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Abstract

Temporal knowledge graph embedding
(TKGE) models are commonly utilized to
infer the missing facts and facilitate reasoning
and decision-making in temporal knowledge
graph based systems. However, existing
methods fuse temporal information into
entities, potentially leading to the evolution
of entity information and limiting the link
prediction performance of TKG. Meanwhile,
current TKGE models often lack the ability
to simultaneously model important relation
patterns and provide interpretability, which
hinders their effectiveness and potential
applications. To address these limitations, we
propose a novel TKGE model which encodes
Temporal knowledge graph embeddings
via Archimedean Spiral Timeline (TeAST),
which maps relations onto the corresponding
Archimedean spiral timeline and transforms the
quadruples completion to 3th-order tensor com-
pletion problem. Specifically, the Archimedean
spiral timeline ensures that relations that
occur simultaneously are placed on the same
timeline, and all relations evolve over time.
Meanwhile, we present a novel temporal spiral
regularizer to make the spiral timeline orderly.
In addition, we provide mathematical proofs to
demonstrate the ability of TeAST to encode
various relation patterns. Experimental results
show that our proposed model significantly
outperforms existing TKGE methods. Our
code is available at https://github.com/
IMU-MachineLearningSXD/TeAST.

1 Introduction

Knowledge graph (KG) expresses the relations of
real-world entities and allows for reasoning new
facts, which enables a wide range of applications
in natural language processing (Chen et al., 2019;
Junior et al., 2020; Hu et al., 2021). It stores a
vast amount of knowledge in the form of triplets.
These triplets are typically denoted as (s, r, o),
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Figure 1: A brief illustration of mapping relations to
Archimedean spiral timeline. Three facts are (Guido
van Rossum, r1, Google, 2010-12), (Guido van Rossum,
r2, Google, 2012-12) and (Messi, r3, FCB, 2010-12).

where s, r and o represent the subject, the rela-
tion, and the object. Since knowledge changes
over time, researchers introduced timestamps into
knowledge graphs to create temporal knowledge
graphs (TKGs). In TKGs, each knowledge fact
is represented as a quadruple (s, r, o, τ), where τ
denotes the timestamp at which the fact was true.
This allows for more precise representation and
querying of information in knowledge graphs, en-
abling applications that require an understanding
of the evolution of knowledge over time. Given the
inherent incompleteness of most KGs and TKGs,
knowledge graph embedding (KGE) and temporal
knowledge graph embedding (TKGE) have been
widely investigated to infer the missing facts using
the existing ones. In particular, TKGE has gained
significant attention for its ability to represent and
analyze knowledge over time. This work focuses
on TKGE.

With the advancement of deep learning, re-
searchers have proposed a number of KGE ap-
proaches. These approaches typically involve learn-
ing low-dimensional embeddings of entities and re-
lations, and then using a score function to measure
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the plausibility of triplets (Ji et al., 2022). While
existing KGE approaches have been shown to be
effective on static knowledge graphs, they cannot
be directly applied to TKGs due to the fact that
real-world knowledge is dynamic and changes over
time. To address this issue, researchers have de-
signed TKGE models that are capable of capturing
the temporal information and dynamic nature of
real-world facts. Recent TKGE models (Lacroix
et al., 2020; Xu et al., 2020a, 2021; Chen et al.,
2022) have shown very impressive completion per-
formance on TKGs.

Nevertheless, there are two problems with these
TKGE models. Firstly, the fusion of temporal in-
formation into entities led to a potential evolution
of entity information, thus limiting the link predic-
tion performance on TKG. In fact, the meaning of
entities in quadruples does not change over time,
whereas the relations between connected entities
do. Secondly, existing TKGE models are not capa-
ble of simultaneously encoding important relation
patterns and providing interpretability, which hin-
ders their effectiveness and potential applications.

To tackle these issues, we draw inspiration
from the Archimedean spiral and design Temporal
knowledge graph embeddings via Archimedean
Spiral Timeline (TeAST). Specifically, we first map
relations onto the corresponding Archimedean spi-
ral timeline and form a unified representation for
the timestamp and the relation. As shown in Fig-
ure 1, we expect relations at the same time to be on
the same timeline and relations evolve over time.
That is, we simplify the quadruples (s, r, o, τ) to a
triplet (s, r} τ, o), where } denotes Archimedean
spiral operation. As a result, we transform the TKG
embedding as 3th-order tensor completion problem
in the complex space. Next, we optimize the graph
embeddings through tensor factorization. In addi-
tion, we propose a new temporal spiral regularizer
to constrain the time representation and make the
spiral timeline orderly. We further provide mathe-
matical proofs to demonstrate the ability of TeAST
to encode various relation patterns. Experiments
show that our method significantly outperforms the
existing methods on TKGE benchmarks.

Different from the existing TKGE models, we
map relations onto the Archimedean spiral timeline
and avoid incorporating temporal information into
the entities. It ensures that the relations can evolve
over time and the entities remain unchanged in
TKGs. This is consistent with real-world facts.

