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Abstract

Recent results in image classification and
extractive question answering have ob-
served that pre-trained models trained on
less in-distribution data have better out-of-
distribution performance. However, it is
unclear how broadly these trends hold. We
conduct a large empirical study across three
tasks, three broadly-applicable modeling
interventions (increasing model size, using a
different adaptation method, and pre-training
on more data), and 14 diverse datasets to
investigate the relationship between sample
efficiency (amount of data needed to reach
a given ID accuracy) and robustness (how
models fare on OOD evaluation). We find that
higher sample efficiency is only correlated
with better average OOD robustness on some
modeling interventions and tasks, but not oth-
ers. On individual datasets, models with lower
sample efficiency can even be more robust.
These results suggest that general-purpose
methods for improving sample efficiency are
unlikely to yield universal OOD robustness
improvements, since such improvements are
highly dataset- and task-dependent. Even
in an era of large, multi-purpose pre-trained
models, task-specific decisions may often be
necessary for OOD generalization.

1 Introduction

NLP models perform well when evaluated on
data drawn from their training distribution (in-
distribution / ID), but they typically suffer large
drops in performance when evaluated on data distri-
butions unseen during training (out-of-distribution
/ OOD; Blitzer, 2008).

How does exposure to ID training examples af-
fect the ID-OOD gap? If two models have the
same ID performance, will models trained on fewer
ID examples (higher sample efficiency) also have
higher OOD performance (higher robustness)? At
one extreme, zero-shot models will not learn ID-
specific patterns because they are not exposed to

any labeled ID examples. Similarly, few-shot mod-
els trained on very few ID examples may also rely
less on ID-specific patterns; if a model never sees
the token “cat” while training on SNLI, then it will
not learn that its presence is spuriously predictive
of the contradiction label (Gururangan et al., 2018;
Utama et al., 2021). Supporting this intuition, re-
cent work in image classification (Radford et al.,
2021) and extractive question answering (Awadalla
et al., 2022) show that zero-shot inference and few-
shot fine-tuning improve average robustness across
a range of OOD test sets. However, it is unclear
how universal these trends are across various tasks
and methods for reducing exposure to ID exam-
ples, or how predictive they are for any individual
test set of interest. Figure 1 illustrates this central
question.

We conduct a broad empirical study over 14
datasets across three tasks to investigate the re-
lationship between exposure to ID training exam-
ples (sample efficiency) and robustness. We exper-
iment with three modeling interventions that im-
prove sample efficiency: (1) using natural language
prompts for zero-shot prediction and during fine-
tuning (Brown et al., 2020; Schick and Schütze,
2021; Gao et al., 2021); (2) fine-tuning models of
increasing size; (3) fine-tuning models pre-trained
on increasing amounts of data.

We find that higher sample efficiency is only
sometimes correlated with better robustness, and
the effect of specific modeling interventions varies
by task. For example, increasing pre-trained model
size substantially improves sample efficiency and
results in higher average robustness in sentiment ex-
periments, but these sample efficiency gains do not
translate to higher average robustness in NLI and
extractive QA experiments. On individual datasets,
models with better sample efficiency can even be
less robust (e.g., increasing model size when train-
ing on SST-2 and evaluating OOD on IMDb).

Overall, these results indicate that general-
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Figure 1: In this example, model B has higher sample
efficiency than model A, since model B requires less ID
training data to reach a given ID performance threshold
(top). In this particular example, model B is also more
robust than model A (bottom), since it has higher OOD
performance for a given ID performance threshold.

purpose methods for improving sample efficiency
are far from guaranteed to yield significant OOD
robustness improvements—their success is highly
dataset- and task-dependent. Furthermore, even
in this era of large, multi-purpose pre-trained lan-
guage models, task-specific decisions are often nec-
essary to achieve OOD generalization.

