of strong speaker and 

phonetic specificity. Supportive evidence has since 

been reported in a wide range of studies (inter alia: 

Goto et al. 2017; Hyon et al. 2012; Khodai-Joopari 

et al. 2004; Kitamura and Akagi 1995; 

Mohammadi et al. 2011; Mokhtari and Clermont 

1994; Pols et al. 1973; Saito and Itakura 1982; van 

den Heuvel et al. 1993; Wang et al. 2016). 

The presentation of our work is as follows. Sec. 

2 describes and illustrates the method (Clermont 

2022) adopted for obtaining sub-band CCs, 

hereafter referred to as band-limited CCs (BLCCs 

in short). The BLCC method affords flexibility and 

efficiency, two properties exploited in this work. 

Sec. 3 recalls the basics of the LR framework. 

Sec. 4 concerns the multi-speaker vowel data used, 

the BLCC parameterisation applied to a sequence 

of sub-bands, the FVC procedures, and the LR-

based metric for performance assessment. Sec. 5 

presents full-band and sub-band FVC results for 

each vowel. Sec. 6 discusses the results in context 

of previous work, and Sec. 7 outlines potential 

ways forward. 
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2 The BLCC Method 

This section focuses on the method employed for 

obtaining BLCCs by a linear transformation of full-

band CCs. The method is described in Sec. 2.1, and 

its mathematical formulation is outlined in Sec. 2.2. 

In Sec. 2.3, the numerical and spectral behaviours 

of BLCCs show that the practical size for a BLCC 

vector depends on the fraction of the full-band’s 

frequency range occupied by the sub-band’s width. 

2.1 Procedural steps 

The BLCC method consists of three main steps 

encapsulated in Fig. 1. Steps (1) and (2) describe 

standard procedures of spectral analysis, which are 

applied to short-time frames of the speech signal 

sampled at some frequency 𝐹𝑠 (Hz). The final step 

(3) concerns the linear transformation itself. 

At Step (1), the all-pole linear-prediction (LP) 

model of speech production is adopted for two 

reasons: (a) It provides a reliable characterisation 

of the spectral resonance patterns of  non-nasalised, 

voiced sounds; (b) It is thus expected that speaker 

differences are strongly encoded in the LP cepstral 

representation of the vowels used for this study.  

Step (1) yields a log magnitude spectral (LMS) 

representation based on the LP model (order 𝑀 ), 

which spans the entire frequency range [0, (𝐹𝑠/2)] 
in Hertz (or [0, 𝜋] in radians). The dashed curve in 

Fig. (2a) illustrates this representation also known 

as the “exact” LP-based LMS. Note that the 

frequency scale along the horizontal axis is kept 

linear in our experiments, thus leaving open the 

possibility of finding speaker-sensitive sub-bands 

without pre-defined nonlinear constraints. 

The purpose of the Discrete Cosine Transform 

(DCT) at Step (2) is to expand the exact LMS as a 

Fourier cosine series of the so-called cepstral 

coefficients 𝐶𝑘. These are here referred to as full-

band 𝐶𝑘  since our LMS spans the full frequency 

range. The average of the full-band LMS is usually 

assumed to be zero, hence 𝐶0 = 0. In practice, the 

series is truncated after 𝑀 terms as follows: 

𝑆(𝜔) = ∑ 𝐶𝑘
𝑀
𝑘=1 cos(𝑘𝜔) ,    0 ≤ 𝜔 ≤ 𝜋                   (1)                               

The solid curve in Fig. 2(a) depicts the 

cepstrally-smoothed LMS resulting from the 

truncated series. As noted earlier, smoothing has 

the beneficial effect of enhancing spectral 

distinctiveness. 

At Step (3), BLCCs are obtained using a method 

 

Figure 1: The BLCC method and its main steps. 

 
 

 

Figure 2: Spectral representations of a back vowel: (a) 

Exact LMS (full band) based on LP analysis (order 

M=14) at Step (1), overlaid with cepstrally-smoothed 

LMS based on Eq. (1) and on the 𝐶𝑘 obtained at Step 

(2); (b) Sub-band region [𝜔1, 𝜔2]  highlighted as an 

integral part of the full-band, cepstrally-smoothed LMS. 
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which affords the flexibility of selecting any sub-

band region of the full-band spectrum without 

repeating the two previous steps. The central idea 

portrayed in Fig. 2(b) is this: Focusing on a sub-

band region [𝜔1, 𝜔2] does not alter the fact that it 

forms an integral part of some full-band spectrum. 

