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Abstract

This paper describes Tencent’s multilingual
machine translation systems for the WMT22
shared task on Large-Scale Machine Transla-
tion Evaluation for African Languages. We par-
ticipated in the constrained translation track
in which only the data and pretrained models
provided by the organizer are allowed. The
task is challenging due to three problems, in-
cluding the absence of training data for some
to-be-evaluated language pairs, the uneven op-
timization of language pairs caused by data
imbalance, and the curse of multilinguality. To
address these problems, we adopt data augmen-
tation, distributionally robust optimization, and
language family grouping, respectively, to de-
velop our multilingual neural machine transla-
tion (MNMT) models. Our submissions won
the 1st place on the blind test sets in terms of
the automatic evaluation metrics.1

1 Introduction

Multilingual neural machine translation (MNMT)
aims to translate between multiple language pairs
with a unified model (Johnson et al., 2017). It
is appealing due to the model efficiency, easy de-
ployment, and knowledge transfer between high
resource languages and low resource languages.
Hence, MNMT has attracted more and more atten-
tion from both academia and industry. To improve
the performance of MNMT models, previous re-
searchers have proposed various approaches on
advanced model architectures (Sen et al., 2019;
Zhang et al., 2021), training strategies (Wang et al.,
2020a,b), and data utilization (Siddhant et al., 2020;
Wang et al., 2022). In addition, industrial compa-
nies have released massive multilingual pretrained
models (Tang et al., 2021) and large-scale multi-
lingual translation models (Fan et al., 2021; Team

1Codes, models, and detailed competition results
are available at https://github.com/wxjiao/
WMT2022-Large-Scale-African.

et al., 2022) to facilitate translation among hun-
dreds of languages. However, existing efforts on
MNMT for African languages are not sufficient
due to the lack of high quality and standardized
evaluation benchmarks.

In this paper, we build a system integrating
several advanced approaches for WMT22 Large-
Scale Machine Translation Evaluation Task (Ade-
lani et al., 2022), which involves a set of 24 African
languages. We participated in the Constrained
Translation track, where only the data provided by
the organizer are allowed. This task is challenging
due to three potential problems:

• The absence of training data for some to-be-
evaluated language pairs;

• The uneven optimization of language pairs due
to data imbalance;

• The curse of multilinguality in MNMT models
caused by the hundreds of language pairs.

For the first problem, we adopt data augmenta-
tion techniques to construct synthetic data for the
language pairs without parallel training data (§3.1).
Specifically, we use back-translation (Sennrich
et al., 2016) and self-training (Jiao et al., 2021),
and attach a special tag to the synthetic side of the
data. For the second issue, we utilize distribution-
ally robust optimization (DRO) method (Oren et al.,
2019; Zhou et al., 2021) to balance the optimization
process for different translation directions (§3.2).
For the third issue, we isolate the potential con-
flicts between language pairs by language family
grouping and finetune a model for each language
group (§3.3).

Experimental results show that our system can
significantly improve the performance of vanilla
MNMT models, from 15.50 to 17.95 BLEU
points (§4.2). Extensive analysis suggests that data
augmentation could be harmful to the translation
performance if used for training the final models
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Table 1: Information of language groups and the corresponding language pairs. We include additional 36 language
pairs (bolded) to help the long-tail languages.

Group Language Pairs (73)(117)

ENGC afr-eng,amh-eng,eng-fra,eng-fuv,eng-hau,eng-ibo,eng-kam,eng-kin,eng-lug,eng-luo,eng-nso,eng-nya,eng-
orm,eng-sna,eng-som,eng-ssw,eng-swh,eng-tsn,eng-tso,eng-umb,eng-xho,eng-yor,eng-zul,(23),eng-lin,
eng-wol,(25)

