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Abstract

The anonymity on the Darknet allows vendors
to stay undetected by using multiple vendor
aliases or frequently migrating between mar-
kets. Consequently, illegal markets and their
connections are challenging to uncover on the
Darknet. To identify relationships between ille-
gal markets and their vendors, we propose Ven-
dorLink, an NLP-based approach that exam-
ines writing patterns to verify, identify, and link
unique vendor accounts across text advertise-
ments (ads) on seven public Darknet markets.
In contrast to existing literature, VendorLink
utilizes the strength of supervised pre-training
to perform closed-set vendor verification, open-
set vendor identification, and low-resource mar-
ket adaption tasks. Through VendorLink, we
uncover (i) 15 migrants and 71 potential aliases
in the Alphabay-Dreams-Silk dataset, (ii) 17
migrants and 3 potential aliases in the Valhalla-
Berlusconi dataset, and (iii) 75 migrants and
10 potential aliases in the Traderoute-Agora
dataset. Altogether, our approach can help Law
Enforcement Agencies (LEA) make more in-
formed decisions by verifying and identifying
migrating vendors and their potential aliases
on existing and Low-Resource (LR) emerging
Darknet markets. 1

1 Introduction

Conventional search engines index surface-web
websites that only constitute 4% of the entire in-
ternet (Georgiev, 2021). The remaining comprises
90% Deep Web (not indexed) and 6% Darknet,
which uses advanced anonymity enhancing proto-
cols (Georgiev, 2021). While the former serves
legitimate purposes requiring anonymity, the latter

1Our code implementation is publicly available at
https://github.com/maastrichtlawtech/VendorLink.git

is also used for illegal activities such as financial
fraud (ENISA, 2018), child exploitation (Bruggen
and Blokland, 2021), and trading of illicit weapons
(Weimann, 2016; Persi Paoli et al., 2017), prohib-
ited drugs, and chemicals (Kruithof et al., 2016).

Given the Darknet’s scope, size, and anonymity,
it is difficult for LEA to uncover connections be-
tween illegal marketplaces (Vogt, 2017). While
manual detection of such connections is a time-
consuming and resource-extensive process, the
recent success of online scrapers (Fu et al.,
2010; Hayes et al., 2018) and monitoring systems
(Schäfer et al., 2019; Godawatte et al., 2019) has
enabled researchers and LEA to analyze (Easttom,
2018; Faizan and Khan, 2019; Goodison et al.,
2019; Davies, 2020) and automatically identify
(Al Nabki et al., 2017; Ghosh et al., 2017; Ubbink
et al., 2019; He et al., 2019) Darknet contents. This
research proposes a vendor verification and identifi-
cation approach to help LEA make better decisions
by linking vendors, offloading manual labor, and
generating similarity-based analyses. In contrast
to the existing Darknet literature (He et al., 2015;
Ekambaranathan, 2018; Tai et al., 2019; Kumar
et al., 2020; Manolache et al., 2022), VendorLink,
as illustrated in Figure 1, emphasizes the follow-
ing contributions to the problem of verifying and
identifying vendors on Darknet markets:

(i) Closed-Set Vendor Verification Task: Due
to limited resources, LEA prioritizes investigating
Darknet vendors based on the size and nature of
their trade. Thus, Darknet vendors often distribute
their business across multiple markets to stay un-
detected. Likewise, some vendors relocate and
resume their business in other markets after a mar-
ket seizes (Booij et al., 2021). We refer to these
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Figure 1: (i) Closed-Set Vendor Verification Task: A supervised pre-training task that performs classification
using a BERT-cased classifier in a closed-set environment to verify unique vendor migrants across existing markets,
(ii) Open-Set Vendor Identification Task: A text-similarity task in an open-set environment that utilizes style
representations from the established BERT-cased classifier to verify known vendors and identify potential-aliases,
(iii) Low-Resource Market Adaptation Task: A knowledge-transfer task in a closed-set environment to adapt new
market knowledge and verify migrants across Low-Resource (LR) emerging markets.

migrating vendors as migrants for brevity. Unfortu-
nately, this movement prevents LEA from correctly
estimating the size of a vendor’s operations. To
aid LEA, we perform supervised pre-training by
conducting multiclass classification in a closed-set
environment (Zhou et al., 2021a) to analyze differ-
ent writing styles in text ads and classify vendor mi-
grants to unique vendor accounts across three Dark-
net markets. Moreover, researchers have observed
a significant difference in language structure be-
tween Darknet and Surface net websites (Choshen
et al., 2019; Jin et al., 2022). Since most contextu-
alized models are trained on surface web data, the
supervised pre-training step allows our model to
adapt to the Darknet market domain knowledge.

(ii) Open-set Vendor Identification Task: Dark-
net vendors often create aliases and work in groups
to distribute their products across multiple mar-
kets, allowing them to expand their business with-
out being detected by LEA. Moreover, given the
scope and anonymity of the Darknet, manually link-
ing these profiles is infeasible. Hundreds of new
markets and vendors emerge daily on the Darknet.
While the existing literature has established impres-
sive performance on the vendor verification task,
any trained classifier will fail during inference to en-
counter unknown vendors from emerging markets
in real-to-close-world scenarios. Therefore, in this
research, we use the style representations from the
pre-trained classifier to compute the cosine similar-

ity between the text ads to verify existing vendors
and identify potential aliases and unknown vendors
in an open-set environment (Zhou et al., 2021a).

(iii) Low-Resource Market Adaptation task:
While research has demonstrated impressive per-
formance for the Darknet’s vendor verification task
(Kumar et al., 2020; Manolache et al., 2022), high
computational and storage requirements pose a sig-
nificant challenge to LEA. Furthermore, with the
exponential growth of Darknet markets and ven-
dors with new content every year, there is a dire
need for systems that can verify existing vendors
from a known database and simultaneously adapt to
new market knowledge from emerging vendors and
markets. After all, not all LEA have the resources
to train computationally expensive models from
scratch. Therefore, this experiment investigates our
classifier’s capability to benefit transfer learning
in a low-resource setting (Ruder et al., 2019) for
adapting new market knowledge and performing
closed-set vendor verification on emerging (upcom-
ing) vendors and markets. Finally, we evaluate the
influence of knowledge transfer on our trained low-
resource model against the zero-shot (Srivastava
et al., 2018) and transformers-based baselines.

2 Related Research

Vendor Verification - a supervised Authorship
Attribution (AA) task: Researchers previously
have utilized various NLP (Ekambaranathan, 2018;

8620



Tai et al., 2019; Manolache et al., 2022) and com-
puter vision (Wang et al., 2018; He et al., 2015)
techniques to identify and link vendors across Dark-
net markets. For example, in their research, Zhang
et al. (2019) proposed uStyle-uID to leverage writ-
ing and photography styles to identify vendors in
drug trafficking markets. Similarly, Kumar et al.
(2020) proposed exploiting the multi-view learn-
ing paradigm and domain-specific knowledge to
improve the cross-domain performance with both
stylometric and location representation.