2 Measuring Sample Efficiency and
Robustness.

Consider two data distributions Diid and Dood. Let
M be a model trained on examples drawn from
Diid (i.e., the ID training data). We study the re-
lationship between three properties of M : (1) the
number of ID examples it was trained on; (2) M ’s
performance on held-out examples from Diid (i.e.,
the ID performance); (3) M ’s performance on ex-
amples from Dood (i.e., the OOD performance).

Let M1 and M2 be two models with equiva-
lent performance on held-out ID data. If M1 was
trained on fewer ID examples than M2, then it has
higher sample efficiency. If M1 has higher OOD
performance than M2, it has higher effective robust-
ness (henceforth “robustness”; Taori et al., 2020).
Comparing models with equivalent ID performance
controls for its effect on OOD performance, since
improving ID performance usually yields commen-
surate improvements on OOD performance—in

this study, we focus on OOD performance improve-
ments beyond what is expected from ID gains.

Satisfying this equivalent-ID constraint is often
difficult in practice; given an arbitrary model M1

and its corresponding ID performance, it is difficult
to produce a different model M2 with identical ID
performance. Rather than explicitly training mod-
els to identical ID performance, we train models on
varying-size subsamples of a given ID dataset and
interpolate between the results to estimate (1) the
number of labeled ID training examples necessary
to achieve a particular ID performance (sample ef-
ficiency) and (2) OOD performance, given ID per-
formance (robustness). These interpolated curves
approximate the ideal setting of training a model
for every possible ID value. Figure 1 provides a
schematized example, with model B having better
sample efficiency and robustness than model A.

3 Experimental Setup

We study three modeling interventions—using
natural language prompts, increasing pre-trained
model size, and pre-training on more data—on 14
total datasets spanning natural language inference
(NLI), sentiment analysis, and extractive question
answering (QA). See Appendix A for further de-
tails about experimental settings.

Tasks and Datasets. In our natural language
inference (NLI) experiments, we use MultiNLI
(Williams et al., 2018), SNLI (Bowman et al.,
2015), and MedNLI (Romanov and Shivade, 2018).
For sentiment analysis, we use IMDb reviews Maas
et al. (2011), SST-2 (Socher et al., 2013), and
reviews from the “Movies and TV” subsection
of the Amazon Reviews corpus (Ni et al., 2019).
Lastly, for extractive question answering, we use
SQuAD (Rajpurkar et al., 2016), NaturalQuestions
(Kwiatkowski et al., 2019), TriviaQA, BioASQ
(Tsatsaronis et al., 2015), and the four SQuAD-
Shifts test sets (Miller et al., 2020).

Modeling Interventions. To understand the ef-
fect of a particular modeling intervention on sample
efficiency and robustness, we evaluate pre-trained
models that differ only along the axis of interest
(e.g., model size or fine-tuning method). Since the
optimal fine-tuning hyperparameters depend on the
ID training dataset size, we separately tune hyper-
parameters for each model on each training dataset
subsample size, taking the models that achieve the
best held-out ID performance for each setting. See
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Figure 2: Prompt-based fine-tuning improves sample efficiency (orange series above blue series) and average
robustness (orange series about blue series) across experimental settings (a,b). However, it can have no effect on
robustness on individual OOD settings (e.g., MNLI→ SNLI; c).

Appendix B for details about hyperparameter opti-
mization.

4 Results and Discussion

Our results show that models with higher sample
efficiency may not necessarily have higher average
OOD robustness—different tasks and modeling in-
terventions affect robustness in different ways (Fig-
ures 2-4). For example, prompt-based fine-tuning
consistently improves both sample efficiency and
average robustness, but only in low-data settings
(Figure 2). In contrast, increasing model size im-
proves sample efficiency across the range of train-
ing dataset sizes and tasks, but only improves aver-
age robustness on sentiment analysis (Figure 3). On
individual datasets, we even observe cases where
models with lower sample efficiency have higher
robustness (Figure 3d). See Appendix C for full
results on every ID-OOD setting.

