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Abstract

Data augmentation is an effective solution to
improve model performance and robustness for
low-resource named entity recognition (NER).
However, synthetic data often suffer from poor
diversity, which leads to performance limita-
tions. In this paper, we propose a novel Graph
Propagated Data Augmentation (GPDA) frame-
work for Named Entity Recognition (NER),
leveraging graph propagation to build relation-
ships between labeled data and unlabeled nat-
ural texts. By projecting the annotations from
the labeled text to the unlabeled text, the un-
labeled texts are partially labeled, which has
more diversity rather than synthetic annotated
data. To strengthen the propagation precision,
a simple search engine built on Wikipedia is
utilized to fetch related texts of labeled data
and to propagate the entity labels to them in the
light of the anchor links. Besides, we construct
and perform experiments on a real-world low-
resource dataset of the E-commerce domain,
which will be publicly available to facilitate
the low-resource NER research. Experimental
results show that GPDA presents substantial
improvements over previous data augmenta-
tion methods on multiple low-resource NER
datasets. !

1 Introduction

Data augmentation is an effective solution to im-
prove model performance and robustness, and is
especially useful when the labeled data is scarce. In
computer vision and speech, simple hand-crafted
manipulations (Zhong et al., 2020; Zhang et al.,
2018) are widely used to generate synthetic data
that preserve the original information. However,
mof the authors are: Jiong Cai (cai-
jiong @shanghaitech.edu.cn), Shen Huang (pangda@alibaba-
inc.com), Yong Jiang (yongjiang.jy @alibaba-inc.com), Zeqi
Tan (zqtan@zju.edu.cn), Penjun Xie (chengchen.xpj@alibaba-
inc.com) and Kewei Tu (tukw @shanghaitech.edu.cn). Yong
Jiang and Kewei Tu are the corresponding authors.

'0ur code is publicly available at https://github.com/
modelscope/AdaSeq/tree/master/examples/GPDA.

when applied to natural language processing (NLP),
it is challenging to edit a sentence without changing
its syntax or semantics.

There are two successful attempts of applying
data augmentation on sentence-level NLP tasks.
One is manipulating a few words in the origi-
nal sentence, which can be based on synonym re-
placement (Zhang et al., 2015; Kobayashi, 2018;
Wu et al., 2019; Wei and Zou, 2019), random
insertion or deletion (Wei and Zou, 2019), ran-
dom swap (Sahin and Steedman, 2018; Wei and
Zou, 2019; Min et al., 2020). The other is gen-
erating the whole sentence with the help of back-
translation (Yu et al., 2018; Dong et al., 2017; Iyyer
et al., 2018), sequence to sequence models (Ku-
rata et al., 2016; Hou et al., 2018) or pre-trained
language models (Kumar et al., 2020). However,
when applied to token-level tasks such as NER,
these methods suffer heavily from token-label mis-
alignment or erroneous label propagation.

To overcome the issue of token-label misalign-
ment, Dai and Adel (2020) extend the replacement
from token-level to entity-level with entities of
the same class, which proves to be a simple but
strong augmentation method for NER. Li et al.
(2020) adopt a seq2seq model to conditionally
generate contexts while leaving entities / aspect
terms unchanged. Ding et al. (2020) exploit an
auto-regressive language model to annotate entities
while treating NER as a text tagging task. Zhou
et al. (2022) utilize labeled sequence linearization
to enable masked entity language model to explic-
itly condition on label information when predicting
masked entity tokens. Still, these methods generate
synthetic data, which inevitably introduces incoher-
ence, semantic errors and lacking in diversity.

In this work, we investigate data augmentation
with natural texts instead of synthetic ones. We
are inspired by the fact that professional annota-
tors usually understand the semantics of an entity
through its rich context. However, in low-resource
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NER, the semantic information of a specific entity
is relatively limited due to fewer annotations. To
this end, we propose to improve the NER models
by mining richer contexts for the existing labeled
entities. More particularly, we propose a Graph
Propagation based Data Augmentation (GPDA)
framework for NER, leveraging graph propaga-
tion to build relationships between labeled data
and unlabeled natural texts. The unlabeled texts
are accurately and partially labeled according to
their connected labeled data, which has more diver-
sity rather than synthetic hand-crafted annotations.
Furthermore, not restricted to the existing anno-
tated entities in the training data, we explore exter-
nal entities from the unlabeled text by leveraging
consistency-restricted self-training.
The contributions of GPDA can be concluded:

* We propose a data augmentation framework
that utilizes graph propagation with natural
texts for augmentation, which is rarely inves-
tigated in previous work (Section 2);

* We utilize a simple Wikipedia-based search
engine to build the graph with two retrieval
methods (Section 2.2);

* With consistency-restricted self-training, we
further make the most efficient utilization of
externally explored unlabeled text (Section
2.3);

* By conducting experiments on both public
datasets and a real-world multilingual low-
resource dataset, GPDA achieves substantial
improvements over previous data augmenta-
tion methods (Section 3).

