
SPNLP 2022

Sixth Workshop on Structured Prediction for NLP

Proceedings of the Workshop

May 27, 2022

c©2022 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-955917-51-3

i

Introduction

Welcome to the Sixth Workshop on Structured Prediction for NLP!

Structured prediction has a strong tradition within the natural language processing (NLP) community,
owing to the discrete, compositional nature of words and sentences, which leads to natural combinatorial
representations such as trees, sequences, segments, or alignments, among others. It is no surprise that
structured output models have been successful and popular in NLP applications since their inception.
Many other NLP tasks, including, but not limited to: semantic parsing, slot filling, machine translation,
or information extraction, are commonly modeled as structured problems, and accounting for said struc-
ture has often lead to performance gain.

This year we received 19 submissions, 7 of which were reviewed by the ACL Rolling Review initiative
and subsequently commited to our workshop and 12 of which were directly submitted to our workshop
and double-blind peer reviewed by our program committee members. Of these 19, 13 were accepted
(6 of which are non-archival papers) for presentation in this edition of the workshop, all exploring this
interplay between structure and neural data representations, from different, important points of view. The
program includes work on structure-informed representation learning, leveraging structure in problems
like temporal knowledge graph completion, multilingual syntax-aware language modeling, mention de-
tection models, etc. Our program also includes five invited presentations from influential researchers.

Our warmest thanks go to the program committee – for their time and effort providing valuable feedback,
to all submitting authors – for their thought-provoking work, and to the invited speakers – for doing us
the honor of joining our program.

Andreas Vlachos
Priyanka Agrawal
André Martins
Gerasimos Lampouras
Chunchuan Lyu

ii

Organizing Committee

Organizers

Andreas Vlachos, University of Cambridge, UK
Priyanka Agrawal, Google Research, UK
André Martins, Unbabel and Instituto de Telecomunicações, Portugal
Gerasimos Lampouras, Huawei Noah’s Ark Lab, UK
Chunchuan Lyu, University of Lisbon, Portugal

iii

Program Committee

Program Committee

Manling Li, University of Illinois, Urbana-Champaign, USA
Sha Li, University of Illinois, Urbana-Champaign, USA
Julius Cheng, University of Cambridge, UK
Pietro Lesci, University of Cambridge, UK
Moy Yuan, University of Cambridge UK
Zhijiang Guo, University of Cambridge, UK
Ignacio Iacobacci, Huawei Noah’s Ark Lab, UK
Philip John Gorinski, Huawei Noah’s Ark Lab, UK
Parag Jain, University of Edinburgh, UK
Vivek Srikumar, University of Utah, USA
Michail Korakakis, University of Cambridge, UK
Parisa Kordjamshidi, Michigan State University, USA
Tatsuya Hiraoka, Tokyo Institute of Technology, Japan
Naoaki Okazaki, Tokyo Institute of Technology, Japan
Youmi Ma, Tokyo Institute of Technology, Japan
Pedro Henrique Martins, Instituto Superior Técnico, Portugal
Yangfeng Ji, University of Virginia, USA
Zhen Han, Institut für Informatik, Germany
Guirong Fu, Bytedance
Patrick Fernandes, Carnegie Mellon University, USA
Yusuke Miyao, University of Tokyo, Japan
Daniel Daza, Vrije Universiteit Amsterdam, Netherlands
Marcos Vinicius Treviso, Instituto Superior Técnico, Portugal

iv

Table of Contents

Multilingual Syntax-aware Language Modeling through Dependency Tree Conversion
Shunsuke Kando, Hiroshi Noji and Yusuke Miyao . 1

Joint Entity and Relation Extraction Based on Table Labeling Using Convolutional Neural Networks
Youmi Ma, Tatsuya Hiraoka and Naoaki Okazaki . 11

TempCaps: A Capsule Network-based Embedding Model for Temporal Knowledge Graph Completion
Guirong Fu, Zhao Meng, Zhen Han, Zifeng Ding, Yunpu Ma, Matthias Schubert, Volker Tresp

and Roger Wattenhofer . 22

SlotGAN: Detecting Mentions in Text via Adversarial Distant Learning
Daniel Daza, Michael Cochez and Paul Groth . 32

