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Abstract

Demonstration learning aims to guide the
prompt prediction by providing answered
demonstrations in the few shot settings. De-
spite achieving promising results, existing work
only concatenates the answered examples as
demonstrations to the prompt template (includ-
ing the raw context) without any additional op-
eration, neglecting the prompt-demonstration
dependencies. Besides, prior research found
that randomly replacing the labels of demon-
strations marginally hurts performance, il-
lustrating that the model could not properly
learn the knowledge brought by the demon-
strations. Inspired by the human learning pro-
cess, in this paper, we introduce Imitation
DEMOnstration learning (Imitation-Demo) to
strengthen demonstration learning via explic-
itly imitating human review behaviour, which
includes: (1) contrastive learning mechanism
to concentrate on similar demonstrations.(2)
demonstration-label re-prediction method to
consolidate known knowledge. Experiment re-
sults show that our proposed method achieves
state-of-the-art performance on 5 out of 14 clas-
sification corpus. Further studies also prove
that Imitation-Demo strengthens the associa-
tions between the prompt and demonstrations,
which could provide the basis for exploring
how demonstration learning works.

1 Introduction

Prompt-based learning typically works by modify-
ing the input into cloze-style prompt templates and
using the masked language models (MLMs) to com-
plete the unfilled information in probabilistic. It has
achieved promising performance in various NLP
tasks (Schick and Schiitze, 2021; Lester et al., 2021;
Hu et al., 2021), especially in low-resource settings
(Scao and Rush, 2021). A promising prompt engi-
neering category is demonstration learning (Gao
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et al., 2021; Liu et al., 2021a), which seeks to pro-
vide a few answered samples as demonstrations to
assist prompt prediction. As shown in Fig. 1 (a),
the demonstration learning method concatenates
the answered demonstrations per category to the
prompt, and seeks to classify the [M AS K] token
as great, indicating a positive prediction result
based on a label-to-word mapping.

The intuition of demonstration learning is that
samples with similar expressions or content can
provide repetitive patterns (Liu et al., 2021a). How-
ever, Min et al. (2022) point out that replac-
ing gold demonstration labels with random la-
bels marginally hurts performance. This finding
is counter-intuitive and illustrates that the model
could not comprehensively refer to the knowledge
brought by the demonstrations in an implicit way.
We attribute this problem to that existing methods
simply concatenate the answered demonstrations
to the prompt template without any additional oper-
ation, ignoring the dependencies between prompt
and demonstrations.

To overcome this limitation, we rethink how hu-
man beings learn from demonstrations. Intuitively,
when faced with a new challenging question, they
typically (1) look for the most similar example to
the question first, and then (2) reply to the question
according to the answering steps of the retrieved
example. Humans tend to strengthen the learning
process through review strategies, i.e., finding a
better solution to select similar examples and re-
answering the questions of examples to consolidate
known knowledge. Inspired by this, likewise, the
interactions between the prompt and demonstra-
tions could also be reinforced by imitating the hu-
man reviewing process for demonstration learning.

In this paper, we propose a simple-yet-effective
version of demonstration learning, named Imita-
tion DEMOnstration Learning (Imitation-Demo)
to explicitly strengthen the two sub-steps of demon-
stration learning via human-like review. Specifi-
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Figure 1: The overview of the proposed Imitation-Demo: (a) Conventional demonstration learning simply con-
catenate the demonstrations to the prompt. (b) Imitation-Demo reinforces the dependencies between prompt and
demonstrations via contrastive learning (I) and demonstration-label re-prediction (II). For brevity, all sentences and
contexts from demonstrations are represented by coloured boxes (illustrated in the left part). Best view in colours.

cally, to accurately locate similar samples, we intro-
duce a contrastive learning mechanism (Chen et al.,
2020; Robinson et al., 2021) to reorganize demon-
strations by reducing the divergences of demon-
stration contexts among the same category while
increasing those divergences between different cat-
egories. Besides, to solidify known knowledge,
we leverage a demonstration-label re-prediction
method to emphasize the positions of the answers
in demonstrations. Even without introducing new
parameters or any prediction computation, our
proposed method achieves state-of-the-art perfor-
mance on 5 out of 14 classification corpus. Com-
pared to the strong baseline LM-BFF (Gao et al.,
2021), Imitation-Demo achieves 1.11 points av-
eraged improvement on the 14 datasets. Further
study also shows that Imitation-Demo strengthens
the association between prompt and demonstra-
tions, which could provide the basis for exploring
how demonstration learning works.