2 Related Work

2.1 Static Knowledge Graph Embedding
Motivated by the translation invariance principle in
word2vec (Mikolov et al., 2013), TransE defines
the distance between es + er and eo with the l1 or
l2 norm constraint, where es, eo denote entity em-
bedding vectors and er denote relation embedding
vectors. The score function of TransE is defined as
φ(s, r, o) = ||es + er − eo||p. Following TransE,
TransH (Wang et al., 2014), TransR (Lin et al.,
2015) and TransD (Ji et al., 2015) employ different
projection strategies to adjust graph embeddings.
Different from the above distance based models,
RESCAL (Nickel et al., 2011), DistMult (Yang
et al., 2015), ComplEx (Trouillon et al., 2016) and
SimplE (Kazemi and Poole, 2018) employ tensor
factorization based to model knowledge graphs, in
which each relation r is mapped into a latent se-
mantic matrix Mr. In addition, RotatE (Sun et al.,
2019) and QuatE (Zhang et al., 2019) treat each
relation as a rotation in complex space and in the
quaternion space, respectively.

2.2 Temporal Knowledge Graph Embedding
Analogously to KGE models, TKGE models add
the temporal information and calculates the score
function for the quadruples to evaluate its rea-
sonableness. Therefore, most TKGE models are
based on existing KGE models. TTransE (Leblay
and Chekol, 2018) extends TransE and encodes
time stamps τ as translations same as relations.
Hence, the score function of TTransE is denoted
as φ(s, r, o, τ) = ||es + er + eτ − eo||p. Fur-
thermore, TA-TransE (García-Durán et al., 2018)
and TA-DistMult (García-Durán et al., 2018) en-
code timestamps based on TransE and DistMult,
respectively. TComplEx (Lacroix et al., 2020) and
TNTComplEx (Lacroix et al., 2020) build on Com-
plEx and perform a 4th-order tensor decomposition
of a TKG. DE-SimplE (Goel et al., 2020) adds
a diachronic entity (DE) embedding function to
learn the temporal entities. ChronoR (Sadeghian
et al., 2021) is based on RotatE and learns a k-
dimensional rotation transformation parametrized
by relation-time pairs. Next, each subject entity
is transformed with the rotation. TeLM (Xu et al.,
2021) performs more expressive multivector repre-
sentations to encode a temporal KG and utilizes the
asymmetric geometric product. In addition, Rotate-
QVS (Chen et al., 2022) builds on QuatE and en-
codes both entities and relations as quaternion em-
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Figure 2: An illustration of an Archimedean spiral.

beddings, in which the temporal entity embeddings
are represented as rotations in the quaternion space.
Recently, BoxTE (Messner et al., 2022) models the
TKGE based on a box embedding model BoxE (Ab-
boud et al., 2020).

3 Background and Notation

3.1 Archimedean Spiral
As mentioned, we expect the relations with the
same timestamp to be on the same timeline and
all relations evolve over time. We choose the
Archimedean spiral to model TKGs in the proposed
method. Through the angle of rotation around the
origin, Archimedean spiral provides the possibility
of distinguishing the relations on the same timeline.

In mathematics, Archimedean spiral (also known
as the arithmetic spiral) was named in honor of
the Greek mathematician Archimedes. As shown
in Figure 2, it is the locus corresponding to the
locations over time of a point moving away from a
fixed point with a constant speed along a line that
rotates with constant angular velocity. Equivalently,
in polar coordinates (ξ, θ) it can be described by
the equation:

ξ = a+ b · θ, (1)

where a controls the distance from the starting
point of the spiral to the origin, b controls the dis-
tance between loops, and θ is the angle of rotation
of the spiral. The distance between each loop is
2πb.

3.2 Relation Patterns
Let E denote the set of entities, R denote the set
of relations, and T denote the set of the timestamp.

Given a temporal knowledge graph G, it can be
defined as a collection of quadruples (s, r, o, τ),
where s ∈ E , r ∈ R, o ∈ E and τ ∈ T denote the
subject entity, relation, object entity and timestamp,
respectively.

As previous studies (Sun et al., 2019; Chen et al.,
2022) highlighted, TKGE has focused on several
key relations patterns, including:
Definition 1. A relation r is symmetric, if ∀s, o, τ ,
r(s, o, τ) ∧ r(o, s, τ) holds True.
Definition 2. A relation r is asymmetric, if ∀s, o, τ ,
r(s, o, τ) ∧ ¬r(o, s, τ) holds True.
Definition 3. Relation r1 is the inverse of r2, if
∀s, o, τ , r1(s, o, τ) ∧ r2(o, s, τ) holds True.
Definition 4. Relation r1 and r2 are evolving over
time from timestamp τ1 to timestamp τ2, if ∀s, o, τ ,
r1(s, o, τ1) ∧ r2(s, o, τ2) holds True.

4 Methodology

4.1 TeAST Model
In this section, we introduce the novel TeAST
model, which represents the relations on
Archimedean spiral timelines. Since many
previous works (Trouillon et al., 2016; Sun et al.,
2019; Lacroix et al., 2020; Xu et al., 2020a) have
demonstrated that encoding knowledge graphs in
complex space can better capture potential links
between entities, we also model TKGs in the
complex space. For a quadruple (s, r, o, τ), we
also use es, er, eo and eτ to denote the subject
embedding, relation embedding, object embedding
and timestamp embedding respectively in the
complex space. We have

es = Re(s) + iIm(s), er = Re(r) + iIm(r),

eo = Re(o) + iIm(o), eτ = Re(τ) + iIm(τ),

(2)

where es, er, eo, eτ ∈ Ck, and Re(∗) is the real
vector component and Im(∗) is an imaginary vec-
tor component.