2 Method

Fig. 1 presents the workflow of our proposed data
augmentation framework. First, we build a graph
between labeled data nodes and unlabeled text
nodes according to their textual similarity. Then,
the entity annotations are propagated to obtain aug-
mented data. Finally, the marginalized likelihood
for conditional random field (CRF) (Tsuboi et al.,
2008) is applied during the training phase as the
augmented data are partially labeled. Moreover,
we adopt the consistency-restricted self-training
strategy to further improve the model performance.

2.1 NER with Pure Labeled Data

We take NER as a sequence labeling prob-
lem, which predicts a label sequence y =

Gold Sentence
[PER Daniel] watched [WORK lady in the dark] yesterday.

propagation

Augmented Sentence
[WORK Lady in the Dark] is a musical with music by Kurt Weill.

>
M
o
°

Labeled Data Unlabeled Data

Figure 1: An example of GPDA. The graph is built on
textual similarity with a Wikipedia-based search engine.

{y1, -+ ,ynlys € Y} at each position for the in-
put tokens * = {x1,---,2,}, where Y denotes
the label set. The sequence labeling model feeds
the input « into a transformer-based encoder (such
as BERT (Devlin et al., 2019)) which creates con-
textualized embeddings r; for each token. Then a
linear-chain CRF layer that captures dependencies
between neighboring labels is applied to predict
the probability distribution:

Y(Yi-1,Yi,73) = eXp(WyTTi + byiflyi)

n
1¢<yi—17yi77’i)

Py(ylz) = ———;
> I YW1 y,mi)
y' eY(z)i=1

Unified Training Objective Instead of directly
minimizing the negative log-likelihood, we unify
the training objectives in Section 2.1, 2.2 and 2.3.
Specifically, we compute the marginal probability
of each token Py (y;|x) with the forward-backward
algorithm.

aw) = > JIvwk1vm)

{yOr“:yi—l} k=1

> I -1 umms)

{Yit15syn} k=it+1

The marginal distributions can be computed effi-
ciently. Given a partially annotated label sequence
y* = {*,...,¥,...,*} that * denotes the label
that is not observed, we can obtain the probability.

B(yi) =

n

Qo(y*|z) = [ [ Qoluil)

i=1
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Method Al  Literature Music Politics Science | Average

State-of-the-art Approaches

Zheng et al. (2022) 63.28 70.76 76.83  73.25 70.07 70.84

Hu et al. (2022) 65.79 71.11 78.78  74.06 71.83 72.31

Tang et al. (2022) 66.03 68.59 73.1 71.69 75.52 70.99
Baseline w/o Data Augmentation

BERT-CRF ‘ 65.06 71.39 78.18  74.46 73.95 72.61
Data Augmentation Approaches

DAGA (Ding et al., 2020) 66.77 71.15 78.48  73.30 73.07 72.55

NERDA (Dai and Adel, 2020) 70.20 71.28 79.56  75.30 74.37 74.14

GPDA (sparse retrieval w/o EEA) | 67.14 72.20 79.55  74.96 74.69 73.71

GPDA (dense retrieval w/o EEA) | 67.76 72.11 77.54  74.86 73.07 73.07

GPDA (sparse retrieval w/ EEA) | 70.05  72.34"  80.16" 75.95  75.55" | 74.811

Table 1: Comparisons of different studies and our proposed GPDA on the CrossNER dataset. T means the result is
significantly better than the compared baseline methods (with Student’s t-test with p < 0.05).

where Qg (y;|x) is defined as Py(y;|x) if y; is
observed, otherwise Qg (y;|x) = 1.

The final model parameters can be optimized by
minimizing the following objective:

L(0) = —log Qp(y"|x)

For the pure labeled data D = { (), y@)} N |
we direct set y* = y; and obtain the loss function.

