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Abstract

Retrieving proper domain knowledge from an
external database lies at the heart of end-to-
end task-oriented dialog systems to generate
informative responses. Most existing systems
blend knowledge retrieval with response gen-
eration and optimize them with direct supervi-
sion from reference responses, leading to sub-
optimal retrieval performance when the knowl-
edge base becomes large-scale. To address this,
we propose to decouple knowledge retrieval
from response generation and introduce a multi-
grained knowledge retriever (MAKER) that in-
cludes an entity selector to search for relevant
entities and an attribute selector to filter out
irrelevant attributes. To train the retriever, we
propose a novel distillation objective that de-
rives supervision signals from the response gen-
erator. Experiments conducted on three stan-
dard benchmarks with both small and large-
scale knowledge bases demonstrate that our
retriever performs knowledge retrieval more ef-
fectively than existing methods. Our code has
been made publicly available.1

1 Introduction

When task-oriented dialog (TOD) systems try to
accomplish a task such as restaurant reservations
and weather reporting for human users, they gen-
erally resort to an external knowledge base (KB)
to retrieve relevant entity information for generat-
ing an informative system response. Conventional
pipeline systems comprise several modules such as
dialogue state tracking and dialogue policy learning
that require annotations for training, where interme-
diate predictions such as belief state can be used for
the retrieval. By contrast, end-to-end task-oriented
dialog (E2E-TOD) systems aim to eliminate the de-
pendence on intermediate annotations and generate
the response end-to-end (Wu et al., 2019). Appar-
ently, knowledge retrieval is at the core of this task,
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Figure 1: Performance of four end-to-end task-oriented
dialog systems on MultiWOZ 2.1 when knowledge
bases of different sizes are used. The evaluation metric
is Entity F1 scores of entities in generated responses.
“Condensed” means that each dialog is associated with
a small-sized knowledge base, which is the default set-
ting of many current systems. “In-domain” means that
each dialog corresponds to a knowledge base of the
same domain, while “Cross-domain” means that all di-
alogs share the same large-scale cross-domain knowl-
edge base provided in the dataset.

which is non-trivial as no gold labels are available
for training a retriever. Arguably, this problem has
limited the performance of existing E2E-TOD sys-
tems considering that substantial progress has been
made in natural language generation.

Roughly, existing approaches for knowledge re-
trieval in E2E-TOD systems can be divided into
three categories. First, the knowledge base can be
embedded into a memory network and queried with
the representations of dialogue context (Madotto
et al., 2018; Qin et al., 2020; Raghu et al., 2021).
Second, the serialized knowledge base records can
be encoded together with dialog context by pre-
trained language models (Xie et al., 2022; Wu
et al., 2022; Tian et al., 2022). Third, the knowl-
edge base can be embedded into model param-
eters through data augmentation to support im-
plicit knowledge retrieval (Madotto et al., 2020;
Huang et al., 2022). These approaches generally
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blend knowledge retrieval and response generation
and train them by the supervision of reference re-
sponses, which has two limitations. First, the sys-
tem response usually consists of pure language
tokens and KB-related tokens (e.g., hotel names
and phone numbers), and it is challenging to train
a good retriever from the weak supervision of ref-
erence responses. Second, the systems may be-
come inefficient when the scale of the knowledge
base grows large. Our preliminary study2 in Figure
1 confirms that when a large-scale cross-domain
knowledge base is given, existing dialog systems
suffer significant performance degradation.

In this paper, we propose a novel Multi-grAined
KnowlEdge Retriever (MAKER) for E2E TOD
systems to improve the acquisition of knowledge
for response generation. The retriever decouples
knowledge retrieval from response generation and
introduces an entity selector and an attribute selec-
tor to select relevant entities and attributes from
the knowledge base. Then, the response generator
generates a system response based on the dialogue
context and the multi-grained retrieval results. The
retriever is trained by distilling knowledge from the
response generator using the cross-attention scores
of KB-related tokens in the response. We train
the entity selector, attribute selector, and response
generator jointly in an end-to-end manner.

We compare our system with other E2E TOD
systems on three benchmark datasets (Eric et al.,
2017; Wen et al., 2017; Eric et al., 2020). Empirical
results show that our system achieves state-of-the-
art performance when either a small or a large-
scale knowledge base is used. Through in-depth
analysis, we have several findings to report. First,
our retriever shows great advantages over baselines
when the size of knowledge bases grows large. Sec-
ond, of the two selectors, the entity selector plays a
more important role in the retriever. Third, our sys-
tem consistently outperforms baselines as different
numbers of records are retrieved, and works well
even with a small number of retrieval results.

2 Related Work

2.1 End-to-End Task-Oriented Dialog
Existing approaches for knowledge retrieval in
end-to-end task-oriented dialog systems can be
divided into three categories. First, the knowl-
edge base (KB) is encoded with memory net-
works, and KB records are selected using at-

2More details of this study are given in Appendix B.

tention weights between dialogue context and
memory cells. Mem2seq (Madotto et al., 2018)
uses multi-hop attention over memory cells to se-
lect KB tokens during response generation. KB-
Retriever (Qin et al., 2019) retrieves the most rel-
evant entity from the KB by means of attention
scores to improve entity consistency in the system
response. GLMP (Wu et al., 2019) introduces a
global-to-local memory pointer network to retrieve
relevant triplets to fill in the sketch response. CD-
NET (Raghu et al., 2021) retrieves relevant KB
records by computing a distillation distribution
based on dialog context.