Natural Language Prompting. We compare
BERTBASE models using (1) standard fine-tuning,
(2) prompt-based fine-tuning, and (3) zero-shot
prompting. We also compare these results with
zero-shot prompting of text-davinci-001, a
much larger model trained on substantially more
data. We run experiments on NLI and sentiment
analysis, since extractive QA is not amenable to
prompt-based fine-tuning with masked language
models.

Figures 2a and 2b plot the average performance
on all OOD datasets as a function of ID perfor-
mance and the ID performance as a function of
the number of labeled training examples. Sample

efficiency improvements from prompt-based fine-
tuning also translate to higher average robustness.
However these improvements only apply in the
few-shot setting. As the size of the training dataset
increases, the improvements in sample efficiency
and average robustness steadily diminish. When
using sufficiently large training datasets, models
trained with prompt-based fine-tuning yield essen-
tially the same sample efficiency and robustness
results as standard fine-tuning (∼1K examples for
NLI, ∼130 examples for sentiment).

However, results on individual OOD test sets
can significantly differ from averaged-OOD trends.
For example, Figure 2c shows that prompt-based
fine-tuning on MNLI and evaluating on SNLI im-
proves sample efficiency in the few-shot setting but
without any robustness improvements.

Surprisingly, we also find that zero-shot infer-
ence does not necessarily improve average robust-
ness over prompt-based fine-tuning—zero-shot per-
formance lies on or below the trend line formed
by prompt-based fine-tuning, despite not using any
ID-specific data at all. See Appendix C.1 for full re-
sults of increasing pre-trained model size for every
ID-OOD setting.

Increasing Pre-Trained Model Size. We run
experiments with the checkpoints of Turc et al.
(2019), who pre-train BERT models with various
numbers of transformer layers (L) and hidden em-
bedding sizes (H). We run experiments on NLI,
sentiment analysis, and extractive QA to compare
pre-trained models of five sizes: (1) Large (L=24,
H=1024), (2) Base (L=12, H=768), (3) Medium
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Figure 3: Although increasing pre-trained model size improves sam-
ple efficiency in all settings, these sample efficiency improvements only
translate to better average robustness in sentiment analysis experiments
(b). In NLI and extractive QA, average robustness is unchanged (a,c).
Although increased model size improves averaged OOD performance
on IMDb, these conclusions do not apply to any ID-OOD pair. For ex-
ample, increasing pre-trained model size can decrease robustness when
training on SST-2 and evaluating on IMDb (d).

(L=8, H=512), (4) Small (L=4, H=512), and
(5) Tiny (L=2, H=128). Although increasing the
pre-trained model size improves sample efficiency
on every task, it does not always improve aver-
age robustness (Figure 3). In particular, increasing
model size minimally affects average robustness in
NLI and extractive QA (Figure 3a,3c), but substan-
tially improves average robustness on sentiment
analysis (Figure 3b).1 However, results on indi-
vidual ID-OOD pairs can again significantly differ
from average OOD performance trends. For ex-
ample, when training on SST-2 and evaluating on
IMDb, larger models actually have lower OOD
performance. This occurs because SST-2 exam-
ples (single sentences) are significantly shorter than
IMDb examples (paragraphs). As a result, mod-
els trained on the shorter SST-2 examples struggle
when evaluated on IMDb because this particular
ID-OOD pair requires length extrapolation, and

1Note that moving from BERTBASE to BERTLARGE does
not improve effective robustness until ∼92% IMDb ID accu-
racy. We hypothesize this occurs because these BERTLARGE
datapoints are fine-tuned on small amounts of data (fewer than
1K examples), potentially leading to instability and reduced
effective robustness.

increasing pre-trained model size does not help
models generalize to longer input sequences. As
a result, effective robustness decreases because
larger models have higher ID (SST-2) performance
but unchanged OOD (IMDb) performance. See
Appendix C.2 for full results of natural language
prompting for every ID-OOD setting.