A Joint Learning Approach for Semi-supervised Neural Topic Modeling
Jeffrey Chiu, Rajat Mittal, Neehal Tumma, Abhishek Sharma and Finale Doshi-Velez 40

Neural String Edit Distance
Jindřich Libovický and Alexander Fraser . 52

Predicting Attention Sparsity in Transformers
Marcos Vinicius Treviso, António Góis, Patrick Fernandes, Erick Rocha Fonseca and Andre

Martins. .67

v

Proceedings of the Sixth Workshop on Structured Prediction for NLP, pages 1 - 10
May 27, 2022 c©2022 Association for Computational Linguistics

Multilingual Syntax-aware Language Modeling
through Dependency Tree Conversion

Shunsuke Kando1,2 Hiroshi Noji3,2 Yusuke Miyao1,2

1 The University of Tokyo
2 Artificial Intelligence Research Center, AIST

3 LeapMind Inc.
kando-shunsuke@alumni.u-tokyo.ac.jp

noji@leapmind.io
yusuke@is.s.u-tokyo.ac.jp

Abstract

Incorporating stronger syntactic biases into neu-
ral language models (LMs) is a long-standing
goal, but research in this area often focuses
on modeling English text, where constituent
treebanks are readily available. Extending
constituent tree-based LMs to the multilin-
gual setting, where dependency treebanks are
more common, is possible via dependency-to-
constituency conversion methods. However,
this raises the question of which tree formats
are best for learning the model, and for which
languages. We investigate this question by
training recurrent neural network grammars
(RNNGs) using various conversion methods,
and evaluating them empirically in a multilin-
gual setting. We examine the effect on LM
performance across nine conversion methods
and five languages through seven types of syn-
tactic tests. On average, the performance of
our best model represents a 19 % increase in
accuracy over the worst choice across all lan-
guages. Our best model shows the advantage
over sequential/overparameterized LMs, sug-
gesting the positive effect of syntax injection in
a multilingual setting. Our experiments high-
light the importance of choosing the right tree
formalism, and provide insights into making an
informed decision.

1 Introduction

The importance of language modeling in recent
years has grown considerably, as methods based
on large pre-trained neural language models (LMs)
have become the state-of-the-art for many problems
(Devlin et al., 2019; Radford et al., 2019). However,
these neural LMs are based on general architectures
and therefore do not explicitly model linguistic
constraints, and have been shown to capture only
a subset of the syntactic representations typically
found in constituency treebanks (Warstadt et al.,
2020). An alternative line of LM research aims
to explicitly model the parse tree in order to make
the LM syntax-aware. A representative example of

this paradigm, reccurent neural network grammar
(RNNG, Dyer et al., 2016), is reported to perform
better than sequential LMs on tasks that require
complex syntactic analysis (Kuncoro et al., 2019;
Hu et al., 2020; Noji and Oseki, 2021).

The aim of this paper is to extend LMs that inject
syntax to the multilingual setting. This attempt is
important mainly in two ways. Firstly, English has
been dominant in researches on syntax-aware LM.
While multilingual LMs have received increasing
attention in recent years, most of their approaches
do not explicitly model syntax, such as multilingual
BERT (mBERT, Devlin et al., 2019) or XLM-R
(Conneau et al., 2020). Although these models have
shown high performance on some cross-lingual
tasks (Conneau et al., 2018), they perform poorly
on a syntactic task (Mueller et al., 2020). Secondly,
syntax-aware LMs have interesting features other
than their high syntactic ability. One example is
the validity of RNNG as a cognitive model under
an English-based setting, as demonstrated in Hale
et al. (2018). Since human cognitive functions are
universal, while natural languages are diverse, it
would be ideal to conduct this experiment based on
multiple languages.

