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Abstract

When humans perform a particular task, they
do so hierarchically: splitting higher-level
tasks into smaller sub-tasks. However, most
works on natural language (NL) command of
situated agents have treated the procedures to
be executed as flat sequences of simple ac-
tions, or any hierarchies of procedures have
been shallow at best. In this paper, we pro-
pose a formalism of procedures as programs,
a method for representing hierarchical proce-
dural knowledge for agent command and con-
trol aimed at enabling easy application to var-
ious scenarios. We further propose a mod-
eling paradigm of hierarchical modular net-
works, which consist of a planner and reactors
that convert NL intents to predictions of exe-
cutable programs and probe the environment
for information necessary to complete the pro-
gram execution. We instantiate this framework
on the IQA and ALFRED datasets for NL in-
struction following. Our model outperforms
reactive baselines by a large margin on both
datasets. We also demonstrate that our frame-
work is more data-efficient, and that it allows
for fast iterative development.1

1 Introduction

Procedural knowledge, or “how-to” knowledge,
refers to knowledge of how to execute particular
tasks. It is inherently hierarchical; high-level proce-
dures consist of many lower-level procedures. For
example, “cooking a pizza” comprises many lower-
level procedures, including “buying ingredients”,
“knead dough”, etc. There are also multiple levels
of hierarchy; “buying ingredients” can be further
decomposed to “go to a grocery”, “paying” etc.

There has been significant prior work on bench-
marks and methods for complex task completion
using situated agents given natural language (NL)
instructions, such as agents trained to navigate the
web and mobile UIs (Li et al., 2020; Xu et al., 2021)

1All code will be released upon acceptance.

or solve household tasks (Shridhar et al., 2020a).
However, most methods applied to these tasks use
a reactive strategy that makes decisions on the low-
level atomic actions available to the agent while
making steps through the environment (Gupta et al.,
2017; Zhu et al., 2020), or define procedures in a
shallow way where there only exists one level of hi-
erarchy (Andreas et al., 2017; Gordon et al., 2018;
Yu et al., 2019; Das et al., 2019).These approaches
are often data-inefficient due to the semantic gap
between abstract natural language instructions and
concrete executions. In contrast, several works
have demonstrated that using specially designed
intermediate representations tailored to individual
tasks (Chen and Mooney, 2011; Artzi and Zettle-
moyer, 2013; Misra et al., 2016) can help reduce
this expense and improve performance, albeit at
the cost of significant effort on the part of the re-
searchers devising these methods.

In this paper, we propose a framework to im-
prove the execution of complex natural language
commands (example in Fig. 1) by expressing proce-
dures as programs (PaP) written in a high-level pro-
gramming language like Python (§4). This makes
it easy for human engineers to express and lever-
age their hierarchical procedural knowledge, and
the execution of each program yields actions to
accomplish a task described in NL. There are sev-
eral merits to this approach. First, programs are
inherently hierarchical; they apply nested function
calls to realize higher-level functionality with mul-
tiple calls to lower-level functionality. Second, pro-
grams have built-in control-flow operators, making
it possible to deal with multiple divergent situations
without the loss of higher-level abstraction. Third,
programs provide a flexible way to define, share
and call different machine-learned components to
perceive the environment through an embodied
agent’s executions. Finally, programs in a familiar
high-level programming language are comprehensi-
ble and curatable, allowing for fast development on
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Figure 1: The proposed framework, containing a hierarchical library of procedures written as Python functions
(§4). Coupled with this library is a hierarchical neural network (HMN, §5) with a PLANNER that constructs an
executable procedure and REACTORS that react to the environment to resolve control flow.

various tasks. These four features remain largely
unexplored in the existing representations (Chen
and Mooney, 2011; Artzi and Zettlemoyer, 2013;
Misra et al., 2016), as discussed further in §2.

Coupled with this representation, we propose a
modeling paradigm of hierarchical modular net-
works (HMN; §5) that has (1) a learnable PLAN-
NER that maps NL to the corresponding executable
programs and (2) a collection of REACTORS that
perceive the environment and provide context-
sensitive feedback to decide the further execution
of the program. Such modular design can facilitate
training efficiency and improve the performance of
each individual component (Andreas et al., 2016).

We instantiate our framework on two task set-
tings: the IQA dataset (Gordon et al., 2018) where
an agent explores the environment to answer ques-
tions regarding objects; and the ALFRED dataset
(Shridhar et al., 2020a), in which an agent must
map natural language instructions to actions to com-
plete household tasks (§6). In experiments (§7), we
find that our framework outperforms the reactive
baseline by a significant margin on both datasets,
and is significantly more data-efficient. We also
demonstrate the flexibility of our framework for
fast iterative development of program libraries. We
end with a discussion of the limitations of the
framework and the potential solutions, paving the
way for future works that scale our framework to
more open-domain tasks (§7).

2 Contrast to Previous Formalisms

While designing intermediate representations that
stand between NL and low-level actions for indi-
vidual tasks has been studied in the literature, our
goal is to design a framework that makes it simple
to design such representations for new tasks, with a

particular focus on capturing the hierarchical nature
of procedures. In contrast to most previous works
in this area, which employ relatively esoteric repre-
sentation methods such as lambda calculus (Artzi
and Zettlemoyer, 2013; Artzi et al., 2014), PaP
uses widely-adopted general-purpose programming
languages (e.g. Python) to specify and represent
hierarchical procedures. These are comprehensi-
ble to most engineers and do not require system
designers to learn a new task-specific language.
PaP also enable easy creation of more hierarchical
procedures with reusable sub-routines. Existing
works either do not model such sub-procedures as
reusable components (Misra et al., 2016), or define
procedures as a flat sequence of actions without any
hierarchy (Chen et al., 2020; Artzi and Zettlemoyer,
2013). The hierarchical procedures with reusable
sub-routines is also reminiscent of works in se-
mantic parsing, which compose programs from id-
iomatic program structures (Iyer et al., 2017; Shin
et al., 2019). More discussions are in §E.

Additionally, PaP uses control flow with diver-
gent branches to handle environment-specific varia-
tions of a high-level procedure. A single procedure
could therefore dynamically adapt to a variety of
environments following the branches triggered by
the environments. This makes our representations
more compact. This feature also allows developers
to easily inject human priors of executions traces
under different conditions, which might be chal-
lenging to learn in a data-efficient manner. To our
best knowledge, this feature is largely unexplored
in the literature on designing intermediate represen-
tations for agent control.

Finally, PaP provides a convenient interface for
procedures to query and interact with task-specific
situated components (e.g. a visual component). Un-
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der PaP, situated components are exposed as pre-
defined APIs, and can be easily called by high-
level procedures. In contrast, existing works either
require separate mechanisms to call such compo-
nents (Misra et al., 2016), or the environment where
they are expected to work is less complex, and thus
the flexible use of a collection of situated compo-
nents is not a necessity (Chen and Mooney, 2011).