FRAC fra-kin,fra-lin,fra-swh,fra-wol,(4),amh-fra,fra-kam,fra-lug,fra-luo,fra-orm,fra-umb,(10)
SSEA afr-nso,afr-sna,afr-ssw,afr-tsn,afr-xho,afr-tso,afr-zul,nso-sna,nso-ssw,nso-tsn,nso-xho,nso-tso,nso-zul,sna-

ssw,sna-tsn,sna-xho,sna-tso,sna-zul,ssw-tsn,ssw-xho,ssw-tso,ssw-zul,tsn-xho,tsn-tso,tsn-zul,tso-xho,tso-
zul,xho-zul, (28)

HCEA amh-luo,amh-orm,amh-som,amh-swh,luo-orm,luo-som,luo-swh,orm-som,orm-swh,som-swh, (10)

NGG fuv-hau,fuv-ibo,fuv-yor,hau-ibo,hau-yor,ibo-yor, (6)

CA kin-lin,kin-lug,kin-nya,kin-swh, lin-lug,lin-nya,lin-swh,lug-nya,lug-swh,nya-swh, (10)

OTHER fuv-kin,fuv-nya,fuv-som,fuv-zul,kam-nya,kam-sna,kam-som,kam-swh,kam-tso,kam-zul,kin-yor,lug-
sna,lug-zul,luo-nya,luo-sna,luo-zul,nya-umb,nya-yor,sna-umb,sna-yor,som-wol,som-yor,swh-umb,swh-
yor,tso-yor,umb-zul,xho-yor,yor-zul,(28)

directly, due to the error-prone synthetic sentence
pairs. Instead, we utilize the resulting MNMT mod-
els as pretrained models to further finetune on clean
datasets for the final models. The DRO technique is
very effective in improving the translation quality
across all language pairs, particularly on the domi-
nant languages (e.g., eng and fra), which also calls
for an improved DRO to benefit more on other
languages. As for language family grouping, it
especially improves the translation quality on one-
to-many translations, which demonstrates its effec-
tiveness in alleviating the curse of multilinguality
issue. Finally, our submission won the 1st place
in the official evaluation in terms of the automatic
evaluation metrics.

2 Data

In this section, we present the details of our data
preparation.

2.1 Language Pairs

We utilize all available datasets from the official
website (including those from the Data Track par-
ticipants)2, which provide either monolingual or
parallel sentences. According to the evaluation
instruction, we group the language pairs into 7
groups, namely, English-Centric (ENGC), French-
Centric (FRAC), South/South East Africa (SSEA),
Horn of Africa and Central/East Africa (HCEA),
Nigeria and Gulf of Guinea (NGG), Central Africa
(CA), and Other related pairs (OTHER), to train the
MNMT models. Details are listed in Table 1.

2https://www.statmt.org/wmt22/
large-scale-multilingual-translation-task.
html

We consider three subsets of language pairs for
training different models:

• Base-146: We train the TRANSF-DEEP (§4.1)
models on the to-be-evaluated language pairs
in the first 6 groups, as well as the English-
French (i.e., eng-fra) pair. In total, there are
81 language pairs but only 73 of them are pro-
vided with bitext data, which cover 146 transla-
tion directions (i.e., including both forward and
backward).

• Large-234: The main issues of Base-146 are
that, some to-be-evaluated language pairs (e.g.,
afr-nso) are missing in the training data and some
languages are heavily long-tailed due to the im-
balanced choice of language pairs. To allevi-
ate these issues, we extend another 36 language
pairs for the long-tail languages and construct
synthetic data for all the language pairs in ENGC,
SSEA, HCEA, NGG and CA, which enables
the training on 234 translation directions. We
use these language pairs to train the TRANSF-
DWIDE (§4.1) models.

• Eval-106: The official evaluation includes 100
translation directions3, which were notified at the
later stage of the competition. We focus on these
directions by finetuning the TRANSF-DWIDE

models on these directions. To ensure the data
amount of each language, we include all ENGC
directions, making the final 106 directions.

3https://docs.google.com/document/d/
11NYyJpJ4nhNIllwmF5kjkqfkaaEzXNU-CCO5E64MRDU/
edit
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Figure 1: Number of sentences in each language and the upsampled distribution with the smoothing rate of α = 0.3.

2.2 Data Preprocessing
We preprocess the raw and potentially noisy data
by four steps, namely, reformatting, deduplication,
language detection, and length limitation. Details
are elaborated as below.