Second, the concatenation of knowledge base
and dialogue context is taken as input for pre-
trained language models. UnifiedSKG (Xie et al.,
2022) uses a unified text-to-text framework to gen-
erate system responses. DialoKG (Rony et al.,
2022) models the structural information of knowl-
edge base through knowledge graph embedding
and performs knowledge attention masking to se-
lect relevant triples. Q-TOD (Tian et al., 2022)
proposes to rewrite dialogue context to generate a
natural language query for knowledge retrieval.

Third, the knowledge base is stored in model
parameters for implicit retrieval during response
generation. GPT-KE (Madotto et al., 2020) pro-
poses to embed the knowledge base into pre-
trained model parameters through data augmen-
tation. ECO (Huang et al., 2022) first generates
the most relevant entity with trie constraint to en-
sure entity consistency in the response. However,
these methods generally blend entity retrieval and
response generation during response generation,
which leads to sub-optimal retrieval performance
when large-scale knowledge bases are provided.

2.2 Neural Retriever

With the success of deep neural networks in various
NLP tasks, they have also been applied to informa-
tion retrieval. One of the mainstream approaches
is to employ a dual-encoder architecture (Yih et al.,
2011) to build a retriever. Our work is mostly
inspired by the retrieval methods in question an-
swering. To train a retriever with labeled question-
document pairs, DPR (Karpukhin et al., 2020) uses
in-batch documents corresponding to other ques-
tions together with BM25-retrieved documents as
negative samples for contrastive learning. To train
a retriever with only question-answer pairs instead
of question-document pairs, which is a weakly su-
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Figure 2: The overview of our end-to-end task-oriented dialog system, which consists of a knowledge retriever
and a response generator. The retriever is further divided into an entity selector and an attribute selector to retrieve
multi-grained knowledge, and optimized by distilling knowledge from the response generator.

pervised learning problem, researchers propose to
distill knowledge from the answer generator to train
the retriever iteratively (Yang and Seo, 2020; Izac-
ard and Grave, 2020). Other researchers try to train
the retriever and generator in an end-to-end man-
ner. REALM (Guu et al., 2020), RAG (Lewis et al.,
2020), and EMDR2 (Singh et al., 2021) propose
to train the retriever end-to-end through maximum
marginal likelihood. Sachan et al. (2021) propose
to combine unsupervised pre-training and super-
vised fine-tuning to train the retriever. Motivated
by these works, we propose a multi-grained knowl-
edge retriever trained by distilling knowledge from
the response generator in E2E-TOD systems.

3 Methods

In this section, we first describe the notations and
outline our method, and then introduce the knowl-
edge retriever and response generator in detail.

3.1 Notations

Given a dialog D = {U1, R1, ..., UT , RT } of T
turns, where Ut and Rt are the t-th turn user utter-
ance and system response, respectively. We use
Ct to represent the dialog context of the t-th turn,
where Ct = {U1, R1, ..., Ut−1, Rt−1, Ut}. An ex-
ternal knowledge base (KB) is provided in the form
of a set of entities, i.e., K = {E1, E2, ..., EB},
where each entity Ei is composed of N attribute-
value pairs, i.e., Ei = {a1, v1i , ..., aN , vNi }. End-
to-end task-oriented dialog systems take dialogue
context Ct and knowledge base K as input and
generate an informative response Rt.

3.2 System Overview

The architecture of our end-to-end task-oriented
dialog system is shown in Figure 2. At each turn of
conversation, our system resorts to a Multi-grAined
KnowlEdge Retriever (MAKER) to retrieve a set
of entities from the external knowledge base. Then,
the response generator takes as input the retrieved
entities together with the dialog context and gener-
ates a natural language response. The overall sys-
tem is optimized in an end-to-end manner without
the need for intermediate annotations.

The novelty of MAKER lies in that it decou-
ples knowledge retrieval from response generation
and provides multi-grained knowledge retrieval by
means of an entity selector and an attribute selector.
Specifically, the knowledge base is first encoded
with an entity encoder Ence at entity level. Then,
the dialogue context is encoded with a context en-
coder Encc and used to retrieve a set of relevant
entities from the knowledge base, which is referred
to as entity selection. Next, irrelevant attributes are
filtered out with an attribute selector based on the
interaction of dialog context and retrieved entities,
where another encoder Enca is used. Finally, each
retrieved entity is concatenated with the dialog con-
text and passed to a generator encoder Encg to ob-
tain their representations, based on which the gener-
ator decoder Decg produces a system response. To
train the retriever, the cross-attention scores from
KB-related tokens in the reference response to each
retrieved entity are used as supervision signals to
update the entity selector, while the attribute selec-
tor is trained by using the occurrences of attribute
values in the dialogue as pseudo-labels. To better
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measure the relationship between entities and re-
sponse, the whole training process involves two
stages. First, the warming-up stage only trains the
attribute selector and the response generator, with
the entity selector not updated. As the above train-
ing converges, the second stage starts to update the
entity selector together with other modules using
cross-attention scores from the response generator.