We can also view the PaP formalism as a way to
construct behavior trees (Colledanchise and Ögren,
2018), which have been used in robotic planning
and game design literature. We can use the off-
the-shelf tools to convert the programs to abstract
syntax trees (AST) which resemble these trees. Pre-
vious works on robotics also leverage planning
domain definition language (PDDL) and answer
set planners (ASP) for task planning (Jiang et al.,
2019b), which is conceptually different from our
formalism. PDDL+ASP searches for an action se-
quences based on the initial and the final states,
while our formalism focuses on describing the ac-
tual procedure used to accomplish a task.

3 Task: Controlling Situated Agents

First, we define the task of controlling an agent in
some situated environment E through natural lan-
guage. The environment E provides a set of atomic
actions Aa = {aa1, aa2, ...} to interact with the envi-
ronment. Each atomic action can take zero or more
arguments that specify which parts of the environ-
ment to which it is to be applied. We denote action
aai ’s jth argument as ri,j . The specific type of each
argument will depend on the action and environ-
ment; it could be discrete symbols, scalar values,
tensors describing regions of the visual space, etc.
Given a user intent x, the control system aims at
creating an atomic action sequence consisting of a
sequence of actions a = [a1, a2, ...] (ai ∈ Aa) and
concrete assignments r for each of these n actions.
This action sequence is executed against the envi-
ronment to achieve a result ŷ = E(a, r), which is
compared against a gold-standard result y using a
score function s(y, ŷ). Action sequences realizing
the intent will receive a high score, and those that
do not will receive a low score.

4 Representing Procedures as Programs

Next, we introduce the main components of our
formalism. A few examples are listed in Tab. 1.2

2Since actions are implemented as functions, we use “ac-
tion” and “function” interchangeably.

# C1: an atomic action to toggle on an appliance
def atomic_toggle_on(obj):

env.call("toggle_on", obj)
# C2: a procedural action to pick and then put an object
def udp_pick_and_put_object(obj, dst):

udp_pickup_object(obj)
udp_put_object(obj, dst)

# C3: an emptying receptacle procedure with for−loop
def udp_empty_recep(recep, dst):

reactor = get_reactor("find_all_obj")
obj_list = reactor(recep)
for obj in obj_list:

udp_pick_and_put_object(obj, dst)
# C4: a pickup object procedure with control flow
def udp_pickup_object(obj):

atomic_navigate(obj)
reactor1 = get_reactor("find_recep")
reactor2 = get_reactor("check_obj_attr")
recep = reactor1(obj)
attr = reactor2(recep)
if attr.openable and attr.close:

atomic_open_object(recep)
atomic_pickup_object(obj)
atomic_close_object(recep)

else: atomic_pickup_object(obj)

Table 1: Atomic and procedural action functions in
Python, starting with atomic and udp respectively.

Interface to Atomic Actions Aa (C1) Atomic
actions provide a medium for direct interaction
with the environment. The call of an atomic ac-
tion with proper argument types will invoke the
corresponding execution in the environment.

Procedural ActionsAp (C2-C4) Procedural ac-
tions describe abstractions of higher-level proce-
dures composed of either lower-level procedures
or atomic actions. Notably, lower-level procedures
can be re-used across many higher-level procedures
without re-definition. Formalizing the hierarchies
in this compact way can not only facilitate the pro-
cedure library curation process but also potentially
benefit automatic library induction (e.g. through
minimal description length (Ellis et al., 2020)).

Control-flow of Ap (C3-C4) There can be mul-
tiple execution traces to accomplish the same goal
under different conditions. For example, picking
up an object from inside a closed receptacle re-
quires opening the receptacle first, while the open
action is not required for objects not in a receptacle.
To improve the coverage of procedural functions
we leverage the built-in control flow of the host
programming language to allow for conditional ex-
ecution of environment-specific actions (C4). To
deal with the repeated calls of the same routine,
we further introduce for/while-loops. For example,
C3 works for emptying receptacles with variable
number of objects without repeatedly writing down
the udp_pick_put_object. Leveraging control
flows to describe divergent procedural traces re-
mains largely unexplored in previous works.
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Call of Situated Components (C3-C4) The dy-
namic trigger of a control flow often remain un-
known before the agent interacts with the environ-
ment. We introduce situated components to probe
the environment and gather state information to
guide program execution. In C4, the agent uses
two different reactors to find the potential holder of
an object (reactor1) and exam the holder’s prop-
erties (reactor2). A reactor can be implemented
in many ways (e.g. using a neural network).

5 Hierarchical Modular Networks

This section introduces how to use the procedure
library A to generate executable programs to com-
plete tasks described in natural language x. We
propose a modeling method of hierarchical mod-
ular networks (HMN) that consists of two main
components. First, there is a HMN-PLANNER

that convert x to an executable procedural action
ae = {a1, a2, ..., an} where ai either belongs to
atomic functions Aa or procedural functions Ap.
We model the HMN-PLANNER as a sequence-to-
sequence model where the encoder takes x as in-
put, and the decoder generates one function ai at a
time from a constrained vocabulary Ap

⋃Aa, con-
ditioned on x and the action history {a1, ..., ai−1}.

Next, we define the collection of situated com-
ponents, “reactors,” as HMN-REACTORS. Each re-
actor is a classifier that predicts one or many labels
given the observed information (e.g. the NL input,
the visual observation. For example, reactor2 in
C4 in Tab. 1 probes the status of a receptacle based
on receptacle name and the visual input. HMN-
REACTORS allows us to flexibly share the same
reactor among different functions and design sep-
arated reactors to serve different purposes. For
example in C4, we use two reactors to find the
possible receptacle of an object (reactor1) and
to perceive the open/closed status of a receptacle
(reactor2) since these two tasks presumably re-
quire more mutually exclusive information. At the
same time, we share reactor2 to also probe the
related openable property of a receptacle for more
efficient parameter sharing. This sort of modular
design leads to efficient training and improved per-
formance (Andreas et al., 2016).

6 Instantiations

In this section, we introduce two concrete real-
izations of the proposed framework over the IQA
dataset (Gordon et al., 2018) and the ALFRED

dataset (Shridhar et al., 2020a). Both are based
on egocentric vision in a high-fidelity simulated
environment THOR (Deitke et al., 2020).

6.1 IQA
IQA is a dataset for situated question answering
with three types of questions querying (1) the ex-
istence of an object (e.g. Is there a mug?), (2) the
count of an object (e.g. How many mugs are there?)
and (3) whether a receptacle contains an object (e.g.
Is there a mug in the fridge?).