L(6) = - log Qo(y™ =y |z)

>

(;(:('L) 7"y(i))GD

2.2 NER with Propagated Unlabeled Data

Building Propagating Graph Compared to la-
beled data, large-scale unlabeled natural texts can
be acquired much more easily. We attempt to uti-
lize these natural texts for augmentation by build-
ing a graph between the labeled data nodes and
the unlabeled text nodes according to their tex-
tual similarity. Given a labeled sample (¥, y(¥)),
we retrieve its corresponding augmented sentences
{a'(09) }7L, viaa search engine. For common NER
datasets, the search engine is built on the Wikipedia
corpus with one of the two methods we explore:
sparse retrieval based on BM257 or dense retrieval?
based on L2 similarity. The top related sentences
will be treated connected to the original labeled
sentence in the graph.

2Sparse retrieval is implemented with Elastic Search
Dense retrieval is implemented with CoIBERT

Label Propagation While building the graph,
label propagation is conducted from labeled data
(), y™) to unlabeled data {x'“)}™ | to gen-
erate partially annotated {(a'(*), /(4 ))}2”:1. To
strengthen the precision, propagation will not hap-
pen unless the anchor text in Wikipedia matches the
labeled entity. By graph propagation, we obtain the
augmented data D' = {(z'), /' (j))}j]\il sharing
the same entities but with more diverse contexts.
Along with the original labeled data D, we train
the NER model following the same objective in
Section 2.1:

L(0) =— log Qo(y* = yV|z®)

>

(() y)eDUD’

2.3 NER with Explored Entity Annotations

To make the most efficient utilization of the ex-
plored annotations in D’, we adopt consistency-
restricted self-training. A well-trained model from
Section 2.2 will be utilized to re-annotate the par-
tially labeled augmented data under consistency
restriction. Particularly, an augmented sample
(/7)) 4y'0)) will be re-annotated to ('), ().
Now we have D = {(2'0), g)(j))}jj\/il. Along with
the original labeled data D, we train a better NER
model following the objective in Section 2.1:

L(o) = - log Qo(y™ =y =)

>
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3 Experiments

3.1 Dataset

We conduct experiments on the CrossNER (Liu
et al., 2020) dataset of 5 genres (Al, Litera-
ture, Music, Politics, Science) and an anonymous
multi-lingual E-commerce query NER dataset
(Ecom) consisting of 3 languages (English, Span-
ish, French) Detailed statistics about these two
datasets is provided in the Table 2.

For CrossNER, the search engine is manually
built on the Wikipedia corpus. While for Ecom, an
off-the-shelf E-commerce search engine is utilized
to build the augmentation graph.

3.2 Results and Analysis

Low-resource NER Tasks As illustrated in Ta-
ble 1, the proposed GPDA consistently achieves the
best F1 scores across the five genres of CrossNER
and gains an average improvement of 2.2% over
the baseline BERT-CRF model. It also outperforms
other data augmentation methods, demonstrating
its effectiveness on multi-domain low-resource
NER.

Furthermore, GPDA with Explored Entity An-
notation (EEA) strategy achieves 1.1% higher F1
than GPDA without EEA, suggesting that it is also
crucial to extend unique entities rather then only
diversifying entity contexts in data augmentation.

It can be noticed that GPDA with dense retrieval
performs worse than with sparse retrieval, which
is not intuitive. This may be attributed to dense
retrieval requires careful supervised training in the
target domain, but our pre-trained matching model
is not finetuned. We will leave this part for future
work.

Real-world Low-resource NER Scenarios Ta-
ble 3 shows the F1 results on three languages
from the real-world Ecom dataset. The augmented
data generated by GPDA improves model perfor-
mances for multilingual NER. For specific domain
datasets where high-quality knowledge or texts can
be fetched easily, GPDA are indeed helpful.

Size of Gold Samples We study the impact of
GDPA on different size of gold samples in Fig. 2.
On the low-resource settings where 10%-25% gold
samples are available, the improvement is striking
which outperforms the baseline model by at most
37%.

= = gold-mus = gpda-mus

gold-sci gpda-sci

Figure 2: Results with different size of gold samples on
Music and Science of CrossNER.

Case Study Taking a closer look at the aug-
mented cases in Fig. 3, we notice that GPDA
generates different contexts concerning the entity
"Adobe Creative Suite". The augmented data gen-
erated by GPDA introduces more diversity to help
reduce overfitting. Different from synthetic data,
these generated data are all from natural texts so
that there is no need to worry about the coherence
in syntax or semantics.