We first map relations onto the corresponding
Archimedean spiral timeline. Specifically, we re-
gard each relation as different the angle of rota-
tion θ in Eq. 1, and regard each timestamp as
distance control parameter b in Eq. 1. Therefore,
the range of embedding values for each relation is
er ∈ (0, 2π). To prevent crossover between spirals,
we set the starting point of all spirals to the origin.
That is, we set a = 0 for TeAST in Eq. 1. On this
basis, we map all relations to the matching spiral
timeline, denoted as:
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ξ(τ,r) = eτ ◦ er, (3)

where ◦ denotes the Hadamard product. Since
TeAST is modeled in complex space, we employ
the Hadamard product to do spiral timeline map-
ping for the relations accordingly. Further, we have

ξ(τ,r) = Re(τ)Re(r)− Im(τ)Im(r)

+iRe(τ)Im(r) + iIm(τ)Re(r),
(4)

where Re(r) ∈ (0, 2π) and Im(r) ∈ (0, 2π). All
relation embeddings are all constrained between 0
and 2π. This ensures that the relations can be ef-
fectively mapped to the corresponding spiral time-
lines.

Following previous tensor factorization mod-
els (Trouillon et al., 2016; Lacroix et al., 2020),
the score function of TeAST is denoted as:

φ(s, r, o, τ) = Re(< es, ξ(τ,r), ēo >). (5)

Then, we optimize the graph embeddings through
the score function.

Furthermore, since Archimedean spiral is based
on the polar coordinate system, we can regard ξ(τ,r)
as a modulus part. During the model training pro-
cess, we note that there are inevitably equal mod-
ulus cases on different spiral timelines, leading
to confusion between semantic relations. There-
fore, we employ timestamp phase information
e′τ = Re(τ ′) + iIm(τ ′) to avoid the bad cases,
where Re(τ ′), Im(τ ′) ∈ R

k
2 . Additionally, we use

absolute values to constrain the temporal phase in-
formation to be isotropic over time. This is done
to enforce consistency and avoid any directional
bias. As phases have periodic characteristics, we
employ a sine function to measure the timestamp
phase embeddings similar to HAKE (Zhang et al.,
2020). Combining the modulus part and the phase
part, we get

ξ′(τ,r) = (Re(τ)Re(r) + sin(Re(τ ′))

−(Im(τ)Im(r) + sin(Im(τ ′))

+i(Re(τ)Im(r) + sin(Re(τ ′))

+i(Im(τ)Re(r) + sin(Im(τ ′)).

(6)

The improved score function of TeAST is given
by

φ(s, r, o, τ) = Re(< es, ξ
′
(τ,r), ēo >). (7)

It is worth noting that the number of parameters
of TeAST increases linearly with embedding di-
mension k. Hence, the space complexity of TeAST
model is O(k), similar to TNTComplEx (Lacroix
et al., 2020). In addition, we calculate the score
function of TeAST with Hadamard product be-
tween k-dimensional complex vector embeddings
as TNTComplEx. The time complexity of TeAST
and TNTComplEx equals to O(k).

4.2 Loss Function
Following TNTComplEx (Lacroix et al., 2020) and
TeLM (Xu et al., 2021), we use reciprocal learn-
ing to simplify the training process, and the loss
function is defined as follows:

Lµ = − log(
exp(φ(s, r, o, τ))∑
s′∈E exp(φ(s′, r, o, τ))

)

− log(
exp(φ(o, r−1, s, τ))∑

o′∈E exp(φ(o′, r−1, s, τ))
)

+λµ

k∑

i=1

(‖es‖33 + ‖ξ′(τ,r)‖33 + ‖eo‖33),

(8)

where λµ denotes N3 regularization weight and r−1

is the inverse relation. According to several studies,
N3 regularization improves the performance of the
KGE models (Lacroix et al., 2018; Xu et al., 2020b)
and TKGE models (Lacroix et al., 2020; Xu et al.,
2021) based on tensor factorization.

4.3 Temporal Regularization
The temporal regularization can constrain the tem-
poral embedding information and thus better model
TKGs. TNTComplEx (Lacroix et al., 2020) expects
neighboring timestamps to have close representa-
tions. Hence, the smoothing temporal regularizer
is defined as:

Λ3 =
1

Nτ − 1

Nτ−1∑

i=1

‖eτ(i+1) − eτ(i)‖33, (9)

where Nτ is the number of time steps.
Recently, TeLM (Xu et al., 2021) introduces the

linear temporal regularizer by adding a bias com-
ponent between the neighboring temporal embed-
dings, which can be defined as:

Ω3 =
1

Nτ − 1

Nτ−1∑

i=1

‖eτ(i+1) − eτ(i) − eb‖33,

(10)
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where eb denotes the randomly initialized biased
embedding, which is then learned from the training
process.

In this work, we employ the Archimedean spiral
to model TKGs. The previous temporal regular-
ization methods expect the adjacent timestamps
to be close to each other. For our model TeAST,
this leads to the spiral timeline overlapping sce-
narios. To avoid these bad scenarios, we develop
a novel temporal spiral regularizer by adding the
phase timestamp embedding e′τ to the smoothing
temporal regularizer. The temporal regularization
function is defined as:

Lτ 3 =
1

Nτ − 1

Nτ−1∑

i=1

‖(eτ(i+1) − eτ(i))

+(e′τ(i+1) − e′τ(i))‖33.
(11)

The total loss function of TeAST is defined as:

L = Lµ + λτLτ 3, (12)

where λτ is the weight of the temporal regularizer.