The main obstacle for multilingual syntax-aware
modeling is that it is unclear how to inject syn-
tactic information while training. A straightfor-
ward approach is to make use of a multilingual
treebank, such as Universal Dependencies (UD,
Nivre et al., 2016; Nivre et al., 2020), where trees
are represented in a dependency tree (DTree) for-
malism. Matthews et al. (2019) evaluated parsing
and language modeling performance on three ty-
pologically different languages, using a generative
dependency model. Unfortunately, they revealed
that dependency-based models are less suited to
language modeling than comparable constituency-
based models, highlighting the apparent difficulty
of extending syntax-aware LMs to other languages
using existing resources.

1

S

VP

laughs

NP

The pilot

Partial tree
Stack-LSTM

Action

0 NT(S)

1
(S[eS] NT(NP)

2
(S (NP[eS eNP] GEN(The)

3
(S (NP The[eS eNP eThe] GEN(pilot)

4
(S (NP The pilot[eS eNP eThe epilot] REDUCE

5
(S (NP The pilot)[eS eNP′] NT(VP)

6
(S (NP The pilot) (VP[eS eNP′ eVP] ⋯

Figure 1: The illustration of stack-RNNG behavior.
Stack-LSTM represents the current partial tree, in which
adjacent vectors are connected in the network. At RE-
DUCE action, the corresponding vector is updated with
composition function (as underlined).

This paper revisits the issue of the difficulty of
constructing multilingual syntax-aware LMs, by ex-
ploring the performance of multilingual language
modeling using constituency-based models. Since
our domain is a multilingual setting, our focus
turns to how dependency-to-constituency conver-
sion techniques result in different trees, and how
these trees affect the model’s performance. We
obtain constituency treebanks from UD-formatted
dependency treebanks of five languages using nine
tree conversion methods. These treebanks are in
turn used to train an RNNG, which we evaluate on
perplexity and CLAMS (Mueller et al., 2020).

Our contributions are: (1) We propose a method-
ology for training multilingual syntax-aware LMs
through the dependency tree conversion. (2) We
found an optimal structure that brings out the po-
tential of RNNG across five languages. (3) We
demonstrated the advantage of our multilingual
RNNG over sequential/overparameterized LMs.

2 Background

2.1 Recurrent Neural Network Grammars

RNNGs are generative models that estimate joint
probability of a sentence x and a constituency tree
(CTree) y. The probability p(x,y) is estimated
with top-down constituency parsing actions a =(a1, a2,⋯, an) that produce y:

p(x,y) = n∏
t=1 p(at∣a1,⋯, at−1)

Kuncoro et al. (2017) proposed a stack-only
RNNG that computes the next action probability
based on the current partial tree. Figure 1 illustrates
the behavior of it. The model represents the current
partial tree with a stack-LSTM, which consists of
three types of embeddings: nonterminal, word, and
closed-nonterminal. The next action is estimated
with the last hidden state of a stack-LSTM. There
are three types of actions as follows:

• NT(X): Push nonterminal embedding of X
(eX) onto the stack.

• GEN(w): Push word embedding of w (ew)
onto the stack.

• REDUCE: Pop elements from the stack un-
til a nonterminal embedding shows up. With
all the embeddings which are popped, com-
pute closed-nonterminal embedding eX′ using
composition funcion COMP:

eX′ = COMP(eX ,ew1 ,⋯,ewm)
RNNG can be regarded as a language model that

injects syntactic knowledge explicitly, and various
appealing features have been reported (Kuncoro
et al., 2017; Kuncoro et al., 2017; Hale et al., 2018).
We focus on its high performance on syntactic eval-
uation, which is described below.

Difficulty in extending to other languages In
principle, RNNG can be learned with any corpus as
long as it contains CTree annotation. However, it is
not evident which tree formats are best in a multilin-
gual setting. Using the same technique as English
can be inappropriate because each language has its
own characteristic, which can be different from En-
glish. This question is the fundamental motivation
of this research.

2.2 Cross-linguistic Syntactic Evaluation
To investigate the capability of LMs to capture
syntax, previous work has attempted to create an
evaluation set that requires analysis of the sentence
structure (Linzen et al., 2016). One typical example
is a subject-verb agreement, a rule that the form of
a verb is determined by the grammatical category
of the subject, such as person or number:

The pilot that the guards love laughs/*laugh. (1)

In (1), the form of laugh is determined by the
subject pilot, not guards. This judgment requires

2

Algorithm 1: lf is short for left-first conversion. We
omit right-first conversion because it can be defined just
by swapping the codeblocks 6-9 and 10-13 of left-first
conversion.