3.3 Knowledge Retriever

In this section, we introduce the entity selector,
attribute selector, and the training of the retriever.

Entity Selector To support large-scale knowl-
edge retrieval, we model the entity selector as a
dual-encoder architecture, where one encoder Encc
is used to encode the dialogue context and another
encoder Ence is to encode each entity (row) of the
knowledge base, both into a dense vector. To en-
code an entity, we concatenate the attribute-value
pairs of this entity into a sequence and pass it to
Ence. The selection score st,i for entity Ei is de-
fined as the dot product between the context vector
and the entity vector as:

st,i = Encc(Ct)
TEnce(Ei). (1)

Then, the top-K entities are obtained by:

Et = TopK(st,i) = {E1, ..., EK}. (2)

Retrieving the top-K entities can be formulated
as maximum inner product search (MIPS), which
can be accelerated to sub-linear time using efficient
similarity search libraries such as FAISS (Johnson
et al., 2019). We implement Encc and Ence with a
pre-trained language model and allow them to share
weights, where the final “[CLS]” token representa-
tion is used as the encoder output. Existing studies
suggest that initializing Encc and Ence with BERT
weights may lead to collapsed representations and
harm the retrieval performance. Therefore, follow-
ing KB-retriever (Qin et al., 2019), we initialize
them by pre-training with distant supervision.3

Since the entity selector is updated by knowl-
edge distillation, recalculating the embeddings of
all entities after each update introduces consider-
able computational cost. Therefore, we follow
EMDR2 (Singh et al., 2021) to update the embed-
dings of all entities after every 100 training steps.

Attribute Selector To remove irrelevant at-
tributes and values from the retrieved entities for

3More pre-training details are given in Appendix C.

finer-grained knowledge, we design an attribute se-
lector as follows. We first concatenate dialog con-
text Ct with each entity Ei ∈ Et and encode them
with an attribute encoder Enca, which is also a pre-
trained language model. Then, the final “[CLS]” to-
ken representation of Enca is extracted and mapped
into a N -dimensional vector by a feed-forward net-
work (FFN) for attribute scoring:

at,i = FFN(Enca([Ct;Ei])), (3)

where each element in at,i ∈ RN represents the
importance of the corresponding attribute.

Note that at,i only measures the importance of
attributes in Ei. To obtain the accumulated impor-
tance, we calculate the sum of at,i over all retrieved
entities weighted by entity selection score st,i:

at = σ(
K∑

i=1

st,iat,i), (4)

where σ represents the sigmoid function.
Finally, the attributes whose importance scores

in at are greater than a pre-defined threshold τ
are selected to construct an attribute subset. The
retrieved entities clipped with these attributes are
treated as multi-grained retrieval results denoted by
Êt. Specifically, we obtain Êt by masking irrelevant
attribute-value pairs in each retrieved entity of Et.

Êt = Clip(Et,at, τ) = {Ê1, ..., ÊK}. (5)

To train the attribute selector, we design an aux-
iliary multi-label classification task. The pseudo-
label is a N -dimensional 0-1 vector bt constructed
by checking whether any value of an attribute in Êt
appears in dialogue context Ct or system response
Rt. Then, we define a binary cross-entropy loss
Latt for this classification task as:

Latt = BCELoss(at,bt). (6)

Updating The entity selector is updated by dis-
tilling knowledge from the response generator as
supervision signals. Specifically, since only KB-
related tokens in the response are directly con-
nected to the knowledge base, we regard the cross-
attention scores from these tokens to each retrieved
entity as the knowledge to distill. The rationality
behind this is that the cross-attention scores can
usually measure the relevance between each en-
tity and the response. Supposing response Rt con-
tains M KB-related tokens, we denote the cross-
attention scores from each KB-related token to
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entity Êi by Ct,i ∈ R|Êi|×M×L, where |Êi| rep-
resents the number of tokens in Êi and L is the
number of decoder layers. Then, we calculate an
accumulated score for entity Êi as:

ĉt,i =

|Êi|∑

j=1

M∑

m=1

L∑

l=1

Ct,i,j,m,l. (7)

Then, ĉt,i is softmax-normalized to obtain a cross-
attention distribution ct over the K retrieved enti-
ties to reflect their importance for the response.

Finally, we calculate the KL-divergence between
the selection scores st of retrieved entities and
cross-attention distribution ct as the training loss:

Lent = DKL(st||ct). (8)

3.4 Response Generator
Inspired by Fusion-in-Decoder (Izacard and Grave,
2020) in open-domain question answering, we em-
ploy a modified sequence-to-sequence structure for
the response generator to facilitate direct interac-
tion between dialog context and retrieved entities.

