
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 15632–15654

July 9-14, 2023 ©2023 Association for Computational Linguistics

HyperMixer: An MLP-based Low Cost Alternative to Transformers

Florian Mai†♠ Arnaud Pannatier†♠ Fabio Fehr†♠ Haolin Chen†♠

François Marelli†♠ François Fleuret♣♠† James Henderson†
†Idiap Research Institute, Martigny, Switzerland

♠EPFL, Lausanne, Switzerland
♣University of Geneva, Geneva, Switzerland

Abstract

Transformer-based architectures are the model
of choice for natural language understanding,
but they come at a significant cost, as they have
quadratic complexity in the input length, re-
quire a lot of training data, and can be difficult
to tune. In the pursuit of lower costs, we investi-
gate simple MLP-based architectures. We find
that existing architectures such as MLPMixer,
which achieves token mixing through a static
MLP applied to each feature independently, are
too detached from the inductive biases required
for natural language understanding. In this pa-
per, we propose a simple variant, HyperMixer,
which forms the token mixing MLP dynami-
cally using hypernetworks. Empirically, we
demonstrate that our model performs better
than alternative MLP-based models, and on par
with Transformers. In contrast to Transformers,
HyperMixer achieves these results at substan-
tially lower costs in terms of processing time,
training data, and hyperparameter tuning.

1 Introduction

Attention-based architectures, such as the Trans-
former (Vaswani et al., 2017), have accelerated the
progress in many natural language understanding
tasks. Part of their success is a result of a paralleliz-
able training scheme over the input length. This
improves training times and allows for larger vol-
umes of data which makes these models amenable
to pretraining (Radford et al., 2018; Devlin et al.,
2019). Therefore, many current state-of-the-art
models are fine-tuned extensions of large pretrained
Transformers (Bommasani et al., 2021).

However, these models come at a significant
computational cost. They require considerable
resources for pretraining and fine-tuning, which
induces high energy consumption (Strubell et al.,
2019) and limits access to research (Bommasani
et al., 2021). Subsequently, Schwartz et al. (2020)
argue the need for "Green AI". They propose a cost

evaluation of a result R as following:

Cost(R) ∝ E ·D ·H,

where E is the computational cost measured in
floating point operations (FPO) of a single exam-
ple, D is the dataset size, and H is the number
of hyperparameter configurations required during
tuning.

To achieve a cost reduction, this paper proposes
a simpler alternative to Transformers. We take
inspiration from the computer vision community,
which has recently seen a surge of research on
Multi-Layer Perceptrons (MLPs). Most promi-
nently, MLPMixer (Tolstikhin et al., 2021), which
is a simple architecture based on two MLPs: one
for token mixing and one for feature mixing. How-
ever, the token mixing MLP learns a fixed-size set
of position-specific mappings, arguably making
MLPMixer’s architecture too detached from the
inductive biases needed for natural language under-
standing, in contrast to Transformers (Henderson,
2020).

In this paper, we propose a simple variant, Hy-
perMixer (Figure 1), which creates a token mix-
ing MLP dynamically using hypernetworks (Ha
et al., 2016). This variant is more appropriate, as it
learns to generate a variable-size set of mappings
in a position-invariant way, similar to the attention
mechanism in Transformers (Vaswani et al., 2017).
In contrast to Transformer’s quadratic complex-
ity, HyperMixer’s complexity is linear in the input
length. This makes it a competitive alternative for
training on longer inputs.

Empirically, we demonstrate that HyperMixer
works substantially better on natural language un-
derstanding tasks than the original MLPMixer and
related alternatives. In comparison to Transform-
ers, HyperMixer achieves competitive or improved
results at a substantially lower cost Cost(R) ∝
E · D · H: improved inference speeds (E), espe-
cially for long inputs; favorable performance in the
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Figure 1: The figure outlines a general model layer consisting of a token mixing component and a feature mixing
component (MLP). For token mixing, MLPMixer uses an MLP with a fixed size, maximum input length N and
position-specific weights. In contrast, HyperMixer generates an appropriately sized MLP based on the variable size
of the input in a position-invariant way, similar to the attention mechanism. When using attention as token mixing
the whole layer is equivalent to a Transformer encoder layer.

low-resource regime (D); and efficient tuning for
hyperparameters (H). We attribute HyperMixer’s
success to its ability to approximate an attention-
like function. Further experiments on a synthetic
task demonstrate that HyperMixer indeed learns to
attend to tokens in similar pattern to the attention
mechanism.

In summary, our contributions can be enumer-
ated as follows:

1. A novel all-MLP model, HyperMixer, with
inductive biases similar to Transformers. (Sec-
tion: 2)

2. A performance analysis of HyperMixer
against alternative token mixing methods
based on controlled experiments on the GLUE
benchmark. (Section: 4.3)

3. A comprehensive comparison of the cost
Cost(R) of HyperMixer and Transformers.
(Sections: 4.4, 4.5, 4.6)

4. An ablation demonstrating that HyperMixer

learns attention patterns similar to Transform-
ers. (Section: 4.7)

2 Method

2.1 Inductive Biases in NLP Models

In machine learning, the inductive biases of a
model reflect implicit modeling assumptions which
are key to facilitate learning and improve gener-
alization on specific tasks. In NLP, well-known
models with strong inductive biases include: recur-
rent neural networks (Elman, 1990), which assume
the input to be a sequence; and recursive neural net-
works (Socher et al., 2013), which assume a tree-
structure. While both these inductive biases are
reasonable, empirically, Transformers have been
more successful in recent years. Furthermore, we
reiterate the arguments of Henderson (2020) for
inductive biases in language and apply them to
our model design. Henderson (2020) attributes
the Transformer’s success to two concepts: vari-
able binding and systematicity. Variable binding
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refers to the model’s ability to represent multiple
entities at once. This is arguably challenging in
single-vector representations such as recurrent neu-
ral networks. However, Transformers represent
each token with its own vector which accounts for
variable binding as each token can be interpreted
as an entity. Systematicity refers to the models
ability to learn generalizable rules that reflect the
structural relationship between entities (Fodor and
Pylyshyn, 1988). Transformers achieve system-
aticity through the attention mechanism which is
a learnable set of functions that determines the
interaction between entities by matching query rep-
resentations to key representations (as shown in
Figure 1). The mechanism modulates, for every
position in the sequence, how to functionally pro-
cess any other position. Moreover, these function
parameters are learnable and shared across all enti-
ties.

2.2 MLPMixer
A general layer of MLPMixer is shown in Figure 1.
Similarly to Transformers, each token is repre-
sented as a vector of features, which undergo (non-
linear) transformations in multiple layers. MLP-
Mixer employs two MLPs at each layer, one for
feature mixing and one for token mixing. The
feature mixing component is applied to each to-
ken vector independently, which models the in-
teractions between features. The Token Mixing
MLP (TM-MLP) is applied to each feature inde-
pendently (i.e. its vector of values across tokens),
which models the interactions between spatial lo-
cations or positions. This could be interpreted as
a global attention mechanism which is static and
position-modulated. Practically, this is achieved
by transposing the dimension representing the fea-
tures and the dimension representing the positions.
Each vector xTi ∈ RN , representing feature i ≤ d,
of some input of fixed length N , is input into
TM-MLP, which has the following form:

TM-MLP(xTi ) = W1(σ(WT
2 xTi )), (1)

where W1,W2 ∈ RN×d′ , and σ represents
the GELU non-linearity (Hendrycks and Gimpel,
2016). Finally, to facilitate learning, layer normal-
ization (Ba et al., 2016) and skip connections (He
et al., 2016) are added around each MLP, respec-
tively. How to best arrange these components is
still an open question (Wang et al., 2019; Bach-
lechner et al., 2021). We experiment with different
variants in Appendix F.

