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Abstract

The widespread use of Artificial Intelligence
(AI) in consequential domains, such as health-
care and parole decision-making systems, has
drawn intense scrutiny on the fairness of these
methods. However, ensuring fairness is of-
ten insufficient as the rationale for a con-
tentious decision needs to be audited, under-
stood, and defended. We propose that the at-
tention mechanism can be used to ensure fair
outcomes while simultaneously providing fea-
ture attributions to account for how a deci-
sion was made. Toward this goal, we design
an attention-based model that can be lever-
aged as an attribution framework. It can iden-
tify features responsible for both performance
and fairness of the model through attention in-
terventions and attention weight manipulation.
Using this attribution framework, we then de-
sign a post-processing bias mitigation strategy
and compare it with a suite of baselines. We
demonstrate the versatility of our approach by
conducting experiments on two distinct data
types, tabular and textual.

1 Introduction

Machine learning algorithms that optimize for per-
formance (e.g., accuracy) often result in unfair
outcomes (Mehrabi et al., 2021). These algorithms
capture biases present in the training datasets caus-
ing discrimination toward different groups. As
machine learning continues to be adopted into
fields where discriminatory treatments can lead to
legal penalties, fairness and interpretability have
become a necessity and a legal incentive in ad-
dition to an ethical responsibility (Barocas and
Selbst, 2016; Hacker et al., 2020). Existing
methods for fair machine learning include apply-
ing complex transformations to the data so that
resulting representations are fair (Gupta et al.,
2021; Moyer et al., 2018; Roy and Boddeti, 2019;
Jaiswal et al., 2020; Song et al., 2019), adding reg-
ularizers to incorporate fairness (Zafar et al., 2017;
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Kamishima et al., 2012; Mehrabi et al., 2020), or
modifying the outcomes of unfair machine learn-
ing algorithms to ensure fairness (Hardt et al.,
2016), among others. Here we present an alter-
native approach, which works by identifying the
significance of different features in causing unfair-
ness and reducing their effect on the outcomes us-
ing an attention-based mechanism.

With the advancement of transformer mod-
els and the attention mechanism (Vaswani et al.,
2017), recent research in Natural Language Pro-
cessing (NLP) has tried to analyze the effects and
the interpretability of the attention weights on the
decision making process (Wiegreffe and Pinter,
2019; Jain and Wallace, 2019; Serrano and Smith,
2019; Hao et al., 2021). Taking inspiration from
these works, we propose to use an attention-based
mechanism to study the fairness of a model. The
attention mechanism provides an intuitive way to
capture the effect of each attribute on the out-
comes. Thus, by introducing the attention mech-
anism, we can analyze the effect of specific input
features on the model’s fairness. We form visu-
alizations that explain model outcomes and help
us decide which attributes contribute to accuracy
vs. fairness. We also show and confirm the ob-
served effect of indirect discrimination in previ-
ous work (Zliobaite, 2015; Hajian and Domingo-
Ferrer, 2013; Zhang et al., 2017) in which even
with the absence of the sensitive attribute, we can
still have an unfair model due to the existence of
proxy attributes. Furthermore, we show that in
certain scenarios those proxy attributes contribute
more to the model unfairness than the sensitive at-
tribute itself.

Based on the above observations, we propose
a post-processing bias mitigation technique by di-
minishing the weights of features most respon-
sible for causing unfairness. We perform stud-
ies on datasets with different modalities and show
the flexibility of our framework on both tabu-
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lar and large-scale text data, which is an advan-
tage over existing interpretable non-neural and
non-attention-based models. Furthermore, our ap-
proach provides a competitive and interpretable
baseline compared to several recent fair learning
techniques.

2 Approach

In this section, we describe our classification
model that incorporates the attention mechanism.
It can be applied to both text and tabular data and
is inspired by works in attention-based models in
text-classification (Zhou et al., 2016). We incor-
porate attention over the input features. Next, we
describe how this attention over features can at-
tribute the model’s unfairness to certain features.
Finally, using this attribution framework, we pro-
pose a post-processing approach for mitigating un-
fairness.

In this work, we focus on binary classifica-
tion tasks. We assume access to a dataset of
triplets D = {xi,yi,ai}f\il, where x;,y;,a; are
iid. samples from data distribution p(x,y,a).
a € {ay,...a;} is a discrete variable with [ pos-
sible values and denotes the sensitive or protected
attributes with respect to which we want to be fair,
y € {0,1} is the true label, x € R™ are fea-
tures of the sample which may include sensitive
attributes. We use g, to denote the binary out-
come of the original model, and §* will represent
the binary outcome of a model in which the at-
tention weights corresponding to k™ feature are
zeroed out. Our framework is flexible and gen-
eral that it can be used to find attribution for any
fairness notion. More particularly, we work with
the group fairness measures like Statistical Par-
ity (Dwork et al., 2012), Equalized Odds (Hardt
et al., 2016), and Equality of Opportunity (Hardt
et al., 2016), which are defined as:!