2 Methodology

Demonstration Learning. As illustrated in
Fig. 1 (a), The prompt template 2P"°"P¢ consists of
input sentence z°™ and template £/ containing
mask token, i.e., zP"OTPt = [psent plemp] Firstly,
we leverage the pre-trained SBERT (Reimers and
Gurevych, 2019) to retrieve the demonstrations (in-
cluding context z(¥) and label y®)) for the k-th cat-
egory that has maximum semantic similarity to the
raw prompt context. Then, the retrieved demonstra-
tions are concatenated to the input prompt. After
that, we convert the concatenated input sentence

x™ to hidden vectors h’™ via the ROBERTa model
(Liu et al., 2019). The model is optimized by cross-
entropy loss, and the goal of demonstration learn-
ing is to predict y™%** at the [M ASK] position
from the hidden state of mask h™?* via MLM
head. The whole process could be formulated as':

in _ [xprompt7 (x(l),y(l)), .'.7($(K)’y(K))]

T
h™ = RoBERTa(z"")
Lonask = CE(hmask’Ymask) (D
P <ymzzsk ’ xiﬂ) — MLM(hmask)
where |.., .., ..] denotes concatenating diverse parts

with sentence separator [SEP]. K is the number
of categories. CE is short for cross-entropy loss,
and Y% s the ground-truth labels from the pre-
defined label-to-word mapping.
Demonstration Reorganization via Contrastive
Learning. In demonstration learning, it is cru-
cial to decide from which known demonstrations
to select the repetitive patterns. Therefore, we in-
troduce a contrastive learning mechanism to imi-
tate human review behaviour by reorganizing the
demonstrations based on their contexts. As shown
in Fig. 1 (b)(I), we treat the demonstration con-
texts with identical categories to the input prompt
as positive samples, and the others are regarded
as negative ones. By pulling in positive samples
and pulling out negative samples, the model could
select the most relevant sample among the given
"Due to the space restriction, we only briefly describe the

general process of demonstration learning, please refer to Gao
et al. (2021) for more details.
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demonstrations more precisely. In the experiment,
we apply mean-pooling operations on the hidden
states of positive, negative demonstration contexts
h*, h™, and input sentence h*”, obtaining the sen-
tence representations s, s~, and s™. Inspired by
Robinson et al. (2021) in computer vision, we intro-
duce HCL loss to ensure intra-class compactness
while increasing inter-class distances:

in, g+
eSS

esimst Zf\[:l esims~

2
where - is the dot product operation, N is the num-
ber of negative contexts in the task, and E'[..] de-
notes calculating the mean value.
Demonstration-label Re-prediction. We further
utilize a demonstration-label re-prediction method
to mimic human review behaviour by recovering
the labels from all the given demonstration con-
texts. Specifically, the target of our model is not
only to identify the category of [M ASK] token,
but also to classify the tokens located in demonstra-
tion label positions. Take the binary classification
task in Fig. 1 (b)(II) as an example, more than pre-
dicting the class of the mask token, the model also
requires to predict 9"¢** and ' (i.e., great and
terrible) based on the hidden states h97¢* and
h'¢" at corresponding label positions.

During training, the cross-entropy loss is utilized
to calculate Lgpcq¢ and Lye,r; for different demon-
stration labels, then we sum them up to obtain the
demonstration-label re-prediction loss Ligpe;:

ﬁgreat — CE(hgreat7 Ygreat)
Liorri = CE(hteM‘i’ }A/terri) 3)
Ligper = Egreat + Lierri

Leonteat = E | — log

where Y970t and Y'"" are the ground-truth labels
at diverse demonstration label positions.

Similar contrastive learning and demonstration-
label re-prediction operations can also be per-
formed for the multi-category classification tasks.
The overall loss of Imitation-Demo is defined as
follows:

L= Emask + Oéﬁlabel + Bﬁconte:ﬂt (4)

where «, ( are weight coefficients to control the
importance of different components.