1 Function flat(w, ldeps, rdeps):
2 lNT← [flat(lw, lw.ldeps, lw.rdeps) for lw

in ldeps];
3 rNT← [flat(rw, rw.ldeps, rw.rdeps) for

rw in rdeps];
4 return [lNT [w] rNT].removeEmptyList;
5 Function lf(w, ldeps, rdeps):
6 if ldeps is not empty then

/* Pop left-most dependent */
7 lw ← ldeps.pop();
8 lNT← [lf(lw, lw.ldeps, lw.rdeps)];
9 rNT← [lf(w, ldeps, rdeps)];

10 else if rdeps is not empty then
/* Pop right-most dependent */

11 rw ← rdeps.pop();
12 lNT← [lf(w, ldeps, rdeps)];
13 rNT← [lf(rw, rw.ldeps, rw.rdeps)];
14 else return [w];
15 return [lNT rNT];

syntactic analysis; guards is not a subject of target
verb laugh because it is in the relative clause of the
real subject pilot.

Marvin and Linzen (2018) designed the En-
glish evaluation set using a grammatical frame-
work. Mueller et al. (2020) extended this frame-
work to other languages (French, German, Hebrew,
and Russian) and created an evaluation set named
CLAMS (Cross-Linguistic Assessment of Models
on Syntax). CLAMS covers 7 categories of agree-
ment tasks, including local agreement (e.g. The au-
thor laughs/*laugh) and non-local agreement that
contains an intervening phrase between subject and
verb as in (1). They evaluated LMs on CLAMS
and demonstrated that sequential LMs often fail to
assign a higher probability to the grammatical sen-
tence in cases that involve non-local dependency.

Previous work has attempted to explore the syn-
tactic capabilities of LMs with these evaluation sets.
Kuncoro et al. (2019) compared the performance
of LSTM LM and RNNG using the evaluation set
proposed in Marvin and Linzen (2018), demon-
strating the superiority of RNNG in predicting the
agreement. Noji and Takamura (2020) suggested
that LSTM LMs potentially have a limitation in
handling object relative clauses. Since these analy-
ses are performed on the basis of English text, it is
unclear whether they hold or not in a multilingual
setting. In this paper, we attempt to investigate this
point by learning RNNGs in other languages and
evaluating them on CLAMS.

3 Method: Dependency Tree Conversion

As a source of multilingual syntactic information,
we use Universal Dependencies (UD), a collection
of cross-linguistic dependency treebanks with a
consistent annotation scheme. Since RNNG re-
quires a CTree-formatted dataset for training, we
perform DTree-to-CTree conversions, which are
completely algorithmic to make it work regardless
of language. Our method consists of two proce-
dures: structural conversion and nonterminal la-
beling; obtaining a CTree skeleton with unlabeled
nonterminal nodes, then assigning labels by lever-
aging syntactic information contained in the depen-
dency annotations. While our structural conversion
is identical to the baseline approach of Collins et al.
(1999), we include a novel labeling method that
relies on dependency relations, not POS tags.

Structural conversion We performed three types
of structural conversion: flat, left-first, and right-
first. Algorithm 1 shows the pseudo code and Fig-
ure 2 illustrates the actual conversions. These ap-
proaches construct CTree in a top-down manner
following this procedure: 1) Introduce the root non-
terminal of the head of a sentence (NTgive). 2) For
each NTw, introduce new nonterminals according
to the dependent(s) of w. Repeat this procedure
recursively until w has no dependents.