Pre-Training on More Data. We conduct NLI,
sentiment, and QA experiments with RoBERTa
models pre-trained on 10M, 100M, and 1B tokens
of web text (Zhang et al., 2021).

Pre-training on more data consistently improves
sample efficiency, but only yields average robust-
ness improvements in NLI and sentiment analysis
(Figure 4a,b). In extractive QA experiments, vary-
ing the amount of pre-training data does not sig-
nificantly change average robustness (Figure 4c).
Again, we find that results on average OOD perfor-
mance are not predictive of results on individual
test sets—despite unchanged average OOD robust-
ness when pre-training on more data, OOD per-
formance can be higher on individual extractive
QA test sets (e.g., SQuAD→ BioASQ; Figure 4d).
See Appendix C.3 for full results of pre-training on
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Figure 4: Pre-training on more data is an effective method for improv-
ing sample efficiency, but these sample efficiency improvements are not
always accompanied by robustness improvements. In NLI and senti-
ment analysis experiments, these sample efficiency gains correlate with
improved average robustness (a,b). However, there are no average ro-
bustness gains in extractive QA (c). Despite no average robustness im-
provement in extractive QA, pre-training on more data can still improve
robustness on particular test sets (e.g., BioASQ; d).

more data for every ID-OOD setting.

5 Conclusion

We study the relationship between sample effi-
ciency and robustness across three tasks and three
modeling interventions, finding that sample effi-
ciency improvements often fail to translate to im-
proved robustness. As larger models quickly be-
come more sample efficient, our results caution that
sample efficiency and robustness are different axes
of improvement and that optimizing for sample effi-
ciency will not necessarily always yield robustness
gains.
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Limitations

Our study focuses on natural language understand-
ing tasks, though it may also be interesting to study
whether these trends apply in natural language gen-
eration tasks (e.g., summarization). In particular,
it’s possible that zero- or few-shot pre-trained mod-
els may do better on generation tasks because these
tasks are more similar to the models’ original pre-
training objective (e.g., language modeling).

Furthermore, we compared few-shot prompt-
based fine-tuning, zero-shot inference, and stan-
dard fine-tuning. However, other methods of adapt-
ing models to labeled ID data can have very dif-
ferent sample efficiency properties (e.g., in-context
learning). Future work could explore whether these
results hold with few-shot in-context learning or
parameter-efficient fine-tuning tuning (e.g., adapa-
ters; Houlsby et al., 2019).
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A Experimental Setup Details

Natural Language Inference. We use MultiNLI
(Williams et al., 2018) and SNLI (Bowman et al.,
2015) as ID datasets. We use MultiNLI, SNLI and
MedNLI (Romanov and Shivade, 2018) as OOD
test sets. All of our ID datasets have three labels
(entailment, contradiction, neutral).

We also evaluate OOD on HANS (McCoy et al.,
2019), a diagnostic dataset targeting lexical overlap,
an ID-specific pattern in SNLI and MultiNLI. In
MultiNLI and SNLI, the majority of examples with
high lexical overlap between the NLI premise and
hypothesis have the “entailment” label. In HANS,
50% of examples support this heuristic, and 50%
contradict it, so a model that exclusivly relies on
the word overlap heuristic would have an accuracy
of 50%.but HANS has two labels (entailment, non-
entailment). To evaluate our 3-class models on
2-class HANS, we follow McCoy et al. (2019) and
translate contradiction or neutral model predictions
to non-entailment.

We train on the MultiNLI and SNLI training
sets. We evaluate on the MultiNLI matched devel-
opment set, the SNLI test set, and the HANS evalu-
ation split. When evaluating OOD on MedNLI, we
evaluate on the training set (∼11K examples) be-
cause the development and test sets are quite small
(∼1.5K examples each).