Statistical Parity Difference (SPD):

SPD(y,a) =max |P(y =1|a=a;)

a;,a;
—P(y =1]a=aq)|
Equality of Opportunity Difference (EqOpp):

EqOpp(¥,a,y) =max|P(y =1|a=a;,y = 1)
a;,a;

—Ply=1la=a;y=1)

"We describe and use the definition of these fairness mea-
sures as implemented in Fairlearn package (Bird et al., 2020).

General Model Attribution Framework
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(a) Classification model.  (b) Attribution framework.

Figure 1: (a) In general classification model, for each
feature fi a vector representation ey of length d° is
learned. This is passed to the attention layer which
produces a d®-dimensional vector representation for the
sample instance ¢ which is passed to two dense layers
to get the final classification output. (b) The Attribu-
tion framework has the same architecture as the general
model. One outcome is obtained through the original
model and another through the model that has some
attention weights zeroed. The observed difference in
accuracy and fairness measures will indicate the effect
of the zeroed out features on accuracy and fairness.

Equalized Odds Difference (EqOdd):
EqOdd(y,a,y) = max max |[P(y=1|a=ai,y =v)
a;,a; ye{0,1}

—-P(y=1la=a;y=y)

2.1 General Model: Incorporating Attention
over Inputs in Classifiers

We consider each feature value as an individ-
ual entity (like the words are considered in text-
classification) and learn a fixed-size embedding
{ex},, exr € R for each feature, {f;}7,.
These vectors are passed to the attention layer.
The Computation of attention weights and the final
representation for a sample is described in Eq. 1.
E = [e1...em], E € R¥*™ is the concatena-
tion of all the embeddings, w € R% is a learnable
parameter, » € RY denotes the overall sample
representation, and o € R™ denotes the attention
weights.

H = tanh(E); a = softmax(w” H);r = tanh(EaT)
1
The resulting representation, r, is passed to
the feed-forward layers for classification. In this

work, we have used two feed-forward layers (See
Fig. 1 for overall architecture).

2.2 Fairness Attribution with Attention

The aforementioned classification model with the
attention mechanism combines input feature em-
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Algorithm 1: Bias Mitigation by Attention

1 Input: decay rate d, (0 < d, < 1), n test
samples indexed by variable .

2 Output: final predictions, unfair features.

3 Calculate the attention weights ay; for kth
feature in sample ¢ using the attention
layer as in Eq. 1.

unfair_feature_set = { }

for each feature (index) k do

if SPD(y,,a) — SPD(y*,a) > 0 then

unfair_feature_set =

unfair_feature_set U {k}

DS - Y

8 end

9 end

for each feature (index) k do

if k in unfair_feature_set then

Set a; « (dy X ;) for all n
samples

10
11
12

13 end

end
Use new attention weights to obtain the
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final predictions Y.

16 return Y, unfair_feature_set

beddings by taking a weighted combination. By
manipulating the weights, we can intuitively cap-
ture the effects of specific features on the out-
put. To this end, we observe the effect of each
attribute on the fairness of outcomes by zeroing
out or reducing its attention weights and recording
the change. Other works have used similar ideas to
understand the effect of attention weights on accu-
racy and evaluate interpretability of the attention
weights by comparing the difference in outcomes
in terms of measures such as Jensen-Shannon Di-
vergence (Serrano and Smith, 2019) but not for
fairness. We are interested in the effect of features
on fairness measures. Thus, we measure the dif-
ference in fairness of the outcomes based on the
desired fairness measure. A large change in fair-
ness measure and a small change in performance
of the model would indicate that this feature is
mostly responsible for unfairness, and it can be
dropped without causing large impacts on perfor-
mance. The overall framework is shown in Fig. 1.
First, the outcomes are recorded with the origi-
nal attention weights intact (Fig. 1a). Next, at-
tention weights corresponding to a particular fea-
ture are zeroed out, and the difference in perfor-
mance and fairness measures is recorded (Fig. 1b).
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Based on the observed differences, one may con-
clude how incorporating this feature contributes to
fairness/unfairness.