There are seven atomic actions in IQA,
i.e. Moveahead, RotateLeft, RotateRight,
LookDown, LookUp, Open and Close; and all argu-
ments are expressed through the unique object IDs
(e.g. apple_1). We further process the atomic nav-
igation actions to a single atomic action Navigate
with one argument destination, which moves
the agent directly to the destination. This replace-
ment is done by searching the scene and recording
the coordinates of unmovable objects (e.g. cabinet)
– more details provided in the §C.1.
Procedure Library We design a procedure for
each of the three types of questions in IQA, as
shown in Tab. 2. Generally speaking, those proce-
dures first search all or a subset of the receptacles
(e.g.table, fridge) in a scene for the target ob-
ject (e.g.mug), and then execute a question-specific
intent (e.g. existence-checking, counting). Tab. 2
shows the procedure for answering existence ques-
tions. Since the target object can be inside a recep-
tacle (e.g. fridge), we introduce control flow to de-
cide whether to open and close a receptacle before
and after checking its contents in sub-procedure
udp_check_relation. Following the paper au-
thor’s understanding of the three types of questions,
these procedural functions were created without
looking into any actual trajectories that answer
these questions. In total, we define six procedu-
ral actions with a complete list in §A.
HMN The natural language questions x in IQA
are generated with a limited number of templates.
There are only seven receptacles, and three of them
are openable. We thus use a rule-based HMN-
PLANNER to map a template to one of the three
high-level procedural actions (i.e. existence, count
and contain). Then, we design two reactors, each as
a multi-classes classifier: ATTRCHECKER, which
examines the properties (whether the object is open-
able) and the status (whether the object is opened)
of an object, and RELCHECKER, which checks the
spatial relation between two objects. We leave the
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# check existence of an object in the scene
def udp_check_obj_exist(obj):

all_recep = udp_grid_search_recep()
for recep in all_recep:

rel = udp_check_relation(obj, recep)
if rel == OBJ_IN_RECEP:

return True
return False

# check object inside receptacle
def udp_check_relation(obj, recep):

atomic_navigate(recep)
r1 = get_reactor("check_obj_attr")
r2 = get_reactor("check_obj_recep_rel")
attr = r1(recep)
if attr.is_openable and attr.is_closed:

atomic_open_object(recep)
rel = r2(obj, recep)
atomic_close_object(recep)

else:
rel = r2(obj, recep)

return rel

Table 2: The procedural actions to answer the existence
questions of the IQA dataset.

detailed implementations of the reactors to §C.3.
Notably, we use zero IQA training data to build the
HMN. Instead, it is made up of a few heuristic com-
ponents based on the predictions of a pre-trained
perception component.

6.2 ALFRED
ALFRED is a benchmark for mapping NL instruc-
tions to actions to accomplish household tasks in
the situated environment (e.g. heat an egg). Exam-
ples in ALFRED come with both single-sentence
high-level intents describing a goal (e.g. the NL
input in Fig. 1), and more fine-grained, step-by-
step instructions. In this paper we only use the
high-level intents, a more realistic yet more chal-
lenging setting to study the effectiveness of our
framework in encoding extra procedural knowl-
edge for under-specified intents. Besides the seven
atomic actions in the IQA dataset, ALFRED also
introduces Pickup, Put, ToggleOn, ToggleOff
for object interactions. ALFRED uses 2D binary
tensor describing regions of the visual space as ar-
guments. Similarly to IQA, we replace the nav-
igation action with an atomic action Navigate
destination. Previous works also apply similar
replacement (Shridhar et al., 2020b; Karamcheti
et al., 2020) to allow the agent to proceed to a loca-
tion without fail. Details in §C.
Procedure Library We create a procedure li-
brary for ALFRED by identifying idiomatic control
flow and operations from a small set of randomly
sampled examples. The library is designed with
two goals in mind as discussed in §4: reusability,
where a single function can be applied to multiple
similar scenarios, and coverage, where a function

should cover different execution trajectories under
different conditions For instance, many tasks con-
sist of a sub-routine to obtain an object by first
navigating to the object and then picking up the
object by hand, calling for a reusable procedure
adaptable to those scenarios. Moreover, if an ob-
ject is positioned inside a receptacle, picking up
the object would require opening the receptacle
first, an edge case that should be covered by rele-
vant procedures (e.g. C4 in Tab. 1). Notably, we
constrain the conditions of the control flow to the
logic operation of the property values of objects
(e.g. fridge.is_openable=True).

In total, we define ten such procedural actions
(complete list in §A). This creation process was
done by the first author, a graduate student profi-
cient in Python, and took about two hours. This
modest amount of time is partially due to PaP’s
intuitive interface that allows for quick summa-
rization of complex procedures and partially due
to ALFRED’s relative simplicity; it has a lim-
ited number of task types and consistent execu-
tion traces. A sanity check of an initial version
of the library uncovered some mismatches (details
in §C.4). For example, a laptop should be closed
before picking up, which was not captured by our
library. We thus added a udp_close_if_needed
function call before the atomic_pick_object in
udp_pick_object. On one hand this increases
the complexity of the library design process, but on
the other hand it also demonstrates the flexibility of
the PaP framework, as the necessary fixes could be
done entirely by modifying the procedure library it-
self. §7.1 provides an end-to-end comparison with
different procedural libraries.

To investigate the scalability of our annotation
process, we also provided a similar guideline and
the 21 examples to a separate programmer who
does not have any prior knowledge to the dataset.
We found that the programmer could quickly under-
stand the PaP Python interface and issue reasonable
procedural functions that highly resemble our own
creations. This indicates the possibility to curate
the procedure libraries with crowd-sourcing efforts.
More discussion is provided in §7.2 and the full
list of the annotation guideline and the user-issued
functions are listed in §B.

HMN As discussed in §5, HMN-PLANNER gen-
erates an executable procedural action ae, given the
natural language instruction x. We implement our
planner with a sequence-to-sequence model with
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# C1, heat an object with microwave
def udp_heat_object(obj):

udp_pick_and_put_object(obj, microwave)
atomic_toggleon_object(microwave)
atomic_toggleoff_object(microwave)

# C2, prepare the receptacle for future interactions
def udp_prepare_recep(obj):

reactor = get_reactor("check_obj_attr")
attr = reactor(obj)
if attr.is_openable and attr.is_closed:

atomic_open_object(obj)

Table 3: Two procedural actions for ALFRED

attention (Bahdanau et al., 2015).
Based on the construction of the procedure li-

brary and the required argument type, we design
three reactors: ATTRCHECKER, which has the
same functionality as in IQA, REFINDER, which
probes where the desired object lies by predicting
a receptacle name from all available receptacles
to the dataset, and MGENERATOR, which gener-
ates the 2D binary tensor representing the inter-
action region. Since ALFRED has much richer
scene configurations and more diverse objects than
IQA, the reactors are fully implemented with neu-
ral networks.This demonstrates the flexibility of
our framework to share, add and replace compo-
nents to suit different situations. We describe the
detailed implementations of the reactors in §C.3.
The HMN is trained in a supervised fashion, and
the heuristic way to induce the supervisions from
the original dataset is described in §C.4.

7 Experiments

We compare our proposed framework with the base-
line reactive agents that predicts a single atomic
action at each time step. Notably, we apply the
same pretrained vision models, pre-searched map
and the Navigate atomic action used in PaP-HMN
to the baseline to ensure a fair comparison. More
details in §C.2. We attempt to answer the following
research questions: (1) Does our framework per-
forms better in complex tasks with inherent hier-
archical structures, comparing to a purely reactive
system? If so, in what way? (2) Can our framework
leverage the procedural knowledge encoded in the
procedure library and the modularity of its HMN to
learn more efficiently? And (3) Can our framework
accelerate the development of the task of interest?