Reformatting. The raw data is stored in various
alignment structures, including HTML, JSON, and
special spacing. To reduce data noise, we refor-
mat all data into a line-by-line tight structure and
realign those missing paired ones.

Deduplication. We remove the duplicated sen-
tences (pairs) in each monolingual and parallel
dataset. This aims to reduce information redun-
dancy so that the MNMT models can be trained
more efficiently.

Language Detection. Previous studies suggest
that incorrect languages in training data induce
translation uncertainty for both bilingual (Ott et al.,
2018) and multilingual (Wang et al., 2022) NMT
models. Therefore, we conduct language detec-
tion for all the datasets using langid4. Since
langid neither supports all African languages
nor performs well when distinguishing two African
languages, we adopt a simplified strategy: for the
African datasets, we remove sentences (pairs) that
are identified as languages other than the 24 desig-
nated African languages. In other words, sentences
(pairs) in one African language identified as an-
other African language are also considered valid.
For English and French datasets, we strictly restrict
the correct languages as themselves, i.e., English
and French, respectively.

Length Limitation. After multilingual tokeniza-
tion, we conduct further filtering and retain sen-
tence pairs with tokens between 4 (Wu et al., 2019)

4https://github.com/saffsd/langid.py

and 512 (Yang et al., 2021), as well as the length
ratio below 3.

2.3 Multilingual Tokenization

To tokenize the multilingual sentences, we fol-
low (Conneau et al., 2020) to train a Sentence
Piece Model (SPM) and apply it directly on the
preprocessed text data for all languages. However,
the distribution of data across languages is heavily
long-tailed, as shown in Figure 1. To balance the
vocabulary bandwidth between high-resource and
low-resource languages, we follow Conneau et al.
(2020) to upsample the low-resource languages
with a smoothing rate of α = 0.3 over the original
distribution when training the SPM model. We use
a shared vocabulary with 128K tokens for the 26
languages, and also append 32 special tokens (i.e.,
“TBD0” to “TBD31”) for including extra tasks or
data (e.g., tagged-BT (Caswell et al., 2019)).

3 Approach

3.1 Data Augmentation

We adopt data augmentation (DA) to address the
first challenge, i.e., “ The absence of training data
for some to-be-evaluated language pairs”.

Specifically, we use back-translation (BT) (Sen-
nrich et al., 2016) and self-training (ST) (Jiao et al.,
2020, 2021, 2022) to construct synthetic data. How-
ever, previous study by Caswell et al. (2019) sug-
gests that the translationese issue in BT limits the
performance, which can be mitigated with a special
tag at source side (i.e., tagged-BT). To simplify the
tagging procedure for the two opposite directions
of each language pair, we use both BT and ST for
each language pair (Wu et al., 2019) and append a
special token at the synthetic side of sentence pairs.
Formerly, for a language pair (S, T ) with the bitext
data {x,y}, the synthetic data by BT and ST will
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be {[x′; ⟨DA⟩],y} and {x, [y′; ⟨DA⟩]}, where ⟨DA⟩
denotes the special tag for data augmentation.

We conduct data augmentation for both English-
centric and non English-centric language pairs. For
English-centric language pairs, we randomly sam-
ple up to 1.0M English and non-English monolin-
gual sentences from the training corpora for BT
and ST, respectively. As for non English-centric
language pairs, we translate the English side of
English-centric pairs to non-English languages and
construct up to 0.5M BT and ST sentence pairs,
respectively. Generally, the augmented data is in-
cluded in Large-234 to train the MNMT models.
However, the translation quality of those English-
centric directions is also unreliable due to the lim-
ited data sizes, which may harm the performance
of subsequent MNMT models. Besides, adding
more synthetic data and language directions also
slows down the convergence of the MNMT models.
Instead, we use the resulting MNMT models as
backbones to finetune on the clean datasets.

3.2 Distributionally Robust Optimization
We adopt the distributionally robust optimiza-
tion (DRO) (Oren et al., 2019; Zhou et al., 2021)
technique to address the second challenge, i.e.,
“The uneven optimization of language pairs due
to data imbalance ”.