Considerations for NLP The token mixing MLP
assumes an input of fixed dimension, which is nec-
essary as the parameters need to be shared across all
examples. However, unlike images, textual input
is generally of a variable dimension. Therefore, to
apply MLPMixer to texts of variable length, a sim-
plistic approach is to assume a maximum length
(e.g. the maximum in the dataset). Thereafter,
all inputs are padded to the maximum length and
masks are applied in the token mixing MLP. This
model is able to do variable binding, since each
token is represented by its own vector. However,
this model lacks systematicity because the rules
learned to model interactions between tokens (i.e.
the MLP’s weights) are not shared across positions.

2.3 HyperMixer

Algorithm 1 HyperMixer pseudo-code

class HyperMixing(nn.Module):
def __init__(self, d, d’):

# learnable parameters
self.hypernetwork_in = MLP([d, d, d’])
self.hypernetwork_out = MLP([d, d, d’])

# layer normalization improves training stability
self.layer_norm = LayerNorm(d)

def forward(self, queries, keys, values):
# queries: [B, M, d]
# keys / values: [B, N, d]

# add token information (e.g. position embeddings)
hyp_in = add_token_information(keys)
hyp_out = add_token_information(queries)

W1 = self.hypernetwork_in(keys) # [B, N, d’]
W2 = self.hypernetwork_out(queries) # [B, M, d’]

# TM-MLP(x) = W_2 ( GELU ( W_1^T x) )
# maps [B, d, N] -> [B, d, M]
token_mixing_mlp = compose_TM_MLP(W1, W2)

# transpose so MLP is applied to sequence dimension
values = values.transpose(1, 2) # [B, d, N]

output = token_mixing_mlp(values) # [B, d, M]

# transpose back
output = output.transpose(1,2) # [B, M, d]

# optionally apply LayerNorm
return self.layer_norm(output)

HyperMixer includes systematicity into the
MLPMixer architecture by introducing a novel to-
ken mixing mechanism, HyperMixing1, which can
be regarded as a drop-in replacement for attention.
For ease of understanding, we provide pseudo-code
in Algorithm 1. While the queries, keys, and val-
ues in HyperMixing need not be the same, we will
assume they are identical in the following formu-
lation. HyperMixing relies on the use of hyper-
networks, which are used to generate the weights

1HyperMixing is to HyperMixer what self-attention is to
Transformer encoders.
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W1,W2 of TM-MLP (Equation 1) dynamically
as a function of the input. Let xj ∈ Rd, j ≤ N ,
where N is the (variable) dimension of the input,
represent token j (i.e., query, key, and value). W1

and W2 are generated by parameterized functions
h1, h2 : RN×d → RN×d′ . Theoretically, h1 and h2
could be any function, including sophisticated net-
works that consider non-linear interactions between
tokens, such as the attention mechanism. However,
this would defeat the purpose of our model, which
is simplicity. Therefore, we choose to generate
the rows of the weight matrices from each token
independently via another MLP. Concretely, a hy-
pernetwork function can be defined as

hi(x) =




MLPWi(x1 + p1)
...

MLPWi(xN + pN )


 ∈ RN×d′ ,

where MLPW1 ,MLPW2 : Rd → Rd′ are them-
selves multi-layer perceptrons with GELU non-
linearity. pj ∈ Rd is a vector that can encode
additional information such as the position via ab-
solute position embeddings (Vaswani et al., 2017).

Intuitively, for each token xj , h1 decides
which information to send to the hidden layer of
TM-MLP, where the information from all tokens
are mixed, and h2 decides for each token how to
extract information from the hidden layer. Note
that, even though h1 and h2 only consider one to-
ken at once, non-linear interactions between to-
kens are still modeled through the hidden layer of
TM-MLP.

Finally, layer normalization (Ba et al., 2016) can
be applied to the output of TM-MLP. We found
this helpful to facilitate training with a wide variety
of Transformer layouts (Appendix F).

Tying h1 and h2 In order to reduce the number
of parameters and operations in the model, and
thereby the complexity, we found it useful to tie h1
and h2 by setting W2 = W1.

Considerations for NLP In comparison to the
MLPMixer defined in Section 2.2, the use of hyper-
networks overcomes two challenges. Firstly, the
input no longer has to be of fixed dimensionality.
The hypernetwork generates a token mixing MLP
of appropriate dimension as a function of the input.
Secondly, the hypernetwork models the interaction
between tokens with shared weights across all posi-
tions in the input. Hence, systematicity is ensured.

3 Related Work

Research on all-MLP models like MLPMixer (Tol-
stikhin et al., 2021) is widespread in the computer
vision community (Tu et al., 2022; Yu et al., 2022;
Wang et al., 2022, among many others). How-
ever, they lack some desirable inductive biases for
NLP, which we discuss in length in Appendix A.2.
Specifically, in contrast to HyperMixer, none of the
previously proposed methods simultaneously pro-
vide i) position invariance, which is important for
generalization, ii) adaptive size for variable-length
inputs, iii) a global receptive field, which allows
interactions to not be limited to small token neigh-
borhoods, iv) learnabilty allowing for universal
applicablility to various tasks, and v) dynamicity,
which means that token mixing is a function of
the input. Consequently, only a few works have
used MLP-based models as their backbone in NLP
tasks. gMLP (Liu et al., 2021) serves as one of our
baselines and pnlp-mixer (Fusco et al., 2022) em-
ploys standard MLPMixer on top of a novel token
embedding method.

Apart from all-MLP models, there is an abun-
dance of research on efficient alternatives to stan-
dard attention layers (Katharopoulos et al., 2020;
Bello, 2021, et cetera). While they don’t qualify as
all-MLP models, they have close connections to our
work (see Appendix E) and aim at lowering the cost
of AI, albeit it on fewer dimensions than our work
(Appendix A.1). We employ FNet (Lee-Thorp
et al., 2021) and Linear Transformers (Katharopou-
los et al., 2020) as representatives of these as a
baseline.

4 Experiments

Our experiments are designed to test the following
three hypotheses. H1 (Section 4.3): Since Hy-
perMixer reflects more inductive biases that are
adequate for NLP, our hypothesis is that Hyper-
Mixer performs better at NLP tasks than MLP-
Mixer and similar MLP-based alternatives, specif-
ically at those tasks that require to model the in-
teractions between tokens. H2: Since HyperMixer
has similar inductive biases as transformers but
is considerably simpler conceptually and in terms
of computational complexity, it can be seen as a
low cost alternative to Transformers, reducing the
cost in terms of single example processing time
(Section 4.4), required dataset size (Section 4.5),
and hyperparameter tuning (Section 4.6). H3 (Sec-
tion 4.7): Due to its inductive biases mirroring
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those of Transformers, HyperMixer also learns sim-
ilar patterns as the attention mechanism.