The difference between the three approaches is
the ordering of introducing nonterminals. We de-
scribe their behaviors based on the example in Fig-
ure 2. (a) flat approach lets w and its dependents
be children in CTree simultaneously. For example,
NTgive has four children: NTman, NTgive, NThim,
NTbox, because they are dependents of the head
word give. As the name suggests, this approach
tends to produce a flat-structured CTree because
each nonterminal can have multiple children. (b)
left-first approach introduces the nonterminals from
the left-most dependent. If there is no left depen-
dent, the right-most dependent is introduced. In
the example of Figure 2, the root NTgive has a left
child NTman because man is the left-most depen-
dent of the head give. (c) right-first approach is
the inversed version of left-first; handling the right-
most dependent first. For methods (b) and (c), the
resulting CTree is always a binary tree.

Nonterminal labeling We define three types of
labeling methods for each NTw; 1) X-label: Assign
“X” to all the nonterminals. 2)POS-label: Assign
POS tag of w. 3) DEP-label: Assign dependency

3

The man give him a box
DET NOUN VERB PRON DET NOUN

root

det nsubj iobj
obj

det

⇙ ⇓ ⇘
NTgive

NTbox

NTbox

box

NTa

a

NThim

him

NTgive

give

NTman

NTman

man

NTThe

The

NTgive

NTgive

NTbox

NTbox

box

NTa

a

NTgive

NThim

him

NTgive

give

NTman

NTman

man

NTThe

The

NTgive

NTbox

NTbox

box

NTa

a

NTgive

NThim

him

NTgive

NTgive

give

NTman

NTman

man

NTThe

The
(a) flat (b) left-first (c) right-first

Figure 2: The illustration of structural conversion. NTw is a temporal label of nonterminal which will be assigned at
nonterminal labeling phase.

X-label POS-label DEP-label
NTThe X DETP det
NTman X NOUNP nsubj
NTgive X VERBP root
NThim X PRONP iobj
NTa X DETP det
NTbox X NOUNP obj

Table 1: Actual labels assigned to nonterminals.

relation between w and its head. Table 1 shows the
actual labels that are assigned to CTrees in Figure 2.

Each method has its own intent. X-label drops
the syntactic category of each phrase, which min-
imizes the structural information of the sentence.
POS-label would produce the most common CTree
structure because traditionally nonterminals are la-
beled based on POS tag of the head word. DEP-
label is a more fine-grained method than POS-label
because words in a sentence can have the same
POS tag but different dependency relation, as in
man and box in Figure 2.

Finally, we performed a total of nine types of
conversions (three structures × three labelings). Al-
though they have discrete features, they are com-
mon in that they embody reasonable phrase struc-
tures that are useful for capturing syntax. Figure 3
shows the converted structure of an actual instance
from CLAMS. In all settings, the main subject
phrase is correctly dominated by NTpilot, which
should contribute to solving the task.

4 What Is the Robust Conversion Which
Works Well in Every Language?

In Section 3, we proposed language-independent
multiple conversions from DTree to CTree. The
intriguing question is; Is there a robust conversion

that brings out the potential of RNNG in every
language? To answer this question, we conducted a
thorough experiment to compare the performances
of RNNGs trained in each setting.

4.1 Experimental Setup

Treebank preparation Following Mueller et al.
(2020), we extracted Wikipedia articles of target
languages using WikiExtractor1 to create corpora2.
We fed it to UDify (Kondratyuk and Straka, 2019),
a multilingual neural dependency parser trained on
the entire UD treebanks, to generate a CoNLL-U
formatted dependency treebank. Sentences are tok-
enized beforehand using Stanza (Qi et al., 2020) be-
cause UDify requires tokenized text for prediction.
The resulting dependency treebank is converted
into the constituency treebank using methods pro-
posed in Section 3. Our treebank contains around
10% non-projective DTrees for all the language
(between 9% in Russian and 14% in Hebrew), and
we omit them in the conversion phase because we
cannot obtain valid CTrees from them3. As a train-
ing set, we picked sentences with 10M tokens at
random for each language. For a validation and a
test set, we picked 5,000 sentences respectively.

Training details We used batched RNNG (Noji
and Oseki, 2021) to speed up our training. Follow-
ing Noji and Oseki (2021), we used subword units
(Sennrich et al., 2016) with a vocabulary size of

1https://github.com/attardi/
wikiextractor

2Although Mueller et al. (2020) publishes corpora they
used, we extracted the dataset ourselves because they contain
<unk> token which would affect parsing.