The Darknet ads consist of a product title and
description, vendor name, price of the product, and
occasionally some meta-data and images. While
most of these details were enclosed in the ad’s
description, manual extraction of these features
requires considerable labeling efforts. Therefore,
we emphasize our research towards an end-to-end
approach that only expects the advertisement’s title
and description to analyze the writing patterns for
vendor verification and identification. Furthermore,
since we perform multi-class classification over the
text sequences of Darknet ads, we consider our
approach similar to the AA task in NLP.

With the advances in NLP, there has been con-
siderable research into the field of AA that has
demonstrated the success of TFIDF-based cluster-
ing and classification techniques (Agarwal et al.,
2019; İzzet Bozkurt et al., 2007), CNNs (Rhodes,
2015; Shrestha et al., 2017), RNNs (Zhao et al.,
2018; Jafariakinabad et al., 2019; Gupta et al.,
2019), and transformers architectures (Fabien et al.,
2020; Ordoñez et al., 2020; Uchendu et al., 2020a).
Moreover, researchers have also observed a sig-
nificant difference in language structure between
Darknet and Surface net websites (Choshen et al.,
2019; Jin et al., 2022). Therefore, exploring the
application of authorship tasks on the Darknet lan-
guage is crucial.

Vendor Identification; A Text Similarity task:
Text-similarity techniques are not new to the re-
searchers in the field of AA (Sapkota et al., 2013;
Castro Castro et al., 2015; Rexha et al., 2018; Boen-
ninghoff et al., 2019). However, with the recent
success of transformers (Reimers and Gurevych,
2019a; Yang et al., 2019b; Jiang et al., 2022), re-
searchers are now investigating the application of
semantically meaningful representations for para-
phrasing detection (Timmer et al., 2021; Olney,
2021; Ko and Choi, 2020), text summarization
(Miller, 2019; Cai et al., 2022), semantic pars-

ing (Ge et al., 2019; Ferraro and Suominen, 2020),
question answering (Yang et al., 2019a; Vold and
Conrad, 2021; Louis and Spanakis, 2021), and AA
(Fabien et al., 2020; Li et al., 2020; Custódio and
Paraboni, 2021; Uchendu et al., 2020b).

The recent developments in style representations
(Hay et al., 2020; Zhu and Jurgens, 2021) have
revealed a promising avenue to explore for the au-
thorship verification task. In their research, Weg-
mann et al. (2022) discovered that the success of
these representations comes from their ability to
represent style by latching on to spurious content
correlations. Moreover, the authors suggest using
content control in a contrastive setup to represent
style better in a way that is more independent from
content. In this research, we utilize a similar ap-
proach to extract the style representations from the
advertisements of darknet vendors by passing it
through a Transformer-based classifier pre-trained
for a closed-set vendor verification task. Next, we
use these representations to compute text similarity
(cosine similarity) in the advertisements of differ-
ent vendors. Despite our acknowledgment of the
promises of using content control on style repre-
sentations, this research focuses on establishing a
baseline on Darknet markets. That being said, we
intend to experiment with content control in our
future experiments.

Knowledge Adaption; A Transfer Learning task:
In their research, Ruder (2019) introduced transfer
learning to extract knowledge from a source setting
and transfer it to a target setting. Since then, many
researchers have investigated the successful appli-
cation of transfer learning on the cross-domain and
topic AA task (Sapkota et al., 2014; Barlas and
Stamatatos, 2021). Similar to the experiments in
(Devlin et al., 2019; Horne et al., 2020), this work
proposes utilizing knowledge transfer to adapt new
market knowledge from the emerging Darknet ven-
dors and markets. The transfer is applied using
pre-trained style representations to train a compu-
tationally efficient BiGRU classifier for the closed-
set vendor verification task.

3 Datasets

Many researchers have conducted similar experi-
ments on scraped data from active Darknet markets.
However, since law enforcement has seized and
shut down these markets now, we could not repro-
duce the results nor get access to their data. There-
fore, for reproducibility and future research pur-
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Task Dataset Ads. Vendors

Baseline /
Supervised
Pre-Training

Alphabay 100,429 1,457
Dreams 93,586 1,422
Silk Road-1 78,681 1,392
Alphabay- 272,696 4,271
Dreams-Silk

Low-Resource
Supervised
Market Adaption

Valhalla 2,175 110
Berlusconi 1,437 84
Valhalla- 3,612 194
Berlusconi

High-Resource
Supervised
Market Adaption

Traderoute 19,952 612
Agora 109,644 3,187
Traderoute-
Agora 129,586 3,799

Table 1: Number of unique ads and vendor accounts per
market.

poses, we conduct our analyses on public datasets
from Alphabay (Van Wegberg et al., 2018; Bar-
avalle and Lee, 2018; CMU, 2017-18a), Dreams,
Traderoute, Valhalla, and Berlusconi (Carr et al.,
2019; CMU, 2017-18b), Agora (Branwen et al.,
2015), and Silk Road (Christin, 2013; CMU, 2012-
13) non-anonymous markets.2

(a) (b)

Figure 2: Distribution of (a) Token length per advertise-
ment (b) Number of ads per vendor.

Preprocessing: Figure 2(a) demonstrates the
distribution of the number of tokens for all the
input ads in our datasets. In a violin plot, the
probability distribution is maximum around the

2Hosted by IMPACT cyber trust portal

median, and Table 2(a) shows that the median
for our chosen datasets is between 40 and 100.
Therefore, to compare other baseline classifiers
and transformers-based models fairly, we truncate
our ads to the first 512 tokens. On the other
hand, figure 2(b) demonstrates a class imbalance
in the number of ads per vendor account in our
datasets. As can be seen, some markets are more
imbalanced than others. Therefore, in contrast
to earlier research emphasising the performance
of the trained models on accuracy and micro-F1,
we also evaluate our trained models on macro-F1,
which weighs all classes equally.

Table 1 illustrates the number of unique ads (input
sequences) and vendor accounts per market.3 First,
we merge the title and description of the ads us-
ing the "[SEP]" token to form the input sequences.
Then, we drop all the duplicate ads for every ven-
dor in our dataset. Most ads are in English, with
a few exceptions where the vendors use multiple
languages. We reason that the noise in the data
roughly represents the unique writing style of in-
dividual vendors. For example, we found that the
vendor "CaliforniaDreams420" refers to medicines
as "medi...", "SAPIOWAX" uses multiple "-" for
newline, and "QualityKing" only uses uppercase
letters in its ads. Therefore, any cleaning and pro-
cessing will only be counter-productive. However,
since we consider the vendor accounts as the gold
labels for our classification task, we lower-cased
all the vendor names to minimize the number of
vendors in our datasets. In other words, we as-
sume the vendors "agentq" and "AgentQ" to be the
same entity. The table illustrates how we divide our
datasets for supervised pre-training, Low-Resource,
and High-Resource fine-tuning steps. Finally, we
assign all the vendors with less than 20 ads to a
new class label, "others," allowing our classifier to
operate in a zero-shot setting.