4.1 Datasets

We evaluate on four sentence-pair classification
tasks and one single-sentence classification task.
The sentence-pair tasks are QQP (Iyer et al., 2017),
QNLI (Rajpurkar et al., 2016), MNLI (Williams
et al., 2018) and SNLI (Bowman et al., 2015).
For uniformity, datasets are formatted as in the
GLUE benchmark (Wang et al., 2018). We choose
these tasks for two properties: firstly, they have
large training datasets (Table 2, appendix) enabling
reasonable performances without pretraining; sec-
ondly, solving these tasks requires good modeling
of the interactions between tokens from different
sentences, which is the main focus of this paper.
As a control, we experiment on the single-input
dataset SST2 (Socher et al., 2013), which is a sen-
timent classification task. Many examples in this
dataset can be solved by identifying key sentiment
words, rather than modeling the token interaction.

4.2 Baselines

The following baselines can be categorized into
MLP-based (to support H1) and not MLP-based
(e.g., Transformers, to support H2). Note that our
study is about the design of the token mixing mod-
ule. Therefore, we only compare to models that fit
into the general framework displayed in Figure 1,
where there is a feature mixing module and a to-
ken mixing module for textual inputs. As a result,
models such as RNNs are excluded. To enable
a controlled experiment, we use the same feature
mixing module in all models; the models only dif-
fer in their token mixing module.

MLP-based The conceptually closest baseline is
MLPMixer (Tolstikhin et al., 2021), which com-
bines both token and feature mixing using fixed
dimensional MLPs, as described in Section 2.2.
Concurrently, (Liu et al., 2021) proposed gMLP, in
which token mixing is achieved through weighted
summation of all other inputs, similar to the atten-
tion mechanism. However, rather than computing
weights as function of the inputs like in attention,
in gMLP the weights are fixed learnable parame-
ters. Additionally, linear gating initialized close to
one is introduced to facilitate training. The origi-
nal gMLP method does not employ feature mixing
modules, as their token mixing module is capable
of modeling feature interactions as well in a single

gMLP block. However, for comparability we inject
gMLP blocks as token mixing modules in our gen-
eral architecture and keep feature mixing modules
as well.

Non MLP-based Transformers (Vaswani
et al., 2017) are used in the current state of
the art in virtually all NLP tasks. Their key
component is the softmax-based self-attention
module, which we use for token mixing.
Linear Transformer (Katharopoulos et al.,
2020) replaces softmax attention with a feature-
map based dot-product attention. Finally,
FNet (Yu et al., 2021) replaces the self-attention
part of Transformers with a fixed, non-learnable set
of Fourier transforms for token mixing.

4.3 Performance

Initially we compare the performance of Hyper-
Mixer in comparison to our baselines. Thereafter,
we further explore the model’s benefits with re-
spects to its cost.

For comparability, we adjust the size of the to-
ken mixing components such that all models have
the same number of parameters (11M). FNet is an
exception since it has no learnable parameters in
its token mixing component. We tune the learning
rate of each model via grid-search, and report the
performance of the best configuration. Further ex-
perimental details on all experiments can be found
in Appendix B.

Results Validation and test set results are shown
in Table 1. On the test and the validation set, Hyper-
Mixer performs the best among MLP-based mod-
els on all datasets, although for SST the difference
on the validation set is smaller than one standard
deviation. MLPMixer generally achieves good per-
formances, outperforming Transformers on two
datasets.

Comparing to non-MLP-based methods, Hyper-
Mixer also outperforms vanilla Transformers on all
datasets. The differences are generally small (≤ 2
points), except on QNLI, where the difference is
3.9 points. We suspect that this discrepancy is due
to the relatively small training set of QNLI. We
investigate low-resource behavior of Transformers
in comparison to HyperMixer in Section 4.5. FNet
performs substantially worse than the other meth-
ods, particularly on SNLI and QQP. Linear Trans-
formers achieve excellent performance on MNLI
and SNLI, but perform poorly on QNLI and QQP.
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Figure 2: WCT / FOPs of propagating a single example
through the token mixing of HyperMixer vs. Trans-
former depending on the input length.

In Appendix C.2, we discuss ablations such as
untied HyperMixer.

4.4 Time per Example
In order to assess the efficiency of our model, we
measure the wallclock-time of processing a single
input (repeated 1,000 times) through the token mix-
ing stages of HyperMixer and Transformer, respec-
tively. As Schwartz et al. (2020) point out, wall-
clock time has the downside of being dependent
on the specific implementation, and they therefore
recommend reporting the number of floating point
operations (FOPs) required by one forward pass. In
Figure 2, we show wallclock time and theoretical
FOPs as a function of the input length N . For short
input sequences, the number of FOPs is dominated
by the size of the hidden layer and hence slightly
lower for Transformers than for HyperMixer. How-
ever, in practical terms we observe that HyperMixer
is still faster than Transformers. At longer input
sequences, the size of N starts to dominate the to-
tal complexity of Transformers, so that it becomes
exceedingly slower than HyperMixer.

4.5 Low Resource Performance
Like MLPMixer, HyperMixer is a conceptually
simple architecture, as it only applies multi-layer
perceptrons at its core. Simpler architectures of-
ten make for better performance on smaller scale
datasets. We investigate this by varying the number
of examples used for training on the three large
datasets MNLI, SNLI, and QQP. For these exper-
iments, we use the best performing learning rate
found in the grid search from Section 4.3. In Fig-
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Figure 3: Relative improvement of HyperMixer over
Transformer depending on what percentage of the train-
ing set is used.

ure 3, we plot the relative performance change of
HyperMixer compared to Transformers as a func-
tion of subsample size. On all datasets, the relative
improvement of HyperMixer over Transformers is
larger when training with 10% of the dataset than
with the full dataset. While the effect is small on
QQP, it is particularly large on SNLI and MNLI,
where HyperMixer performs almost 12-14% better
with 10% of the data, while the relative improve-
ment with the full dataset is less than 2%.

4.6 Ease of Hyperparameter Tuning
MLP-based token mixing has the advantage that it
is conceptually simpler than self-attention, and that
it is well-known how to facilitate training via mech-
anisms such as skip-connections and layer normal-
ization. Both these aspects suggest that it might be
easier to find hyperparameter configurations that
yield good performances. In these experiments, we
compare HyperMixer (with tied hypernetworks) to
Transformers in this regard. As recommended in
Schwartz et al. (2020), we perform a random search
to tune hyperparameters and compute the expected
validation performance (Dodge et al., 2019, 2021).
Specifically, we tune the learning rate, whose log-
arithm is drawn from U(−8,−1), and the dropout
probability drawn from U(0, 0.5) for 20 trials.