It is therefore conceivable that sub-band cepstra are 

derivable from full-band cepstra. As shown in 

Clermont’s (2022) study, the vector 𝐜′  of BLCCs 

representing a sub-band can indeed be calculated 

using a linear transformation 𝐀  of the vector 𝐜  of 

full-band 𝐶𝑘. Sec. 2.2 outlines the transformation 

formulae. Key properties are illustrated in Sec. 2.3. 

2.2 Linear transformation formulae 

The mathematical goal is to represent a sub-band 

region [𝜔1, 𝜔2] of the full-band, cepstrally-

smoothed LMS with a Fourier cosine series, such 

that its coefficients 𝐶𝑙
′ depend on the full-band 𝐶𝑘. 

The band-limited analogue of Eq. (1) may be 

expressed as follows: 

𝑆(𝜔(𝜔′)) = 𝐶0
′ + ∑ 𝐶𝑙

′𝑁
𝑙=1 cos(𝑙𝜔′) , 0 ≤ 𝜔′ ≤ 𝜋   (2) 

where 𝐶𝑙
′  is the l-th BLCC and 𝑁  is the series’ 

upper bound. Eq. (2) includes 𝐶0
′   because the 

average of 𝑆(𝜔(𝜔′)) within a sub-band may not be 

zero. The other 𝐶𝑙>0
′  represent the spectral shape. 

The frequency variable 𝜔′ defined below plays 

a key role by translating the sub-band interval 

[𝜔1, 𝜔2] to that of the full-band range [0, π]: 

𝜔′ = 𝜋 [
(𝜔−𝜔1)

(𝜔2−𝜔1)
] , 𝜔1 ≤ 𝜔 ≤ 𝜔2                               (3)             

From Eq. (3) it is easy to express the frequency 

variable 𝜔 of the full-band series as: 

𝜔(𝜔′) = 𝜔1 + [
(𝜔2−𝜔1)

𝜋
] 𝜔′ = 𝜔1 + 𝑊𝜔′                 (4)             

where the scalar 𝑊 is the ratio of the sub-band’s 

width to the full-band’s frequency range.  

The notation 𝜔(𝜔′) is a reminder that 𝜔 is itself 

a (band-dependent) function of 𝜔′, thus making it 

possible to substitute 𝜔 in Eq. (1) for Eq. (4) and to 

use standard formulae for the coefficients of the 

BLCC series in Eq. (2). These operations lead to:  

𝐶𝑙
′ = ∑ 𝑎𝑙𝑘

𝑀 
𝑘=1 𝐶𝑘, 𝑙 = 0,1, … , 𝑁                                (5) 

and to the matrix form 𝐜′ = 𝐀𝐜 laid out below: 

[
 
 
 
 
 
𝐶0

′

𝐶1
′

⋮
𝐶𝑙

′

⋮
𝐶𝑁

′ ]
 
 
 
 
 

=

[
 
 
 
 
 
𝑎0,1 ⋯ 𝑎0,𝑘 ⋯ 𝑎0,𝑀

𝑎1,1 ⋯ 𝑎1,𝑘 ⋯ 𝑎1,𝑀

⋮ ⋮ ⋮
𝑎𝑙,1 ⋯ 𝑎𝑙,𝑘 ⋯ 𝑎𝑙,𝑀

⋮ ⋮ ⋮
𝑎𝑁,1 ⋯ 𝑎𝑁,𝑘 ⋯ 𝑎𝑁,𝑀]

 
 
 
 
 

[
 
 
 
 
𝐶1

⋮
𝐶𝑘

⋮
𝐶𝑀]

 
 
 
 

            (6) 

The band-dependent weights 𝑎𝑙𝑘  are given in 

Eq. (7a) for  𝑙 = 0 and in Eqs (7b)-(7c) for 𝑙 > 0. 