4.4 Modeling Various Relation Patterns
TeAST can model important relation patterns, in-
cluding symmetric, asymmetric, inverse and tempo-
ral evolution patterns. We list all the propositions
here and provide the proofs in Appendix.
Proposition 1. TeAST can model the symmetric
relation pattern. (See proof in Appendix A)
Proposition 2. TeAST can model the asymmetric
relation pattern. (See proof in Appendix B)
Proposition 3. TeAST can model the inverse rela-
tion pattern. (See proof in Appendix C)
Proposition 4. TeAST can model the temporal evo-
lution pattern. (See proof in Appendix D)

5 Experiments

5.1 Datasets
We evaluate TeAST on three TKGE benchmark
datasets. ICEWS14 and ICEWS05-15 (García-
Durán et al., 2018) are both extracted from the
Integrated Crisis Early Warning System (ICEWS)
dataset (Lautenschlager et al., 2015), which con-
sists of temporal sociopolitical facts starting from
1995. ICEWS14 consists of sociopolitical events
in 2014 and ICEWS05-15 involves events occur-
ring from 2005 to 2015. GDELT is a subset of the
larger Global Database of Events, Language, and

ICEWS14 ICEWS05-15 GDELT
E 7,128 10,488 500
R 230 251 20
T 365 4017 366

#Train 72,826 386,962 2,735,685
#Vaild 8,963 46,092 341,961
#Test 8,941 46,275 341,961

Timespan 1 year 11 years 1 year
Granularity Daily Daily Daily

Table 1: Statistics of TKGE datasets in the experiment.

Tone (GDELT) TKG dataset (Leetaru and Schrodt,
2013). The GDELT contains facts with daily times-
tamps between April 1, 2015 and March 31, 2016,
and only contains 500 most common entities and
20 most frequent relations. It is worth noting that
GDELT holds a large number of quadruples (2M)
but does not describe enough entities (500). Hence,
The GDELT requires a strong temporal inductive
capacity.

5.2 Evaluation Protocol
In this paper, we evaluate our TKGE model using
the benchmarks mentioned above. Following the
strong baselines (Lacroix et al., 2020; Xu et al.,
2021; Chen et al., 2022), the quality of the rank-
ing of each test triplet is evaluated by calculating
all possible substitutions of subject entity and ob-
ject entity: (s′, r, o, τ) and (s, r, o′, τ), where s′,
o′ ∈ E . And then, we sort the score of candi-
date quadruples under the timewise filtered set-
tings (Lacroix et al., 2020; Xu et al., 2021; Chen
et al., 2022). The performance is evaluated using
standard evaluation metrics, including Mean Recip-
rocal Rank (MRR) and Hits@n. Hits@n measures
the percentage of correct entities in the top n predic-
tions. Higher values of MRR and Hits@n indicate
better performance. Hits ratio with cut-off values
n = 1, 3, 10. In this paper, we utilize H@n to
denote Hits@n for convenience.

5.3 Baselines
We compare our model with the state-of-the-
art TKGE models, including TTransE (Leblay
and Chekol, 2018), DE-SimplE (Goel et al.,
2020), TA-DistMult (García-Durán et al., 2018),
ChronoR (Sadeghian et al., 2021), TCom-
plEx (Lacroix et al., 2020), TNTComplEx (Lacroix
et al., 2020), TeLM (Xu et al., 2021), BoxTE (Mess-
ner et al., 2022) and RotateQVS (Chen et al., 2022).
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ICEWS14 ICEWS05-15 GDELT

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TTransE 0.255 0.074 - 0.601 0.271 0.084 - 0.616 0.115 0.0 0.160 0.318
DE-SimplE 0.526 0.418 0.592 0.725 0.513 0.392 0.578 0.748 0.230 0.141 0.248 0.403

TA-DistMult 0.477 0.363 - 0.686 0.474 0.346 - 0.728 0.206 0.124 0.219 0.365
ChronoR ♥ 0.625 0.547 0.669 0.773 0.675 0.596 0.723 0.820 - - - -

TComplEx ♥ 0.610 0.530 0.660 0.770 0.660 0.590 0.710 0.800 0.340 0.249 0.361 0.498
TNTComplEx ♥ 0.620 0.520 0.660 0.760 0.670 0.590 0.710 0.810 0.349 0.258 0.373 0.502

TeLM 0.625 0.545 0.673 0.774 0.678 0.599 0.728 0.823 0.350 0.261 0.375 0.504
BoxTE ♥ 0.613 0.528 0.664 0.763 0.667 0.582 0.719 0.820 0.352 0.269 0.377 0.511

RotateQVS 0.591 0.507 0.642 0.754 0.633 0.529 0.709 0.813 0.270 0.175 0.293 0.458

TeAST(ours) 0.637 0.560 0.682 0.782 0.683 0.604 0.732 0.829 0.371 0.283 0.401 0.544

Table 2: Link prediction results on ICEWS14, ICEWS05-15 and GDELT. All results are taken from the original
papers. Results of ♥ are the best results reported in the original papers. They are ChronoR (k=2), TComplEx (x10),
TNTComplEx (x10) and BoxTE (k=5), respectively. Dashes: results are not reported in the responding literature.