Generator Encoder Each entity Êi in Êt is first
concatenated with dialog context Ct and encoded
into a sequence of vector representations Ht,i:

Ht,i = Encg([Ct; Êi]), (9)

where Encg represents the encoder of the response
generator. Then, the representations of all retrieved
entities are concatenated into Ht:

Ht = [Ht,1; ...;Ht,K ]. (10)

Generator Decoder Taking Ht as input, the
generator decoder Decg produces the system re-
sponse token by token. During this process, the
decoder not only attends to the previously gener-
ated tokens through self-attention but also attends
to the dialogue context and retrieved entities by
cross-attention, which facilitates the generation of
an informative response. The probability distribu-
tion for each response token in Rt is defined as:

P (Rt,i) = Decg(Rt,i|Rt,<i,Ht). (11)

We train the response generator by the standard
cross-entropy loss as:

Lgen =

|Rt|∑

i=1

−logP (Rt,i), (12)

where |Rt| denotes the length of Rt.
Lastly, the overall loss of the system is the sum

of entity selection loss Lent, attribute selection loss
Latt, and response generation loss Lgen:

L = Lent + Latt + Lgen. (13)

3.5 Discussions

Although deriving much inspiration from open-
domain question answering (QA) (Izacard and
Grave, 2020), where the labels for retrieval are
also not available, the scenario of this work is quite
different. One major difference is that the answer
in open-domain QA is completely from the exter-
nal source of knowledge, while some responses
and tokens in dialog systems may not be relevant
to the external knowledge base. That means dialog
systems need to accommodate both dialog context
and external knowledge and generate a fluent and
informative natural language response, making this
task thornier than open-domain QA.

The main differences between our MAKER
and existing knowledge retrieval methods in
task-oriented dialog systems are twofold. First,
MAKER decouples knowledge retrieval from re-
sponse generation and provides multi-grained
knowledge retrieval of both entities and attributes.
The retrieval results are explicitly passed to the
generator to produce a system response. Second,
MAKER is trained by distilling knowledge from
the response generator for supervision, which
varies from existing attention-based approaches.

4 Experimental Settings

4.1 Datasets

We evaluate our system on three multi-turn
task-oriented dialogue datasets: MultiWOZ 2.1
(MWOZ) (Eric et al., 2020), Stanford Multi-
Domain (SMD) (Eric et al., 2017), and CamRest
(Wen et al., 2017). Each dialog in these datasets
is associated with a condensed knowledge base,
which contains all the entities that meet the user
goal of this dialog. For MWOZ, each condensed
knowledge base contains 7 entities. For SMD and
CamRest, the size of condensed knowledge bases
is not fixed: it ranges from 0 to 8 with a mean of
5.95 for SMD and from 0 to 57 with a mean of
1.93 for CamRest. We follow the same partitions as
previous work (Raghu et al., 2021). The statistics
of these datasets are shown in Appendix A.
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BLEU (Papineni et al., 2002) and Entity F1
(Eric et al., 2017) are used as the evaluation met-
rics. BLEU measures the fluency of a generated
response based on its n-gram overlaps with the
gold response. Entity F1 measures whether the
generated response contains correct knowledge by
micro-averaging the precision and recall scores of
attribute values in the generated response.

4.2 Implementation Details

We employ BERT (Devlin et al., 2019) as the en-
coder of our entity selector and attribute selector,
and employ T5 (Raffel et al., 2020) to implement
the response generator. All these models are fine-
tuned using AdamW optimizer (Loshchilov and
Hutter, 2018) with a batch size of 64. We train
these models for 15k gradient steps with a linear
decay learning rate of 10−4. We conduct all ex-
periments on a single 24G NVIDIA RTX 3090
GPU and select the best checkpoint based on model
performance on the validation set. More detailed
settings can be found in Appendix E.

4.3 Baselines

We compare our system with the following base-
lines, which are organized into three categories
according to how they model knowledge retrieval.

Memory network: These approaches embed the
knowledge base into a memory network and query
it with the representation of dialog context, includ-
ing DSR (Wen et al., 2018), KB-Retriever (Qin
et al., 2019), GLMP (Wu et al., 2019), DF-Net (Qin
et al., 2020), EER (He et al., 2020b), FG2Seq (He
et al., 2020a), CDNET (Raghu et al., 2021), and
GraphMemDialog (Wu et al., 2022).

Direct fusion: These approaches encode serial-
ized knowledge base records together with dialog
context by pre-trained language models, including
DialoKG (Rony et al., 2022), UnifiedSKG (Xie
et al., 2022), and Q-TOD (Tian et al., 2022).

Implicit retrieval: These approaches embed the
knowledge base into model parameters by data aug-
mentation to provide implicit retrieval during re-
sponse generation, including GPT-2+KE (Madotto
et al., 2020) and ECO (Huang et al., 2022).

5 Results and Analysis

In this section, we first show the overall perfor-
mance of the evaluated systems given a condensed
knowledge base for each dialog. Then, we compare
them with a more practical setting in which a large-

scale knowledge base is provided. We also conduct
an in-depth analysis of the proposed retriever. More
experiments are presented in the appendix.

5.1 Overall Results

The overall results are shown in Table 1. We ob-
serve that our system with T5-Large as the back-
bone model achieves the state-of-the-art (SOTA)
performance on MWOZ and SMD. Specifically, on
MWOZ our system surpasses the previous SOTA,
namely Q-TOD, by 1.15 points in BLEU and 4.11
points in Enity F1. On SMD, the improvements
over Q-TOD are 4.58 points in BLEU and 0.19
points in Enity F1. On CamRest, our system only
achieves the best performance in BLEU but un-
derperforms the best-performing DialoKG slightly.
The reason behind this phenomenon is that many di-
alogues in CamRest contain extremely small knowl-
edge bases, with only 1-2 entities, leaving little
space for our retriever to show its advantage.