𝑎𝑙𝑘, 𝑙=0    = 𝛽𝑘[sin( 𝑘𝜔2) − sin(𝑘𝜔1)]                      (7a) 

𝑎𝑙𝑘, 𝑙≠𝑘𝑊 = 𝛾𝑙𝑘[(−1)𝑙+1 sin(𝑘𝜔2) + sin(𝑘𝜔1)]    (7b) 
 

𝑎𝑙𝑘, 𝑙=𝑘𝑊 =  cos(𝑘𝜔1)                                                                (7c) 

where: 

𝛽𝑘 =
1

𝑘(𝜔2−𝜔1)
  and  𝛾𝑙𝑘 =

2(𝑘𝑊)

𝜋[𝑙2−(𝑘𝑊)2]
                       (7d) 

The implementation of Eqs (6) and (7) raises the 

question of how large 𝑁  needs to be in practice. 

The empirical solution suggested in Clermont’s 

study is to fix 𝑁 at 𝑀 × 𝑊 (𝑀𝑊 in short) rounded 

to the nearest integer, where 𝑊 is the ratio defined 

above and 𝑀 the size of the vector of full-band 𝐶𝑘.  

2.3 Numerical illustrations of key properties 

What do BLCCs look like, and how effective are 

they at preserving spectral resolution in a sub-band 

region for 𝑁 = 𝑀𝑊? 

Fig. 3(a) gives a glimpse of BLCC series for two 

sub-bands selected from the same back vowel 

illustrated in Fig. (2). The full-band 𝐶𝑘={1⋯𝑀=14} 

were obtained by DCT of the full-band LP-based 

LMS ranging from 0 to 5 kHz. Eqs (6) and (7) were 

then used to calculate BLCCs for these sub-bands: 

[0.1-0.814]-kHz and [2.3-3.728]-kHz, the latter 

being twice as large as the former. 

The coefficient 𝐶0
′   in Fig. 3(a) is visibly much 

larger in the [0.1,0.814]-kHz range, thus indicating 

a prominent region in the lower part of the 

spectrum. The next 𝐶𝑙
′ exhibit a consistent trend for 

both sub-bands: A major drop in magnitude is 

noticeable after 𝑀𝑊,  followed by a clear decay 

towards zero.  

Is the proposed truncation after 𝑀𝑊 detrimental 

to the spectral resolution in a sub-band region? To 

gain insights into this question, it is instructive to 

observe cepstrally-smoothed spectra representing 

the full band and the two sub-bands. The latter are 

overlaid in Figs 3(b)-(d) for 𝑁 = 0, 1,𝑀𝑊, 
respectively. The 𝑁 = 0  cases in Fig. 3(b) 

correspond to using only 𝐶0
′ . While the spectral fits 

are expectedly very poor, these coefficients alone 

give a good indication of the respective levels of 

the prominences in the two sub-bands. Recruiting 

the next BLCC with 𝑁 = 1  improves the 

approximation by capturing the overall slopes in 

Fig. 3(c). Finally, the spectral fits become very tight 

in Fig. 3(d) with 𝑁 = 𝑀𝑊. 
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In sum, the numerical evidence described above 

indicates that BLCCs after 𝑀𝑊 tend to contribute 

relatively little to the spectral representation of a 

sub-band. This is supported by the consistent decay 

towards zero seen in Fig. 3(a). 

 

 

 

 

 

Figure 3: (a) BLCC series for two selected sub-bands. 

Cepstrally-smoothed spectra (full band based on Eq. 

(1), and sub-bands based on Eq. (2)) are 

superimposed for the following upper bounds: (b) 

𝑁 = 0, (c) 𝑁 = 1, and (d) 𝑁 = 𝑀𝑊. 

3 Likelihood Ratio Framework 

The LR framework provides the theoretical 

foundation upon which voice evidence is analysed 

for source-inference purposes. In FVC, the task of 

the expert is to estimate the strength of voice 

evidence using the LR expressed as follows: 

LR =
𝑝(𝐸 = (𝑋, 𝑌)|𝐻𝑝)

𝑝(𝐸 = (𝑋, 𝑌)|𝐻𝑑)
 

(8) 

The LR is the ratio of two conditional 

probabilities: the numerator is the probability (𝑝) 

of the evidence (𝐸) given the prosecution (same-

speaker) hypothesis (𝐻𝑝) , while the denominator 

is the probability given the defense (different-

speaker) hypothesis (𝐻𝑑).  