Note that TComplEx and TNTComplEx are also
based on tensor factorization TKGE methods in the
complex space, and thus we consider TComplEx
and TNTComplEx as the main baselines. Further-
more, TeLM performs multivector tensor factoriza-
tion for a TKG. Hence, TeLM has twice the space
complexity of TeAST, TComplEx and TNTCom-
plEx. Among the existing TKGE methods, TeLM
obtains SOTA results on ICEWS14 and ICEWS05-
15 and BoxTE achieves SOTA results on GDELT
dataset.

5.4 Experimental Setup
We implement our proposed model TeAST via py-
torch based on TNTComplEx (Lacroix et al., 2020)
training framework1. All experiments are trained
on a single NVIDIA Tesla V100 with 32GB mem-
ory. We use Adagrad (Duchi et al., 2011) optimizer
and employ grid search to find the best hyperparam-
eters based on the performance on the validation
datasets. The learning rate is set to 0.1 and the em-
bedding dimension k is set to 2000 in all cases. The
best models are selected by early stopping on the
validation datasets, and the max epoch is 200. The
optimal hyperparameters for TeAST are as follows:

• ICEWS14: λµ = 0.0025, λτ = 0.01

• ICEWS05-15: λµ = 0.002, λτ = 0.1

• GDELT: λµ = 0.003, λτ = 0.003

We report the average results on the test set
for five runs. We omit the variance as it is gen-

1https://github.com/facebookresearch/tkbc

erally low. The training processes of TeAST on
ICEWS14, ICEWS05-15 and GDELT cost less
than half an hour, less than an hour and five hours,
respectively.

6 Results and Analysis

6.1 Main Results
The link prediction results on ICEWS14,
ICEWS05-15 and GDELT are shown in Table 2.
We observe that TeAST surpasses all baselines on
ICEWS14, ICEWS05-15 and GDELT regarding
all metrics. Since TeAST employs the temporal
Archimedean spiral to encode relation embeddings,
this allows relations that occur at the same moment
to be mapped onto the same spiral timeline and
all relations evolve over time. It builds a close
connection between the relation and timestamp
and avoids incorporating temporal information
into the entities for TKG. It proves that mapping
the relations to Archimedean spiral timeline
is an effective way to learn graph embeddings.
TeAST can better encode temporal knowledge
graphs and captures the latent information between
subject entities and object entities. Meanwhile,
the temporal spiral regularizer in TeAST avoids
spiral timeline overlapping scenarios and further
improves the performance. BoxTE (Messner et al.,
2022) has shown that GDELT requires a high
level of temporal inductive capacity for effective
encoding. This is because GDELT exhibits a
significant degree of temporal variability, with
some facts lasting across multiple consecutive time
stamps while others are momentary and sparse.
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Figure 3: Link prediction results of TeAST trained with different temporal regularizers on ICEWS14.
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Figure 4: Visualisations of the learned timestamp embeddings on ICEWS14. (a) not used the temporal regularizer
and (b) employs the temporal spiral regularizer. Different colors indicate different months.

In comparison to the SOTA method BoxTE on
GDELT, TeAST achieves superior results on all
metrics.

6.2 Effect of Temporal Regularizer

We study the effect of temporal regularization on
ICEWS14, and compare the performance of TeAST
with the previously proposed temporal regularizers,
including the smoothing temporal regularizer Λ3 in
Eq. 9, the linear temporal regularizer Ω3 in Eq. 10
and our proposed temporal spiral regularizerLτ 3 in
Eq. 11. We set the temporal regularization weight
λτ ∈ {0.0001, 0.001, 0.005, 0.01, 0.1}. Detailed
results of the effect of temporal regularization on
ICEWS14 are given in Figure 3. The blue line de-
notes the temporal spiral regularizer. Compared
with the previously proposed temporal regularizers,
the temporal spiral regularizer improved MRR by
0.8 points, Hits@10 by 0.3 points, and Hits@1 by
1.2 points, respectively. Since the temporal spiral
regularizer adds a phase timestamp embedding to
avoid the overlap of Archimedean spiral timelines
and thus can better discriminate timestamp infor-

mation.

Furthermore, we utilize t-SNE (Van der Maaten
and Hinton, 2008) to visualize the trained times-
tamp embeddings of TeAST, which with and with-
out the temporal spiral regularizer. The visualiza-
tion results are shown in Figure 4. We observe
that the distribution of adjacent temporal embed-
dings of TeAST without temporal spiral regular-
ization trained is scattered. There are only a few
months that come together, such as January, Octo-
ber and November. In addition, we observe some
overlapping scenarios of the learned time embed-
dings, suggesting that the learned time embedding
is not inaccurate. It will further hinder the effective-
ness of learning the facts associated with a specific
timestamp.

On the contrary, using the temporal spiral regu-
larizer in TeAST can learn time embedding infor-
mation effectively, resulting in orderly time clus-
ters. This demonstrates the effectiveness of the
temporal spiral regularizer in improving the abil-
ity of the model to accurately capture and retain
information about specific timestamps. In addition,
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Figure 5: Visualisations of the learned relation embeddings are mapped the corresponding timelines from ICEWS14.