3Since other language can contain more non-projective
DTrees, we have to consider how to handle it in the future.

4

flat left-first right-first
NT

NT

laughs
/ *laugh

NTpilot

NT

NT

love

NT

the guards

NT

that

NT

pilot

NT

The

NT

NT

laughs
/ *laugh

NTpilot

NT

NT

NT

NT

love

NT

the guards

NT

that

NT

pilot

NT

The

NT

NT

laughs
/ *laugh

NTpilot

NT

NT

NT

love

NT

the guards

NT

that

NT

NT

pilot

NT

The

Figure 3: Examples of converted CTrees. A sentence is taken from CLAMS, which requires recognition of long
distance dependency intervened by object relative clause (sentence (1)). For simplicity, we omit the corresponding
word of each nonterminal except for pilot, the main subject of the sentence.

30K. We set the hyperparameters so as to make
the model size 35M. We trained each model for 24
hours on a single GPU.

Evaluation metrics To compare the performance
among conversions, we evaluated the model trained
on each dataset in two aspects: perplexity and
syntactic ability based on CLAMS.

Perplexity is a standard metric for assessing the
quality of LM. Since we adopt subword units, we
regard a word probability as a product of its sub-
words’ probabilities. To compute it on RNNG, we
performed word-synchronous beam search (Stern
et al., 2017), a default approach implemented in
batched RNNG. Following Noji and Oseki (2021),
we set a beam size k as 100, a word beam size
kw as 10, and fast-track candidates ks as 1. Syn-
tactic ability is assessed by accuracy on CLAMS,
which is calculated by comparing the probabilities
assigned to a grammatical and an ungrammatical
sentence. If the model assigns a higher probabil-
ity to a grammatical sentence, then we regard it as
correct. Chance accuracy is 0.5.

We run the experiment three times with different
random seeds for initialization of the model, and
report the average score with standard deviation.

4.2 Result

From now on, we refer to each conversion method
according to a naming of the procedure, such as
“left-first structure” or “flat-POS conversion”.

Perplexity Table 2 shows the perplexities in each
setting. As a whole, flat structures show the low-
est perplexity, followed by left-first and right-first,
which is consistent across languages. While flat
structure produces stable and relatively low per-
plexity regardless of labeling methods and lan-
guages, left-first and right-first structures perform
very poorly on X-label.

flat left right
X 259±1 707±19 1507±14

EnglishPOS 278±3 417±2 512±3
DEP 241±30 390±4 463±1

X 133±0 405±10 691±10
FrenchPOS 129±1 206±2 262±1

DEP 137±22 190±5 223±2
X 341±1 830±8 1124±18

GermanPOS 366±1 321±3 482±2
DEP 330±43 291±3 398±4

X 100±1 294±3 450±8
HebrewPOS 97±0 153±1 183±1

DEP 93±1 143±1 161±1
X 508±5 1413±16 1910±59

RussianPOS 527±3 845±2 1067±16
DEP 473±61 834±5 1030±27

Table 2: Test set perplexity of each setting. Lower is
better. “left” and “right” in the table are abbreviations
of “left-first” and “right-first”, respectively.

Syntactic ability Figure 4 shows the accuracies
of CLAMS in each setting, and Table 3 shows the
average scores. From Table 3, we observe clear
distinctions across methods; the best model (shown
in bold) is 19% more accurate in average than the
worst one (shown in italic), across all languages,
indicating the model’s certain preference for the
structure. Similar to perplexity, flat structure per-
forms better and more stably than the others, re-
gardless of labels and languages. While Mueller
et al. (2020) reported a high variability in scores
across languages when an LSTM LM is used, flat
structure-based RNNGs do not show such a ten-
dency; almost all the accuracies are above 90%.

Looking closely at the Figure 4, we can see that
left-first and right-first structures exhibit unstable
behavior depending on the labeling; the accuracy
on X-label tends to be lower especially for the cate-
gories that require the resolution of a long-distance
dependency, such as ‘VP coord (long)’, ‘Across
subj. rel.’, ‘Across obj. rel.’, and ‘Across prep’.