The evidence ( 𝐸)  typically consists of the 

source-questioned sample ( 𝑋 ) and the source-

known sample (𝑌). In theory, the belief of the trier-

of-fact regarding the hypotheses, which was 

developed by the previously presented evidence, is 

to be updated by the LR; the assessment of the 

newly presented evidence. In other words, the 

belief of the decision maker regarding the suspect 

being guilty or not changes as a new piece of 

evidence is presented to them in the form of a LR.  

The further away from LR=1, the more strongly 

the LR supports either of the competing 

hypotheses. 

4 Experimental Procedures 

4.1 Speech material and parametrisation 

The speech materials were taken from a Japanese 

dataset of 297 speakers (between 20 and 60 years 

old) as described in Osanai et al. (1995). The 

citation recordings (landline telephone calls) of the 

5 vowels (2 non-contemporaneous sessions × 2 

tokens) were used for the FVC experiments.  

The sampling frequency is 10 kHz because the 

high-end of the telephone bandpass is around 4.5-

kHz in Japan, i.e., the available full-band extends 

from 0 to 5 kHz. Full-band CCs were extracted by 

linear-prediction (LP) analysis (order 14) of each 

vowel’s central frame.  

Using the sub-band transformation explained in 

Sec. 2, BLCCs were obtained from the full-band 

CCs by scanning the full range with a 600-Hz sub-

band shifted every 400 Hz. This process yielded 12 

vectors of BLCCs corresponding to the 12 sub-

bands listed in Table 1. 
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1 [0, 0.6] 2 [0.4, 1.0] 3 [0.8, 1.4] 

4 [1.2, 1.8] 5 [1.6, 2.2] 6 [2.0, 2.6] 

7 [2.4, 3.0] 8 [2.8, 3.4] 9 [3.2, 3.8] 

10 [3.6, 4.2] 11 [4.0, 4.6] 12 [4.4, 5.0] 

Table 1: Limits [𝜔1, 𝜔2] in kHz of the 12 sub-bands. 

Following the definition given in Sec. 2.2, the 

upper bound for the BLCC series representing a 

600-Hz sub-band may be fixed at 𝑀𝑊 = 14 ×
600

5000
= 1.68 and then rounded up to 2 for practical 

use. Per sub-band, the total number of BLCCs is 3 

including the 0th-order one. A FVC system 

incorporating BLCCs was then employed to 

calculate LRs for each of the 12 sub-bands. 

4.2 Data partitioning and LR calculation 

The 297 speakers were randomly divided into three 

mutually-exclusive batches (99 speakers each). 

These were used as the test, background, and 

calibration databases in a cross-validation manner, 

resulting in six-fold cross-validation experiments. 

The results of the six experiments were averaged 

for comparison. 

The LR calculation is a two-stage process 

consisting of a feature-to-score stage and a score-

to-LR stage. A statistical model commonly used in 

linguistic-phonetic FVC is the Multivariate Kernel 

Density (MVKD) model for the feature-to-score 

stage (Aitken and Lucy 2004). The output of the 

MVKD model is a score, and the score is converted 

to a LR value at the score-to-LR stage. The MVKD 

returns a score for a pair of recordings under 

comparison by assessing their similarity and 

typicality. The necessary statistical information for 

typicality is obtained from the background 

database. The score-to-LR conversion, also called 

“calibration”, is performed via logistic regression 

(Morrison 2013). The logistic regression weights 

are determined using the calibration database.  

4.3 Performance assessment 

The log-LR-cost (Cllr) is a standard metric for 

assessing LR-based inference systems in forensic 

science. Eq. (9) is the formula for Cllr, where 𝑁𝑆𝑆 

and 𝑁𝐷𝑆 are the numbers of the same-speaker (SS) 

and different-speaker (DS) LRs, respectively. The 

SS LRs are indexed by i and the DS LRs by j.  