7.1 Results on IQA
Results in Tab. 6 show that our framework yields
the best performance across all models over dif-
ferent question types. Through error analysis, we

3unseen features the out-of-distribution visual appearances
and arrangements of objects, same for ALFRED

EX CNT CT

A3C seen - - -
unseen 48.6 24.5 49.9

HIMN seen 73.7 36.3 60.7
unseen 68.5 30.4 58.7

Reactive seen 50.0 25.1 49.6
unseen 18.9 9.1 30.6

PaP-HMN seen 82.8 43.8 82.2
unseen 83.8 45.2 83.1

PaPv0.1-HMN seen 80.3 41.5 75.7

Table 4: The answer accuracy (%) over IQA dataset on
existence (EX), counting (CNT) and contain (CT) ques-
tions. The results of AC3 and HIMN are from Gordon
et al. (2018). Bold shows the best performance3

observe that while the reactive model can gener-
ate reasonable action sequences seen, its answers
are no better than a random guess. This indicates
the inability of a reactive model to book-keep the
observed objects in the memory. For unseen, we
find that the baseline model skips predicting some
receptacles or even generates syntactically invalid
sequences (e.g. functions without required argu-
ments). This is surprising, since the reactive base-
line is trained using the canonicalized action se-
quences according to the roll-out of the for-loops
in the procedure library, which are quite regular.
This indicates that even simple repeated procedures
can be easily represented with a for/while-loop can
still be challenging to a reactive agent implemented
with a sequence-based backbone. The strong per-
formance of PaP might seem unsurprising given
that the library is tailored carefully to the domain.
However, sophisticated models like HIMN (Gor-
don et al., 2018) still struggle to capture such sim-
ple patterns, and there is not a straightforward way
to plug the simple rules that we were easily able to
describe in PaP in to improve its performance; PaP
solves the easy problems so that an ML model can
focus its effort on the more challenging problems
that truly require learning (e.g. object grounding).
Procedure Library Manipulation One advan-
tage of our approach is that it decouples the reac-
tors from the creation of the procedural knowledge,
thus allowing plug-in update of the procedure li-
brary without time-consuming redesigning or re-
training the reactors. Tab. 5 lists two versions of
the procedure that decides the list of receptacles
to enumerate, and the results of v0.1 are shown
at the bottom of Tab. 4. In v0.1, the agent stands
in its randomly initialized position, looks around,
and detects receptacles. Only the detected recepta-
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# v0.1: only scan at the start position
def udp_search_recep():

r = get_reactor("detect_recep")
receps = []
for rotation in range(0, 360, 90):

atomic_rotate(rotation)
for horizon in [−30, 0, 30]:

atomic_look(horizon)
receps += r()

return receps
# now: navigate to every reachable point and scan
def udp_grid_search_recep():

if not done_search:
all_receps = [] # global var
for pos in reachable_pos:

atomic_navigate_pos(pos)
all_receps += udp_search_recep()

return all_receps

Table 5: Two versions for getting receptacles.

seen unseen

Singh et al. (2020) 5.4 0.2
Reactive 21.0 5.6

PaP-HMN 27.0 11.7

Reactive + Oracle MG 40.7 (48.6) 36.4 (45.0)
PaP-HMN + Oracle MG 54.5 (61.0) 51.3 (61.1)

Table 6: The full task success rate SR (the partial task
success rate, SSR, %) of the baseline reactive model
and our model. MG represents the mask generator.
bold shows the best performance for each setting.

cles are checked to answer the question. However,
since not all receptacles are visible to the agent at
the agent’s initial point, such checking could be
incomplete. We upgraded this function to the new
version where the agent searches all possible posi-
tions of the scene and memorizes the unmovable
receptacle positions. This process only happens
once for a scene, and the searched map is stored
for future uses. In this way, most receptacles are
covered. This simple modification without chang-
ing the remaining parts of the framework improved
the CT answer accuracy by 6.6% and improvement
of around 2.5% over the other two question types.

7.2 Results on ALFRED

Tab. 6 lists the results. Our model yields a consis-
tent gain over the baseline system on both splits.4

In our analysis, we find that the Mask R-CNN vi-
sion model is the main bottleneck of both end-to-
end systems, which we hypothesis is due to the
sub-optimal transfer from the MSCOCO (Lin et al.,
2014) to the ALFRED data. It frequently misclas-
sifies the object types or does not recognize the
object in the scene at all. This results in the failure
of object grounding and thus the failure of the task

4Singh et al. (2020) predicts atomic navigation sequences
(e.g.MoveAhead) instead of Navigate. The agent struggles to
navigate to destination with only high-level goal. This shows
the difficulty of navigation under our experiment setting.

completion. Since the development of a better ob-
ject detector is somewhat orthogonal to our main
contributions, to isolate the impact of using a weak
object detector on the end-to-end performance, we
replace the Mask R-CNN with an oracle object
mask generator, which always localize and inter-
act with the provided object name if the object is
in view for all experiments below. We observe
a larger performance gap using this oracle mask
generator as shown in the bottom half of Tab. 6.
This gap suggests that procedural knowledge that
could be summarized as several functions describ-
able within a short period of time (in this case, ten
functions in two hours) can still be difficult for a
reactive system to capture. While the same proce-
dural knowledge can be used in many cases with
different environment dynamics, a reactive system
struggle to distill such knowledge when interacting
with highly diverse and dynamic environments.

Performance w.r.t. Action Length In Fig. 2, we
further break down the results to buckets w.r.t the
length of atomic action sequences (without argu-
ments), which roughly represents the difficulty
of a task. We observe consistent improvements
over all buckets, This difference is even more ob-
vious for challenging tasks with over 21 atomic
actions. Our model maintains similar performance
for such cases on seen, and being able to accom-
plish 30% tasks successfully on unseen, while the
baseline can barely complete any task. These sug-
gest our framework’s stronger capacity to solve
long-horizon tasks of deeper hierarchies.

Data Efficiency The hierarchical procedural
knowledge could potentially allow the system to
learn task completion in a data-efficient manner.
We benchmark HMN with varying amounts of
training data. As shown in Fig. 2, with 20% of
the training data, our method exceeds the baseline
with the full training set by a large margin (7.7%
and 17.3% respectively). Furthermore, for seen,
the baseline only obtains less than 60% SR with
20% training data, compared to the full data; our
method could maintain around 90% SR of the full
data setting. These strongly demonstrate the data
efficiency of our method.