Note that with the same backbone generator (T5-
Base/T5-Large), our system surpasses Q-TOD even
though it relies on human annotations to train a
query generator for knowledge retrieval. The pos-
sible reason is that while the retriever of Q-TOD is
independent of response generation, ours is trained
and guided by knowledge distillation from response
generation. Moreover, in addition to retrieving en-
tities from the knowledge base, our retriever also
conducts a fine-grained attribute selection.

5.2 Large-Scale Knowledge Base

The experiments in Section 5.1 are conducted with
each dialog corresponding to a condensed knowl-
edge base. Although most previous systems are
evaluated in this setting, it is not practical to have
such knowledge bases in real scenes, where the sys-
tems may need to retrieve knowledge from a large-
scale knowledge base. Therefore, we examine the
performance of several well-recognized E2E TOD
systems by implementing them on a large-scale
cross-domain knowledge base (referred to as “full
knowledge base”) on MWOZ and CamRest, respec-
tively, where the knowledge base is constructed by
gathering the entities for all dialogs in the original
dataset.4 The results are shown in Table 2.

We observe that our system outperforms base-
lines by a large margin when the full knowledge

4Since the training scripts of Q-TOD is not released, we di-
rectly use its open-source checkpoint (T5-Large) and conduct
inference with the full knowledge base.
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Model MWOZ SMD CamRest
BLEU Entity F1 BLEU Entity F1 BLEU Entity F1

DSR (Wen et al., 2018) 9.10‡ 30.00‡ 12.70† 51.90† 18.30† 53.60†

KB-Retriever (Qin et al., 2019) - - 13.90 53.70 18.50 58.60
GLMP (Wu et al., 2019) 6.90‡ 32.40‡ 13.90‡ 60.70‡ 15.10§ 58.90§
DF-Net (Qin et al., 2020) 9.40 35.10 14.40 62.70 - -
GPT-2+KE (Madotto et al., 2020) 15.05 39.58 17.35 59.78 18.00 54.85
EER (He et al., 2020b) 13.60§ 35.60§ 17.20§ 59.00§ 19.20§ 65.70§

FG2Seq (He et al., 2020a) 14.60§ 36.50§ 16.80§ 61.10§ 20.20§ 66.40§

CDNET (Raghu et al., 2021) 11.90 38.70 17.80 62.90 21.80 68.60
GraphMemDialog (Wu et al., 2022) 14.90 40.20 18.80 64.50 22.30 64.40
ECO (Huang et al., 2022) 12.61 40.87 - - 18.42 71.56
DialoKG (Rony et al., 2022) 12.60 43.50 20.00 65.90 23.40 75.60
UnifiedSKG (T5-Base) (Xie et al., 2022) - - 17.41 66.45 - -
UnifiedSKG (T5-Large) (Xie et al., 2022) 13.69∗ 46.04∗ 17.27 65.85 20.31∗ 71.03∗

Q-TOD (T5-Base) (Tian et al., 2022) - - 20.14 68.22 - -
Q-TOD (T5-Large) (Tian et al., 2022) 17.62 50.61 21.33 71.11 23.75 74.22
Ours (T5-Base) 17.23 53.68 24.79 69.79 25.04 73.09
Ours (T5-Large) 18.77 54.72 25.91 71.30 25.53 74.36

Table 1: Overall results of E2E TOD systems with condensed knowledge bases on MWOZ, SMD, and CamRest.
The best scores are highlighted in bold, and the second-best scores are underlined. †, ‡, §, ∗ indicates that the results
are cited from (Qin et al., 2019), (Qin et al., 2020), (Raghu et al., 2021), and (Tian et al., 2022), respectively.

Model MWOZ CamRest
BLEU Entity F1 BLEU Entity F1

DF-Net 6.45 27.31 - -
EER 11.60 31.86 20.61 57.59
FG2Seq 10.74 33.68 19.20 59.35
CDNET 10.90 31.40 16.50 63.60
Q-TOD 16.67 47.13 21.44 63.88
Ours (T5-Base) 16.25 50.87 26.19 72.09
Ours (T5-Large) 18.23 52.12 25.34 72.43

Table 2: Overall results of E2E TOD systems with a
large-scale knowledge base on MWOZ and CamRest,
respectively. The best scores are highlighted in bold,
and the second-best scores are underlined.

base is used. In addition, there are two other obser-
vations. First, comparing the results in Table 1 and
Table 2, we note existing systems suffer a severe
performance deterioration when the full knowledge
base is used. For example, the Enity F1 score of
DF-Net drops by 7.79 points on MWOZ, while
our system only drops by 2.81/2.6 points. Second,
our system with the full knowledge base still out-
performs other systems when they use condensed
knowledge bases, which is easier to retrieve. These
observations verify the superiority of our system
when applied to a large-scale knowledge base as
well as the feasibility of applying it to real scenes.