4 Discussion

Retrieving relevant texts from databases has been
widely used in NLP tasks. RaNER (Wang et al.,
2021) retrieves context using a search system to
enhance the token representation for NER tasks.
To help entity disambiguation in domain-specific
NER, Zhang et al. (2022) retrieves the domain-
specific database to find the correlated sample. In
order to leverage the extensive information about
entities in Wikipedia and Wikidata, Wang et al.
(2022) and Tan et al. (2023) construct databases
and retrieve context to enhance model performance.
In this study, we propose the utilization of retrieval
techniques for data augmentation in low-resource
settings. Furthermore, while they perform retrieval
on both the training and testing datasets, we only
use the small seed training dataset for retrieval. It’s
noteworthy that our approach can also be combined
with theirs to further enhance the performance of
NER in low-resource settings.

5 Conclusion

We present GPDA as a data augmentation frame-
work for low-resource NER, which utilizes graph
propagation with natural texts for augmentation.
To make the most efficient utilization of the ex-
plored partially labeled text, we adopt consistency-
restricted self-training. Experiment results show
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| #Train/#Dev/#Test | #DAGA/AvgEnt | #NERDA/AvgEnt | #GPDA/AvgEnt | #GPDA+EEA /Avg Ent

Ai 100/350/431 866/ 1.60 6000/5.32 447/3.41 2428 /17.79
Lit 100/400/416 2814/2.21 6000/5.41 297/2.00 3967/17.71
CrossNER | Mus 100/380/465 1102/1.93 6000/ 6.49 3077235 4273710.40
Pol 200/541/651 527472.70 12000/ 6.52 718/2.36 8463 /8.95
Sci 200/450/543 3896/2.79 12000/ 5.38 552/3.97 7494 79.53
en 1000/1000/1000 4740/1.10 32000/ 0.96 30000/ 1.50 N/A
Ecom es 1000/1000/1000 20362/ 1.07 32000/ 1.09 30000/ 1.41 N/A
fr 1000/1000/1000 17340/ 1.08 32000/ 1.14 30000/ 1.24 N/A

Table 2: The statics of the dataset used and generated in our experiments.

Gold Training Data

... with the 2016 introduction of the voice editing and generation software [rrobuct Adobe Voco], a prototype slated to be a part of the
[Probuct Adobe Creative Suite] and [orcanisarion DeepMind] [probuct WaveNet] , ...

Augmented Data

1) Adobe Voco is an unreleased ... prototype software by [orc Adobe] that enables novel editing and generation of audio . Dubbed
“[ero Photoshop] -for-voice” , it was first previewed at the [ro Adobe MAX] event in November 2016.

2) With the 2016 introduction of Adobe Voco audio editing and generating software prototype slated to be part of the [rro Adobe
Creative Suite] and the similarly enabled DeepMind [pro WaveNet], a [sc deep neural network] based audio synthesis software ...

3) Adobe Device Central is a software program created and released by [orc Adobe Systems | as a part of the [pro Adobe Creative

Suite] 3 ( CS3 ) in March 2007 .

4) [rro Adobe Creative Suite], a design and development software suite by Adobe Systems.

Figure 3: An illustration of diversity of augmented data. The pink annotations are propagated via anchor matching

while the yellow ones are labeled with EEA

Method en es fr Avg

Baseline | 76.54 85.50 72.78 | 78.27
DAGA 77.11 86.51 81.32 | 81.65
NERDA | 77.10 87.05 81.64 | 81.93
GPDA 77.83 87.23 82.48 | 82.51

Table 3: Results on the Ecom dataset.

that our proposed GPDA achieves substantial im-
provements over previous data augmentation meth-
ods on multiple low-resource NER datasets.
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6 Limitations

There are some limitations in the use of GPDA.

* The label propagation procedure requires an-
chor matching in the light of annotation preci-
sion, which limits the unlabeled data source.
However, Wikipedia is a open-domain easy-
to-fetch corpus with anchor links, which can
somehow mitigate the issue.

* Augmented Data generated by GPDA provide
more diversity. But for some datasets, simple
modifications (NERDA) on the original words
performs better. We are investigating a hybrid
approach to apply GPDA and NERDA in the
same framework.
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