Few-shot Generalization Next, we test if our
framework can generalize to novel compositional
procedures with relatively supervised examples.
We design the few-shot experiments where a subset
of the executable procedural actions (ae) are held
out, and we sample at most 20 samples of each
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Figure 2: The SR (%) with proportions of the full
training set (top) and on each length bucket of the
seen,unseen (bottom).

ae and add them to the training set. We evaluate
the model on these held-out ae. We use two strate-
gies to choose the held-out set; the first randomly
selects n ae; the other selects the longest n ae

(n = 4/19). PaP-HMN achieves 33.1 and 44.9 SR
with these two strategies while the reactive base-
line only reaches 13.9 and 3.3 respectively5. Our
method consistently outperforms the baseline by
a large margin on both settings, which strongly
demonstrates our method’s generalization ability in
the few-shot scenario. The significant gain under
the short to long setting shows our method’s strong
capacities in completing long-horizon tasks in a
data-efficient way compared to the baseline.
Analysis Our framework brings several advan-
tages. First, compared to low-level actions, the
high-level procedural functions are better aligned
with abstract NL inputs. This thus benefits the
learning and the prediction of PLANNER. Second,
programs maintain the consistency of the actions,
while a reactive agent might make inconsistent pre-
dictions, especially arguments, between actions. Fi-
nally, the modular design of PLANNER and the RE-
ACTORS improve the robust behavior of the agent.
More discussion with examples is in §D.1.

Next, we investigate failure cases. First, our abla-
tion study shows that PLANNER correctly predicts
80% of executable procedural actions ae, and the
failures are mainly due to rare words (e.g. soak
a plate). In addition, we manually annotated 50
failed examples whose ae are correct. We found
that 26 failures are due to the sub-optimal interac-
tion positions of the receptacles that we compute
during the pre-search phase (§C.1). This causes the
interaction with a visible object or receptacle to fail.
The pre-search map also missed some objects, and
navigating to these objects always failed. Besides,

5For random split, we average over four different splits.

def udp_heat_object(obj):
reactor = get_reactor("find_qualified_appliance")
app = reactor(obj) # (e.g. microwave, oven)
udp_navigation(app)
atomic_reactor = get_reactor("predict_atomic_action")
atomic_action = atomic_reactor(app)
while atomic_action != STOP:

env.call(atomic_action)
atomic_action = atomic_reactor(app)

Table 7: A potential rewriting of C1 of Tab. 3.

the REACTOR prediction errors fail on 18 exam-
ples; ambiguous annotations caused two errors, and
the wrong argument prediction of the PLANNER

caused four errors. §D.2 shows a comprehensive
discussion with potential solutions.

8 Limitations and Future Work

Overall, our experiments demonstrate the ben-
efit of our framework for encoding hierarchical
procedural knowledge, especially under low-data
or few-shot generalization regimes. One limita-
tion of the experiments here is that they covered
domains where it is relatively easy to enumerate
the tasks that must be solved in the domain. One
intuitive solution in situations where this is not pos-
sible is to manually create libraries that cover major
procedures but fall back to atomic/reactive control
when necessary. For example, as in Tab. 7, the pro-
gram can call a reactor implemented as a the neural
network (atomic_reactor) to predict atomic ac-
tions when using different appliance to heat an
object, instead of enumerating different conditional
branches. Another possibility is to automate pro-
cedure library creation through mining structured
procedural knowledge from Web (Tenorth et al.,
2010; Kunze et al., 2010), or through induction
of high-level procedures from corpora of atomic
action sequences (Ellis et al., 2020).

Another interesting note is that though hierarchi-
cal procedural knowledge is ubiquitous in human
daily life, most existing NL instruction following
benchmarks do not feature such complex, hierarchi-
cal procedures. Although there can be hierarchies
embedded in vision-language navigation tasks (An-
derson et al., 2018), game playing through reading
documentation (Zhong et al., 2019) or through NL
communication (Suhr et al., 2019; Jernite et al.,
2019) and mobile phone navigation (Li et al., 2020),
the hierarchies are shallow at best, or the occasional
complex ones are limited in their breadth. There-
fore, creating NL instruction following benchmarks
that feature more realistic and diverse procedures
is one final important direction for future work.
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A Full Procedural Library

The full procedural library for IQA is listed
in Tab. 9 and that for ALFRED is listed in Tab. 10.

B User-issued Procedural Library

Fig. 3 shows the screenshot of the annotation guide-
line. We purposefully avoid any dataset-related ex-
amples. The programmer takes around 90 minutes
to complete the annotation. The procedural library
created by a programmer without prior knowledge
to the ALFRED dataset is in Tab. 11. The program-
mer could issue reasonable procedural functions
that highly resemble our own creations. The reac-
tors can be added to detect the properties of the
objects before the condition clauses.

C Experiment Settings

In this section of the appendix, we describe the
detailed implementation of the pre-search map, the
heuristic induction of supervisions from existing
annotation of the AFLFRED dataset and the imple-
mentation of the baseline and our HMN for repro-
duce purpose.

C.1 Pre-search Map Procedure

We treat each scene as a grid map with grid size
0.25. The agent stands on each point, turn around
90 degrees a time and move its camera with de-
gree [-30, 0, 30] and scan. The best position for
a receptacle satisfy (1) the agent can open/close
the receptacle, can pick up/put an object from/to it.
(2) the visual area of the receptacle is the largest
compared to other positions. A threshold is used to
avoid standing too closed. For ALFRED only, we
record the positions of movable objects (e.g. apple).
This is done by enumerating all the receptacle posi-
tions, open them if needed and select the receptacle
position that makes the object most visible.

The map creation also requires an object detec-
tion model to detect objects for each scan. For
IQA, we use the fine-tuned YOLO-v3 detector as
describe in §6.1 and the area of an object is cal-
culated by its bounding box. For ALFRED, we
instead use an oracle object detector to minimize
the pre-search performance loss.

Notably, there are many existing works that ap-
ply the similar replacement (Shridhar et al., 2020b;
Karamcheti et al., 2020). For example, Shridhar
et al. (2020b) pre-search the map, records the co-
ordinates of each object and uses an A* planner

to navigate between two positions. This replace-
ment that allows the agent to proceed to a location
without fail.

C.2 Reactive Baseline
IQA The reactive baseline is implemented as a
pointer network (Vinyals et al., 2015) whose output
sequence corresponds to the positions in an input
sequence. To make a fair comparison with our
method, we provide this baseline with the available
receptacle IDs of each scene, the question type, and
the targeted objects. For instance, given the ques-
tion how many mugs in the fridge for scene i, we
list all the receptacles (e.g. fridge_1, cabinet_2) in
the order of distance to the agent’s initial position
as well as the question type “contains” and the two
working objects “mug” and “fridge”. The fixed set
of actions and the answers are added at the begin-
ning of the input so that the model does not need
an extra generation component. The reactive agent
needs to navigate to each receptacle, operate them
properly and generate an answer at the end. The
images are encoded and the objects are detected
with the same YOLO-v3 detector as in HMN.