To measure the effect of the k" feature on
different fairness measures, we consider the dif-
ference in the fairness of outcomes of the origi-
nal model and model with k%" feature’s effect re-
moved. For example, for statistical parity differ-
ence, we will consider SPD(y,,a) — SPD(y*, a).
A negative value will indicate that the k" feature
helps mitigate unfairness, and a positive value will
indicate that the k*" feature contributes to unfair-
ness. This is because §¥ captures the exclusion
of the k*" feature (zeroed out attention weight for
that feature) from the decision-making process. If
the value is positive, it indicates that not having
this feature makes the bias lower than when we
include it. Notice here, we focus on global attri-
bution, so we measure this over all the samples;
howeyver, this can also be turned into local attribu-
tion by focusing on individual sample ¢ only.

2.3 Bias Mitigation by Removing Unfair
Features

As discussed in the previous section, we can iden-
tify features that contribute to unfair outcomes ac-
cording to different fairness measures. A simple
technique to mitigate or reduce bias is to reduce
the attention weights of these features. This mit-
igation technique is outlined in Algorithm 1. In
this algorithm, we first individually set attention
weights for each of the features in all the sam-
ples to zero and monitor the effect on the desired
fairness measure. We have demonstrated the algo-
rithm for SPD, but other measures, such as EqOdd,
EqOpp, and even accuracy can be used (in which
case the “unfair_feature_set” can be re-named to
feature set which harms accuracy instead of fair-
ness). If the k*" feature contributes to unfairness,
we reduce its attention weight using decay rate
value. This is because y* captures the exclusion
of the k*" feature (zeroed attention weight for that
feature) compared to the original outcome y, for
when all the feature weights are intact; otherwise,
we use the original attention weight. We can also
control the fairness-accuracy trade-off by putting
more attention weight on features that boost accu-
racy while keeping the fairness of the model the
same and down-weighting features that hurt accu-
racy, fairness, or both.

This post-processing technique has a couple of



advantages over previous works in bias mitigation
or fair classification approaches. First, the post-
processing approach is computationally efficient
as it does not require model retraining to ensure
fairness for each sensitive attribute separately. In-
stead, the model is trained once by incorporating
all the attributes, and then one manipulates atten-
tion weights during test time according to particu-
lar needs and use-cases. Second, the proposed mit-
igation method provides an explanation and can
control the fairness-accuracy trade-off. This is be-
cause manipulating the attention weights reveals
which features are important for getting the de-
sired outcome, and by how much. This provides
an explanation for the outcome and also a mecha-
nism to control the fairness-accuracy trade-off by
the amount of the manipulation.

3 Experimental Setup

We perform a suite of experiments on synthetic
and real-world datasets to evaluate our attention
based interpretable fairness framework. The ex-
periments on synthetic data are intended to eluci-
date interpretability in controlled settings, where
we can manipulate the relations between input and
output feature. The experiments on real-world
data aim to validate the effectiveness of the pro-
posed approach on both tabular and non-tabular
(textual) data.

3.1 Types of Experiments

We enumerate the experiments and their goals as
follows:

Experiment 1: Attributing Fairness with Atten-
tion The purpose of this experiment is to demon-
strate that our attribution framework can capture
correct attributions of features to fairness out-
comes. We present our results for tabular data in
Sec. 4.1.

Experiment 2: Bias Mitigation via Attention
Weight Manipulation In this experiment, we seek
to validate the proposed post-processing bias mit-
igation framework and compare it with various re-
cent mitigation approaches. The results for real-
world tabular data are presented in Sec. 4.2.
Experiment 3: Validation on Textual Data The
goal of this experiment is to demonstrate the flexi-
bility of the proposed attention-based method by
conducting experiments on non-tabular, textual
data. The results are presented in Sec. 4.3.
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3.2 Datasets
3.2.1 Synthetic Data

To validate the attribution framework, we created
two synthetic datasets in which we control how
features interact with each other and contribute to
the accuracy and fairness of the outcome variable.
These datasets capture some of the common sce-
narios, namely the data imbalance (skewness) and
indirect discrimination issues, arising in fair deci-
sion or classification problems.

Scenario 1: First, we create a simple scenario
to demonstrate that our framework identifies cor-
rect feature attributions for fairness and accuracy.
We create a feature that is correlated with the out-
come (responsible for accuracy), a discrete feature
that causes the prediction outcomes to be biased
(responsible for fairness), and a continuous fea-
ture that is independent of the label or the task
(irrelevant for the task). For intuition, suppose
the attention-based attribution framework works
correctly. In this case, we expect to see a reduc-
tion in accuracy upon removing (i.e., making the
attention weight zero) the feature responsible for
the accuracy, reduction in bias upon removing the
feature responsible for bias, and very little or no
change upon removing the irrelevant feature. With
this objective, we generated a synthetic dataset

with three features, i.e., z = [fi, f2, f3] as fol-
lows?:
f1 ~Ber(0.9) fo ~Ber(0.5) f3~N(0,1)
Ber(0.9) if fo=1
Ber(0.1) if fo=0

Clearly, f> has the most predictive information for
the task and is responsible for accuracy. Here, we
consider f7 as the sensitive attribute. f7 is an im-
balanced feature that can bias the outcome and is
generated such that there is no intentional correla-
tion between f; and the outcome, y or fo. f3 is
sampled from a normal distribution independent
of the outcome y, or the other features, making
it irrelevant for the task. Thus, an ideal classi-
fier would be fair if it captures the correct out-
come without being affected by the imbalance in
f1. However, due to limited data and skew in fi,
there will be some undesired bias — few errors
when f; = 0 can lead to large statistical parity.