ICEWS14 ICEWS05-15

Mapping Entity Mapping Relation Phase MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

4 0.598 0.531 0.649 0.749 0.639 0.542 0.710 0.798
4 4 0.611 0.542 0.658 0.752 0.651 0.556 0.727 0.800

4 0.621 0.545 0.665 0.763 0.671 0.589 0.722 0.812
4 4 0.637 0.560 0.682 0.782 0.683 0.604 0.732 0.829

Table 3: Ablation results on ICEWS14 and ICEWS05-15. Mapping Entity: Projecting entities onto the corresponding
spiral timeline. Mapping Relation: Projecting relations onto the corresponding spiral timeline.

we notice a very interesting phenomenon: TeAST
also learned deep information about the order be-
tween months with the temporal spiral regularizer
and the temporal embedding of the same month
presented on the same line. The results further sug-
gest a good fit with our initial motivation that each
relation should be mapped onto a temporal spiral
and the relations with the same timestamp should
be on the same timeline.

6.3 Analysis on Relation Embeddings

As for TeAST, we employ the Archimedean spiral
to map relations into the polar coordinate system.
Therefore, we map the learned relation embedding
of the same time to the corresponding timeline
in the polar coordinate system. The results are
shown in Figure 5. The mapping algorithm is
based on the implementation of Eq. 3. The Fig-
ure 5 shows the relation embedding projection for
four different times. We can see that the relation
embeddings of the same timestamp are fitted as an
Archimedean spiral timeline. This is further evi-
dence that TeAST can effectively encode relations
onto the corresponding spiral timeline.

6.4 Ablation Studies

In this part, we conduct ablation studies on map-
ping entities and mapping relations of TeAST and

the phase item. Table 3 shows the results on
ICEWS14 and ICEWS05-15 benchmark datasets.
The results of the comparison of mapping entities
and mapping relations on the spiral timeline in-
dicate that mapping relations on the spiral time-
line is more effective than mapping entities on the
spiral timeline for TeAST. This is further proof
that the design motivation of TeAST is the mean-
ings of the entities in quadruples do not change
as time evolves, while the relations between enti-
ties change in TKGs. In addition, we also observe
that TeAST achieves better link prediction results
with phase vectors, because it can well distinguish
relations at the same level of semantic hierarchy.
It is worth noting that TeAST also obtains better
or more competitive results without phase vectors
than TComplEx and TNTComplEx on ICEWS14
and ICEWS05-15. The results show that TeAST
maps relations on the corresponding Archimedean
spiral timelines, which can effectively model tem-
poral knowledge graphs.

7 Conclusion

This paper proposes a novel and interesting TKGE
method TeAST, which maps relations onto the cor-
responding Archimedean spiral timeline. The ex-
perimental results fully illustrate that TeAST can
better model TKG than previous methods and learn
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the relation information over time. We also pro-
vide formal mathematical proofs to demonstrate
that TeAST can encode the key relation patterns.
In addition, the temporal spiral regularizer learns
the latent information about the order between
months better and improves the link prediction per-
formances. This work will hopefully stimulate fur-
ther research on TKGE models and provide a novel
perspective on the subject.

Limitations

As previously mentioned, TeAST maps relations
onto the corresponding Archimedean spiral time-
line and transforms the quadruples completion to
3th-order tensor factorization. It is required to
store the values and this slightly increase the space
requirement and training time in the embedding
learning process. Among all the baselines, TCom-
plEx, TNTComplEx and TeLM are all tensor fac-
torization based models. Table 4 compares training
time and space requirement between our model and
baselines on ICEWS14. TComplEx is the smallest
model and takes the minimum training time. Com-
pared with TComplEx, our model is about 4.6%
bigger than TComplEx, and takes 21.4% more
training time.

ICEWS14
Method #Params(M) #Train-time MRR

TComplEx 31.81 14 min 0.610
TNTComplEx 32.65 16 min 0.620

TeLM 63.63 19 min 0.625
TeAST(ours) 33.28 17 min 0.637

Table 4: Comparison with existing TKGE models based
on tensor factorisation. All experiments are trained on a
single NVIDIA Tesla V100 with 32GB memory.
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Ceylan. 2022. Temporal knowledge graph comple-
tion using box embeddings. In Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI 2022,
Thirty-Fourth Conference on Innovative Applications
of Artificial Intelligence, IAAI 2022, The Twelveth
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2022 Virtual Event, February 22 -
March 1, 2022, pages 7779–7787. AAAI Press.

Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In Advances in Neural Information Process-
ing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States, pages 3111–3119.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proceedings of
the 28th International Conference on Machine Learn-
ing, ICML 2011, Bellevue, Washington, USA, June
28 - July 2, 2011, pages 809–816. Omnipress.