Results In Figure 4, we show the relative ex-
pected validation performance, i.e., the relative
performance change of HyperMixer compared to
Transformer, for all five datasets. With the notable
exception of QNLI, the relative improvement of
HyperMixer is higher at smaller budgets than at
larger budgets on all datasets. The effect is par-
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Model MNLI SNLI QQP QNLI SST # Params
Baselines Validation set results (average accuracy / standard deviation over 10 seeds)

FNet 59.7 (0.27) 75.3 (0.46) 79.4 (0.28) 59.9 (0.46) 79.7 (0.71) 9.5 M
Lin. Transformer 66.9 (0.48) 82.7 (0.22) 81.7 (0.28) 61.3 (0.29) 80.5 (0.46) 11 M

Transformer 65.4 (0.51) 80.9 (0.40) 82.8 (0.22) 67.3 (2.03) 79.0 (0.86) 11 M
MLPMixer 63.9 (0.34) 79.6 (0.11) 83.7 (0.42) 68.1 (2.10) 80.1 (0.67) 11 M

gMLP 60.8 (0.95) 80.5 (0.55) 82.8 (0.21) 60.5 (0.49) 78.7 (0.74) 11 M
HyperMixer (ours) 66.2 (0.21) 81.9 (0.27) 85.6 (0.20) 78.0 (0.19) 80.7 (0.84) 11 M

Baselines Test set results (best model)
FNet 59.8 75.3 78.4 59.6 80.0 9.5 M

Lin. Transformer 66.9 83.0 82.3 61.7 80.8 11 M
Transformer 65.8 80.7 82.4 73.2 79.4 11 M
MLPMixer 62.9 80.1 83.5 70.5 81.2 11 M

gMLP 61.2 80.9 82.5 60.2 79.5 11 M
HyperMixer (ours) 66.1 81.7 84.1 77.1 81.4 11 M

Table 1: Top: Mean validation set accuracy and standard deviation over 10 different seeds of the best hyperparameter
configuration. Results are printed in bold font if they exceed the second best result by at least one standard deviation.
Underline marks the best MLP-based model. Bottom: Test set results on natural language understanding tasks when
using the best model on the validation set. We evaluate on a single seed due to the limited test set access of GLUE.
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Figure 4: Relative expected validation performance of
HyperMixer compared to Transformer after tuning the
learning rate and dropout via random search.

ticularly strong on SNLI, where HyperMixer is
6.5% better at small tuning budgets, but less than
2% better at high budgets. These results indicate
that HyperMixer is substantially easier to tune than
Transformers.

4.7 HyperMixer Learns Attention Patterns

We hypothesized that the token mixing layer of
HyperMixer offers a mechanism similar to atten-
tion. To show this, we consider a toy problem with
1d sequences composed of shape pairs of different
heights as described in Fleuret (2019). The target
value is the average height in each pair of shapes.
An example input is shown in Figure 5a. To solve

the task well, for each position, the model must
attend to other positions with the same shape.

Models We compare the token mixing layer of
HyperMixer to three other models: i) None does
not model token interactions. All predictions are
thus only made based on local information. This
model should thus fail. ii) MLPMixer does model
token interactions. Still, since its token mixing
weights are position-specific, each position has to
learn to recognize each shape, which we expect
to be difficult, especially with little data. iii) Self-
attention can be considered the upper bound, as it
models the interaction between every two positions
explicitly.

Results Figure 5b shows the mean squared er-
ror on the test examples depending on the num-
ber of training examples. As expected, None fails
on this task. While all other models are able to
solve the task with enough training data, MLP-
Mixer is considerably less data-efficient than the
other two models, requiring 5-10 times more data
to reach the same performance. This is expected,
since in contrast to HyperMixer and self-attention,
MLPMixer’s token mixing module is not position-
invariant. HyperMixer and self-attention reach ap-
proximately the same performance when training
on 100k examples. However, HyperMixer is more
data-efficient than self-attention, which we attribute
to the simpler model architecture.
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Figure 5: Results and pseudo-attention maps on the synthetic task (Fleuret, 2019).

We can measure the interactions between two to-
kens by computing the gradient of an output token
with respect to an input token (pseudo-attention).
Figures 5d and 5c show the pseudo-attention maps
of HyperMixer in comparison to attention. We
observe that the pseudo-attention weights of Hy-
perMixer and attention are similar. This indicates
that HyperMixer indeed learns an attention-like
function. In contrast, we find these patterns to be
weaker in MLPMixer (Figure 6, appendix).

5 Discussion

In the following, we first discuss the merits of our
proposed model, which are the core contributions
of our paper. We then discuss the scope of our
analysis.

5.1 Impact

Best all-MLP model HyperMixer was designed
as an MLP-based architecture with similar induc-
tive biases as Transformers, which are beneficial
for natural language understanding. Our hypothesis
(H1) is that this leads to improvements over other
MLP-based methods. Our experimental results sup-
port this hypothesis, as we find HyperMixer to out-
perform all MLP-based baselines on all datasets
(Section 4.3).

Low cost model The main motivation for an
MLP-based architecture is the efficiency benefits
induced by its simplicity. Therefore, we hypothe-
sized (H2) that HyperMixer would reduce the cost
Cost(R) ∝ E · D · H to obtain an AI result R.
This hypothesis is supported by our experiments.
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While HyperMixer yields results that are on par
with Transformer’s results, it reduces the cost of
all three cost factors: i) The cost of processing a
single example (E) is lower, particularly for long
inputs due to its linear complexity compared to the
quadratic complexity of self-attention (Section 4.4).
ii) The number of required training examples (D)
is reduced, as HyperMixer’s relative performance
improvement is larger in the low-resource scenario
(Section 4.5). iii) HyperMixer requires less hyper-
parameter tuning than Transformers to reach good
results, which is demonstrated by HyperMixer’s
higher expected relative improvements at low tun-
ing budgets (Section 4.6).

Attention-like model Finally, our experiments
on a synthetic task indicate that HyperMixer can
learn very similar attention patterns as the self-
attention mechanism in Transformers (Section 4.7),
supporting hypothesis H3. While MLPMixer can
also learn similar patterns given enough training
data, we believe that it is the introduction of ad-
equate biases that allows HyperMixer to learn
these patterns efficiently. These biases were cho-
sen based on an analysis of Transformer’s success
by Henderson (2020). HyperMixer’s own success
hence supports that analysis.

In summary, in our study, HyperMixer is the best-
performing MLP-based architecture, and shows
comparable performance and behavior as self-
attention at substantially lower cost. HyperMixer
can thus be considered a low cost alternative to
Transformers.

5.2 Scope

Small resource scenario It is important to note
that our study is limited to the small resource sce-
nario: Our models are small, not pretrained on large
general-purpose corpora, and trained on datasets
with fewer than 1 million examples. It is unclear
if our results will also hold on larger scale. For
example, while gMLP and FNet perform poorly
in the low-resource scenario as demonstrated in
our experiments, both models are able to narrow
the gap to Transformer-based models as the re-
sources for pretraining increase (Liu et al., 2021;
Lee-Thorp et al., 2021). We hypothesize that with
enough resources, these models are able to over-
come their shortcomings in terms of inductive bi-
ases. However, there is no reason to believe that
HyperMixer, being equipped with useful inductive
biases, wouldn’t perform on par with Transformers

in high-resource scenarios while retaining its lower
overall cost. Quite the contrary, HyperMixer’s lin-
ear complexity in sequence length perhaps makes
it more appropriate for large-scale pretraining on
long contexts than vanilla Transformers.

Versatility One of the most impressive qualities
of Transformers is their versatility: Not only are
they now the standard architecture for all NLP
tasks, but over the years they have also become
ubiquitous in a wide range of applications domains
outside of NLP. Of course, the present study cannot
determine whether HyperMixer is as versatile as
Transformers. However, subsequent studies have
shown that HyperMixer has uses in speech recog-
nition (Mai et al., 2023) and neural combinatorial
optimization (Drakulic et al., 2023). Still, some
modeling advancements are needed. For example,
HyperMixing is not yet applicable for decoder mod-
els that make use of causal masking. As decoder-
only language models have become widely studied,
this constitutes promising future work.