>We use = ~ Ber(p) to denote that z is a Bernoulli ran-
dom variable with P(z = 1) = p.



Scenario 2: Using features that are not identi-
fied as sensitive attributes can result in unfair deci-
sions due to their implicit relations or correlations
with the sensitive attributes. This phenomenon
is called indirect discrimination (Zliobaite, 2015;
Hajian and Domingo-Ferrer, 2013; Zhang et al.,
2017). We designed this synthetic dataset to
demonstrate and characterize the behavior of our
framework under indirect discrimination. Similar
to the previous scenario, we consider three fea-
tures. Here, f1 is considered as the sensitive at-
tribute, and fo is correlated with f; and the out-
come, y. The generative process is as follows:

-]

f3NN(O>1) yN{

Ber(0.9)
Ber(0.1)

if fo—1
if fo =0
Ber(0.7)
Ber(0.3)

f2 ~ Ber(0.5)

if fo=1
if fo =0

In this case fi and y are correlated with fo. The
model should mostly rely on fo for its decisions.
However, due to the correlation between f; and
fa2, we expect fo to affect both the accuracy and
fairness of the model. Thus, in this case, indirect
discrimination is possible. Using such a synthetic
dataset, we demonstrate a) indirect discrimination
and b) the need to have an attribution framework
to reason about unfairness and not blindly focus
on the sensitive attributes for bias mitigation.

3.2.2 Real-world Datasets

We demonstrate our approach on the following
real-world datasets:

Tabular Datasets: We conduct our experi-
ments on two real-world tabular datasets — UCI
Adult (Dua and Graff, 2017) and Heritage Health?
datasets. The UCI Adult dataset contains census
information about individuals, with the prediction
task being whether the income of the individual is
higher than $50k or not. The sensitive attribute, in
this case, is gender (male/female). The Heritage
Health dataset contains patient information, and
the task is to predict the Charleson Index (comor-
bidity index, which is a patient survival indicator).
Each patient is grouped into one of the 9 possible
age groups, and we consider this as the sensitive
attribute. We used the same pre-processing and
train-test splits as in Gupta et al. (2021).
Non-Tabular or Text Dataset: We also experi-
ment with a non-tabular, text dataset. We used

*https://www.kaggle.com/c/hhp
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the biosbias dataset (De-Arteaga et al., 2019). The
dataset contains short bios of individuals. The task
is to predict the occupation of the individual from
their bio. We utilized the bios from the year 2018
from the 2018_34 archive and considered two
occupations for our experiments, namely, nurse
and dentist. The dataset was split into 70-15-15
train, validation, and test splits. De-Arteaga et al.
(2019) has demonstrated the existence of gender
bias in this prediction task and showed that certain
gender words are associated with certain job types
(e.g., she to nurse and ke to dentist).

3.3 Bias Mitigation Baselines

For our baselines, we consider methods that learn
representations of data so that information about
sensitive attributes is eliminated. CVIB (Moyer
et al., 2018) realizes this objective through
a conditional variational autoencoder, whereas
MIFR (Song et al., 2019) uses a combination
of information bottleneck term and adversar-
ial learning to optimize the fairness objective.
FCRL (Gupta et al., 2021) optimizes information
theoretic objectives that can be used to achieve
good trade-offs between fairness and accuracy
by using specialized contrastive information esti-
mators. In addition to information-theoretic ap-
proaches, we also considered baselines that use
adversarial learning such as MaxEnt-ARL (Roy
and Boddeti, 2019), LAFTR (Madras et al., 2018),
and Adversarial Forgetting (Jaiswal et al., 2020).
Note that in contrast to our approach, the baselines
described above are not interpretable as they are
incapable of directly attributing features to fair-
ness outcomes. For the textual data, we compare
our approach with the debiasing technique pro-
posed in De-Arteaga et al. (2019), which works by
masking the gender-related words and then train-
ing the model on this masked data.