While an action sequence is not provided in the
release of the dataset, we heuristically create such
action sequences by enumerating the input recep-
tacle list of each sample. The size for each ques-
tion type is 7000 and a total of 21000 samples
are used in the training. We additionally compare
with the HIMN proposed in Gordon et al. (2018)
that designs a meta-controller that calls different
controllers to accomplish different tasks (e.g. nav-
igation, manipulation), and an A3C agent imple-
mented in the same work.
ALFRED We follow Shridhar et al. (2020a) to
setup our reactive baseline. This baseline takes
the natural language instruction x as input, then it
predicts an atomic action at each time step, condi-
tioned on the vision, the previous generated atomic
action, and the attended language. The baseline
also has a progress monitor component to track the
task completion progress (Ma et al., 2019). We
make the same replacement of the atomic naviga-
tion actions with Navigate destination. The
original mask generator is replaced by the same
Mask R-CNN used in our HMN.

For both datasets, we use seen and unseen
validation set for the evaluation. The floorplans of
the unseen split are held-out in the training data.
Each floorplan defines the appearance of the envi-
ronment as well as the arrangement of the objects.
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Annotation Guideline

Assuming you are creating a library written in Python that could be used to describe how to accomplish a set of tasks.

To understand the tasks, you are given 7 task categories and in each category, you are given 3 trajectories to achieve a
specific goal stated as natural language. Each trajectory consists of a sequence of atomic actions(e.g. GotoLocation) and
their arguments(e.g. Desktop).

One key feature of the function you create is reusable. For example, if an action sequence (e.g.  atomic_action_1,
atomic_action_2 and atomic_action_3) is frequently observed, you can compose super_action_1 that consists of these
three actions. In addition, you can use any composed super_action to compose other super_actions. For example, if there
is a super_action_2 that consists of atomic_action_1, atomic_action_2 and atomic_action_3 and atomic_action_4, you
can define this super_action_2 as super_action_1, atomic_action_4. Their corresponding Python functions are listed
below. You can freely name the arguments, which can be as simple as ‘object_1’, ‘object_2’

def super_action_1(arg1, arg2):

atomic_action_1(arg1)

atomic_action_2(arg2)

atomic_action_3(arg2)

def super_action_2(arg1, arg2):

super_action_1(args1, args2)

atomic_action_4(arg2)

Another key feature of the function you create is good coverage/generalizable. As in your daily life, you can take
different actions to accomplish the same goal. The different action might be due to the diverse nature of accomplishing the
task (e.g. you can either order online or go to a local supermarket to buy some food). Or it is due to the dynamic
environment (e.g. when you buy the food in the supermarket that only accepts cash, you have to withdraw money if you
don’t have any, but you can skip this withdrawal process if you have cash with you). This is defined through conditions

def shop_in_super_market:

if not_have_cash:

withdraw_cash()

# shopping, a super_action

super_action_i()

The reason why we treat this function as a more generalizable function is that, if you do not write in this way, you will have
to compose two distinct functions even though they achieve the same goal in the end:

def shop_in_super_market_with_cash:

# shopping

def shop_in_super_market_without_cash:

withdraw_cash()

# shopping

Figure 3: The annotation guideline for a programmer to create procedural functions with 21 examples from the
ALFRED dataset.

For IQA, we measure the answer accuracy, and
we follow Shridhar et al. (2020a) to measure the
task success rate (SR), which defines the percent-
age of whole task completion; and sub-task success
rate (SSR), which measures the ratio of individual
sub-task completion for ALFRED.

C.3 HMN Implementation

IQA Since the natural language questions x are
generated with a limited number of templates, we
use a rule-based HMN-PLANNER that recognizes
each template and classifies a template to one of
the three question types whose corresponding pro-
cedural actions are listed as the top three functions
in Tab. 9.

We model the two reactors ATTRCHECKER and
RELCHECKER as two multi-classes classifiers. We
first follow Gordon et al. (2018) to use a YOLO-v3
(Redmon and Farhadi, 2018) that is fine-tuned on

the images sampled from THOR for object detec-
tion. This object detector scan each visual input
and generate a bounding box and a class name for
each detected object. Since there are only seven
receptacles, the ATTRCHECKER uses the predicted
class name of a receptacle to decide whether the re-
ceptacle is openable or not. It then marks the recep-
tacle as is_open=True after the atomic open action
is launched for the receptacle. The RELCHECKER

use bounding box to heuristically decide the spatial
relation between an object and a receptacle. The
RELCHECKER considers that an object is inside a
receptacle if its bounding box has over 70% overlap
with the receptacle’s bounding box.

ALFRED We use a sequence-to-sequence model
with attention (Bahdanau et al., 2015) as our PLAN-
NER. The input to the encoder is the natural
language x. The decoder generates one func-
tion ai at a time from a constrained vocabulary
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Ap
⋃Aa, conditioned on x and the action history

{a1, ..., ai−1}.
We adopt the pre-trained Mask R-CNN (He et al.,

2017) that is fine-tuned on the ALFRED dataset
from Shridhar et al. (2020b) as our MGENERATOR.
It returns the name and the bounding box for all
detected objects in the visual input. Its parame-
ters are frozen. We design ATTRCHECKER and
REFINDER as two multi-classes classifiers. The
inputs to these two reactors are the object name ho

encoded by a BI-LSTM, the immediate vision hi

encoded by a frozen RESNET-18 CNN (He et al.,
2016) following Shridhar et al. (2020a), the called
action sequence ha encoded with a LSTM and the
attended input hl with ha. These four vectors are
concatenated together as hf . A fully connected
layer and a non-linear activation function are added
to predict class probabilities.

C.4 AFLRED Supervision Induction
We induced the ground truth labels for each com-
ponent of the HMN from ALFRED with the
help of atomic action sequences and the sub-
goal sequences provided by the dataset so that
the HMN can be trained in a supervised fash-
ion to maximize the log-likelihood of the la-
bel. First, we used the subgoal sequences to
annotate the executable procedural actions for
the planner. For example, a subgoal sequence
Goto, Pick, Clean, Goto, Put was annotated with
udp_clean_object, udp_put_object. A differ-
ent subgoal sequence Goto, Pickup, Goto Clean,
Put was annotated with the same procedural ac-
tion sequence. The first author annotated 30 most
frequent subgoal sequences of the training set of
ALFRED and resulted in 19 different executable
procedural actions6. Next, we used the atomic ac-
tion sequences of the dataset to generate the labels
for the reactors. For example, if there is an Open
before a Pickup in the atomic action sequence, the
attribute of the corresponding object is labeled as
openable=True and is_open=False.

When doing the sanity check to verify the cov-
erage of our created procedural library, we assign
an executable procedural action ae to each sample,
we then check whether the atomic action sequence
of ae match the annotated atomic action sequence
provided by the dataset. Unmatched examples are
reviewed and the procedural library is updated as

6We discarded a training example if its subgoal sequence is
not annotated with the procedure library. About 500 samples
among 21k training data are discarded.

in §6.2.