Ali Sadeghian, Mohammadreza Armandpour, Anthony
Colas, and Daisy Zhe Wang. 2021. Chronor: Ro-
tation based temporal knowledge graph embedding.
In Thirty-Fifth AAAI Conference on Artificial Intel-
ligence, AAAI 2021, Thirty-Third Conference on In-
novative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pages 6471–6479. AAAI
Press.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding
by relational rotation in complex space. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Com-
plex embeddings for simple link prediction. In Pro-
ceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016, volume 48 of JMLR Work-
shop and Conference Proceedings, pages 2071–2080.
JMLR.org.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

15469

https://doi.org/10.3115/v1/p15-1067
https://doi.org/10.3115/v1/p15-1067
https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/10.1007/978-3-030-62327-2_44
https://doi.org/10.1007/978-3-030-62327-2_44
https://proceedings.neurips.cc/paper/2018/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
https://openreview.net/forum?id=rke2P1BFwS
https://openreview.net/forum?id=rke2P1BFwS
http://proceedings.mlr.press/v80/lacroix18a.html
http://proceedings.mlr.press/v80/lacroix18a.html
https://doi.org/10.7910/DVN/28117
https://doi.org/10.1145/3184558.3191639
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=20e2a85e4d2e8217d4693663e07f11de4dcd5a32
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=20e2a85e4d2e8217d4693663e07f11de4dcd5a32
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
https://ojs.aaai.org/index.php/AAAI/article/view/20746
https://ojs.aaai.org/index.php/AAAI/article/view/20746
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/16802
https://ojs.aaai.org/index.php/AAAI/article/view/16802
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
http://proceedings.mlr.press/v48/trouillon16.html
http://proceedings.mlr.press/v48/trouillon16.html
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf?fbcl


Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada,
pages 1112–1119. AAAI Press.

Chengjin Xu, Yung-Yu Chen, Mojtaba Nayyeri, and
Jens Lehmann. 2021. Temporal knowledge graph
completion using a linear temporal regularizer and
multivector embeddings. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, pages 2569–2578. Association for
Computational Linguistics.

Chengjin Xu, Mojtaba Nayyeri, Fouad Alkhoury,
Hamed Shariat Yazdi, and Jens Lehmann. 2020a.
Tero: A time-aware knowledge graph embedding
via temporal rotation. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, COLING 2020, Barcelona, Spain (Online), De-
cember 8-13, 2020, pages 1583–1593. International
Committee on Computational Linguistics.

Chengjin Xu, Mojtaba Nayyeri, Yung-Yu Chen, and
Jens Lehmann. 2020b. Knowledge graph embed-
dings in geometric algebras. In Proceedings of the
28th International Conference on Computational Lin-
guistics, COLING 2020, Barcelona, Spain (Online),
December 8-13, 2020, pages 530–544. International
Committee on Computational Linguistics.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2015. Embedding entities and relations
for learning and inference in knowledge bases. In
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019.
Quaternion knowledge graph embeddings. In Ad-
vances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 2731–2741.

Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie
Wang. 2020. Learning hierarchy-aware knowledge
graph embeddings for link prediction. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applica-
tions of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 3065–3072. AAAI
Press.

A Proof of Propositions 1

The score function of TeAST is defined as:

φ(s, r, o, τ) = Re(< es, ξ
′
(τ,r), ēo >)

= Re(
K∑

k=1

eskξ
′
(τ,r)kēok)

=< Re(es), Re(ξ
′
(τ,r)), Re(eo) >

+ < Im(es), Re(ξ
′
(τ,r)), Im(eo) >

+ < Re(es), Im(ξ′(τ,r)), Im(eo) >

− < Im(es), Im(ξ′(τ,r)), Re(eo) > .

(13)

Following ComplEx (Trouillon et al., 2016),
we employ the standard componentwise multi-
linear dot product < a, b, c >:=

∑
k akbkck in

Eq. 13. For symmetric pattern, we have r(s, o, τ)∧
r(o, s, τ) according to Definition 1. Hence, we get

φ(s, r, o, τ) = φ(o, r, s, τ). (14)

One can easily check that Eq. 14 meet the sym-
metric pattern conditions when ξ′(τ,r) is real (i.e. its
imaginary part is zero). We have

φ(s, r, o, τ) = < Re(es), Re(ξ
′
(τ,r)), Re(eo) >

+ < Im(es), Re(ξ
′
(τ,r)), Im(eo) >

= < Re(eo), Re(ξ
′
(τ,r)), Re(es) >

+ < Im(eo), Re(ξ
′
(τ,r)), Im(es) >

=φ(o, r, s, τ).

(15)

Therefore, a sufficient necessary condition for
TeAST to be able to model symmetric pattern is
Im(ξ′(τ,r)) = 0.

B Proof of Propositions 2

For asymmetric pattern, we have r(s, o, τ) ∧
¬r(o, s, τ) according to Definition 2. Hence, we
get

φ(s, r, o, τ) 6= φ(o, r, s, τ). (16)

One can easily check that Eq. 16 meet the asymmet-
ric pattern conditions when ξ′(τ,r) is purely imagi-
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nary (i.e. its real part is zero). We have

φ(s, r, o, τ) =< Re(es), Im(ξ′(τ,r)), Im(eo) >

− < Im(es), Im(ξ′(τ,r)), Re(eo) >,

φ(o, r, s, τ) =< Re(eo), Im(ξ′(τ,r)), Im(es) >

− < Im(eo), Im(ξ′(τ,r)), Re(es) > .

(17)

We can get φ(s, r, o, τ) 6= φ(o, r, s, τ). There-
fore, a sufficient necessary condition for TeAST
to be able to model asymmetric pattern is
Re(ξ′(τ,r)) = 0.

C Proof of Propositions 3

For inverse pattern, we have r1(s, o, τ)∧r2(o, s, τ)
according to Definition 3. Hence, we get

φ(s, r1, o, τ) = φ(o, r2, s, τ)⇔
er1 = ēr2 ⇔

Re(r1) +Re(r2) = 0 ∧ Im(r1)− Im(r2) = 0,

(18)

where ēr2 is the conjugate of er1.