Model BLEU Entity F1
Ourscondensed 17.23 53.68
w/o distillation 16.21 (↓1.02) 51.05 (↓2.63)

w/o attr_selector 15.72 (↓1.51) 51.76 (↓1.92)

w/o ent_selector 16.07 (↓1.16) 50.67 (↓3.01)

Oursfull 16.25 50.87
w/o distillation 15.85 (↓0.40) 48.28 (↓2.59)

w/o attr_selector 15.40 (↓0.85) 48.55 (↓2.32)

Table 3: Results of ablation study on MWOZ with T5-
base, where “w/o” means without, “distillation” denotes
distillation from response generation, “attr_selector” de-
notes the attribute selector, and “ent_selector” denotes
the entity selector.

5.3 Ablation Study

We conduct an ablation study of our retriever
MAKER with both condensed and full knowledge
bases on MWOZ, and show the results in the first
and the second blocks of Table 3, respectively.

When condensed knowledge bases are used, the
system suffers obvious performance drops with the
removal of distillation (w/o distillation) or entity
selection (w/o ent_selector). This indicates that de-
spite the quality of condensed knowledge bases, our
retriever can further learn to distinguish between
the entities by distilling knowledge from the re-
sponse generator. Besides, the performance of the
system drops when the attribute selector is aban-
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Retrieval Method BLEU Entity F1 Recall@7
Oracle 16.17 51.45 100.00
MAKER 17.18 49.05 86.47
Pre-training 16.67 48.77 82.71
Frequency 16.60 48.00 75.94
BM25 16.21 45.56 26.32

Table 4: Comparison of different retrieval methods on
the full knowledge base. Oracle refers to using the con-
densed knowledge base for each dialog as the retrieval
result. Frequency means measuring the relevance by the
frequency of attribute values occurring in the dialogue
context. BM25 measures the relevance using the BM25
score between dialogue context and each entity.
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Figure 3: Performance of different retrieval methods
as the number of retrieved entities changes on the full
knowledge base in Recall (a) and Entity F1 (b) scores.

doned (w/o attr_selector), showing that attribute
selection is also indispensable in the retriever.

When the full knowledge base is used, entity se-
lection is more necessary for the system. Therefore,
we only ablate the distillation component and the
attribute selector. The results show that the system
suffers significant performance degradation when
distillation is removed (w/o distillation). Attribute
selection is also shown important as the perfor-
mance drops upon it is removed (w/o attr_selector).

5.4 Comparison of Retrieval Methods

To further demonstrate the effectiveness of our
multi-grained knowledge retriever, we compare dif-
ferent retrieval methods on the full knowledge base
of MWOZ. Specifically, we first retrieve the top-K
entities with different retrieval methods and em-
ploy the same response generator to generate the
system response. Moreover, we propose a new
metric, i.e., Recall@7, to measure whether the sug-
gested entities in the system response appear in
the 7 retrieved entities. As shown in Table 4, the
proposed retriever achieves the best performance
compared with other methods except Oracle, which
uses condensed knowledge bases without retrieval,

Method BLEU Entity F1
Weighted 16.25 50.87
Average 16.46 48.81
Threshold 16.25 50.87
Top-K 16.31 46.89
All 15.40 48.55

Table 5: Comparison of attribute selection methods for
MAKER on the full knowledge base. The upper two
rows are methods for accumulating attribute importance
scores across retrieved entities, and the bottom three
rows are methods for filtering out irrelevant attributes.

in both generation metrics (BLEU, Entity F1) and
the retrieval metric (Recall@7).

To investigate the effect of different numbers of
retrieved entities on system performance, we report
the Entity F1 and Recall@x scores of the above re-
trieval methods as the number of entities changes,
while Oracle is not included because we cannot
rank its entities. We observe in Figure 3(a) that the
Recall@x scores for all methods improve as the
number of entities grows, while our retriever con-
sistently achieves the best performance. In Figure
3(b), we observe no positive correlation between
the Entity F1 score and the number of entities, sug-
gesting that noisy entities may be introduced as the
number of entities increases. We can also observe
that the number of entities corresponding to the
peak of the Entity F1 scores varies for different
methods, while our retriever only requires a small
number of entities to reach the peak performance.

5.5 Attribute Selection Methods

In Section 3.3, we calculate an accumulated impor-
tance score for each attribute weighted by entity
selection scores to determine which attributes are
preserved based on a given threshold. In Table 5,
we compare different methods for accumulating
the attribute scores as well as different approaches
for filtering out irrelevant attributes. It can be ob-
served that direct averaging rather than weighting
by entity selection scores hurts the Entity F1 score.
This indicates that the retriever can select attributes
more appropriately based on the selection scores
of retrieved entities. We also observe that using
top-K instead of a threshold to select attributes
leads to a lower Entity F1 score than preserving all
attributes. We believe the reason is that the number
of attributes to be selected varies for each dialogue
context, and therefore simply selecting the top-K
attributes results in sub-optimal attributes.
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6 Conclusion

We propose a novel multi-grained knowledge re-
triever (MAKER) for end-to-end task-oriented dia-
log systems. It decouples knowledge retrieval from
response generation and introduces an entity se-
lector and an attribute selector to acquire multi-
grained knowledge from the knowledge base. The
retriever is trained by distilling knowledge from
the response generator. Empirical results show that
our system achieves state-of-the-art performance
when either a small or a large-scale knowledge
base is provided for each dialog. Through in-depth
analysis, our retriever shows great advantages over
baselines when the size of knowledge bases grows
large. Of the two selectors, the entity selector is
shown to be more prominent in the retriever.
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A Statistics of Datasets

The statistics of the datasets are shown in Table 6.