4 Results

4.1 Attributing Fairness with Attention

First, we test our method’s ability to capture cor-
rect attributions in controlled experiments with
synthetic data (described in Sec. 3.2.1). We also
conduct a similar experiment with UCI Adult and
Heritage Health datasets which can be found in
the appendix. Fig. 2 summarizes our results by vi-
sualizing the attributions, which we now discuss.
In Scenario 1, as expected, fo is correctly at-
tributed to being responsible for the accuracy and



removing it hurts the accuracy drastically. Simi-
larly, f; is correctly shown to be responsible for
unfairness and removing it creates a fairer out-
come. Ideally, the model should not be using any
information about f; as it is independent of the
task, but it does. Therefore, by removing fi, we
can ensure that information is not used and hence
outcomes are fair. Lastly, as expected, f3 was the
irrelevant feature, and its effects on accuracy and
fairness are negligible.

In Scenario 2, our framework captures the ef-
fect of indirect discrimination. We can see that re-
moving fo reduces bias as well as accuracy dras-
tically. This is because fo is the predictive fea-
ture, but due to its correlation with f1, it can also
indirectly affect the model’s fairness. More inter-
estingly, although f; is the sensitive feature, re-
moving it does not play a drastic role in fairness
or the accuracy. This is an important finding as it
shows why removing f; on its own can not give
us a fairer model due to the existence of corre-
lations to other features and indirect discrimina-
tion. Overall, our results are intuitive and thus val-
idate our assumption that attention-based frame-
work can provide reliable feature attributions for
the fairness and accuracy of the model.

4.2 Attention as a Mitigation Technique

As we have highlighted earlier, understanding how
the information within features interact and con-
tribute to the decision making can be used to
design effective bias mitigation strategies. One
such example was shown in Sec. 4.1. Often real-
world datasets have features which cause indirect
discrimination, due to which fairness can not be
achieved by simply eliminating the sensitive fea-
ture from the decision process. Using the attribu-
tions derived from our attention-based attribution
framework, we propose a post-processing mitiga-
tion strategy. Our strategy is to intervene on at-
tention weights as discussed in Sec. 2.3. We first
attribute and identify the features responsible for
the unfairness of the outcomes, i.e., all the features
whose exclusion will decrease the bias compared
to the original model’s outcomes and gradually de-
crease their attention weights to zero as also out-
lined in Algorithm 1. We do this by first using the
whole fraction of the attention weights learned and
gradually use less fraction of the weights until the
weights are completely zeroed out.

For all the baselines described in Sec. 3.3, we
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Attribution Visualization for Synthetic Scenario 1
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Figure 2: Results from the synthetic datasets. Follow-
ing the g, and ¢, notations, gy, represents the original
model outcome with all the attention weights intact,
while g% represents the outcome of the model in which
the attention weights corresponding to k*" feature are
zeroed out (e.g. 7! represents when attention weights
of feature f; are zeroed out). The results show how the
accuracy and fairness (SPD) of the model change by
exclusion of each feature.

used the approach outlined in Gupta et al. (2021)
for training a downstream classifier and evaluating
the accuracy/fairness trade-offs. The downstream
classifier was a 1-hidden-layer MLP with 50 neu-
rons along with ReLU activation function. Each
method was trained with five different seeds, and
we report the average accuracy and fairness mea-
sure as statistical parity difference (SPD). Results
for other fairness notions can be found in the ap-
pendix. CVIB, MaxEnt-ARL, Adversarial For-
getting and FCRL are designed for statistical par-
ity notion of fairness and are not applicable for
other measures like Equalized Odds and Equality
of Opportunity. LAFTR can only deal with bi-
nary sensitive attributes and thus not applicable for
Heritage Health dataset. Notice that our approach
does not have these limitations. For our approach,
we vary the attention weights and report the result-
ing fairness-accuracy trade offs.

Fig. 3 compares fairness-accuracy trade-offs of
different bias mitigation approaches. We desire
outcomes to be fairer, i.e., lower values of SPD
and to be more accurate, i.e., towards the right.
The results show that using attention attributions
can indeed be beneficial for reducing bias. More-
over, our mitigation framework based on the ma-
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Accuracy vs SPD (Heritage Health)
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Figure 3: Accuracy vs parity curves for UCI Adult and Heritage Health datasets.

nipulation of the attention weights is competitive
with state-of-the-art mitigation strategies. How-
ever, most of these approaches are specifically de-
signed and optimized to achieve parity and do not
provide any interpretability. Our model can not
only achieve comparable and competitive results,
but it is also able to provide explanation such that
the users exactly know what feature and by how
much it was manipulated to get the corresponding
outcome. Another advantage of our model is that
it needs only one round of training. The adjust-
ments to attention weights are made post-training;
thus, it is possible to achieve different trade-offs.
Moreover, our approach does not need to know
sensitive attributes while training; thus, it could
work with other sensitive attributes not known
beforehand or during training. Lastly, here we
merely focused on mitigating bias as our goal was
to show that the attribution framework can iden-
tify problematic features and their removal would
result in bias mitigation. We manipulated atten-
tion weights of all the features that contributed to
unfairness irrespective of if they helped maintain-
ing high accuracy or not. However, the trade-off
results can be improved by carefully considering
the trade-off each feature contributes to with re-
gards to both accuracy and fairness to achieve bet-
ter trade-off results which can be investigated as
a future direction. The advantage of our work is
that this trade-off curve can be controlled by con-
trolling how many features and by how much to be
manipulated.