While we do not perform classification for ven-
dors with less than 20 ads, we capture similarities
in the ads for these vendors through our open-set
vendor identification task. That said, the number
20 is not arbitrary and is established through ex-
periments. We also experimented with the same
setup by removing vendors with less than 5, 10, 20,
50, and 100 ads. The results demonstrate that our
model requires at-least 20 ads from each vendor to

3In this research, market data refers to the ads and vendor
accounts from a single Darknet market. On the other hand, a
dataset refers to the combined data from two or more markets.
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perform the classification optimally.

4 Experiments

Before running our experiments, we conduct a
sanity check to evaluate the need for ML algo-
rithms by examining the similarity in Darknet ads
using textdistance-based traditional stylometric ap-
proaches (orsinium, 2022) (refer appendix A.1.1).
Our analyses show that these traditional methods
fail to identify vendors with dissimilar ads, indi-
cating the need for sophisticated feature-extraction
techniques. Furthermore, these approaches help us
discard identical ads from further analysis.

4.1 Closed-Set Vendor Verification Task
Architectural Baselines: To verify the vendor
migrants existing across multiple markets, we first
train multiple classifiers to examine different writ-
ing styles in Darknet ads and establish a bench-
mark amongst various ML and neural network-
based algorithms. Given the resources at our dis-
posal, training models on the combined Alphabay,
Dreams, and Silk Road datasets would be compu-
tationally expensive and time-consuming. There-
fore, we first establish an architectural baseline
by training (i) TFIDF-based statistical (Multino-
mial Naive Bayes, Logistic Regressor, Random For-
est, SVMs, and MLP network), (ii) Bi-directional
GRU with Fasttext embeddings (Gupta et al., 2019),
CNNs over character n-grams (Shrestha et al.,
2017), (iii) Pre-trained BERT-base-cased (Devlin
et al., 2019), RoBERTa-base (Liu et al., 2019), and
a DistilBERT-base-cased (Sanh et al., 2019) se-
quence classifiers to identify 1,422 unique vendor
accounts from 93,586 ads on the Dreams market.

Methodological Baselines: We further establish
a methodological baseline to investigate the influ-
ence of different training approaches on the com-
bined Alphabay, Dreams, and Silk Road 1 dataset
with 272,696 ads and 3,896 unique vendors. First,
we train BERT-base-cased and uncased classifiers
to investigate the influence of uppercase and low-
ercase patterns in ads on the model’s performance.
Second, we investigate if applying knowledge trans-
fer from a BERT-cased model, trained on the Dark-
net ads for the language task, improves the classi-
fication performance. In this research, we refer to
the trained language model as DarkBERT-LM and
the classifier as DarkBERT-classifier. In another
study, Houlsby et al. (2019) suggests that rather
than updating the weights of the pre-trained model,

it is much more efficient to stitch adapter layers and
update them while keeping the pre-trained model
frozen. Therefore, we finally train a BERT-cased
classifier with adapter layers (aka Adapter-BERT)
and compute its performance.

4.2 Open-Set Vendor Identification Task

In their research, (Kornblith et al., 2019; Phang
et al., 2021) proposed Centered Kernel Alignment
(CKA) as a similarity metric to reliably compute
correspondences between representations in net-
works trained from different initializations. In this
research, we compute CKA similarity between the
representational layers of our trained classifier and
an available pre-trained checkpoint (not trained on
Darknet data). Finally, we examine the least simi-
lar layers, i.e., the layers that changed most during
training and have a low CKA similarity, to extract
semantically-meaningful style representations from
the ads of Darknet markets. 4

Similar to Reimers and Gurevych (2019b), we
compute the similarity between two vendors by
computing cosine-similarity between the extracted
style representations in their ads. Then, assigning
one of the vendors as the parent vendor, we repeat
the process for all the other vendors in our dataset.
However, cosine distance represents a linear space
with all dimensions weighted equally. Therefore,
Xiao (2018) suggests that the emphasis be on the
rank and not the absolute value representing the
similarity between the two vendors. Besides, ven-
dors on Darknet advertise their products across var-
ious categories. For two vendors, A, and B, selling
their products under multiple categories, the cosine
similarity between their ads would be low by de-
fault. Therefore, instead of comparing ads across
similar trade categories (which requires labeling
efforts and is counterproductive to our research),
we propose normalized similarity (simnorm) as a
measure of cosine similarity (sim) in ads between
two vendors, w.r.t. to the self-similarity (simself )
in their ads through the equation below:

simnorm = 2 ∗ sim(A,B)

simself (A,A) + simself (B,B)

4.3 Low-Resource Market Adaption Task

To verify the vendor migrants from emerging mar-
kets, we conduct experiments on an LR dataset,

4Algorithm-2 in Appendix A.3 demonstrates the pseudo-
code for computing CKA similarity across layers of our
trained classifier and an available pre-trained checkpoint.
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i.e., Valhalla-Berlusconi, with 3,612 ads and 194
vendors. First, we extract the style representations
from the "[CLS]" token of the pre-trained classi-
fier (Section 4.1) for all the ads in our LR dataset.
Then, following (Devlin et al., 2019), we apply
knowledge transfer from the pre-trained classifier
to a two-layer bidirectional GRU classifier by ini-
tializing it with the extracted style representations.
The Bi-GRU classifier is then fine-tuned to adapt
new market knowledge and verify the migrants
across the LR dataset. Our research refers to this as
the transfer-BiGRU model. Performing knowledge
transfer helps our existing classifier to evolve with
emerging vendor and Darknet market data. Dur-
ing the evaluation, we compare the performance of
our transfer-BiGRU against BERT-base-cased and
two-layer BiGRU (with fasttext embeddings) classi-
fiers (aka end-to-end baselines) when trained from
scratch on the LR dataset. Finally, we also evalu-
ate the zero-shot performance of our architectural
and methodological classifiers (aka zero-shot base-
lines) against the transfer-BiGRU for the closed-set
vendor verification task.

5 Results

5.1 Open-Set Vendor Verification Task

Architectural Baselines: Table 2 presents the
performance of our architectural baselines evalu-
ated on the Dreams market. Amongst all the sta-
tistical models, we found a Multilayer Perceptron
(MLP) with bigram TF-IDF features to perform
the best. While conventional neural networks such
as character-based CNN and Bidirectional GRU
with fasttext embeddings performed better than
the statistical models, we noted a considerable in-
crease in performance with the transformers-based
architecture on our datasets. To our surprise, the
RoBERTa-base model underperformed compared
to the BERT-base-cased architecture. Although we
propose to leverage writing styles to identify vari-
ous vendors, the Darknet markets are intentionally
designed with random noise to foil any automated
system. Furthermore, since RoBERTa-tokenizer
works on "byte-level BPE," we believe the trained
model did not have enough data to learn these
features. Consequently, we establish the trained
BERT-cased classifier on the Dreams market as the
benchmark classifier of our architectural baselines.