Sentiment Analysis. We use the IMDb reviews
dataset of (Maas et al., 2011), SST-2 (Socher et al.,
2013) as ID datasets. We use IMDb, SST-2, and
reviews from the “Movies and TV” subsection of
the Amazon Reviews corpus (Ni et al., 2019) as
OOD datasets.

These datasets are all binary classification,
where reviews are labeled as positive or negative
sentiment. To construct the “Movies and TV” Ama-
zon review sentiment dataset, we randomly select
one- or two-star (negative) reviews and four- or
five-star (positive) reviews from the full Amazon
Reviews corpus, using 25,000 examples for train-
ing, 10,000 examples for development, and 10,000
examples for testing. Each of these splits is bal-
anced.

We train on the IMDb, SST, and Amazon Re-
views training splits, and use the corresponding
evaluation splits to measure ID performance. When
evaluating OOD on SST, we use the concatenation
of the train and test sets (8471 examples in total),
since the original test set is quite small (1821 exam-

ples). Beyond this exception, we use each dataset’s
evaluation split for OOD evaluation.

Extractive Question Answering. We use
SQuAD (Rajpurkar et al., 2016) and NaturalQues-
tions (Kwiatkowski et al., 2019) as ID datasets.
We use SQuAD, NaturalQuestions, TriviaQA,
BioASQ (Tsatsaronis et al., 2015), and the
SQuADShifts test sets of Miller et al. (2020) as
OOD datasets.

The SQuADShifts test sets were constructed fol-
lowing the original SQuAD crowdsourcing proce-
dure, but with passages drawn from both the orig-
inal Wikipedia domain, as well as the New York
Times (NYT), Amazon reviews, and Reddit. For
NaturalQuestions, we only consider questions over
paragraphs (as opposed to those over tables and
lists). We use the MRQA 2019 Shared Task ver-
sions of TriviaQA and BioASQ (Fisch et al., 2019).
We also use the MRQA 2019 Shared Task version
of NaturalQuetsions, but only include examples
questions over paragraphs (removing those with
questions over tables or lists). In all of these extrac-
tive QA datasets, models are given a passage and a
question and tasked with identifying a substring of
the passage that answers the question.

We train on the SQuAD and NaturalQuestions
training splits, and use the corresponding evalua-
tion splits to measure ID performance. When eval-
uating OOD on BioASQ, we use the concatenation
of the train, development, and test sets (3977 ex-
amples in total), since the original test set is quite
small (1518 examples). Beyond this exception, we
use each dataset’s evaluation split for OOD evalua-
tion.

B Hyperparameter Optimization Details

We conduct extensive hyperparameter optimization
when training models on a particular ID dataset (or
a subsample thereof). We re-tune hyperparameters
for each subsample size, since the optimal value
of certain hyperparameters may depend on number
of available training examples (e.g., batch size and
learning rate). For each experimental setting, we
use a combination of (1) previously-reported hy-
perparameters (taken from prior work) and (2) ran-
dom search (10 samples) over a pre-defined grid
of reasonable hyperparameter values. For each ex-
periment, we take the checkpoint with the best ID
performance.
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Natural Language Inference. For every NLI
ID-OOD setting, we run experiments with the
cross-product of learning rates in {1e-5, 2e-5, 3e-
5} with batch sizes of {16, 32}. We also sample
additional runs from the following grid:

• Random seed: [0, 100000]
• Learning rate: {1e-5, 2e-5, 3e-5}
• Batch size: {16, 32}
• Number of training epochs: {10}

Sentiment Analysis. For every sentiment analy-
sis ID-OOD setting, we run experiments with the
cross-product of learning rates in {1e-5, 2e-5, 3e-5,
5e-5} with batch sizes of {16, 32} and training for
{20, 50} epochs. We also sample additional runs
from the following grid:

• Random seed: [0, 100000]
• Learning rate: {1e-5, 2e-5, 3e-5, 5e-5}
• Batch size: {16, 32}
• Number of training epochs: {20, 50}