4.3 Experiments with Non-Tabular Data

In addition to providing interpretability, our ap-
proach is flexible and useful for controlling fair-
ness in modalities other than tabular datasets. To

put this to the test, we applied our model to miti-
gate bias in text-based data. We consider the bios-
bias dataset (De-Arteaga et al., 2019), and use
our mitigation technique to reduce observed bi-
ases in the classification task performed on this
dataset. We compare our approach with the de-
biasing technique proposed in the original pa-
per (De-Arteaga et al., 2019), which works by
masking the gender-related words and then train-
ing the model on this masked data. As discussed
earlier, such a method is computationally ineffi-
cient. It requires re-training the model or creat-
ing a new masked dataset, each time it is required
to debias the model against different attributes,
such as gender vs. race. For the baseline pre-
processing method, we masked the gender-related
words, such as names and gender words, as pro-
vided in the biosbias dataset and trained the model
on the filtered dataset. On the other hand, we
trained the model on the raw bios for our post-
processing method and only manipulated attention
weights of the gender words during the testing pro-
cess as also provided in the biosbias dataset.

In order to measure the bias, we used the same
measure as in (De-Arteaga et al., 2019) which is
based on the equality of opportunity notion of fair-
ness (Hardt et al., 2016) and reported the True
Positive Rate Difference (TPRD) for each occu-
pation amongst different genders. As shown in
Table 1, our post-processing mitigation technique
provides lower TRPD while being more accurate,
followed by the technique that masks the gendered
words before training. Although both methods
reduce the bias compared to a model trained on
raw bios without applying any mask or invariance
to gendered words, our post-processing method
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Method

Dentist TPRD (stdev) Nurse TPRD (stdev)

Accuracy (stdev)

Post-Processing (Ours) 0.0202 (0.010) 0.0251 (0.020) 0.951 (0.013)
Pre-Processing 0.0380 (0.016) 0.0616 (0.025) 0.946 (0.011)
Not Debiased Model 0.0474 (0.025) 0.1905 (0.059) 0.958 (0.011)

Table 1: Difference of the True Positive Rates (TPRD) amongst different genders for the dentist and nurse occupa-
tions on the biosbias dataset. Our introduced post-processing method is the most effective in reducing the disparity
for both occupations compared to the pre-processing technique.

Post-Processing (Ours)

Pre-Processing

Not Debiased Model

She practices I Apo, Armed Forces Europe and has the
professional credentials of RN. The NPI Number for

Rebekah Bushey is 1073935136 and she holds a License No.

RN.0172354 (Colorado).

She practices in Apo, Armed Forces [BUIOPE and has the
professional credentials of R.N.. The NPI Number for
Rebekah Bushey is 1073935136 and she holds a License No.
RN.0172354 (Colorado).

Rebekah Bushey is 1073935136 and she holds a License No.

practices in Apo, Armed Forces Europe and has the
professional credentials of R.N.. The NPI Number for
RN.0172354 (Colorado).

Post-Processing (Ours)

Pre-Processing

Not Debiased Model

She has worked inpatient and outpatient from pediatrics
to adults. She is currently working on obtaining her
Doctorate of - specializing in psychiatry and
mental health.

She has worked inpatient and outpatient from pediatrics
to adults. She is currently |WOrking on obtaining her
Doctorate of - specializing in psychiatry and
mental health.

She has worked inpatient and outpatient from pediatrics
to adults. She is currently working on obtaining her
Doctorate of - specializing in psychiatry and
mental health,

Figure 4: Qualitative results from the non-tabular data experiment on the job classification task based on bio texts.
Green regions are the top three words used by the model for its prediction based on the attention weights. While
the Not Debiased Model mostly focuses on gendered words, our method focused on profession-based words, such

as R.N. (Registered Nurse), to correctly predict “nurse.”

is more effective. Fig. 4 also highlights qualita-
tive differences between models in terms of their
most attentive features for the prediction task. As
shown in the results, our post-processing tech-
nique is able to use more meaningful words, such
as R.N. (registered nurse) to predict the outcome
label nurse compared to both baselines, while the
non-debiased model focuses on gendered words.