Generally, temperature-based sampling (Ari-
vazhagan et al., 2019; Conneau et al., 2020) is
adopted to balance the training data across lan-
guage pairs, which samples data from the smoothed
data distribution as, pτ,i = |Di|1/τ∑

j |Dj |1/τ . This is

equivalent to optimizing the re-weighted objective:

Lτ (θ;Dtrain) =
∑

i≤N

pτ,iL(θ;Di), (1)

where |Di| is the training data size of the i-th lan-
guage pair, and τ denotes the temperature rate. Ob-
viously, τ = 1 corresponds to the original data
distribution while τ = ∞ represents uniform sam-
pling. In practice, τ > 1 is adopted to oversam-
ple the low-resource language pairs, which signifi-
cantly affects the results and needs to be tuned for
different settings.

Even if we can build a completely balanced
dataset across language pairs, the varied task dif-
ficulty and cross-lingual similarity determine that
the language pairs will still be optimized unevenly.
DRO can address such a problem. In contrast
to temperature sampling which optimizes over a

Table 2: Language family grouping.

Group Target Languages

1 eng, fra
2 afr, nso, sna, ssw, tsn, tso, xho, zul
3 amh, luo, orm, som, swh, wol
4 fuv, hau, ibo, yor
5 kam, kin, lin, lug, nya, swh, umb

fixed training data distribution, DRO aims to find
a model θ that can perform well on an entire set
of potential test distributions, i.e., U(ptrain), which
is usually called uncertainty set. We adopt DRO
with the χ2-uncertainty set introduced by Zhou
et al. (2021), and reproduce the implementation for
the practical many-to-many translation scenario.5

Similarly, we also incorporate the baseline losses
calculated from a pretrained MNMT model to sta-
bilize the training process of DRO.

3.3 Language Family Grouping
We adopt language family grouping (LFG) to al-
leviate the third challenge, i.e., “ The curse of
multilinguality” (Conneau et al., 2020).

Specifically, we divide the target languages into
5 groups ( see Table 2) based on Table 1. This is par-
tially inspired by Eriguchi et al. (2022), which fac-
torizes the many-to-many translation scenario (with
N ×N directions) into N many-to-one scenarios
by training a translation model for each. Since we
have 26 languages involved in this shared task, fac-
torizing the many-to-many scenario by the family
of target languages is a more efficient choice. Since
swh appears in both HCEA and CA, we include it
in both Group-2 and Group-5 for training models.
During inference, our scripts will automatically se-
lect the model of corresponding group according to
the target language to be evaluated. Note that swh
is only routed to Group-2 in inference.

4 Experiments

4.1 Settings
Model. We adopt the standard sequence-to-
sequence Transformer (Vaswani et al., 2017) as
our architecture. For the Base-146 scale, we use a
deep encoder of 24 layers and a relatively shallow
decoder of 12 layers (Yang et al., 2021), with an
embedding size of 1024, the feed-forward network

5The referred study only supports one-to-many and many-
to-one translation scenarios on very small multilingual trans-
lation datasets.
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Table 3: Evaluation results of our models on the devtest in terms of BLEU and ChrF++.

Model X-ENG ENG-X X-FRA FRA-X X-X ALL

22 22 4 4 48 100

TRANSF-DEEP 23.37/46.80 17.19/41.07 20.20/43.18 16.07/41.93 10.69/33.90 15.50/39.01
BORDERLINE-DEEP 25.87/48.83 18.24/42.05 22.31/44.91 16.74/42.32 11.66/34.89 16.86/40.23
BORDERLINE-DWIDE 28.11/51.30 19.02/42.92 24.74/47.58 17.22/43.23 12.03/34.94 17.82/41.13
BORDERLINE-DWIDE w/ LFG 28.26/51.37 19.38/43.37 24.87/47.74 17.48/43.72 12.04/35.01 17.95/41.31

size of 4096, and 16 attention heads (i.e., 0.59B
parameters). To stabilize the training of deep mod-
els, we follow Wang et al. (2019) to use pre-layer-
normalization (PLN) for both encoder and decoder
layers. For the Large-234 scale, we enlarge the
embedding size to 1536 to support more language
pairs, which results in 1.02B parameters. By de-
fault, we call these two models as TRANSF-DEEP

and TRANSF-DWIDE. The final models developed
by our approaches are renamed as BORDERLINE-
DEEP and BORDERLINE-DWIDE for clarity.