𝐶𝑙𝑙𝑟 =
1

2
(

1

𝑁𝑆𝑆

∑ 𝑙𝑜𝑔2 (1 +
1

𝐿𝑅𝑆𝑆𝑖

)
𝑁𝑆𝑆

𝑖
 

                   +
1

𝑁𝐷𝑆

∑ 𝑙𝑜𝑔2 (1 + 𝐿𝑅𝐷𝑆𝑗
)

𝑁𝐷𝑆

𝑗
) 

(9) 

The first 𝑙𝑜𝑔2(∙) is the cost function for the SS 

LRs and the second one is for the DS LRs. The Cllr 

is the grand average between the mean cost of the 

SS LRs and that of the DS LRs. The lower the Cllr, 

the better in performance.  

5 Experiment Descriptions and Results 

Two FVC experiments were run separately per 

vowel, and the results are jointly charted in Fig. 4.  

In Experiment 1, speaker information locally-

encoded in the spectrum was investigated vowel-

by-vowel by conducting the experiments with the 

multi-band BLCCs (see Table 1 for the specific 

locations of the sub-bands).  

The Cllr values obtained for the 12 sub-bands are 

displayed as a red curve at the bottom plot of each 

panel included in Fig. 4. Each Cllr value (Y-axis) is 

given against the central frequency (X-axis) of the 

sub-band. The horizontal dashed line (in blue) 

indicates the overall mean of the 12 Cllr values for 

the vowel. Expected formant-frequency ranges 

(F1, F2 and F3) taken from Kinoshita et al. (2022) 

are also marked for each vowel. 

In Experiment 2, the sub-band LRs obtained 

from Experiment 1 were fused from two to all sub-

bands as per the following list (r) = {2,3,…,12}. 

All possible combinations of r sub-bands (12
𝑟
) 

were also included. 

In the top plot of each panel, the best (lowest) 

Cllr value is given for each r together with the Cllr 

value of the single best sub-band (r=1). The Cllr for 

the full-band CCs is indicated by the horizontal 

dotted line. The three best sub-bands (fused) are 

highlighted in blue in the bottom plot, and the three 

worst sub-bands (fused) are highlighted in pink.  

5.1 Results: Experiment 1 

The red curve included in the bottom plot of each 

panel (Fig. 4) stays consistently below Cllr=1, 

implying that every spectral region specified by the 

sub-bands carries some useful speaker information 

for FVC. However, the fluctuations in the Cllr 

curves indicate that speaker-specific information is 

not evenly distributed throughout the entire 

frequency range, and the distributional patterns are 

distinctive for each vowel. It is worth noting that 

the Cllr value consistently increases for the 

rightmost sub-band [4.4, 5.0] kHz, meaning that 

this spectral region contains relatively less speaker-

specific information. This may be due to the upper  
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limit of the Japanese telephone band-pass located 

near 4.5 kHz (Rose et al. 2003). 

The distributional patterns of speaker-specific 

information are particularly contrastive between /i/ 

and /a/. The information is more strongly encoded 

in the mid- and high-frequency regions of /i/, 

roughly between 1.9 and 4.3 kHz (covering F3 and 

beyond). By contrast, for /a/, it is the low-frequency 

region up to about 1.9 kHz (spanning F1 and F2) 

which carries the bulk of speaker-specific 

information. These findings agree with the 

observations reported in Osanai et al. (2018). Their 

study based on sub-band cepstral distances points 

to roughly 2.0 kHz as the frequency below which 

speaker verification accuracy was relatively higher 

for /a/, and roughly 1.9 kHz above which speaker 

verification performed relatively better for /i/. 