3 Experiments

Experiments Settings. Following the settings in
Gao et al. (2021), we evaluate on 14 classification

MRPC SNLI SST-2
Imitation-Demo  80.8 (3.2) 80.0 (3.3) 93.1(0.5)
LM-BFF* 79.7(3.2) 77.8(0.6) 92.1(1.5)
Imitation-Demo*  74.4 (9.2) 76.0(5.2) 91.0 (1.3)

Table 1: Results when using demonstrations with ran-
dom labels. * denotes trained with random labels.

datasets. For SNLI (Bowman et al., 2015), SST-2
(Socher et al., 2013), CoLA (Warstadt et al., 2019),
MNLI (Williams et al., 2018), QNLI (Rajpurkar
et al., 2016), RTE (Dagan et al., 2005; Giampic-
colo et al., 2007; Bentivogli et al., 2009), MRPC
(Dolan and Brockett, 2005), QQP? and SST-B (Cer
et al., 2017), we use the original development sets
for testing. For MR (Pang and Lee, 2005), CR
(Hu and Liu, 2004), MPQA (Wiebe et al., 2005)
and Subj (Pang and Lee, 2004), we randomly sam-
ple 2,000 examples as the testing set. For SST-5
(Socher et al., 2013) and TREC (Voorhees and Tice,
2000), we use the official test sets. F1 score (F1)
are adopted as the evaluation metric of MRPC and
QQP, and the other datasets utilize accuracy (acc)
as the evaluation criteria.

Parameters Setting We implement all the base-
lines and our frameworks using PyTorch (Paszke
et al., 2019). The pre-trained RoBERTa-large
model and roberta-large-nli-stsb-mean-tokens
SBERT (Reimers and Gurevych, 2019) from hug-
gingface? are applied in the experiments. We get
16 samples per class during training for all mod-
els. In order to control the smoothness of the ex-
ponential functions when calculation contrastive
learning loss, we divide every mean-pooling results
with temperature 7'. Grid search mechanisim are
utilized to select optimal hyper-parameter combi-
nations on each split. Finally we select the the
coefficients o and 3 as 1 and 5, respectively. The
temperature 7' is set as 5 and the batch size is 16.
The other hyper-parameters and the prompt tem-
plates are identical to the default settings in LM-
BFF (Gao et al., 2021) for fair comparison. We
report the average performance of models trained
on 5 different randomly sampled training and dev
splits, the random seeds are fixed as 13, 32, 42,87,
100, respectively.

Compared Methods. (1) Majority, which select
the majority class of the dataset; (2) Prompt-based
zero-shot: which use prompt tunning in zero-
shot situations; (3) “GPT-3” in-context learn-