5 Related Work

Fairness. The research in fairness concerns it-
self with various topics (Mehrabi et al., 2021). In
this work, we utilized different metrics that were
introduced previously (Dwork et al., 2012; Hardt
et al., 2016), to measure the amount of bias. We
also used different bias mitigation strategies to
compare against our mitigation strategy, such as
FCRL (Gupta et al., 2021), CVIB (Moyer et al.,
2018), MIFR (Song et al., 2019), adversarial for-
getting (Jaiswal et al., 2020), MaxEnt-ARL (Roy
and Boddeti, 2019), and LAFTR (Madras et al.,
2018). We also utilized concepts and datasets that
were analyzing existing biases in NLP systems,
such as (De-Arteaga et al., 2019) which studied
the existing biases in NLP systems on the occupa-
tion classification task on the bios dataset.

Interpretability. There is a body of work in
NLP literature that tried to analyze the effect of
the attention weights on interpretability of the
model (Wiegreffe and Pinter, 2019; Jain and Wal-
lace, 2019; Serrano and Smith, 2019). Other work
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also utilized attention weights to define an attribu-
tion score to be able to reason about how trans-
former models such as BERT work (Hao et al.,
2021). Notice that although Jain and Wallace
(2019) claim that attention might not be explana-
tion, a body of work has proved otherwise includ-
ing (Wiegreffe and Pinter, 2019) in which authors
directly target the work in Jain and Wallace (2019)
and analyze in detail the problems associated with
this study. In addition, Vig et al. (2020) analyze
the effect of the attention weights in transformer
models for bias analysis in language models.

6 Discussion

In this work, we analyzed how attention weights
contribute to fairness and accuracy of a predictive
model. We proposed an attribution method that
leverages the attention mechanism and showed
the effectiveness of this approach on both tabular
and text data. Using this interpretable attribution
framework we then introduced a post-processing
bias mitigation strategy based on attention weight
manipulation. We validated the proposed frame-
work by conducting experiments with different
baselines, fairness metrics, and data modalities.
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Broader Impact

Although our work can have a positive impact
in allowing to reason about fairness and accu-
racy of models and reduce their bias, it can also
have negative societal consequences if used uneth-
ically. For instance, it has been previously shown
that interpretability frameworks can be used as a
means for fairwashing which is when malicious
users generate fake explanations for their unfair
decisions to justify them (Anders et al., 2020).
In addition, previously it has been shown that in-
terpratability frameworks are vulnerable against
adversarial attacks (Slack et al., 2020). We ac-
knowledge that our framework may also be tar-
geted by malicious users for malicious intent that
can manipulate attention weights to either gener-
ate fake explanations or unfair outcomes. We also
acknowledge that our method is not achieving the
best accuracy-fairness trade-off on the UCI Adult
dataset for the statistical parity notion of fairness
and has room for improvement.
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A Appendix

We included additional bias mitigation results us-
ing other fairness metrics, such as equality of op-
portunity and equalized odds on both of the Adult
and Heritage Health datasets in this supplemen-
tary material. We also included additional post-
processing results along with additional qualita-
tive results both for the tabular and non-tabular
dataset experiments. More details can be found
under each sub-section.

A.1 Results on Tabular Data

Here, we show the results of our mitigation frame-
work considering equality of opportunity and
equalized odds notions of fairness. We included
baselines that were applicable for these notions.
Notice not all the baselines we used in our previ-
ous analysis for statistical parity were applicable
for equality of opportunity and equalized odds no-
tions of fairness; thus, we only included the appli-
cable ones. In addition, LAFTR is only applicable
when the sensitive attribute is a binary variable, so
it was not applicable to be included in the analy-
sis for the heritage health data where the sensitive
attribute is non-binary. Results of these analysis
is shown in Figures 8 and 9. We once again show
competitive and comparable results to other base-
line methods, while having the advantage of be-
ing interpretable and not requiring multiple train-
ings to satisfy different fairness notions or fairness
on different sensitive attributes. Our framework
is also flexible for different fairness measures and
can be applied to binary or non-binary sensitive
features.

In addition, we show how different features
contribute differently under different fairness no-
tions. Fig. 5 demonstrates the top three features
that contribute to unfairness the most along with
the percentages of the fairness improvement upon
their removal for each of the fairness notions. As
observed from the results, while equality of op-
portunity and equalized odds are similar in terms
of their problematic features, statistical parity has
different trends. This is also expected as equal-
ity of opportunity and equalized odds are similar
fairness notions in nature compared to statistical
parity.

We also compared our mitigation strategy with
the Hardt etl al. post-processing approach (Hardt
et al., 2016). Using this post-processing imple-
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Abbreviation Meaning
PlaceSvcs Place where the member was treated.
LOS Length of stay.
dsfs Days since first service that year.