Extractive Question Answering. For every ex-
tractive question answering ID-OOD setting, we
run experiments with the cross-product of learn-
ing rates in {2e-5, 3e-5, 5e-5} with batch sizes of
{16, 32}. We also sample additional runs from the
following grid:

• Random seed: [0, 100000]
• Learning rate: {2e-5, 3e-5, 5e-5}
• Batch size: {16, 32}
• Number of training epochs: {4}
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C Results of All Methods on All ID-OOD Settings

C.1 Natural Language Prompting
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Figure 5: Results on all NLI ID-OOD settings when comparing zero-shot prompting, prompt-based fine-tuning,
and standard fine-tuning.
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Figure 6: Results on all sentiment analysis ID-OOD settings when comparing zero-shot prompting, prompt-based
fine-tuning, and standard fine-tuning.
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C.2 Increasing Pre-Trained Model Size
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Figure 7: Results on all NLI ID-OOD settings when increasing pre-trained model size.
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Figure 8: Results on all sentiment analysis ID-OOD settings when increasing pre-trained model size.
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Figure 9: Results on all extractive QA OOD settings when training on SQuAD with pre-trained models of increas-
ing size.
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Figure 10: Results on all extractive QA OOD settings when training on NaturalQuestions with pre-trained models
of increasing size.
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C.3 Pre-Training on More Data
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Figure 11: Results on all NLI ID-OOD settings when increasing the amount of pre-training data.

1704



0 5K 10K 15K 20K 25K
# ID examples used

0.875

0.900

0.925

IM
D

b 
A

cc
ur

ac
y 

(I
D

)

0.88 0.90 0.92 0.94
IMDb Accuracy (ID)

0.65

0.70

0.75

0.80

0.85

SS
T-

2 
A

cc
ur

ac
y 

(O
O

D
)

y = x
RoBERTa Base (10M Tokens)
RoBERTa Base (100M Tokens)
RoBERTa Base (1B Tokens)

(a)

0 5K 10K 15K 20K 25K
# ID examples used

0.875

0.900

0.925

IM
D

b 
A

cc
ur

ac
y 

(I
D

)

0.88 0.90 0.92 0.94
IMDb Accuracy (ID)

0.80

0.82

0.84

0.86

0.88

0.90

A
m

az
on

 R
ev

iew
s A

cc
ur

ac
y 

(O
O

D
)

y = x
RoBERTa Base (10M Tokens)
RoBERTa Base (100M Tokens)
RoBERTa Base (1B Tokens)

(b)

0 1K 2K 3K 4K 5K
# ID examples used

0.85

0.90

SS
T-

2 
A

cc
ur

ac
y 

(I
D

)
0.82 0.84 0.86 0.88 0.90

SST-2 Accuracy (ID)

0.75

0.80

0.85

0.90

IM
D

b 
A

cc
ur

ac
y 

(O
O

D
)

y = x
RoBERTa Base (10M Tokens)
RoBERTa Base (100M Tokens)
RoBERTa Base (1B Tokens)

(c)

0 1K 2K 3K 4K 5K
# ID examples used

0.85

0.90

SS
T-

2 
A

cc
ur

ac
y 

(I
D

)

0.82 0.84 0.86 0.88 0.90
SST-2 Accuracy (ID)

0.775

0.800

0.825

0.850

0.875

0.900

A
m

az
on

 R
ev

iew
s A

cc
ur

ac
y 

(O
O

D
)

y = x
RoBERTa Base (10M Tokens)
RoBERTa Base (100M Tokens)
RoBERTa Base (1B Tokens)

(d)

Figure 12: Results on all sentiment analysis ID-OOD settings when increasing the amount of pre-training data.
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Figure 13: Results on all extractive QA OOD settings when training on SQuAD with models pre-trained on varying
amounts of data.
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Figure 14: Results on all extractive QA OOD settings when training on NaturalQuestions with models pre-trained
on varying amounts of data.
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