6 Conclusion

While large pretrained Transformer language mod-
els have led to impressive progress, they re-
quire so much resources that many research labs
are excluded from participation, leading to calls
for Green AI. We have proposed an MLP-based
method, HyperMixer, that, in contrast to previous
MLP-based methods, is equipped with the same
inductive biases that made Transformers so suc-
cessful for natural language understanding. While
it performs on par with Transformers, it incurs sub-
stantially lower cost in terms of processing time,
training data, and hyperparameter tuning. Hence,
we believe our study demonstrates the merits of
MLP-based models for natural language under-
standing as an alternative to attention-based mod-
els, and we hope that the community pursues this
direction further. Avenues for future work include
large-scale pretraining, evaluation on a wider range
of tasks and domains, and the model’s adaptation
to text generation.
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Limitations

Many limitations of our study are already discussed
in Section 5.2, however, we repeat and add to them
explicitly here.

Small resource scenario Our study investigates
MLP-based architectures for text classification
tasks and finds competitive performance with
vanilla Transformers while having lower cost in
terms of the Green AI equation. However, the
scope of our findings is naturally limited to the test-
ing scenario, which is low-resource: Our models
are relatively small, not pretrained on large general-
purpose corpora, and trained on datasets with fewer
than 1 million examples. We may not say with
certainty that our results will also hold on larger
scale. For the sake of hypothesis-driven research
we consider it more valuable to run many controlled
small-scale experiments rather than few large-scale
experiments. Nonetheless, scaling up should cer-
tainly be part of future research directions, as this
is essential for optimal task performance.

Limitation to English pairwise sentence classifi-
cation tasks Since token mixing is the indepen-
dent variable in our study, we put our main focus
on English sentence-pair classification tasks with
textual input only, which we presume (and provide
some evidence for) to be most useful to assess dif-
ferences between token mixing models. Of course,
vanilla Transformers are very flexible in the sense
that, over the course of many studies, they have
been shown to be very effective for a wide range
of tasks, languages and data modalities. Whether
or not the proposed HyperMixer model possesses
similar flexibility cannot be answered in this study.
The HyperMixer encoder arguably possesses simi-
lar inductive biases as Transformers. We thus ex-
pect it to be straight-forward to apply to tasks that
are also solved well by Transformer encoders (e.g.,
span classification). For tasks such as language
modeling, which involve a Transformer decoder,
significant modeling advancements are required to
obtain a HyperMixer equivalent. We consider this
a very promising direction for future work.

Limitation to MLP-based baselines Similar to a
trend in the computer vision community, our study
investigates the suitability of MLP-based architec-
tures for NLP. Due to their conceptual simplicity,
these models promise to be easier to train, poten-
tially leading to reduced Green AI costs. To this

end we compare our proposed HyperMixer model
to a range of other MLP-based models, and Trans-
formers. Apart from FNet and Linear Transform-
ers, which are efficient Transformer alternatives,
we do not attempt an exhaustive comparison to
non-MLP-based efficient NLP models. Hence, the
scope of our claims does not extend to all efficient
Transformer models. However, these models are
of course very relevant to this study, as they are
targeted towards one of the factors of Green AI
cost (single forward pass complexity). Therefore,
we regard a comprehensive comparison as valuable
future work.
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Appendix
A Extended Related Work

A.1 Green AI

Schwartz et al. (2020) challenges the current pur-
suit for higher accuracy at the cost of larger com-
putation with the notion of "Green AI". More-
over, Strubell et al. (2019) estimated the monetary
and environmental cost of large model pretrain-
ing. Apart from being problematic environmen-
tally, they argue that the monetary cost of pretrain-
ing is too high to be widely accessible for most
researchers. In a research community that focuses
on task performance, low resourced researchers
would be disadvantaged. Therefore, metrics that
take the cost of reaching a result are important
to consider (Schwartz et al., 2020). The metric
Cost(R) ∝ E ·D ·H , is proposed and discussed
in Section 1. However, reporting a single metric
Cost(R) is often ambiguous. Therefore, in our
experiments, we consider the factors E, D, and H .

To measure the computational cost per example
E, Schwartz et al. (2020) propose a count of the
floating point operations (FPOs) required. In our
experiments, we adopt this metric and further in-
clude wall-clock time for a practical application.
The component D evaluates the quantity of training
data needed to reach a given accuracy or the perfor-
mance of a model in a low-resource scenario (Hed-
derich et al., 2020; Chen et al., 2021). Finally,
the component H measures the cost associated
with hyperparameter tuning. This is reported us-
ing expected validation performance introduced
by Dodge et al. (2019, 2021), which computes
the validation performance one would yield in ex-
pectation after k hyperparameter trials of random
search (Bergstra and Bengio, 2012).

Current literature does not focus on all facets
of Green AI as formalized as Cost(R). Typi-
cally, improving efficiency involves making exist-
ing models more accessible. For example, improv-
ing accessibility through model distillation (Sanh
et al., 2019) or adapter modules (Houlsby et al.,
2019). Another avenue involves reducing the com-
putational complexity, with examples: prompt-
tuning (Schick and Schütze, 2020), self-attention
in Transformers (Child et al., 2019; Beltagy et al.,
2020; Katharopoulos et al., 2020, et cetera). The
latter approach is similar to our work. However,
they focus the processing time of a single example

E and do not consider the other facets of Green AI.
In our paper, we focus on MLP-based approaches,
which we argue will have improvements in all
facets of Green AI due to their simplicity.

A.2 MLP-based Models

The vision domain has seen promising results with
purely MLP-based models (Tolstikhin et al., 2021),
however, they lack the desired inductive biases for
NLP. Some desirable properties for modeling lan-
guage include: i) position invariance, which is
important for generalization, ii) adaptive size for
variable-length inputs, iii) a global receptive field,
which allows interactions to not be limited to small
token neighborhoods, iv) learnabilty allowing for
universal applicablility to various tasks, and v) dy-
namicity which implies that output is conditioned
on the input. MLP-based models are typically not
used for NLP as including the inductive biases of
position invariance, adaptive size and global recep-
tive field are non-trivial for MLPs.

Several methods try to overcome the lack of
adaptivity to size by introducing shifting opera-
tions and local windows. Yu et al. (2022) and Lian
et al. (2022) uses spatial shifting to pass the infor-
mation of adjacent tokens through an MLP. (Tang
et al., 2021) uses a circular shifting operator. How-
ever, the position invariance is violated because
positional information is required in the decision
of which tokens are included in the neighborhood.
The aggregation of local information itself is done
via a (relative) position-specific MLP. Global inter-
actions are modeled only through the inclusion of
enough layers or through a hierarchical layout (Yu
et al., 2022; Guo et al., 2021).

For vision tasks it can be useful to exploit the
fact that 2D images consist of two axes. Tatsunami
and Taki (2021) make use of this fact by integrating
a respective inductive bias. (Tu et al., 2022) achieve
linear complexity by applying a gMLP (Liu et al.,
2021) to only a single axis.

A global receptive field in MLP-based models is
achieved through token mixing and a weighted sum-
mation of the inputs, similar to self-attention. This
allows for interaction between tokens. Liu et al.
(2021) propose the model gMLP, where the mixing
weights are determined by a fixed learnable inter-
action matrix between positions. However, this
comes at the cost of violating position-invariance,
size adaptivity, and dynamicity. DynaMixer (Wang
et al., 2022) enables dynamicity by estimating the
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mixing weights from the concatenation of the in-
puts via a linear layer. This is efficient due to a di-
mensionality reduction step, but the concatenation
still implies position-dependence and fixed-sized
inputs. (Lee-Thorp et al., 2021) proposes the model
FNet to use static Fourier transformations to model
token interactions. This model made significant
improvements in computation cost, although the
functions lack learnability and are position depen-
dent.