Methodological Baselines: Table 3 illustrates
the performance of our methodological baselines

Data Models Accuracy Micro-F1 Macro-F1

Dreams

Market

Statistical Models
Multinomial
Naive Bayes

0.0183 0.0144 0.0059

Random Forest 0.0102 0.1093 0.0449
Logistic
Regression

0.0045 0.0090 0.0037

SVM 0.2480 0.3974 0.3703
Neural Networks

MLP 0.6614 0.6603 0.6594
Character-CNN 0.7266 0.7256 0.7248
BiGRU-Fasttext 0.7374 0.7415 0.7360

Transformers Networks
BERT-cased 0.8978 0.8978 0.9002
DistilBERT-cased 0.8886 0.8885 0.8889
RoBERTa-base 0.8776 0.8797 0.8736

Table 2: Performance of architectural baselines on the
Dreams market.

Data Models Accuracy Micro-F1 Macro-F1
Alphabay-
Dreams-
Silk
Dataset

BERT-uncased 0.8947 0.8939 0.8768
BERT-cased 0.9046 0.9066 0.9013
DarkBERT-
Classifier

0.9000 0.9090 0.9073

Adapter BERT 0.8398 0.8330 0.8188

Table 3: Performance of methodological baselines on
the combined Alphabay-Dreams-Silk dataset.

evaluated on the combined Alphabay-Dreams-Silk
Road-1 test dataset. Our first experiment inves-
tigates the influence of writing style, i.e., lower-
case and uppercase patterns, on the classification
task. As can be seen, the BERT-cased classifier
outperforms the uncased classifier by a reasonable
margin (Approx. 3% on 3,896 class labels). We
believe that the increment in performance comes
from adding upper and lowercase patterns during
training. Next, we experiment with continued pre-
training of the DarkBERT-LM on the ads for the
language task 5 to achieve a test perplexity of 2.07.
In comparison to the BERT-cased classifier, we ob-
serve a minor increase in the performance of the
finetuned DarkBERT-Classifier. However, we rea-
son that such a minor increase is not worth all the
training. Furthermore, the low performance of the
DarkBERT-LM depicts the unpredictable and noisy
lingo used by Darknet vendors in their ads. We also
suspect that further pre-training our models on an
extensive dataset can help the baseline improve its
performance. Finally, the Adapter BERT also un-
derperforms compared to the vanilla BERT-cased
classifier. Consequently, we establish the BERT-
cased architecture trained on the closed-set vendor

5Pre-training BERT for a language task is highly resource-
intensive. Unfortunately, we did not have the resources to con-
tinue the pre-training until the convergence and only trained
our model for 20 epochs.
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verification task as the benchmark classifier for the
Alphabay-Dreams-Silk Road Darknet dataset.

5.2 Open-Set Vendor Identification Task

0 1 2 3 4 5 6 7 8 9 10 11 12

0.0378 0.2660 0.1839 0.2442 0.1919 0.1606 0.2360 0.3430 0.3951 0.5973 0.7557 0.8767 0.9957
0.25
0.50
0.75

Figure 3: CKA distance between layers of the BERT-
cased methodological classifier, compared before and
after being trained on the Alphabay-Dreams-Silk dataset.

Figure 4: Scatter plot between parent-vendors (on the x-
axis) and their potential aliases (scatter points on y-axis)
from Alphabay , Dreams , and Silk Road-1 markets.

Figure 3 reveals a high CKA distance, i.e., low
CKA similarity, between the representations for the
last four layers of our BERT-cased classifier. There-
fore, extracting information from the weighted
sum of the final four layers provides the most
meaningful style representations for our ads in the
Alphabay-Dreams-Silk dataset. As described in
section 4.2, we use these style representations to
compute the cosine similarity between vendor ads.
Figure 4 displays some randomly selected parent
vendors on the x-axis and their two potential aliases
(scatter points) with a similarity score in their ads
on the y-axis. 6 Our analysis indicates "eurekare-
bellionaus" and "eurekarebellion," "mutant_gear"
and "mutantgear", "fence" and "tinsel," and "planet-
pluto" and "planetpluto" have very high similarity
in their ads and can be from the same vendor. The
higher the similarity, the more likely it is for two
vendors to be the same entity. 7 For a better visi-

6We generate the scatter plot using Plotly, which allows
us to zoom infinitely for any vendor. However, we only show
the chosen vendors with two potential aliases for better clarity
and visibility.

7As mentioned, Darknet vendors often create aliases to
hide from Law Enforcement Agencies (LEA). However, since
numerous vendors appear on Darknet markets yearly, it be-
comes difficult for law enforcement to manually link these

Parent Vendor Alias / Copycat Similarity

High
(potential
aliases)

houseofdank houseofdank2.0 0.9844
incorporated incorporatedv2 0.9769
castro6969 castro69696 0.9541
thewizard thewizzardnl 0.9480
europills europills2 0.9467

Low
(potential
Copycats)

topgear topgear69 0.0367
dutchpirates dutchpiratesshop -0.1015
whitey whiteyford -0.1410
g3cko gecko -0.2292
aussieimportpills aussieimportpillsv2 -0.2560

Table 4: Normalized similarity between parent vendors
and their potential aliases/copycats aligned in decreas-
ing order.

bility, these vendors are highlighted inside the red
box of our scatter plot.

Often, vendor aliases have similar-looking ven-
dor handles to have recognition and a monopoly
over their business. While most similar-looking
accounts can be detected using string-based match-
ing techniques like string_grouper (Chris van den
Berg, 2021), our experiments reveal the existence
of copycats with very different writing styles and
low similarity in their ads. For example, our exper-
iments uncovered that only about 24% of similar-
looking vendor-alias pairs in the Alphabay-Dreams-
Silk dataset have a similarity score of 0.7 or above
in their ads. Table 4 illustrates the similarity in ads
between 10 such parent vendors and their likely
aliases or copycats. Finally, we believe our ex-
periments can also help law enforcement uncover
potential vendor-alias pairs with completely unre-
lated vendor names, ex: "fence" and "tinsel" (see
figure 4), but a high similarity between their ads.

5.3 Low Resource Market Adaption Task
To set the Zero-Shot baselines, we first use the
established BERT-cased architectural and method-
ological classifiers to perform zero-shot vendor ver-
ification on the LR dataset, Valhalla-Berlusconi.
Since the emerging LR dataset has new vendors,
we assign all these new vendor accounts to the class
label "others." However, since the macro-F1 score
is computed for the unweighted arithmetic mean
of F1 for all class labels, the absence of previously

aliases to a parent vendor. The unavailability of ground truth
poses a challenge in evaluating the existence of these aliases
in our datasets. Therefore, we cannot confidently comment
upon the accuracy of our similarity-based analyses without the
qualitative case study. We encourage LEA not solely to rely
on these similarities but use them as a starting point for their
manual investigations. Furthermore, we strongly discourage
LEA from abiding by these analyses as evidence for investi-
gation or prosecution. The sole purpose of this research is to
help LEA bring meaning to the online Darknet market data.
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existing vendors in the LR emerging market leads
us to unreliable macro-F1 results. Consequently,
we emphasize the performance of our Zero-Shot
baselines on the micro-F1 score. The baselines
exhibit promising performance with a micro-F1 of
0.7702 and 0.7388 despite not being trained on LR
data. The decrease in macro-F1 performance from
architectural to methodological baseline is due to
an increase in vendor accounts from 1,442 in the
Dreams market to 3,896 in the Alphabay-Dreams-
Silk Road dataset.