For the other vowels (/u, e, o/), the ups and 

downs of the Cllr curves are overall less dynamic 

than those for /i/ and /a/. Yet, some alternations in 

Cllr are still evident. For instance, the Cllr values are 

marginally lower in the range between 

approximately 2.7 and 3.9 kHz (spanning F3 and 

  

  

 

Figure 4: The results for each of the five Japanese vowels are grouped in a separate panel. The top plot in each 

panel contains the best Cllr values for the fused r (=1 to 12) sub-bands. The horizontal dotted line indicates the Cllr 

value for the full-band CCs. The vertical red solid line indicates r=3 for which sub-band performance becomes 

very close to the full-band result. The bottom plot in each panel gives the profile of Cllr values (in red) for the 12 

sub-bands. The horizontal dashed line (in blue) indicates the Cllr value averaged over the 12 sub-bands. The sub-

band regions highlighted in blue are the three best-performing sub-bands (fused), and the sub-bands highlighted 

in pink are the three worst-performing sub-bands (fused). 
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beyond) for /u/ and /o/ and around 1.5-1.9 kHz 

(spanning F2) for /e/.  

Kinoshita (2001) found that F2 of /i/ and F2 and 

F3 of /e/ are strong acoustic features for Japanese 

FVC. With more specific details based on F-ratios, 

Khodai-Joopari et al. (2004) reported that the 

spectral regions of 1.7-2.7 kHz (spanning F3) and 

3.7-4.5 kHz (extending beyond F3) of /i/, and the 

spectral regions of 1.4-2.4 kHz (spanning F2), 2.6-

3.7 kHz (spanning F3) and 3.8-4.5 kHz (extending 

over F3) of /e/, are potentially useful for speaker 

classification based on Japanese vowels.  

The results obtained from Experiment 1 mostly 

agree with the findings from the two studies 

referenced above, in that the spectral or formant 

regions identified as promising returned 

categorically low Cllr values. For example, the 

lowest Cllr value (=0.63171) of all vowels lies 

within the frequency range pointed out by Khodai-

Joopari et al. (2004) for /i/. Likewise, the lowest Cllr 

value (=0.70510) for /e/, also the lowest amongst 

vowels /e, a, o, u/, also occurs in the F2 range 

pointed by Kinoshita (2001).  

For the back vowels (/u, o, a/), the frequency 

range spanning and/or extending beyond F3 is 

reportedly a good candidate for Japanese speaker 

classification (Khodai-Joopari et al. 2004). Some 

studies also report the usefulness of F3 of back 

vowels as a speaker discrimination feature in 

English (Mokhtari and Clermont 1996; Sambur 

1975). As noted above, the importance of the 

frequency region spanning F3 and beyond holds 

true in our results for /u/ and /o/. This point will be 

revisited in describing results from Experiment 2. 

5.2 Results: Experiment 2 

Turning our attention to the top plots in each panel, 

it can be observed that regardless of the vowels, 

performance is improved by fusing multiple sub-

band LRs. The performance is substantially 

enhanced when 3 or 4 sub-bands are fused in 

contrast to using only the best single sub-band. As 

a matter of fact, the fusion of 3 or 4 optimal sub-

bands brings the system to nearly the same 

performance level as that obtained with full-band 

CCs or even marginally better.  

Note that 3 or 4 sub-bands are here represented 

with 9 or 12 BLCCs in total, respectively. Thus, 

only a few BLCCs are necessary to achieve nearly 

the same performance as that obtained with the 14 

full-band CCs. This a notable advantage of BLCCs 

in terms of computational efficiency. 

The performance stays basically unchanged 

even when more sub-bands are included for fusion, 

except for a slight deterioration in performance 

towards the higher numbers of fused sub-bands.  

Together with the results from Experiment 1, the 

above observations based on Experiment 2 would 

seem to indicate that locally-encoded speaker 

information is not necessarily unique as per its 

spectral region. In other words, pieces of speaker 

information may be redundantly encoded across 

different spectral regions. Otherwise, the 

continuous decline in Cllr (an incessant gain in 

performance) should have been observed as more 

sub-bands are totalled for fusion. 

The bottom plots in each panel clearly show that 

the three best-performing sub-bands span different 

spectral regions depending on the vowel. For /i/, 

they are in the mid- and high-frequency ranges 

above 2 kHz, which generally correspond to the 

spectral regions with strong speaker information. 

On the other hand, for /e/ and /a/, the three best sub-

bands are dispersed in the low- and mid-frequency 

ranges below 3.0-3.4 kHz. For /u/ and /o/, the three 

best sub-bands are most widely separated in the 

range approximately between 0 and 4.2 kHz.  