A.3 Hypernetworks

A hypernetwork uses a network to generate the
weights for another, often larger, network (Ha et al.,
2016). Tay et al. (2021) leveraged task-conditioned
hypernetworks for the GLUE benchmark. They
achieved paralleled performance to the state-of-
the-art at the time, whilst being more parameter
efficient. Karimi Mahabadi et al. (2021) applied
hypernetworks to Transformers to allow for param-
eter sharing in multitask learning. Their results
showed parameter efficiencies and improved out of
domain generation. Zhmoginov et al. (2022) com-
bine hypernetworks and transformers in the vision
domain for few shot generalization. LambdaNets
are strongly related to our work, as they generate
linear functions from context, in a similar capacity
to a hypernetwork (Bello, 2021). Their model is
similar to the standard attention mechanism where
the weights of three matrices Q,K, V are learned.
In contrast, HyperMixer uses the inputs to create
non-linear transformations by generating an MLP.
Features are combined based on their locations - a
comparison can be found in Appendix E.

Combining MLPMixer and hypernetworks al-
lows for an efficient and simple MLP-based model
to have all the necessary inductive biases for NLP.
The MLPMixer provides a simple token interaction
backbone. By deploying hypernetworks to build
the weights of the token mixing MLP, the miss-
ing inductive biases of position invariance and size
adaptation are obtained.

B Experimental Details

B.1 General Information

Implementation We implemented all models
within the same general framework based on Py-
Torch (Paszke et al., 2019). We provide the code in
the supplementary material. For tokenization, we
use the pretrained tokenizer from BERT-Base (De-
vlin et al., 2019). Datasets are downloaded directly

from HuggingFace Datasets (Lhoest et al., 2021).
As such, they are directly downloaded by our train-
ing script. We apply no further preprocessing.

For computing expected validation performance,
we use the public implementation by Dodge et al.
(2019).

We run our experiments on single-GPU servers
available to us as part of a computation grid, rang-
ing between GeForce GTX Titan X and RTX 3090.
Apart from Transformers on SNLI and MNLI,
which take about 4 hours on slower GPUs, all ex-
periments finished within 3 hours.

Hyperparameters We provide CSV files detail-
ing all parameters of every run alongside their re-
sults in the supplementary material, ensuring re-
producibility of our study. Note that the computa-
tion environment (e.g., type of GPU) might lead to
small differences.

B.2 Peak Performance

To ensure a fair comparison, we aim to compare
models of approximately the same number of
parameters (≈11 M parameters). All models have
6 layers with token embedding size d = 256 and
hidden size d′ = 512. For MLPMixer and gMLP
we set the size of the token mixing modules to
N = 250 and N = 100, respectively. These
lengths are chosen to match the number of parame-
ters of the other models (11 M). The hidden layer
size is set to 512 in all models. We use dropout at
the input to each layer with a probability of 0.1. For
all models, including the ablations, we first tune
the learning rate of Adam (Kingma and Ba, 2014)
using a logarithmically spaced grid of 7 values α ∈
{0.001, 0.0005, 0.0002, 0.0001, 0.00005, 0.00002,
0.00001} on the validation set. For our baselines,
we then evaluate 10 different seeds and report
the mean accuracy and standard deviation on the
validation set. On the test set, we only report the
results of the model yielding the best results on
the validation set, as the GLUE benchmark (Wang
et al., 2018) has a hidden test set with limited
access. Ablations are evaluated on the validation
set with a single seed.

B.3 Time per Example

Due to the lack of reliable software to measure
FOPs in PyTorch, we calculate these numbers man-
ually. Our process is described in Appendix D. For
the measurement of wallclock time, we measured
the time of 1,000 batches through a single layer of
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Dataset # Train # Valid # Test
MNLI 392,702 9,815 9,796
SNLI 549,367 9,842 9,824
QQP 363,846 40,430 390,965
QNLI 104,743 5,463 5,463
SST 67,349 872 1,821

Table 2: Number of examples in each dataset.

each token mixing module with d = 256, d′ = 512
(as used in our experiments).

B.4 Toy Task (Section 4.7)

This section gives more detail about how we set
up the synthetic example (Fleuret, 2019) for eval-
uating whether the different models were able to
learn some attention-like transformation. We have
a dataset made of 1D sequences that contain two
rectangular and two triangular shapes. Each of
these shapes has a different height taken at ran-
dom in the input sequence. The output sequence
has the same shapes in the same positions, but the
heights of triangular shapes should be the mean
of the two triangular shapes in the input sequence.
Similarly, the height of the rectangular shapes in
the output sequence is the mean of the height of the
two rectangular shapes in the input sequence.

So the model should be able to see across the
sequence and compute the mean of the two differ-
ent shapes to succeed at the task. All the models
considered for this task have a similar structure:
they consist of a particular layer (MLPMixer, Hy-
perMixer, or Attention) surrounded by two pairs of
1D-convolutional layers with kernels of size five
and a symmetric zero-padding of size two so that
the output shape is constant. We made an ablation
to ensure that this layer was mandatory by chang-
ing it with another similar 1D convolutional layer,
which corresponds to None in the figure 5b.

Before visualizing the pseudo-attention maps,
all models were trained on 25,000 training exam-
ples. We use input-gradients (Simonyan et al.,
2014) to evaluate whether models could « attend
» to the different shapes. This method computes
the gradient of the output sequence with respect
to the input sequence, giving the corresponding
saliency map, which can then be recombined into
a pseudo-attention matrix where the i-th column
corresponds to the saliency maps of the i-th out-
put token. A large value in the (i, j) entries of the
pseudo-attention matrix means that the output to-

ken i strongly depends on the input j, and we can
thus compare it to an attention matrix 6a.

Figure 6 represents the pseudo-attention matri-
ces for the different models. We can notice that it
indeed approximates the true attention matrix 6a
and that the model with no special layer cannot at-
tend to the correct part of the sequence, as expected.
Finally, we can see that the pseudo-attention of the
Mixer layer is not as peaked as the one correspond-
ing to the Attention or HyperMixer layer.

C Further Results

C.1 Validation Set Results

In Table 3, we show the best scores on the vali-
dation set that we obtained from the grid search
(using a fixed seed), alongside the learning rate that
yielded that score.

In Section 4.3, we reported the test set results
of all models when using the best-performing seed.
In Table 4, we show test set results when using the
median seed.

C.2 Ablations

We first describe the ablation models before we
discuss their results.

Feature Mixing Only The most simplistic MLP
architecture is one that doesn’t use token mixing,
i.e., the token mixing module is set to the identity
function. The outputs at the last layer are aggre-
gated via average pooling before plugged into the
linear classifier. This allows a baseline where the
token interactions are not modeled. Therefore, this
architecture serves as a control for how important
token mixing is in any given task.

Token Mixing Only A simplistic single layer
MLP architecture ablation. This model consists of
a variable dimension MLP where the weights are
generated using a hypernetwork which only allows
for location interaction. This model is included
to argue that the best simple model requires both
location and feature mixing to efficiently model
textual inputs.