Training. We train the MNMT models with the
Adam optimizer (Kingma and Ba, 2014) (β1 =
0.9, β2 = 0.98). The learning rate is set as 1e-4
with a warm-up step of 4000, followed by inverse
square root decay. The models are trained with a
dropout rate of 0.1 and a label smoothing rate of
0.1. All experiments are conducted on 32 NVIDIA
A100 GPUs. Since the bitext data (≈130M) for this
year’s shared task is less than 1/10 of that for last
year’s (≈1.7B), we decide a batch size to be about
1/10 of that used in (Yang et al., 2021). Specifically,
we use 2048 max-tokens per GPUs and accumulate
the gradients for every 8 steps to simulate the large
batch size of 512K tokens. For language family
grouping, we use the batch size of 131K tokens
for each model. For translation models trained by
empirical risk minimization (ERM) on the original
training data, we upsample low-resource language
pairs with the smoothing rate α = 0.3 (Conneau
et al., 2020). For those by DRO, we adopt the
χ2-uncertainty set with the distribution divergence
bounded by ρ = 0.1. We use the ERM model
to calculate the baseline losses for DRO. We train
these two kinds of models for at least 100K updates,
upon which we may finetune for additional updates.

Evaluation. We use the dev and devtest of Flores-
200 benchmark6 as our validation and test sets,
and evaluate the MNMT models on the averaged
last 10 checkpoints with sentencepiece BLEU and

6https://github.com/facebookresearch/
flores/tree/main/flores200

ChrF++. The sentencepiece model for evaluation
also comes from the Flores-200 benchmark. The
beam search process is performed with a beam
size of 4 and a length penalty of 1.0. Similar as
the official competition results, we report our re-
sults by average-to-eng (X-ENG), average-from-
eng (ENG-X), average-to-fra (X-FRA), average-
from-fra (FRA-X), average-african-to-african (X-
X), and the average for ALL translation directions.

4.2 Results

We list the evaluation results of our final mod-
els on the devtest in Table 3. Both the base-
line model TRANSF-DEEP and our BORDERLINE-
DEEP model are trained for 200K updates, while
the two BORDERLINE-DWIDE models are trained
or finetuned for more than 300K updates.

Generally, our models outperform the baseline
TRANSF-DEEP model significantly by up to +2.45
BLEU and +2.30 ChrF++ scores. By looking into
each category, we have some interesting findings:

• By comparing BORDERLINE-DEEP and
TRANSF-DEEP, we find that the improvement
on X-ENG is much larger than that on ENG-X.
Similar phenomenon is also observed for X-FRA

and FRA-X. It suggests that while DRO can
achieve even improvement for one-to-many or
many-to-one scenarios (Zhou et al., 2021), it is
heavily biased by the dominant languages (i.e.,
eng and fra) in the many-to-many scenario.

• By comparing BORDERLINE-DWIDE and
BORDERLINE-DEEP, we find that enlarging the
model capacity brings improvement to all cate-
gories but the most on X-ENG and X-FRA. It
indicates that the curse of multilinguality cannot
be well solved by simply increasing model ca-
pacity as the most benefits are still occupied by
the dominant languages (i.e., eng and fra).

• Language family grouping (LFG) achieves more
improvement on ENG-X and FRA-X than on the
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Table 4: Official evaluation results of submissions on the blind test sets in terms of BLEU and ChrF++.