Dataset Domains # Dialogues
Train/Val/Test

MWOZ (Eric et al., 2020) Restaurant, Attraction, Hotel 1839/117/141
SMD (Eric et al., 2017) Navigate, Weather, Schedule 2425/302/304
CamRest (Wen et al., 2017) Restaurant 406/135/135

Table 6: Statistics of the three datasets.

B Preliminary Study

The detailed results of our preliminary study for
condensed, in-domain, and cross-domain knowl-
edge bases are shown in Table 7. The results of
baseline models on condensed knowledge bases are
cited from (Raghu et al., 2021). We produce their
results on in-domain and cross-domain knowledge
bases by using the officially released code.

Model Condensed In-Domain Cross-Domain
BLEU Entity F1 BLEU Entity F1 BLEU Entity F1

DF-Net 9.40 35.10 7.24 29.49 6.45 27.31
EER 13.60 35.60 11.44 32.82 11.60 31.86
FG2Seq 14.60 36.50 10.53 33.78 10.74 33.68
CDNET 11.90 38.70 11.70 33.40 10.90 31.40

Table 7: Comparison of end-to-end task-oriented dialog
systems with different sizes of knowledge bases.

C Pre-training for Entity Selector

Given a dialogue context and the system response,
we use the entity with the most occurrences of its
attribute values in the dialogue context and system
response as the label. Then we apply supervised
contrastive learning for optimization (Gao et al.,
2021). Specifically, the positive example of a dia-
logue context is the corresponding labeled entity,
while the negative examples are the labeled entities
of other examples in the same mini-batch. Then,
we employ the InfoNCE loss as the training ob-
jective to pull close the sentence representations
of positive samples and push away that of nega-
tive samples. We conduct this pre-training on the
MWOZ and CamRest datasets. Since the knowl-
edge base of the SMD dataset is strictly specific to
each dialog, we cannot collect a global knowledge

base from the dialogs. Thus, the pre-training is not
conducted on SMD. The hyperparameters for the
pre-training are shown in Table 8.

Hyperparameters MWOZ CamRest
Optimizer AdamW AdamW
Batch size 128 108
Epoch 10 15
Learning rate schedule Linear Linear
Learning rate 5e-5 5e-5
Weight decay 0.01 0.01
Temperature 0.05 0.05
Max length 128 128
Pooler type CLS CLS
Pooler dimension 128 128

Table 8: Hyperparameter setting for pre-training our
entity selector on the full knowledge base of MWOZ
and CamRest datasets, respectively.

D Domain-Wise Results

We report the domain-wise results with condensed
knowledge bases on MWOZ and SMD in Table 9
and Table 10, respectively. The results of baseline
models are cited from (Raghu et al., 2021), (Rony
et al., 2022), and (Tian et al., 2022).

E More Implementation Details

The hyperparameters of our system with condensed
and full knowledge bases are shown in Table 11 and
Table 12, respectively. Our method has three con-
tributions: knowledge distillation, entity selection,
and attribute selection. We list the application of
these contributions with condensed and full knowl-
edge base in Table 13 and Table 14, respectively.

F Case Study

In Figure 4, we provide a dialogue example from
the MWOZ dataset. We can observe that, for a
given user utterance, our system can retrieve en-
tities that satisfy the user goal, while masking ir-
relevant attributes. Then, it generates appropriate
system responses. Note that when the user goal
changes, e.g., in the second turn of this case when
the user wants a cheap restaurant, our retriever can
retrieve the corresponding one, with the attribute
of price range being preserved.
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Model BLEU Entity F1 Hotel Attraction Restaurant
DSR 9.10 30.00 27.10 28.00 33.40
GLMP 6.90 32.40 28.10 24.40 38.40
DF-Net 9.40 35.10 30.60 28.10 40.90
GPT-2+KE 15.00 39.60 33.40 43.30 37.10
EER 13.60 35.60 35.70 43.00 34.20
FG2Seq 14.60 36.50 34.40 37.20 38.90
CDNET 11.90 38.70 36.30 38.90 41.70
GraphMemDialog 14.90 40.20 36.40 48.80 42.80
DialoKG 12.60 43.50 37.90 39.80 46.70
Q-TOD (T5-Large) 17.62 50.61 45.25 54.81 55.78
Ours (T5-Large) 18.77 54.72 46.97 65.08 62.12

Table 9: Domain-wise performance on MWOZ.