Shared Weight-Vector A simple way to obtain
a variable size location-mixing MLP is by weight-
sharing. Concretely, we use a single learnable
weight vector w1 ∈ Rd′ , which we copy N times to
create a weight matrix W1 ∈ RN×d′ . Analogously,
we create W2 from a separate vector w2. Note that
this baseline does not support dynamicity, as the
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Model MNLI SNLI QQP QNLI SST # Params
Baselines (accuracy / learning rate)

FNet 59.6 / 5e-4 75.1 / .001 79.7 / .001 59.2 / 5e-4 80.4 / .001 9.5 M
Linear Transformer 66.2 / .001 82.2 / 0.001 81.7 / 5e-4 61.1 / 1e-4 80.7 / 2e-4 11M

Transformer 66.0 / 2e-4 81.2 / 2e-4 82.9 / 2e-4 65.4 / 5e-4 78.9 / 5e-4 11 M
MLPMixer 64.2 / .001 80.5 / .001 83.6 / .001 68.7 / 5e-5 82.3 / .001 11 M

gMLP 61.5 / .001 80.9 / 2e-4 83.0 / 5e-4 61.1 / 5e-5 79.2 / 1e-4 11 M
HyperMixer (tied) 66.5 / 1e-4 81.8 / 2e-4 85.4 / 1e-4 77.5 / 5e-5 81.3 / 5e-4 11 M

Ablations (accuracy / learning rate)
Feature Mixing only 54.4 / .001 67.2 / 5e-4 75.9 / .001 61.0 / .001 81.8 / 5e-4 9 M
Token Mixing only 59.5 / 2e-4 73.6 / 2e-4 81.7 / 2e-4 61.8 / 2e-4 80.1 / 5e-4 9 M

Shared Weight-Vector 53.7 / 5e-4 68.1 / .001 83.0 / .001 66.4 / 5e-5 80.5 / .001 9.5 M
HyperMixer (untied) 66.0 / .001 82.3 / .001 84.6 / .001 72.2 / 5e-5 81.3 / .001 12 M

Table 3: Best validation set results on natural language understanding tasks after tuning the learning rate on a grid.

Model MNLI SNLI QQP QNLI SST # Params
Baselines

FNet 58.8 75.2 78.4 59.0 80.2 9.5 M
Lin. Transformer 67.0 81.9 82.3 61.0 82.5 11 M

Transformer 64.9 81.1 82.1 67.1 77.7 11 M
MLPMixer 62.6 79.7 83.2 69.1 80.8 11 M

gMLP 62.9 79.9 82.3 60.0 78.5 11 M
HyperMixer (tied) 64.9 81.0 83.9 76.8 80.9 11 M

Table 4: Test set results on natural language understanding tasks, when using the median seed.

weight vector is independent of the inputs. This
baseline thus shows the importance of dynamicity
in our model.

Results Results are shown in Table 5. Untying
the hypernetworks in HyperMixer leads to slightly
decreased performance on all datasets. We hypothe-
size that without pretraining, the model cannot ben-
efits from more capacious token interaction model-
ing introduced by untying. Nonetheless, the untied
model still performs or a little better than vanilla
Transformers.

While the introduction of MLPMixer and similar
models follows a trend towards conceptually more
simplistic models, our ablations show, perhaps un-
surprisingly, that simplicity is not better when it
leads to discarding information, as both the Feature-
Mixing only and Location-Mixing only models per-
form substantially worse than the full HyperMixer
model. Moreover, it is not enough to use the same
learnable weight vector for all positions (Shared
Weight-Vector), indicating the importance of gen-
erating the MLP based on the input.

The simplistic Feature-Mixing only model per-
forms poorly on all datasets except SST, where it

performs as well as the other models. This indi-
cates that many instances in SST can be solved
by looking at individual tokens alone, rather than
modeling their interactions.

C.3 Visualizing Attention Patterns

Figure 6 shows the pseudo-attention of all mod-
els (except ’None’) alongside the true attention
weights of attention. First, it should be noted
that pseudo-attention weights offer a somewhat
blurry version of true attention weights, where high
weights occur at positions that correspond to the
same shape (cmp. 6a to 6b). Second, we observe
that the pseudo-attention weights of HyperMixer
and attention (cmp. Figure 6d to 6b) are simi-
lar. This indicates that HyperMixer indeed learns
an attention-like function. Third, MLPMixer also
shows a similar pattern, but the relevant positions
have weak connections (Figure 6c). This confirms
our finding that MLPMixer requires substantially
more training data to learn strong connections.
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Model MNLI SNLI QQP QNLI SST # Params
Ablations Validation set results (average accuracy / standard deviation over 10 seeds)

Feature Mixing only 54.5 (0.25) 67.0 (0.14) 75.9 (0.06) 60.8 (0.42) 79.7 (0.64) 9 M
Token Mixing only 59.0 (0.79) 74.5 (5.53) 79.5 (4.63) 61.8 (1.29) 76.3 (4.94) 10 M

Shared Weight-Vector 57.1 (2.38) 74.3 (1.96) 82.9 (0.10) 65.9 (0.42) 79.8 (0.52) 9.5 M
HyperMixer (untied) 65.8 (0.46) 81.7 (0.30) 84.8 (0.23) 73.3 (0.53) 80.3 (0.35) 12 M
HyperMixer (tied) 66.2 (0.21) 81.9 (0.27) 85.6 (0.20) 78.0 (0.19) 80.7 (0.84) 11 M

Table 5: Mean and standard deviation of HyperMixer ablations on the validation set.
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Figure 6: Results and (pseudo-)attention maps on the synthetic task (Fleuret, 2019).
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D Comparison of #FOP

We want to compute the number of floating-point
operations needed in self-attention vs. HyperMix-
ing for a single example. Let N be the sequence
length, d be the embedding size of each token, and
d′ the hidden dimension.

For simplicity, we will assume basic mathemati-
cal operators like exp, tanh,

√
x and division to be

equal to one floating operation. However, their ac-
tual cost is higher but depends on implementation
and hardware.

D.1 Basic Building Blocks
We first compute the number of operations infre-
quently occurring in basic building blocks of neural
networks.

Matrix Multiplication Multiplying matrix A ∈
RN×d A ∈ Rd×M takes 2d(NM) operations, as
2d operations are needed for a single dot-product
and there are NM entries in the resulting matrix.

Linear Layer Passing a single vector of size d
through a linear layer without bias of size (d, d′) is
the multiplication of a single vector with a matrix,
i.e., incurs 2dd′ operations in total.

GELU GELU is usually approximated as

GELU(x) = 0.5x
[
1 + tanh

(√
2/π(x+ cx3)

)]

So in total, GELU is computed for every of the d
features and every of the N vectors, meaning the
GELU activation layer takes 9dN operations.

MLP (input = output size) Given hidden size
d′ and input/output size d, we have two linear lay-
ers of size (d, d′) and (d′, d), respectively, plus a
GELU layer on d′ dimensions, incurring 4dd′+9d′.

MLP (input /= output size) Given hidden size
d′, input size d and output size d′′, we have two
linear layers of sizes (d, d′) and (d′, d′′), incurring
2dd′ + 2d′d′′ + 9d′.

Softmax Softmax is applied over N values, each
of which goes through an exp and a division by
the normalization value. The normalization value
requires N additions. So in total, the number of
operations is 3N .