Zhttps://www.quora.com/q/quoradata/
3https://github.com/huggingface/transformers
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SST-2 SST-5 MR CR MPQA Subj TREC
(acc) (acc) (acc) (acc) (acc) (acc) (acc)
Majority 50.9 23.1 50.0 50.0 50.0 50.0 18.8
Prompt-based zero-shot 83.6 35.0 80.8 79.5 67.6 51.4 32.0
“GPT-3” in-context learning 84.8(1.3) 30.6(0.9) 80.5(1.7) 87.4(0.8) 63.8(2.1) 53.6(1.0) 26224
Fine-tuning 81.4(3.8) 439(2.0) 769(59) 758(3.2) 72.0(3.8) 90.8(1.8) 88.8(2.1)
P-tuning 92.2 (0.4) - 86.7(1.2) 91.8(1.1) - 90.3 (2.2) 86.3(4.5)
DART 93.5 (0.5) - 88.2(1.0) 91.8(0.5) - 90.7 (1.4) 87.1(3.8)
Li’s 92.8(0.6) 50.7(29) 894(0.8) 90.5(2.2) 832(1.4) 92.1(0.7) 87.2(3.8)
Demo-tuning (LM-BFF) 93.2(0.4) 50.1(0.4) 87.9(0.6) 91.5(0.6) 859(1.5) 92.3(0.6) 90.7 (4.5)
LM-BFF + SupCon 942 (0.7) 54.0(0.8) 89.6(0.8) 91.0(1.4) 869(1.1) 92.4(0.6) 89.8(1.8)
EFL ¢ 91.1(1.5) 41.8(1.6) 857@3.7) 87.7(54) 758(48) 91.7(1.8) 88.1(2.3)
LM-BFF ¢ 922(1.4) 512(1.6) 88.2(09) 91.8(1.5) 855(4.2) 909 (1.9 87.6(4.8)
Imitation-Demo (ours) 93.1(0.5) 52.3(0.6) 89.1(1.0) 91.8(0.7) 87.7(1.2) 924 (1.1) 89.1(3.2)
Prompt-based Fine-tuning (man) 92.6(0.5) 47425) 87.0(1.2) 903(1.00 847(22) 91.2(1.1) 84.8(5.1)
+ demonstrations” 922 (14) 512(1.6) 88.2(09) 91.8(1.5) 855(42) 909(1.9) 87.6(4.8)
+ demonstration-label re-prediction 92.8 (0.7) 51.4(1.0) 89.2(1.0) 92.2(1.2) 87.5(1.0) 92.1(1.6) 89.9(3.1)
+ contrastive learning 93.1(0.5) 52.3(0.6) 89.1(1.0) 91.8(0.7) 87.7(1.2) 924 (1.1) 89.1(3.2)
MNLI  MNLI-mm SNLI QNLI RTE MRPC QQP
(acc) (acc) (acc) (acc) (acc) (F1) (F1)
Majority 327 33.0 33.8 49.5 52.7 52.7 0.0
Prompt-based zero-shot 50.8 51.7 49.5 50.8 51.3 61.9 49.7
“GPT-3” in-context learning 52.0(0.7) 53.4(0.6) 47.1(0.6) 53.8(0.4) 604 (1.4) 4576.00 36.1(5.2)
Fine-tuning 45.8 (6.4) 47.8(6.8) 484(4.8) 60.2(6.5) 54439 76.6(2.5) 60.7(4.3)
P-tuning 61.5(2.1) - 72.3(3.0) 64.3(2.8) - 76.2(2.3) 65.6(3.0)
DART 67.5(2.6) - 75.8 (1.6) 66.7 (3.7) - 78.3(4.5) 67.8(3.2)
Li’s 69.2(4.0) 71.0@3.5) 7933.2) 69.0(45) 742(3.1) 73.2(7.5) 682(3.4)
Demo-tuning (LM-BFF) 71.0(2.0) 72.8(1.5) 78.7(1.9) 73.1(1.8) 70.0(3.4) 784(2.3) 70.2(1.7)
LM-BFF + SupCon 724 (2.0) 742(19) 79.6(2.6) 71.1(6.8) 71.8(1.1) 77.8(4.6) 74.0(2.5)
EFL ¢ 65.8(3.7) 685(2.8) 782(1.3) 67.6(5.5) 689(15) 77.4(6.3) 67.0(2.9)
LM-BFF ¢ 69.6(29) 71.32.6) 78.03.6) 688(54) 68.7(23) 71.3(6.00 68.7(4.7)
Imitation-Demo (ours) 714 09) 72.02.00 80.0(3.3) 705(3.3) 71.5(1.5) 80.8(3.2) 70.9(1.5)
Prompt-based Fine-tuning (man) 68.3(23) 705(1.9) 772@3.7) 645(43) 69.1(3.6) 745(53) 655(5.3)
+ demonstrations” 69.6(29) 71.3(2.6) 78.0(3.6) 688(54) 68.7(23) 77.3(6.00 68.7(4.7)
+ demonstration-label re-prediction  71.3 (0.9) 72.5(1.4) 79.6(3.2) 70.3(4.1) 70.8(3.4) 77.0(2.6) 68.8(2.6)
+ contrastive learning 71.409) 72.02.00 80.0(3.3) 70.5(3.3) 71.5(1.5) 80.8(3.2) 70.9(L.5)

Table 2: Overall results on RoBERTa-large with 16 samples per class. We report the mean (variance) of models
trained on 5 different randomly sampled training and dev splits. Prompt-based Fine-tuning (man) indicates trained
with manually designed templates. ¥ denotes we re-implement the EFL and LM-BFF models for fair comparisons.

ing, which use the in-context learning proposed
in RoBERTa with no parameter updating; (4) Fine-
tuning; (5) P-tuning (Liu et al., 2021b), which
employ trainable continuous prompt embeddings;
(6) DART (Zhang et al., 2021), which differen-
tially optimize the prompt template and the target
label during the backpropagation process; (7) Li’s
(Li et al., 2022), which reformulate a classifica-
tion or a regression task as a token-replaced detec-
tion problem utilizing pre-trained model Electra
(Clark et al., 2020); (8) Demo-tuning (LM-BFF)
(Liang et al., 2022), which select “mask token”
output feature as the input for contrastive learning
to get a good representation of “virtual demonstra-
tion”. We select the LM-BFF as the basic backbone
model for fair comparisons. (9) LM-BFF + Sup-
Con (Jian et al., 2022), which propose a supervised
contrastive framework that clusters inputs from the

same class under different augmented "views" and
repel the ones from different classes. The LM-BFF
is selected as the basic model. (10) EFL (Wang
et al., 2021), which reformulate potential NLP task
into an entailment one. (11) LM-BFF (Gao et al.,
2021), which manually design templates and aug-
ment prompt tuning with demonstrations.