It is noticeable that the 3 best sub-bands are not 

only spaced apart from each other, but they also 

tend to fall in the speaker-sensitive spectral regions. 

This leads us to conjecture that those sub-bands are 

likely to contain more locally-distinctive speaker 

information. In support of the conjecture, it can be 

observed that the 3 worst sub-bands (coloured in 

pink) are in immediately neighbouring positions. 

For /u, e, a/, they are the 3 contiguous sub-bands 

appearing in the high-end of the spectrum and, for 

/i/, the 3 sub-bands flock together towards the low-

frequency end, where Cllr values are worse. It can 

therefore be surmised that those sub-bands did not 

perform well after fusion because they are largely 

redundant in speaker information in addition to 

being less sensitive to speaker individuality, as 

demonstrated in Experiment 1.  

Following on from Experiment 1, the 

importance of the F3 region for FVC is also evident 

for the back vowels from the bottom plots given in 

Fig. 4, in that one of the 3 sub-bands falls in the F3 

region. The sub-band spanning F3 does not 

seemingly contain strong speaker information for 

vowel /a/; the Cllr values of the region are higher 

than the average Cllr. Nevertheless, the speaker 

information encoded in the F3 region is judged to 

be complementary with the sub-bands spanning F1 
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and F2 for /a/. For /u/ and /o/, one sub-band appears 

in the frequency range beyond F3, in agreement 

with Khodai-Joopari et al. (2004).  

As can be seen from the bottom plots for the 

back vowels, the first sub-band [0, 0.6] kHz turned 

out to be a good one when fused with the other 2 

sub-bands. Judging from the commonly shared 

empirical knowledge that more speaker-specific 

information is encoded in higher spectral regions 

(Hayakawa and Itakura 1994; Kitamura and Akagi 

1995), this result is counter-intuitive. However, 

Khodai-Joopari et al. (2004) also sighted a peak of 

speaker F-ratio below F1 region for /o/ and /a/, and 

suggested their glottal-source characteristics as a 

possible cause for the peak.  

6 Discussion 

The FVC results presented in Sec. 5 confirm the 

existence of speaker-sensitive spectral regions, 

which principally agree with previous acoustic and 

articulatory studies of vowels. As such, it can 

demonstrably be argued that BLCC is a useful 

analytical tool equipped with flexibility and 

precision in selecting any sub-band of interest. 

The formant frequencies (F1, F2 and F3) are 

common phonetic features in linguistic-phonetic 

FVC (Rose et al., 2003; Morrison 2008, Rose, 

2017). The analytical potential of the multi-band 

BLCCs, however, unavoidably led us to notice that 

the regions corresponding to formant frequencies 

do not always contain strong speaker information. 

For example, the Cllr values for sub-bands spanning 

the F1-F2 region of /i/, the F2 region /o/ and the F3 

region of /a/ are relatively high compared to the 

other regions. This suggests that sub-band selection 

based strictly on formant ranges is an unnecessarily 

constraining and even sub-optimal solution.  

A case in point is Kinoshita et al’s (2022) results 

based on sub-band cepstral distances and on prior 

knowledge of fixed F1, F2 and F3 sub-bands. A set 

of FVC experiments was done with the sub-bands 

that were selected according to the fixed F1, F2 and 

F3 ranges provided in Kinoshita et al. (2022) for 

the same experiments performed in the current 

study. The resultant Cllr values are shown in Table 

2, together with the Cllr values with the 3 optimal 

sub-bands (fused) selected empirically (see Fig. 4), 

i.e., without prior acoustic-phonetic knowledge. 

The Cllr values for the full-band CCs are also listed. 

The results from the 2 rightmost columns of 

Table 2 indicate that BLCCs can achieve nearly 

full-band performance with 3 optimal sub-bands 

and, thus, with fewer cepstral features. This finding 

illustrates the power of BLCCs in locating such 

sub-bands without any prior knowledge. 