Submissions X-ENG ENG-X X-FRA FRA-X X-X ALL

#Lang-pairs 22 22 4 4 48 100

IIAI
Primary 23.15/43.88 12.80/37.52 18.35/41.08 13.08/38.70 2.58/19.52 10.40/30.47

GMU
Language 25.83/46.50 12.00/35.33 20.83/42.45 10.53/33.58 7.70/29.94 13.28/35.42
Family 25.88/46.55 11.98/35.30 20.73/42.30 10.75/34.03 7.68/29.92 13.28/35.42

Borderline (Ours)
Contrastive 25.84/47.46 13.85/39.05 21.00/44.10 13.85/39.58 8.03/30.93 13.98/37.23
Primary 26.05/47.56 14.06/39.53 21.13/44.05 14.05/40.10 8.04/31.04 14.09/37.42

Table 5: Ablation study of our models with various
strategies on the devtest. CT: continuous training; FT:
finetuning; T-Enc: target language tags at encoder; LFG:
language family grouping.

ID Model Step BLEU ∆

1⃝ TRANSF-DEEP 100K 15.03 -/-
2⃝ + CT 100K 15.50 +0.47
3⃝ + FT on large-234 100K 14.65 -0.38
4⃝ + DRO 100K 16.71 +1.68
5⃝ + CT 100K 16.86 +1.83
6⃝ + T-Enc 100K 16.67 +1.64

7⃝ TRANSF-DWIDE 100K 14.66 -/-
8⃝ + DRO 100K 15.81 +1.15
9⃝ + FT on base-146 200K 17.62 +2.96

10⃝ + FT on eval-106 50K 17.82 +3.16
11⃝ + LFG -/- 17.95 +3.29

other categories, which confirms its effectiveness
in alleviating the curse of multilingualty issue.

Ablation Study. We present detailed ablation
studies to investigate the effectiveness of various
strategies, not only the three introduced in §3 but
also some tricks. The results are listed in Table 5,
where the lines marked in blue (i.e., 2⃝, 5⃝, 10⃝
and 11⃝) correspond to the four models in Table 3.
We list our observations as below:

• 3⃝ vs. 2⃝: Directly finetuning the TRANSF-DEEP

model on the Large-234 dataset induces the
performance drop. One possible reason is that
Large-234 introduces much more translation di-
rections, aggravating the curse of multilinguality
issue. Another reason is the low-quality data
by data augmentation (§3.1), which harms the
optimization of models. Therefore, we only
use Large-234 to pretrain the TRANSF-DWIDE

model and then finetune on the cleaner Base-146
and Eval-106 datasets.

• 6⃝ vs. 5⃝: Previous studies (Wang et al., 2022)
suggest that attaching target language tags at

encoder (i.e., T-Enc) benefits the zero-shot trans-
lation performance, indicating a stronger cross-
lingual transfer ability. However, we do not see
any improvement of our models with T-Enc. The
reason could be that, traditional studies on many-
to-many translations are mainly conducted on
the datasets with only one central language while
we are now handling multiple central languages,
making it a more complex scenario.

• 9⃝ vs. 10⃝ vs. 11⃝: Finetuning on Eval-106 slightly
outperforms that on Base-146 and the perfor-
mance can be further improved with language
family grouping. Obviously, as we reduce the
language pairs involved in a single model, the
curse of multilinguality is alleviated.

Submissions. The BORDERLINE-DWIDE and
BORDERLINE-DWIDE w/ LFG models shown in
Table 3 (i.e., contrastive and primary versions) are
submitted for official evaluation on the blind test
sets. Table 4 summarizes the evaluation results
of our submissions, where our models outperform
the other teams’ across all the evaluation groups.
Finally, we achieve the 1st place in this track.

5 Conclusion

In this paper, we describe Tencent’s multilingual
machine translation systems for the WMT22 shared
task on Large-Scale Machine Translation Evalua-
tion for African Languages. We address three key
challenges of this task by data augmentation, dis-
tributionally robust optimization (DRO), and lan-
guage family grouping, respectively, to develop
our MNMT models. Our submissions won the 1st
place in the constrained track. Extensive analy-
ses also point out the drawbacks of larger models
and DRO in addressing the curse of multilinguality,
which warrants further research in the future.
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