C.5 Hyperparameters

IQA Baseline The embedding size is 100, the
hidden size of the BI-LSTM and LSTM are 256
and 512. We take the same three feature vec-
tors before the YOLO detection layer and con-
vert the channel size to 32 with convolution lay-
ers to encode an image. The flatted features are
concatenated with dropout rate of 0.5. We use
Adam (Kingma and Ba, 2015) with learning rate
1e-4.
ALFRED We follow Shridhar et al. (2020a) for
the hyperparameter selection of the baseline and
our model if they are applicable (e.g. embedding
size, optimizer). We observe that training longer
yields better task completion, and thus we train
the baseline for 15 epochs and ours for 10 epochs.
For our method only, the size of ho, ha and hl is
512. The activation function of ATTRCHECKER is
Sigmoid and the output size is 3 (i.e. is_openable,
is_open, is_close). The activation function of RE-
FINDER is Softmax and the output size equals the
object vocabulary size.

D Analysis

In this section, we present concrete examples to
demonstrate the benefit of our proposed pipeline.
We also show a few failures of our pipeline to en-
courage future developments.

D.1 Advantage of HMN

The above results suggest that our proposed frame-
work with modularized task-specific components
and predefined procedure knowledge is effective
in controlling situated agents via complex natu-
ral language commands. Compared with the re-
active agent, this framework brings several bene-
fits. First, instead of directly controlling an agent
using low-level atomic actions, it predicts holis-
tic procedural programs, which are better aligned
with high-level input NL descriptions. For in-
stance, in Examples 1 and 2 in Tab. 8, common
NL phrases like put · in · naturally map to the pro-
cedure udp_pick_put_object, while the reactive
baseline could struggle at interpreting the corre-
spondence between the NL intents and the verbose
low-level atomic actions, resulting in incomplete
predictions. Second, using procedures could help
maintain consistency of actions. Specifically, given
a procedure (e.g.udp_pick_put_object), and its
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Task: Put a chilled egg in the sink
Reactive: Navigate egg Pickup egg Navigate fridge Open fridge STOP
HMN-PLANNER: udp_cool_object(egg), udp_pick_put_object(egg, sink)

Task: Put CDs in a safe. (*requires to put two CDs)
Reactive: Navigate cd Pickup cd Navigate safe Open safe Put cd safe Close safe STOP
HMN-PLANNER: udp_pick_put_object(cd, safe), udp_pick_put_object(cd, safe)

Task: Place a cooked potato slice in the fridge
Reactive: Navigate knife Pickup knife Navigate potato Slice potato Navigate fridge
Put knife countertop Navigate potato Close potato ...
HMN-PLANNER: udp_slice_object(potato), udp_heat_object(potato), udp_pick_and_put(potato, fridge)

Table 8: Common failures of the reactive baseline. All actions of the reactive baseline are atomic actions.

arguments (e.g.knife, fridge), the HMN agent is
guaranteed to coherently carry out the specified
action without being interfered, while the reac-
tive baseline could predict inconsistent atomic ac-
tions in-between (e.g. the underscored arguments
of Navigate and Put should be the same in Exam-
ple 3). Finally, we remark that procedures also
improve the robust behavior of the agent. For
instance, when interacting with container objects
(e.g. fridge), HMN would call the dedicated AT-
TRCHECKER to decide whether to open the ob-
ject first (e.g. C4,Fig. 1), and it mis-predicts once,
while the reactive baseline fails to perform the Open
action 33 times on the unseen split.

D.2 Error Analysis
We first did an ablation study on the PLANNER

on the unseen split. PLANNER correctly predicts
80% executable procedural actions ae, and the fail-
ures are mainly due to rare words in utterances
(e.g. soak a plate. Next, we manually annotated
50 failed examples among samples whose ae are
correctly predicted by the PLANNER. We found
that 26 failures are due to the sub-optimal interac-
tion positions of the receptacles that we compute
during the pre-search phase (§C.1). This results in
the failures of putting an object in-hand to a visi-
ble receptacle or picking up a visible object. The
pre-search map also missed some objects and navi-
gating to these objects always failed. This problem
can be alleviated either by adding additional proce-
dural actions to move around and attempt to pick
up or put an object until success, or by doing more
careful engineering to create the map. Addition-
ally, 18 examples are caused by prediction errors
of reactors. For instance, REFINDER could given
incorrect predictions of the containing receptacle
of an object. The receptacle is not correctly oper-
ated before the targeted object is visible. While
such errors are inevitable due to imperfect reac-
tors, it could be potentially mitigated by designing
more robust procedures, e.g., enumerating over the

top-n most likely receptacles for a target object
instead of the best scored one by the reactor. Other
approaches, like introducing object-centric repre-
sentations to the reactors (Wu et al., 2017; Singh
et al., 2020), could also be helpful. The remainder
of the errors are caused by ambiguous annotation
(2 examples), and wrong argument predictions of
the planner (4 examples).

E Related Work

Procedure-guided Learning The idea of using
predefined procedures for agent control has been
explored in the literature. For example, Andreas
et al. (2017); Das et al. (2019) use high-level sym-
bolic program sketches to guide an agent’s explo-
ration; Gordon et al. (2018); Yu et al. (2019) de-
sign meta-controller to call different low-level con-
trollers. There only exists one explicit level of the
hierarchy. Sun et al. (2020) show that programs can
assist agent’s task completions. They require the
presence of the program for each task, while our
programs are generated by the planner. There is
no nested function in their provided programs too.
Programs are used to represent procedures in Puig
et al. (2018), but no hierarchy is considered. Later
Liao et al. (2019) annotate the dataset with program
sketches and propose a graph-based method to gen-
erate executable programs. Their work requires
a fully observed environment while we only con-
sider egocentric visions. Recent works also explore
representing hierarchies with natural language (Hu
et al., 2019; Jiang et al., 2019a) and visual goal rep-
resentation (Misra et al., 2018) instead of symbols.
Another related area is probabilistic programming,
where procedures serve as symbolic scaffolds to de-
fine the control flow of learnable programs (Gaunt
et al., 2017). Our work is related to these research
in using predefined procedural knowledge to assist
learning, while we focus on leveraging such pro-
cedures to synthesize executable programs from
natural language commands.
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Semantic Parsing Our work is also related to
semantic parsing, where executable programs are
generated from natural language inputs. This in-
cludes mapping NL to domain-specific logical
forms (e.g. lambda calculus, (Zettlemoyer and
Collins, 2005)) or programs (e.g. SQL, (Zhong
et al., 2017; Yu et al., 2018)). Recently there
has also been a burgeoning of developing models
that could transduce natural language intents into
general-purpose programs (e.g. Python, (Yin and
Neubig, 2017; Rabinovich et al., 2017)). Our work
also considers program generation from NL, with
a focus on the command and control of situated
agents.

Research in semantic parsing has also explored
leveraging idiomatic program structures, which
are fragments of programs that frequently appear
in training data, to aid generation (Raghothaman
et al., 2016). Such idiomatic programs are mined
from corpora (Iyer et al., 2019; Shin et al., 2019).
Our work focuses on designing flexible and id-
iomatic procedures which interact with situated
components (e.g. reactors) to adapt to environment-
specific situations. This work also uses manually-
curated procedures, because in our problem setting
we do not have a readily available corpus of high-
level procedural programs to automatically collect
such idioms. We leave extracting procedures from
low-level atomic actions as interesting future work.