Models Layer Micro-F1 Macro-F1
Zero-Shot Baselines

Architectural - 0.7702 0.2927
Methodological - 0.7388 0.2401

End-to-End Baselines
BERT-cased - 0.8987 0.8148
BiGRU-Fasttext - 0.7797 0.6957

Transfer Baselines

Transfer-
BiGRU

Embedding 0.7653 0.6408
Last 0.8590 0.7809
Second-to-Last 0.8951 0.7884
Weighted Sum All 12 0.8928 0.7837
Weighted Sum Last 4 0.8946 0.8132

Table 5: Performance of Zero-Shot, End-to-End, and
Transfer baselines on the Valhalla-Berlusconi dataset.

GPU Models Trainable
parameters

Training Time
(Hrs:Mins)

Tesla-
V100

(32 GB)

BERT-cased 110M 0:54
BiGRU-Fasttext 13M 0:12
Transfer-BiGRU 24M 0:32

GE-MX110
(2 GB)

Transfer-BiGRU 24M 2:40

Table 6: Computational details of trained classifiers on
the LR, Valhalla-Berlusconi, dataset.

Furthermore, we also train a BERT-cased and a
BiGRU classifier with fasttext embeddings from
scratch to adapt new market knowledge and ven-
dors from the emerging LR dataset. As illustrated
in table 5, compared to the Zero-Shot baselines, the
End-to-End baselines show a significant increase
in performance in both micro-F1 and macro-F1
scores. Finally, following (Devlin et al., 2019), we
perform knowledge transfer by extracting the style
representations from multiple layers of the BERT-
cased methodological classifier and using them to
initialize the BiGRU before the classification layer.
Table 5 demonstrates that when initialized with the
weighted sum of the last four layers, the transfer-
BiGRU classifier benefits most from the knowledge
transfer and performs comparably to the End-to-
End BERT-cased classifier on the emerging LR
dataset. Consequently, we establish the transfer-
BiGRU architecture trained on the closed-set ven-

dor verification task as the benchmark classifier for
the LR, Valhalla-Berlusconi dataset. 8

Finally, Table 6 reflects upon the computational
aspects of the trained models by comparing the
number of trainable parameters and training time
for classifiers trained on the LR dataset. As can be
seen, compared to the BERT-cased, our transfer-
BiGRU classifier is carbon-efficient (refer to ap-
pendix 10), has 78% less trainable parameters, and
takes approximately half the training time. Fur-
thermore, we also show the training feasibility of
our transfer-BiGRU on a low-end graphic card,
GeForce-MX110, with 2 GB of GPU memory.
Thus, our low-compute transfer-BiGRU classifier
can significantly help law enforcement scale our
approach to emerging markets without significant
performance loss.

6 Error Analysis

Vendor Pred Text A Text B
house TP ** 1 Lb of ** 1 oz of
ofdank Sour [DRUG1] Greenhouse [drug1]

(Greenhouse) ** greenhouse grown **
house TP ** 1 OZ of ** 1 Lb of
ofdank2.0 [drug2] Greehouse [drug2] Greehouse

grown ** grown **
appleinc FP 10 x C50 euro 5 x $100 DOLLAR

COUNTERFEIT COUNTERFEIT
notes (Very Good STRIP high quality
Quality) bills

canadian FP [usa to usa] [drug3] [usa to usa] 30 pills
pharmacy 80mg just 19.99 [drug3] 100mg 19.99

bucks per pill only usd ultram

Table 7: Qualitative analysis of BERT-cased classifier
(trained on Alphabay-Dreams-Silk Road Dataset) for
True Positives (TP) and False Positives (FP) predictions.

To better understand the strengths and weaknesses
of our trained models, we perform qualitative anal-
ysis on the predictions of the BERT-cased classi-
fier (trained on the Alphabay-Dreams-Silk Road
Dataset) in Table 7. Note that we only display
the title of these advertisements due to space con-
straints and visibility reasons. As can be seen in
the first two examples, our trained classifier can
recognize many patterns in the ads, such as "**,"
"[DRUG1]", "[drug1]", and "greenhouse gown,."
The first two examples also show how similar the

8We also test the performance of our baselines on an emerg-
ing High-Resource (HR) dataset, Traderoute-Agora. Results
in the appendix table 10 show that the transfer-BiGRU model
underperforms compared to the End-to-End BERT-cased clas-
sifier. In other words, applying knowledge transfer on emerg-
ing HR markets does not yield the best performance. Please
refer to section A.1.3 in the appendix for more details.
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advertisements are between the vendors "houseof-
dank" and "houseofdank2.0". This is also indicated
by the high similarity in the advertisements of the
two vendors (refer 4). Finally, the next two ex-
amples in the Table below indicate the cases of
false positives. As can be seen, here, the network
is confusing between vocabulary such as "COUN-
TERFEIT," "quality," "supernotes," source and des-
tination locations, [drug3], and the price of the
product.

Furthermore, we inspect cases where our trained
BERT-cased classifier fails, but the transfer-GRU
classifier succeeds after knowledge transfer. Table
8 demonstrates vendor advertisements where the
writing style between advertisements changed dras-
tically between the Alphabay-Dreams-Silk Road
and Valhalla-Berlusconi datasets. Consequently,
our BERT-cased classifier fails to verify vendors
from the Valhalla-Berlusconi dataset in the zero-
shot setting. Finally, after applying knowledge
transfer and fine-tuning our transfer-BiGRU model,
the model quickly adapts to the new writing styles
from these vendor advertisements.

Vendor Alphabay-Dreams- Valhalla-
Silk Road Berlusconi

cannacorner [drug1] 3.5g 7g [drug1]
—|MERCEDES| —|lambo|

medicalznl 5 GRAMS 2.5 grams -
COLOMBIAN [DRUGX] colombian [drugx]
93% + FREE SHIPPING 90+% pure uncut

color Credit Cards Can Be lasted update credit cards
Without Security Code in this file.

Table 8: Qualitative analysis of transfer-BiGRU clas-
sifier (trained on Valhalla-Berlusconi Dataset) for True
Positives (TP) and False Positives (FP) predictions.

7 Discussion and Future Work

We discuss details about additional experiments
and the training setup in appendix sections A.1 and
A.2, respectively. In addition, the pseudo-code for
the CKA algorithm is provided in appendix A.3.

In the future, we plan to work on the assump-
tions in section 9 by investigating content-control
contrastive learning approaches (Wegmann et al.,
2022) to perform vendor verification and identifi-
cation on existing and emerging Darknet datasets.