Main Results. From the experiment results illus-
trated in Table 2, we can conclude that: (1) The
methods leveraging demonstrations (e.g. LM-BFF
and Imitation-Demo) generally achieve productive
results, proving the superiority of demonstration
learning mechanism. (2) Compared to those meth-
ods that utilize continuous prompt embeddings or
reformulate the task formats to boost experiment
results, Imitation-Demo achieves state-of-the-art
results on 5 out of 14 datasets in the original mask-
prediction way without introducing additional pa-
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QQP MNLI-mm MNLI
LM-BFF 1.11 1.02 1.01
Imitation-Demo 1.16 1.04 1.05

Table 3: Averaged RoBERTa attention results pointing
from demonstrations to prompt. The values are normal-
ized by default ROBERTa pre-training weights.

rameters or any prediction computation. The per-
formance gain indicates that Imitation-Demo could
effectively promote experiment results by reinforc-
ing the connections between the prompt and demon-
strations. (3) Ablation experiment results in the
lower part of Table 2 illustrate the effectiveness
of the proposed demonstration reorganization and
demonstrations-label re-prediction methods.
Analysis. Extensive experiments are conducted to
show that our human-like imitation mechanisms en-
hance the connection between prompt and demon-
stration. Firstly, when trained with random demon-
stration labels, as shown in Table 1, we observe
that Imitation-Demo has a greater drop rate than
LM-BFF, indicating [M ASK] is dependent more
on the semantic information from demonstrations.
This finding could explain why there is little per-
formance degradation when using random demon-
stration labels in Min et al. (2022) to some extent.
Moreover, following Wei et al. (2021), we further
conduct an experiment to show the review process
with attention weights of the RoOBERTa backbone.
We average the total 384 attention heads of Roberta-
large pointing from demonstrations to prompt, then
normalize the values by default RoBERTa pre-
trained weights. From the results in Table 3, we
observe Imitation-Demo received larger attention
values. The result indicates that our approach
could direct the ROBERTa model by modifying
the corresponding attention weights and guiding
prompt to focus more on the clues brought by
demonstrations. Since the models are trained in
a few-shot scenario, the weights of models are not
tuned heavily, thus we do not observe significant
average attention score difference between the pro-
posed Imitation-Demo and baseline method. How-
ever, with only 16 samples per class for training,
Imitation-Demo can already show higher averaged
attention weights compared with baseline method,
indicating stronger connections between prompt
and demonstrations.

4 Conclusion

In this paper, we propose imitation demonstration
learning (Imitation-Demo) to reinforce the correla-
tions between prompt and given demonstrations. In-
spired by the human review process, we introduce
contrastive learning to locate similar samples and
demonstration-label re-prediction mechanisms to
solidify known knowledge. Experiments show that
our method consistently outperforms other base-
lines on 5 out of 14 classification datasets in the
few-shot settings. We hope this work could in-
spire the exploration of the working mechanism of
demonstration learning and toward better few-shot
learning abilities.

Limitations

Although the experiment results have illustrated
the effectiveness of the proposed Imitation-Demo
method, we have to admit that our work has the
following limitations:

1) This article is based on that the readers
have some knowledge of prompt-based learning
or demonstration learning. Due to the space limita-
tion, we can only briefly describe the basic process
of the demonstration learning, which may make the
article a bit obscure and difficult to follow.

2) Imitation-Demo does not achieve state-of-the-
art on all the datasets, but outperforms other strong
baselines on 5 out of 14 datasets. Besides, it consis-
tently surpasses the demonstration learning-based
baseline LM-BFF. Since Imitation-Demo is trained
without introducing new parameters and explores
the working principle of demonstration learning
from a certain perspective, we believe the results
are acceptable.
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