Robotics Planning and Hierarchical Control
Our procedure library shares the design philosophy
with the macro-actions in the STRIPS representa-
tion in the robotics planning (Fikes and Nilsson,
1971). However, we do not define the pre-condition
and the post-effect of the actions, and instead leave
the models to learn the consequences. The task-
level planning has been studied extensively (Kael-
bling and Lozano-Pérez, 2011; Srivastava et al.,
2013, 2014). These methods often work with high-
level formal languages in low-dimensional state
space, and they are typically designed for a spe-
cific environment and task. Our framework can be
applied to various tasks and only partial observa-
tions are required. Previous works also leverage
PDDL and the answer set planner (ASP) for task
planning. PDDL+ASP is conceptually different
from our formalism. PDDL+ASP aims at planning
the actual execution sequences. The PDDL planner
searches the action sequences based on the initial
and the final state. Meanwhile, our formalism fo-
cuses on describing the procedure to accomplish

a task. We use the HMN-Planner to predict the
executable procedure sequence given the NL. It is
possible to integrate them into one system. E.g.,a
procedure function can call a PDDL planner if the
pre/post conditions are clearer given NL. Finally,
many works design mechanism to learn hierarchies
automatically from supervisions of only the end-
task (Sutton et al., 1999; Bacon et al., 2017), which
might suffer from collapsing to trivial atomic ac-
tions.

# check the existence of an object in the scene
def udp_check_obj_exist(obj):

all_recep = udp_grid_search_recep()
for recep in all_recep:

rel = udp_check_relation(obj, recep)
if rel == OBJ_IN_RECEP:

return True
return False

# check whether a receptacle contains an object
def udp_check_contain(obj, recep):

all_recep = \
udp_grid_search_tar_recep(recep.desc)
for recep in all_recep:

rel = udp_check_relation(obj, recep)
if rel == OBJ_IN_RECEP:

return True
return False

# count how many objects in the scene
def udp_count_obj(obj):

tot = 0
all_recep = udp_grid_search_recep()
for recep in all_recep:

rel = udp_check_relation(obj, recep)
tot += int(rel == OBJ_IN_RECEP)

return tot

# check object inside receptacle
def udp_check_relation(obj, recep):

atomic_navigate(recep)
r1 = get_reactor("check_obj_attr")
r2 = get_reactor("check_obj_recep_rel")
attr = r1(recep)
if attr.is_openable and attr.is_closed:

atomic_open_object(recep)
rel = r2(obj, recep)
atomic_close_object(recep)

else:
rel = r2(obj, recep)

return rel

# get a list of target receptacles
def udp_grid_search_tar_recep(desc):

recep_list = udp_grid_search_recep()
tar_recep_list = [x for x in recep_list \\
if x.desc == desc]
return tar_recep_list

# navigate and search at every reachable points
def udp_grid_search_recep():

if not done_search:
all_receps = [] # global var
for pos in reachable_pos:

atomic_navigate_pos(pos)
all_receps += udp_search_recep()

return all_receps

Table 9: Procedural functions defined for IQA
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# close an object if it is open
def udp_close_if_needed(obj):

reactor = get_reactor("check_obj_attr")
attr = reactor(obj)
if attr.is_openable and attr.is_open:

atomic_close_object(obj)
# "postpare" the receptacle
def udp_postpare_recep(obj):

reactor = get_reactor("check_obj_attr")
attr = reactor(obj)
if attr.is_openable and attr.is_open:

atomic_close_object(obj)
# pickup an object
def udp_pick_object(obj):

reactor = get_reactor("find_obj_recep")
udp_navigation(obj)
recep = reactor(obj)
udp_prepare_recep(recep)
# this is for pickup laptop only
udp_close_if_needed(obj)
atomic_pick_object(obj)
udp_postpare_recep(recep

# put an object to a receptacle
def udp_put_object(obj, dst):

udp_navigation(dst)
udp_prepare_recep(dst)
atomic_put_object(obj, dst)
udp_postpare_recep(dst)

# clean an object in the fauucet
def udp_clean_object(obj):

# sink and faucet are global variables
udp_pick_object(obj)
udp_put_object(obj, sink)
atomic_toggleon_object(faucet)
atomic_toggleoff_object(faucet)
udp_pick_object(obj)

# slice an object with a knife
def udp_slice_object(obj, tool_dst):

# knife is a global variable
udp_pick_object(knife)
udp_navigation(obj)
reactor = get_reactor("find_obj_recep")
recep = reactor(obj)
udp_prepare_recep(recep)
atomic_slice_object(obj)
udp_postpare_recep(recep)
udp_put_object(tool, tool_dst)

# pick an object and then put it to a receptacle
def udp_pick_and_put_object(obj, dst):

udp_pick_object(obj)
udp_put_object(obj, dst)

# cool an object with fridge
def udp_cool_object(obj):

# fridge is a global variable
udp_pick_and_put_object(obj, fridge)

# heat an object with microwave
def udp_heat_object(obj):

udp_pick_and_put_object(obj, microwave)
atomic_toggleon_object(microwave)

# prepare a receptacle for interaction
def udp_prepare_recep(obj):

reactor = get_reactor("check_obj_attr")
attr = reactor(obj)
if attr.is_openable and attr.is_closed:

atomic_open_object(obj)

Table 10: Procedural functions defined for ALFRED

# udp_pick_object(obj):
def udp_pick_up(object, loc):

udp_navigation(loc)
if loc.is_open:

atomic_pickup_object(object)
else:

atomic_open_object(loc)
atomic_pickup_object(object)
atomic_close_object(loc)

def udp_pick_up_to(object, loc, loc_to):
udp_pick_up(object, loc)
udp_navigation(loc_to)

# udp_put_object(obj, dst):
def udp_put_to(object, loc_to):

udp_navigation(loc_to)
if loc.is_open:

PutObject(object)
else:

atomic_open_object(loc_to)
atomic_put_object(loc_to)
atomic_close_object(loc_to)

# udp_pick_and_put_object(obj, dst):
def udp_pick_put_to(object, loc, storage):

udp_pick_up(object, loc)
udp_put_to(object, storage)

def udp_look_under_light(object, loc, light_source):
udp_pick_up_to(object, loc, light_source)
atomic_toggleon_object(light_source)

# udp_slice_object(obj, tool_dst):
def udp_slice(object, loc, slicer):

udp_pick_up_to(slicer, loc, object)
atomic_slice_object(object)

def udp_toggle(object):
atomic_toggleon_object(object)
atomic_toggleoff_object(object)

# udp_cool_object(obj):
def udp_cool(object, loc):

udp_pick_put_to(object, loc, fridge)

# udp_heat_object(obj):
def udp_heat(object, loc):

udp_pick_put_to(object, loc, microwave)
udp_toggle(microwave)
udp_pick_up(object, microwave)

# udp_clean_object(obj):
def udp_clean(object, loc):

udp_pick_put_to(object, loc, Faucet)
udp_toggle(Faucet)

Table 11: Procedural functions defined by a program-
mer without ALFRED domain knowledge. The com-
ments could roughly map to functions in Tab. 10.
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