8 Conclusion

This research presents an NLP-based vendor verifi-
cation and identification approach, VendorLink, for
law enforcement to verify, identify, and link vendor
migrants and potential aliases on the existing and

emerging Darknet markets. In this work, we first
perform supervised pre-training to adapt Darknet
market knowledge and establish a BERT-cased clas-
sifier to verify existing vendor migrants between
markets in a closed-set environment. Then, we
extract the style representations from the trained
BERT-cased classifier to compute the text simi-
larity in vendor ads in an open-set environment
and link vendors to their potential aliases. Finally,
we adapt new market knowledge by employing
knowledge transfer from the trained BERT-cased
classifier to a low-compute-resource BiGRU clas-
sifier and perform closed-set vendor verification
on the emerging LR markets. Through our experi-
ments, we uncover (i) 15 migrants and 71 potential
aliases in the Alphabay-Dreams-Silk dataset, (ii)
17 migrants and 3 potential aliases in the Valhalla-
Berlusconi dataset, and (iii) 75 migrants and 10
potential aliases in the Traderoute-Agora dataset
with a cosine similarity of 0.8 and above, between
the ads of vendors and their potential aliases.

9 Limitations

Assumptions: This work applies a lower-case
transformation to the vendor names during the
pre-processing step and assumes vendor accounts
"agentq" and "AgentQ" to be from the same entity.
However, in reality, these entities can refer to two
different vendors. Additionally, we train our classi-
fier in a multi-class classification setting, assuming
that ads correspond to only one individual vendor
account. However, our experiments uncover the ex-
istence of copycats on Darknet markets. In reality,
it is always possible for multiple vendors to co-exist
with similar vendor names; hence, any supervised
approach will only generate skew results. In the
future, we plan to look toward contrastive learning
approaches (Pan et al., 2021; Zhou et al., 2021b;
Wegmann et al., 2022) to avoid these assumptions.

Architectural limitations: This research estab-
lishes a BERT-base-cased classifier to verify mi-
grating vendors across existing and emerging Dark-
net markets. While we acknowledge that using a
bigger BERT model with a sliding window may
improve our classification’s performance, given the
resources at our disposal, we decided against it.
Moreover, as mentioned earlier, most of the ads
used in this research are in English, with a few ex-
ceptions where the vendors use multiple languages.
Therefore, applying a multilingual transformer-
based model to the classification task (Wang and
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Banko, 2021) can improve our approach’s perfor-
mance.

Unsupervised and HR settings: As described
in the assumptions, the core of our approach lies
in the availability of gold labels. VendorLink uti-
lizes the supervised pre-training step to perform
knowledge transfer and text-similarity tasks. There-
fore, our approach suffers a significant limitation in
the absence of these ground labels / unsupervised
settings. Furthermore, as described in A.1.3, our
approach could not scale well to verify vendor mi-
grants in HR emerging datasets. In the future, we
plan to expose VendorLink to contrastive learning
approaches to learn universal representations and
overcome the problem.

Diverse Advertisements: In the semi-supervised
task, we compute the likelihood of two vendor ac-
counts being from the same entity by calculating
the similarity between the advertisements of the
two vendors. Since one of the novelties of this re-
search lies in the direction of End-to-End training,
we have avoided using handcrafted labels for apply-
ing content control to generate content-independent
style representation. However, as explained in sec-
tion 4.2, an advertisement from the drug category
can be very different from that of the weapon cate-
gory. Therefore, in the future, we plan to train an-
other classifier to classify Darknet advertisements
into different trade categories before performing
the vendor-verification task.

XAI limitations: eXplainaible Artificial Intelli-
gence (XAI) is integral in promoting trust and un-
derstanding amongst the end-users. From LEA’s
perspective, its absence can be viewed as arguably
negligent and unreliable. While we acknowledge
that our approach currently lacks an XAI feature, in
the future, we plan to build upon our experiments
in A.1.5 and establish a reliable approach for un-
derstanding and explaining our model’s decision.

10 Broader Impact

This section discusses mandatory data collection
protocols, ethical considerations, potential risks,
and legal, societal, and environmental impacts.

Data Collection Protocol: Ethical concerns as-
sociated with web scraping do not apply to our
research as the online darknet data used is re-
quested through a signed Memorandum of Agree-
ment (MoA) with IMPACT Cyber Trust portal

(ICC). As a result, the data is freely available,
legally collected, and distributed for large-scale
cybersecurity analytics, allowing researchers to ad-
vance the state-of-the-art cyber-risk R&D and deci-
sion support.

Legal Impact: This research emphasizes bring-
ing structure and meaning to the massively avail-
able online data on Darknet markets for LEA.
While we can not predict whether our research will
impact the LEA process, the intent is to identify
potential connections between vendors of illegal
goods and present LEA with a broader information
base for their internal processes. Please note that at
no point do we claim to provide pieces of evidence
necessary for prosecuting any criminal.

Ethical and Privacy Considerations: We ac-
knowledge that using vendor names in our study
could potentially be exploited and identified as a
privacy concern. However, after going through a
Data Privacy Impact Assessment (DPIA) at our in-
stitution, the committee concluded that the vendor
names used in this study are pseudonyms and do
not reflect any individual’s identity. Furthermore,
research suggests that the lifespan of Darknet ven-
dors and marketplaces is between a few months and
a couple of years. (Booij et al., 2021; Broadhurst
et al., 2021; UNDOC, 2020). Since the market ads
in our datasets span between 2011-2018, the likeli-
hood of any vendor’s existence with the same user
name is very low. Finally, under article 6, Law-
fulness of processing, the GDPR clause suggests
that the processing of personal data is lawful as
long as the task is carried out in the public interest.
Given the nature of illegal activities on the Darknet
and despite all its potential risks, we believe that
our research can potentially benefit LEA and save
human lives. That said, while using vendor names
in our analyses promotes transparency and repro-
ducibility amongst the readers, we encourage these
vendors to reach out to us in case of any concerns.
In such circumstances, we take complete respon-
sibility for taking immediate action and removing
their information from our research.

Societal Impact and Potential Risk: In their
research, Juola (2020) described the dark side
of authorship studies and social media analytics
for target-based recommendation systems and em-
ployee, political, medical, gender, demographic,
and racial profiling. While our approach can lend
itself to abuses, we find it unlikely for anyone to
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exploit our research as it is given the extreme dif-
ference in the language between the Darknet and
surface web websites (Choshen et al., 2019). That
said, we acknowledge the possibility of privacy in-
fringement outside criminal markets to match user
activity across public platforms. For instance, ill-
intentioned third parties and organizations could
use our research to circumvent an individual’s iden-
tity on public social media platforms. Therefore,
we encourage our readers to be aware of the ethical
duality while using our research to develop author-
ship technologies inside and outside cybersecurity
scenarios.