D.2 HyperMixer
HyperNetwork (tied case) In the tied case, we
have one MLP that generates an output for each

vector, so the number of operations needed for an
MLP of input and hidden size d and output sizes
d′: N(2d2 + 2dd′ + 9d)

Mixing MLP The mixing MLP has input and
output size N and hidden size d′, which is applied
to each of the d embedding dimensions (i.e., after
transposition), incurring d(4d′N + 9′) operations
in total.

Total: The total number of operations in Hyper-
Mixer is d(4Nd′ + 9d′) +N(2d2 + 2d′d+ 9d)

D.3 Self-attention

Multi-head self-attention with h heads applies self-
attention independently to each head consisting of
vectors of size d/h, respectively.

Self-attention consists of

• 3 linear layers to transform queries, keys, and
values: 6h(d/h)2

• h matrix multiplications with sizes N(d/h),
totalling 2h(d/h)N2 operations

• softmax: 3N

• a weighted average for each of the inputs, con-
sisting of (2dN2) operations.

In total: 6h(d/h)2+hN22(d/h)+3N+(2dN2)

E Connection with Lambda Layers and
Linear Transformer

We saw in Section 4.7 that HyperMixer was able
to allow a form of attention without computing
an attention matrix directly and thus scaling only
linearly with the input length. In that regard, this
method is similar to other methods such as (Bello,
2021) or (Katharopoulos et al., 2020). We will de-
scribe here the difference between these approaches
and our method. Let us write the standard atten-
tion formula and the HyperMixer layer under the
following form:

Attention(Q,K,V ) = softmax(QKT )V (2)

HyperMixer(X) = W 1σ(W
T
2 X) (3)

where Q,K,V ,W 1,W 2 ∈ RN×d′ , X ∈ RN×d

and W 1,W 2 are the weights generated by the hy-
pernetwork.
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We can notice that the two operations differ
mainly in the non-linearity location and the uses
of linear or non-linear projection of the input. In-
deed, attention applies a non-linearity to QKT

and uses linear projection of the input (Q,K,V )
to construct the attention map. On the contrary,
HyperMixer uses two linear mapping of the input
(W 1,W 2) and applies a non-linearity to W T

2 X ,
which is similar in a way to KTV . The quadratic
cost of the attention layer comes from the place of
the non-linearity as it requires the explicit compu-
tation of QKT ∈ RN×N which is quadratic with
respect to the input size. Most of the strategies
used to overcome this quadratic cost generally find
a way of moving this non-linearity. This is the
case of (Katharopoulos et al., 2020) which applies
non-linearities ϕ independently to Q and K and
(Bello, 2021) that applies softmax only to K. In
that regard, these two methods can be compared
with HyperMixer as they all scale linearly with the
input size due to the non-linearity location. Still,
HyperMixer is conceptually different because it
uses a non-linear transformation of the input and
because it uses, in our opinion, a simpler and more
understandable design entirely based on MLPs.

F Ablations on Transformer Layout

While all Transformer layouts have a feature mix-
ing and a token mixing component in each layer,
the arrangement and connection of these compo-
nents through skip connections and normalization
layers remains an open question. The original
Transformer paper (Vaswani et al., 2017) uses what
is now known as the "post-norm" layout:

x1 = LayerNorm(x+ token_mixing(x))

xout = LayerNorm(x1 + feature_mixing(x1))

where x ∈ RN×d is the input to the layer, and
xout ∈ RN×d is the output of the layer.

(Wang et al., 2019) proposes the "pre-norm" lay-
out:

x1 = x+ token_mixing(LayerNorm(x))

xout = x1 + feature_mixing(LayerNorm(x1))

(Bachlechner et al., 2021) proposes the "ReZero"
normalization, which introduces a learnable scalar
α ∈ R, initialized to zero:

x1 = x+ α1 · token_mixing(x)

xout = x1 + α2 · feature_mixing(x1)

(Wang and Komatsuzaki, 2021) observe that a
speed-up can be obtained by parallelizing the two
components:

xout = x+token_mixing(LayerNorm(x))

+ feature_mixing(LayerNorm(x))

.
Finally, (Chowdhery et al., 2022) call the follow-

ing the "standard serialized" formulation:

x1 = x+ token_mixing(LayerNorm(x))

xout = x+ feature_mixing(LayerNorm(x1)).

As Figure 1 shows, this is the model we have fixed
for all previous experiments.

In the following, we combine each of the pre-
sented layouts with self-attention and HyperMix-
ing, respectively. Since we noticed early that
the training with HyperMixing is not stable with
some of the layouts, we also experimented with
adding two different kinds of normalization to
HyperMixer: layer normalization applied after
TM-MLP, as shown in Algorithm 1, and length
normalization. For the latter, we simply scale the
generated weight matrices by 1

M , where M is the
number of keys. The intuition is that this keeps
the magnitude of activations in the hidden layer of
TM-MLP approximately the same across different
input lengths.

Results Table 6 shows the best validation
set results after tuning the learning rate using
a logarithmically spaced grid of 7 values α ∈
{0.001, 0.0005, 0.0002, 0.0001, 0.00005, 0.00002,
0.00001}.

The results show that self-attention is relatively
insensitive with respect to the type of layout, as all
models except for ReZero attain an accuracy of 76-
77% on average. In contrast, HyperMixer without
normalization performs substantially worse with
prenorm, ReZero, and the parallel layout. Length
normalization mitigates this problem to some de-
gree, but the addition of layer normalization yields
the overall best results, where all models achieve
between 77 and 78% of accuracy on average. We,
therefore, recommend adding layer normalization
by default when using HyperMixing in a new con-
text.
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Layout MNLI SNLI QQP QNLI SST Average
Multi-head self-attention

serialized 65.71 80.88 82.99 69.67 79.70 75.79
post-norm 66.13 81.70 84.31 71.54 79.70 76.68
pre-norm 66.60 80.59 82.96 73.13 80.73 76.80
ReZero 56.83 70.85 77.72 63.44 78.10 69.39
parallel 66.30 81.46 83.12 71.55 79.70 76.43

HyperMixing (no normalization)
serialized 66.18 81.63 85.59 78.4 81.65 78.69
post-norm 62.59 79.49 82.37 76.75 80.39 76.32
pre-norm 56.62 78.49 82.88 64.18 81.08 72.65
ReZero 35.45 33.82 63.18 49.46 49.08 46.20
parallel 60.37 79.71 83.62 65.24 80.16 73.82

HyperMixing (length normalization)
serialized 65.91 81.27 85.27 77.80 81.88 78.43
post-norm 62.67 79.46 82.61 76.53 80.39 76.33
pre-norm 64.83 80.71 84.41 76.31 81.65 77.58
ReZero 35.45 33.82 63.18 70.31 54.13 51.38
parallel 65.37 81.12 84.44 76.77 80.28 77.60

HyperMixing (layer normalization)
serialized 66.47 81.36 85.74 77.72 80.50 78.36
post-norm 64.26 80.05 83.81 76.62 80.85 77.12
pre-norm 64.72 81.05 83.81 76.11 81.54 77.45
ReZero 65.64 80.74 84.45 74.41 81.08 77.26
parallel 65.49 80.59 84.43 76.53 81.65 77.74

Table 6: Best validation set results on natural language understanding tasks after tuning the learning rate on a grid.
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