Model BLEU Entity F1 Schedule Weather Navigate
DSR 12.70 51.90 52.10 50.40 52.00
GLMP 13.90 59.60 70.20 58.00 54.30
DF-Net 14.40 62.70 73.10 57.60 57.90
GPT-2+KE 17.40 59.80 72.60 57.70 53.50
EER 17.20 59.00 71.80 57.80 52.50
FG2Seq 16.80 61.10 73.30 57.40 56.10
CDNET 17.80 62.90 75.40 61.30 56.70
GraphMemDialog 18.80 64.50 75.90 62.30 56.30
DialoKG 20.00 65.90 77.90 72.70 58.40
Q-TOD (T5-Large) 21.33 71.11 81.42 69.18 62.91
Ours (T5-Large) 25.91 71.30 78.56 72.69 62.15

Table 10: Domain-wise performance on SMD.

Hyperparameters MWOZ SMD CamRest
T5-Base T5-Large T5-Base T5-Large T5-Base T5-Large

Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Batch size 2 1 2 2 2 2
Gradient accumulation steps 32 64 32 32 32 32
Training gradient steps 1500 1500 1500 1500 1000 1000
Learning rate schedule Linear Linear Linear Linear Linear Linear
Entity selector learning rate 5e-5 1e-4 1e-4 1e-4 1e-4 1e-4
Attribute selector learning rate 5e-5 1e-4 1e-4 1e-4 1e-4 1e-4
Response generator learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 7e-5
Weight decay 0.01 0.01 0.01 0.01 0.01 0.01
Gradient clipping 1.0 1.0 1.0 1.0 1.0 1.0
Entity selector max length 128 128 128 128 128 128
Attribute selector max context length 200 200 200 200 200 200
Attribute selector max kb length 100 100 200 200 100 100
Response generator max context length 200 200 200 200 200 200
Response generator max kb length 100 100 200 200 100 100
Max output length 64 64 128 128 64 64
Top-K retrieval entities 6 7 8 8 6 4
Attribute selection threshold 0.1 0.1 0.0 0.0 0.0 0.0
Distillation start gradient steps 625 938 1500 1500 750 750

Table 11: Hyperparameter settings of our system when condensed knowledge bases are used on the MWOZ, SMD,
and CamRest datasets.
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Hyperparameters MWOZ CamRest
T5-Base T5-Large T5-Base T5-Large

Optimizer AdamW AdamW AdamW AdamW
Batch size 2 1 2 1
Gradient accumulation steps 32 64 32 64
Training gradient steps 1500 1500 1500 1500
Learning rate schedule Linear Linear Linear Linear
Entity selector learning rate 5e-5 1e-4 1e-4 1e-4
Attribute selector learning rate 5e-5 1e-4 1e-4 1e-4
Response generator learning rate 1e-4 1e-4 1e-4 1e-4
Weight decay 0.01 0.01 0.01 0.01
Gradient clipping 1.0 1.0 1.0 1.0
Entity selector max length 128 128 128 128
Attribute selector max context length 200 200 200 200
Attribute selector max kb length 100 100 100 100
Response generator max context length 200 200 200 200
Response generator max kb length 100 100 100 100
Max output length 64 64 64 64
Top-K retrieval entities 7 7 7 7
Attribute selection threshold 0.2 0.2 0.1 0.1
Distillation start gradient steps 938 938 938 938

Table 12: Hyperparameter settings of our system when the full knowledge base is used on MWOZ and CamRest.

Contributions MWOZ SMD CamRest
T5-Base T5-Large T5-Base T5-Large T5-Base T5-Large

Knowledge distillation ✓ ✓ ✕ ✕ ✓ ✓

Entity Selection ✓ ✕ ✕ ✕ ✓ ✓

Attribute Selection ✓ ✓ ✕ ✕ ✕ ✕

Table 13: Hyperparameter settings of whether to apply each contribution to our system when condensed knowledge
bases are used on the MWOZ, SMD, and CamRest datasets.

Contributions MWOZ CamRest
T5-Base T5-Large T5-Base T5-Large

Knowledge distillation ✓ ✓ ✓ ✓

Entity Selection ✓ ✓ ✓ ✓

Attribute Selection ✓ ✓ ✓ ✓

Table 14: Hyperparameter settings of whether to apply each contribution to our system when the full knowledge
base is used on MWOZ and CamRest.

User Utterance

Retrieved Knowledge

Generated Response

Gold Response

I am looking for a restaurant. The restaurant should be in the north and should serve italian food.

Da vinci pizzeria at 20 milton road chesterton.

Da vinci pizzeria is located at 20 milton road chesterton.

name address area food phone postcode pricerange type

da vinci pizzeria 20 milton road chesterton north italian 1223351707 cb41jy cheap restaurant

hakka milton road chesterton north chinese 1223568988 cb41jy expensive restaurant

... ... ... ... ... ... ... ...

User Utterance

Retrieved Knowledge

Generated Response

Gold Response

Is that restaurant cheap?

Yes the restaurant is cheap.

Yes it is.

name address area food phone postcode pricerange type

da vinci pizzeria 20 milton road chesterton north italian 1223351707 cb41jy cheap restaurant

royal spice victoria avenue chesterton north indian 1733553355 cb41eh cheap restaurant

... ... ... ... ... ... ... ...

Figure 4: An example of dialogue to illustrate our system. Blue font refers to knowledge base-related information.
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