Environmental Impact: Keeping in mind that
not all LEA have the resources to train compu-
tationally expensive architectures, we investigate
utilizing knowledge transfer to train low-compute-
resource models in this research. As a result, our
transfer-BiGRU classifier has a carbon efficiency
of 0.07 kgCO2eq/kWh and 2.25 kgCO2eq/kWh
as opposed to the BERT-cased classifier with a
carbon efficiency of 0.12 kgCO2eq/kWh and 4.21
kgCO2eq/kWh on the Vallhalla-Berlusconi and
Traderoute-Agora datasets, respectively. These es-
timations were conducted on Tesla V100-SXM2-
32GB (TDP of 300W) using the MachineLearn-
ing Impact calculator presented in (Lacoste et al.,
2019). In other words, this research demonstrates
that applying knowledge transfer from existing to
emerging markets can help law enforcement train
low-compute-resource models with high perfor-
mance, faster training time, and lesser carbon foot-
print.
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A Appendix

A.1 Additional Experiments
A.1.1 Sanity Check: stylometric approaches
As a sanity check, we investigate the need for ML
algorithms by examining if traditional stylometric
approaches can identify writing patterns in Darknet
ads. Since languages are represented by charac-
ters, tokens, and sentence-level elements, we com-
pute string, token, and sequence-based similarities
between ads using the Damerau-Levenshtein dis-
tance, Jaccard Index, and Ratcliff-Obershelp pat-
tern recognition technique from textdistance. We
define the similarity between two vendor ads as
the average of the above three metrics. For a ven-
dor with multiple ads, say vendor A, we compute
average similarity as the mean of similarities be-
tween all their ads. Similarly, for vendor B, existing
across multiple markets, we take all the ads from
market X and compute their similarity with ads
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of market Y (one at a time). Finally, we compute
the average similarity as the mean of similarities
between the ads for vendor B across all markets.
Algorithm 1 explains the pseudo-code for comput-
ing similarity between the ads within and across
the Darknet markets.

Figure 5 demonstrates the performance of
traditional stylometric approaches on a box
plot. The plot represents the average similarity
distribution and its skewness within the ads
of Alphabay-Alphabay, Dreams-Dreams, Silk
Road-Silk Road and across Alphabay-Dreams,
Dreams-Silk Road, and Alphabay-Silk Road
markets. As can be seen, most ads have an
average similarity below 0.20. While there are
outliers with higher similarities, only one vendor,
"cyanspore", has a similarity score of 1.0 for the
Alphabay-Dreams and Dreams-Silk datasets. Since
the ads from this vendor are exactly similar, we
remove them from all our further analyses.

Figure 5: Performance of traditional stylometric tech-
niques average similarity in ads for vendors within and
across Darknet datasets.

The low similarity scores within and across datasets
indicate the limited capabilities of traditional stylo-
metric frameworks and suggest the need for mathe-
matical models that can abstract features on higher
levels. The low scores also serve as a sanity check
indicating that vendors on Darknet use different
vocabulary and styles in their ads within and across
different markets, indicating the need for more pro-
found feature-abstraction techniques.

Algorithm 1: TextDistance-based algo-
rithm for computing stylometric similarity

Data: Alphabay (A), Dreams (D), and Silk
Road-1 (S)

Input: len(A), len(D), len(S) > 1, and
operation(Op)
∀Op ∈ [within, across]

Output: Average similarity

/* For computing similarity within

w and across a markets */

1 listw, lista = [], []

2 Def Similarity(textA, textB):
3 return normalized-mean(

Levenshtein(textA, textB),
jaccard(textA, textB),
obershelp(textA, textB) )

4 if Op == within then
/* Computing average similarity

for a vendor within a Darknet

market (say A) */

5 allVendors = uniqueVendors(A)
6 for vendor in allVendors do
7 for adA1 in A[vendor] do
8 for adA2 in A[vendor] do
9 listw.append(Similarity(adA1,

adA2))

10 averageSimilarity = MEAN(listw)

11 else
/* Computing average similarity

for a vendor across multiple

markets (say A and D) */

12 allVendors = commonVendors(A, D)
13 for vendor in allVendors do
14 for adA in A[vendor] do
15 for adD in D[vendor] do
16 lista.append(Similarity(adA,

adD))

17 averageSimilarity = MEAN(listacross)

A.1.2 Vendor Verification Task: Influence of
advertisement frequency and trade
categories on classifier’s performance

The Alphabay-Dreams-Silk Road dataset consists
of 272,696 unique ads and 3,896 vendors with 322
distinct categories. Table 9 illustrates the perfor-
mance of our established BERT-cased classifier for
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five vendors selling trades across the most distinct
categories and five vendors selling trades across
only one category. As can be seen, the classifier’s
performance remains unaffected (more or less) with
the number of trade categories and advertisement
frequencies. The consistent performance suggests
that despite the trade being conducted amongst dif-
ferent categories, Darknet vendors tend to advertise
their products similarly, allowing our classifier to
distinguish between unique writing styles from dif-
ferent vendors.

Vendor Ad Frequencies Categories F1-Score
googleyed 349 63 0.9340
etizolam 186 59 0.9462
gotmilk 842 48 0.9893
rinran 437 47 0.9816

uhrwerk 135 41 0.9925
citizen5 35 1 1.0000
corktech 35 1 0.9714
sabinas 26 1 0.9615

mrsupermario 24 1 0.9615
emperium 22 1 1.000

Table 9: F1-score w.r.t vendor advertisement frequency
and trade categories.

A.1.3 Applying Knowledge Transfer:
adapting to verify vendors from High
Resource (HR) emerging markets

Models Layer Micro-F1 Macro-F1
Zero-Shot Baselines

Architectural - 0.7305 0.2173
Methodological - 0.6498 0.1563

End-to-End Baselines
BERT-cased - 0.8750 0.8700
BiGRU-Fasttext - 0.6577 0.6539

Transfer Baselines

Transfer-
BiGRU

Embedding 0.6707 0.6698
Last 0.7061 0.7153
Second-to-Last 0.6992 0.6911
Weighted Sum All 12 0.6698 0.6703
Weighted Sum Last 4 0.8065 0.8177

Table 10: Performance of Zero-Shot, End-to-End, and
Transfer baselines on the Traderoute-Agora dataset.

GPU Models Trainable
parameters

Training Time
(Hrs:Mins)

Tesla-
V100

(32 GB)

BERT-cased 112M 32:30
BiGRU-Fasttext 31M 2:25
Transfer-BiGRU 42M 17:23

Table 11: Computational details of trained classifiers on
the Traderoute-Agora dataset.

In this research, we demonstrate the ability of
our approach to adapt and verify migrating ven-
dors from emerging LR markets using a compute-
efficient network (transfer-BiGRU). Similar to the

results presented in Section 5.3, tables 10 and 11
demonstrate the performance and computational
details of a transfer-BiGRU classifier on an HR
emerging, Traderoute-Agora, dataset. As can be
seen, despite the lesser trainable parameters and
training time, our transfer-BiGRU underperforms
compared to the end-to-end BERT-cased baseline.
Therefore, we do not claim that our knowledge
transfer approach scales to emerging vendors in
HR Darknet markets.

A.1.4 Seed Runs

Due to limited resource constraints, we only ana-
lyze the effects of different initializations on our
model’s performance for the established bench-
marks. As seen in Table 12, the standard deviation,
variance, and average performance suggest around
1% influence of initialization on the model’s perfor-
mance. We report all the performance in this work
based on our experiments conducted with a seed
value of 1111.