Table 2: Some abbreviations used in Heritage Health
dataset’s feature names. These abbreviations are
listed for clarity of interpreting each feature’s mean-
ing specifically in our qualitative analysis or attribution
visualizations.

mentation 4, we obtained the optimal solution
that tries to satisfy different fairness notions sub-
ject to accuracy constraints. For our results, we
put the results from zeroing out all the attention
weights corresponding to the problematic features
that were detected from our interpretability frame-
work. However, notice that since our mitigation
strategy can control different trade-offs we can
have different results depending on the scenario.
Here, we reported the results from zeroing out the
problematic attention weights that is targeting fair-
ness mostly. From the results demonstrated in Ta-
bles 3 and 4, we can see comparable numbers to
those obtained from (Hardt et al., 2016). This
again shows that our interpretability framework
yet again captures the correct responsible features
and that the mitigation strategy works as expected.

A.2 Results on non-tabular Data

We also included some additional qualitative re-
sults from the experiments on non-tabular data in
Fig. 6.

A.3 Interpreting Fairness with Attention

Fig. 7 shows results on a subset of the features
from the UCI Adult and Heritage Health datasets
(to keep the plots uncluttered and readable, we
incorporated the most interesting features in the
plot), and provide some intuition about how dif-
ferent features in these datasets contribute to the
model fairness and accuracy. While features such
as capital gain and capital loss in the UCI Adult
dataset are responsible for improving accuracy and
reducing bias, we can observe that features such as
relationship or marital status, which can be indi-
rectly correlated with the feature sex, have a neg-
ative impact on fairness. For the Heritage Health
dataset, including the features drugCount ave and
dsfs max provide accuracy gains but at the expense
of fairness, while including no Claims and no Spe-

*https://fairlearn.org
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Figure 5: Top three features for each fairness definition removing which caused the most benefit in improving the
corresponding fairness definition. The percentage of improvement upon removal is marked on the y-axis for adult

and heritage health datasets.
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Figure 6: Additional qualitative results from the non-tabular data experiment on the job classification task based on
the bio texts. Green regions represent top three words that the model used for its prediction based on the attention
weights.

cialities negatively impact both accuracy and fair-
ness.

A.4 Information on Datasets and Features

More details about each of the datasets along
with the descriptions of each feature for the Adult
dataset can be found at’ and for the Heritage
Health dataset can be found at ®. In our qualita-
tive results, we used the feature names as marked
in these datasets. If the names or acronyms are
unclear kindly reference to the references men-
tioned for more detailed description for each of
the features. Although most of the features in
the Adult datasets are self-descriptive, Heritage
Health dataset includes some abbreviations that
we list in Table 2 for the ease of interpreting each
feature’s meaning.

Shttps://archive.ics.uci.edu/ml/datasets/adult
Shttps://www.kaggle.com/c/hhp
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Attribution Visualization for UCI Adult
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Figure 7: Results from the real-world datasets. Note that in our g, notation we replaced indexes with actual feature
names for clarity in these results on real-world datasets as there is not one universal indexing schema, but the
feature names are more universal and discriptive for this case. Labels on the points represent the feature name that
was removed (zeroed out) according to our ¢, notation. The results show how the accuracy and fairness of the
model (in terms of statistical parity difference) change by exclusion of each feature.

SPD | Accuracy EQOP EQOD
Attention (Ours) | 0.77 (0.006) 0.012 (0.003) | 0.81 (0.013) 0.020 (0.019) | 0.81 (0.021) 0.027 (0.023)
| 077 (0.012)  0.013 (0.005) | 0.83 (0.005) 0.064 (0.016) | 0.81 (0.007) 0.047 (0.014)

‘ Accuracy ‘ Accuracy

Hardt et al.

Table 3: Adult results on post-processing approach from Hardt et al. vs our attention method when all problematic
features are zeroed out.

| Accuracy SPD EQOP EQOD
Attention (Ours) | 0.68 (0.004) 0.04 (0.015) | 0.68 (0.015) 0.15 (0.085) | 0.68 (0.015) 0.10 (0.085)
| 0.68 (0.005) 0.05(0.018) | 0.75(0.001) 0.20 (0.033) | 0.69 (0.012) 0.19 (0.031)
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Hardt et al.

Table 4: Heritage Health results on post-processing approach from Hardt et al. vs our attention method when all
problematic features are zeroed out.

Accuracy vs EQOP (UCI Adult) Accuracy vs EQOP (Heritage Health)
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Figure 8: Accuracy vs equality of opportunity curves for UCI Adult and Heritage Health datasets.
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Figure 9: Accuracy vs equalized odds curves for UCI Adult and Heritage Health datasets.
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