D Proof of Propositions 4

For temporal evolution pattern, we have
r1(s, o, τ1) ∧ r2(s, o, τ2) according to Definition 4.
Hence, we have

φ(s, r1, o, τ1) = φ(s, r2, o, τ2)⇔
ξ′(τ1,r1) = ξ′(τ2,r2).

(19)

It is worth noting that ξ′(τ1,r1) = ξ′(τ2,r2) just
means the values of their modulus part add phase
part are equal. The relations at the same time are
mapped on the corresponding Archimedean spiral
timeline in the polar spatial representation.

E Analysis and Case Study for Several
Key Relation Patterns

To illustrate the learned relation patterns that con-
tain symmetric, asymmetric, inverse and tempo-
ral evolution patterns, we visualize some exam-
ples by visualizing the histograms of the learned
embeddings. All cases are from ICEWS14
dataset (García-Durán et al., 2018).

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.000

2

4

6

8

10

12

(a) r1: Consult

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.000

2

4

6

8

10

12

(b) τ1: 2014-04-11

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.000

2

4

6

8

10

12

(c) Im(ξ′
(τ1,r1)

)

Figure 6: The histograms of learned embeddings for
symmetric pattern. Two existing facts are (Kazakhstan,
Consult, Afghanistan, 2014-04-11) and (Afghanistan,
Consult, Kazakhstan, 2014-04-11) and Consult is a sym-
metric relation.

E.1 Symmetric Pattern

As shown the proof of Propositions 1 (see Ap-
pendix A), TeAST can encode symmetric pattern
when Im(ξ′(τ,r)) = 0 is satisfied. As shown in Fig-
ure 6, tow facts (Kazakhstan, Consult, Afghanistan,
2014-04-11) and (Afghanistan, Consult, Kaza-
khstan, 2014-04-11) from ICEWS14, and Consult
is a symmetric relation. We observe that the learned
Im(ξ′(τ1,r1)) in Figure 6(c) is close to 0. The result
demonstrates that TeAST can model the symmetric
pattern.

E.2 Asymmetric Pattern

Opposite to symmetric pattern, TeAST can encode
asymmetric pattern when Re(ξ′(τ,r)) = 0 is satis-
fied. Figure 7 shows an example of asymmetric
pattern and Make statement is taken an asymmetric
relation. Figure 7(c) shows that our TeAST can
model the asymmetric pattern.

E.3 Inverse Pattern

As shown the proof of Propositions 3 (see Ap-
pendix C), if r4 is the inverse of the r3, and we have
Re(r3) + Re(r4) = 0 ∧ Im(r3) − Im(r4) = 0.
Two existing facts (Iraq, Host a visit, Nuri al-
Maliki, 2014-06-13) and (Nuri al-Maliki, Make
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Figure 7: The histograms of learned embeddings
for asymmetric pattern. A existing fact is Ministry
(Afghanistan), Make statement, Impose restrictions on
political freedoms, 2014-03-06) and Make statement is
a asymmetric relation.

a visit, Iraq, 2014-06-13) from ICEWS14, which
the relation Host a visit is the inverse of the relation
Make a visit. Figure 8 shows that TeAST satisfies
the above conditions.
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Figure 8: The histograms of learned embeddings for
inverse pattern. Two existing fact is (Iraq, Host a visit,
Nuri al-Maliki, 2014-06-13) and (Nuri al-Maliki, Make
a visit, Iraq, 2014-06-13). Inverse relation pair: Host a
visit vs. Make a visit.

E.4 Temporal Evolution Pattern
As shown in Proof of Propositions 4 (see Ap-
pendix D), if a relation r5 and a relation r6 are
evolving over time from τ5 from τ6, we have
ξ′(τ5,r5) = ξ′(τ6,r6). To verify that TeAST can model
the temporal evolution pattern, we randomly se-

lect five facts, including (Nuri al-Maliki, Make a
visit, Iraq, 2014-06-13), (Nuri al-Maliki, Consult,
Iraq, 2014-06-23), (Nuri al-Maliki, Make state-
ment, Iraq, 2014-06-29), (Nuri al-Maliki, Mobilize
or increase police power, Iraq, 2014-08-11) and
(Nuri al-Maliki, Praise or endorse, Iraq, 2014-11-
10). The five quadruples above belong to the tem-
poral evaluation pattern. As shown in Figure 9, we
mutually calculate the cosine similarity between
ξ′(τi,ri) of the five quadruples. We can observe that
the ξ′(τi,ri) of the corresponding quadruples are all
close. Results further demonstrate that TeAST can
effectively model the temporal evolution pattern.

′( 5, r5) ′( 6, r6) ′( 7, r7) ′( 8, r8) ′( 9, r9)

′ (
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r 5
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)
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Figure 9: The cosine similarity of ξ′(τi,ri) among five
quadruples. Five existing fact are (Nuri al-Maliki, Make
a visit, Iraq, 2014-06-13), (Nuri al-Maliki, Consult,
Iraq, 2014-06-23), (Nuri al-Maliki, Make statement,
Iraq, 2014-06-29), (Nuri al-Maliki, Mobilize or increase
police power, Iraq, 2014-08-11) and (Nuri al-Maliki,
Praise or endorse, Iraq, 2014-11-10), respectively.
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