Seed
Value

BERT-cased
Alpha-Dreams-

Silk Dataset

BERT-cased
Valhalla-Berlusconi

Dataset

transfer-
BiGRU

40 0.8969 0.8039 0.7798
100 0.8824 0.8278 0.8005
500 0.8813 0.7837 17:23
1100 0.8861 0.8089 0.8019
1111 0.9013 0.8290 0.8132
Var. 6.46 x 10^{-5} 0.0002 0.0002
Std. 0.0080 0.0167 0.0143
Avg. 0.8896 0.8106 0.8035

Table 12: Influence of different initialization on macro-
F1 performance.

A.1.5 Model Explanations

We also conduct various word attributions-based
explainability experiments on our BERT-cased
methodological classifier to understand our
model’s decisions. Figure 6 illustrates the word
attributions of the same advertisement from a
vendor, "pckabml", generated through the captum
(Kokhlikyan et al., 2020) and transformers-
interpret (Pierse, 2021) frameworks. As can be
seen, despite the ads being the same, different
explainability frameworks generates different
word attributions causing inconsistency in our
explanations.
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Figure 6: Inconsistency in model explanations within
different explainability frameworks.

Figure 7: Inconsistency in model explanations for simi-
lar ads from the same vendor.

On the other hand, figure 7 illustrates the captum-
based word attributions for similar ads from a ven-
dor, "uridol". As can be seen, despite the similarity
in ads and generating explanations from the same
framework, we get different word attributions caus-
ing inconsistency in our explanations. We believe
that computing the word attributions through the
[CLS] token instead of the entire advertisement
could be one of the reasons for these inconsisten-
cies. While we do not clearly understand the rea-
soning behind the discrepancy in our explanations,
we plan to investigate it in the future.

A.2 Infrastructure & Schedule
Data: We perform our experiments using the
standard splitting ratio of 0.75:0.05:0.20 ratio for
the train, validation, and test dataset.

Training: We perform the training and evalua-
tion of our Neural Networks on a single Tesla V100
GPU with 32 GBs of memory. The training and
evaluation of statistical classifiers are performed
on a server with one Intel Xeon Processor E5-2698
v4 and 512 GBs of RAM. Finally, we train our dis-
tilled transfer-BiGRU model for the Low-Resource
setting on a GeForce-MX110 graphic card with 2
GBs of memory.
We use Adam optimizer with β1 = 0.9, β2 = 0.999,
L2 weight decay of 0.01, and a learning rate of
0.001 with warm-up over the first 500 steps, and a
linear decay.

Architectures & Hyperparameters 9: We train
all our statistical models using unigrams and bi-
grams features and balanced class weights. We
experiment SVMs with both linear and Radial ba-
sis function (RBF) kernels, Random Forest with
n_estimators of 100 and 1000, max_depth of 5,
10, and 20, and MLP with 100 layers and 100
neurons each. Finally, we evaluate our statistical
models on the test dataset using a 5-fold nested
cross-validation technique.

Our CNN architecture operates on sequences of
n-grams characters extracted from the Darknet ads.
We then pass the extracted embeddings through
six convolutional with max-pooling and three fully
connected layers. Inspired by (Zhang et al., 2016),
we kept the input length to 1,014, dropout to 0.5 for
the fully connected layers with 768 neurons each, a
kernel size of 7 in the first two convolutional layers
and 3 for the remaining layers. Finally, we set the
filter size to 32 and train our models with a batch
size of 32 until convergence.

The RNN architecture contains a two-layer
Bidirectional-GRU model with two fully connected
layers and fasttext embeddings. We first pack and
pad the input sequence with variable length through
a PyTorch function and then pass it to the embed-
ding layer. After generating the text representation
from the Bi-GRU layers, we finally pass the output
through a softmax layer and perform classification
over it. After some experimentations, we set the

9All the models are implemented in python (Van Rossum
and Drake Jr, 1995) using Sklearn (Pedregosa et al., 2011),
PyTorch (Paszke et al., 2019), and Hugging-face (Wolf et al.,
2020) frameworks.
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number of hidden units to 768, dropout to 0.65,
batch size to 32, and trained the model until con-
vergence.

Finally, we train several transformers mod-
els (BERT-base-cased, BERT-base-uncased,
RoBERTa-base, and DistilBERT-base-cased) with
a sequence classification head on top at a batch
size of 32 10 for 40 epochs (due to computational
reasons) for the architectural baselines and till
convergence for the methodological baselines.
We also train a BERT-base-uncased model
on the language task for 20 epochs. All the
transformer-based architectures are initialized
from a pre-trained model checkpoint.

Computational Details: Tables 13 and 14
presents details about the number of trainable pa-
rameters and execution time for all the trained mod-
els in the architectural and methodological base-
lines.

Models (trained on Trainable Training
Dreams data) parameters time in hrs.
Multinomial
Naive Bayes - 53:56

Random Forest - 68:27
Logistic Regression - 79:42

SVM - 81:08
MLP - 94:18

Character-CNN 16M 0:54
GRU-Fasttext 39M 1:12

BERT 110M 25:14
RoBERTa 125M 23:40

DistilBERT 68M 17:57

Table 13: Number of trainable parameters and training
time for architectural baselines.

Models (trained on Trainable Training
Alphabay-Dreams parameters time in hrs.
-Silk Road dataset)

BERT-uncased 111M 67:02
BERT-cased 112M 66:58

DarkBERT-LM 108M 156:14
DarkBERT Classifier 112M 49:39

Adapter BERT 4M 51:00

Table 14: Number of trainable parameters and training
time for methodological baselines.

10The maximum batch size allowed by our resources with-
out running into memory issues.

Evaluation Metrics: We evaluate our trained
classifiers against accuracy, micro-average F1, and
macro-average F1 (commonly known as macro-F1
and micro-F1) using the classification report from
scikit-learn. We argue that macro-F1 computes the
score independently for each class and then takes
the average (treating majority and minority classes
equally). Given the class imbalance we have in our
dataset, we heavily emphasize our trained models’
performance on macro-F1 scores. Furthermore, we
evaluate the BERT-base language model on loss
and perplexity. Finally, we use Centered Kernel
Alignment (CKA) to evaluate and compute corre-
spondences between our methodological baseline
representations before and after finetuning.

A.3 CKA Algorithm

Algorithm 2: Computing CKA similarity
between layers of BERT classifier

Data: Alphabay (A), Dreams (D), and Silk
Road-1 (S)

Input: len(A), len(D), len(S) > 1
Output: CKA similarity

1 similarity = []
2 X ← A+D + S
3 N ← len(X)

4 Def CKA(EmbA, EmbB):
/* Embedding shape :- (N, 13,

512, 768) */

/* Extracting embeddings from

the CLS token */

5 α← CLS(EmbA)
6 β ← CLS(EmbB)

7 CKARBF (αβ)← ⟨Kα,Kβ⟩F
||Kα||F ||Kβ ||F

8 return CKARBF (αβ)

/* Extracting embeddings for the

Darknet ads before and after

training of BERT classifier */

9 EmbA ← BERTClassifierbefore(X)
EmbB ← BERTClassifierafter(X)

/* Computing similarity between

layers :- 13x13 matrix */

10 CKALayers ← CKA(EmbA, EmbB)
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