Vowels 

Kinoshita et al 

(2022) 

This Study 

3 sub-bands 

(with prior  

knowledge) 

3 sub-bands 

(without prior 

knowledge) 

full band 

/i/ 0.52191 0.43142 0.40342 

/u/ 0.68992 0.60858 0.57934 

/e/ 0.54173 0.51947 0.48843 

/o/ 0.73500 0.66732 0.67500 

/a/ 0.65428 0.61239 0.58130 

Ave. 0.62856 0.56783 0.54549 

Table 2: Middle columns: Cllr values for 3 fused sub-

bands selected using two approaches. Kinoshita et al’s 

(2022) approach with prior knowledge, i.e., based on 

their formant ranges; and this study’s approach without 

prior knowledge, i.e., guided by empirical selection. 

Rightmost column: full-band Cllr values from this study 

are included for reference. 

It is relevant to point out that while our FVC 

experiments and Kinoshita et al’s (2022) involve 

phonologically the same vowels and about the 

same number of speakers, their vowel tokens were 

produced in various consonantal contexts, whereas 

ours were produced without any such contexts. 

Thus, the exact formant ranges could be different 

for the vowels included in these two studies.  

Notwithstanding this discrepancy for now, the 

trend of Cllr values in the 2 middle columns of Table 

2 is consistent and encouraging: Our approach 

(without prior knowledge) outperforms the one 

employed by Kinoshita et al. (2022) (with prior 

knowledge). Further investigations with BLCCs 

applied to Kinoshita et al’s vowel data and to other 

datasets will be necessary to confirm the apparent 

superiority of our sub-band approach in FVC.  

The results obtained in this study are based only 

on male speech samples. While this is practically 

justified because males tend to commit crimes 

more often than females, further experimentation is 

desirable with a wider variety of speakers. 

However, the analytical power of BLCCs should 

remain unaffected by gender or age. It is the 

locations and ranges of speaker-sensitive spectral 

regions that could differ with these factors. 

While retaining intrinsic properties of the 

cepstrum (e.g., ease of extraction, immunity to 

insignificant spectral details), the analytical power 

of BLCCs allows the forensic scientist to flexibly 

shift the focus of scrutiny and interpretation 

according to the selected sub-band region(s). This 
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is an invaluable contribution that BLCCs can bring 

to the task of communicating the FVC outcome to 

the trier-of-fact in a more approachable way.  

7 Future Work 

The BLCCs exploited here are based on LP 

modelling of the speech signal and extracted on a 

linear frequency scale. However, there may be 

further insights to be gained by applying the same 

linear transformation to CCs from filter-bank 

outputs, combined with a nonlinear mapping of the 

frequency axis such as the often-used Mel scale. It 

is interesting to note that, except for /i/, our best-

performing sub-bands include the lower-spectral 

regions that are precisely emphasised with Mel-

Frequency CCs (MFCCs). A deeper investigation 

of MFCCs with differing sub-band widths and 

overlaps is therefore possible using our flexible 

approach to selecting local spectral regions.  

From a forensic point of view, it is coherent to 

extend the application of BLCCs to non-vowel 

sounds (Rose 2022), whose speaker-sensitive 

spectral properties have received relatively less 

attention. From a linguistic point of view, it is 

conceivable that BLCCs could also be used as an 

ancillary or alternative parameter in the areas of 

acoustic-phonetics (e.g., efficient encoding of 

contrastive features as in Iskarous (2018)) and 

socio-phonetics (e.g., exploration of accent-

specific sub-bands) (Arslan and Hansen 1997). In 

connection with these applications, it would be 

useful to study correlations between BLCCs and 

formant frequencies via the linear regression 

models developed by Broad and Clermont (1989) 

and Clermont (2013), and recently explored by 

Hughes et al. (2020) in the FVC context. 

Finally, it is hoped that the sub-band approach 

embedded in BLCCs will bring new perspectives 

in other areas of speech science and technology, 

such as speech classification (Mokhtari and 

Clermont 1994), spoofing detection (Chettri et al. 

2020; Soni et al. 2016), language identification 

(Salesky et al. 2021), and speech emotion 

recognition. Any pieces of information related to 

speaker variability, speech emotion, or synthesised 

speech, which are found to be notably encoded in 

specific sub-bands, would be advantageous for 

building robust classification systems, or for 

training deep-learning models. These technological 

pursuits are likely to benefit from the flexibility and 

efficiency afforded by the BLCC approach to sub-

band spectral analysis. 
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