5

Figure 4: Accuracies of CLAMS for RNNGs trained on each setting.

flat left right
X 0.89±.01 0.68±.01 0.75±.01

EnglishPOS 0.87±.02 0.89±.01 0.67±.01
DEP 0.90±.02 0.84±.01 0.78±.04

X 0.99±.00 0.75±.00 0.88±.02
FrenchPOS 0.99±.00 0.93±.02 0.92±.01

DEP 0.98±.01 0.96±.01 0.94±.01
X 0.95±.00 0.78±.01 0.86±.01

GermanPOS 0.95±.01 0.93±.01 0.88±.01
DEP 0.96±.01 0.95±.02 0.87±.02

X 0.91±.01 0.72±.01 0.78±.01
HebrewPOS 0.91±.01 0.91±.03 0.87±.01

DEP 0.90±.01 0.92±.00 0.86±.01
X 0.93±.00 0.84±.01 0.89±.02

RussianPOS 0.90±.01 0.87±.01 0.83±.01
DEP 0.93±.01 0.89±.00 0.82±.01

Table 3: CLAMS scores averaged by task category.

Discussion Basically, we observed a similar ten-
dency in perplexity and CLAMS score; (1) flat
structures show the highest scores. (2) left-first
and right-first structures perform poorly on X-label.
We conjecture that these tendencies are due to
the resulting structure of each conversion; while
flat structure is non-binary, the rest two are bi-
nary. Since nonterminals in a non-binary tree can
have multiple words as children, parsing actions
obtained from it contain more continuous GEN
actions than a binary tree. This nature helps the
model to predict the next word by considering lexi-

cal relations, which would contribute to its lower
perplexity. Although binary trees get better with
the hint of informative labels (POS/DEP), it is diffi-
cult to reach the performance of flat structures due
to their confused actions; GEN actions tend to be
interrupted by other actions. Besides, there are too
many NT actions in a binary tree, which can hurt
the prediction because the information of an impor-
tant nonterminal (e.g. NTpilot in Figure 3) can be
diluted through the actions. The situation becomes
worse on X-label; the model cannot distinguish
the nonterminal of the main subject and that of the
other, resulting in missing what the subject is.

It is worth noting that perplexity does not always
reflect the CLAMS accuracy. For example, while
right-X conversion produces the worst perplexity
for all the languages, it achieves better CLAMS
accuracy than left-X conversion for almost all the
cases. This observation is in line with Hu et al.
(2020), who report a dissociation between perplex-
ity and syntactic performance for English.

4.3 Why Does Flat Structure Perform Well?

As one possible reason why flat structure is optimal
among the three structures presented, we conjec-
ture that the parseability of the structure is involved.
To test this hypothesis, we calculated the F1 score

6

flat left right
X 0.80±.00 0.34±.00 0.48±.00

EnglishPOS 0.79±.00 0.57±.00 0.70±.00
DEP 0.82±.01 0.59±.01 0.70±.00

X 0.79±.00 0.37±.00 0.58±.00
FrenchPOS 0.86±.00 0.63±.00 0.74±.00

DEP 0.86±.01 0.65±.01 0.75±.00
X 0.90±.00 0.44±.00 0.59±.00

GermanPOS 0.85±.00 0.74±.00 0.76±.00
DEP 0.91±.08 0.76±.00 0.77±.00

X 0.81±.01 0.41±.00 0.58±.00
HebrewPOS 0.83±.00 0.65±.00 0.73±.00

DEP 0.83±.00 0.65±.00 0.72±.00
X 0.80±.00 0.41±.00 0.59±.00

RussianPOS 0.83±.00 0.62±.00 0.73±.00
DEP 0.82±.01 0.58±.00 0.68±.00

Table 4: F1 score of predicted CTree. We regard a
resulting CTree of each conversion as a gold tree.

Figure 5: Structures of a CLAMS example predicted by
{flat, left-first, right-first}-POS RNNG. This example is
solvable only by flat-POS RNNG across all seeds.

between the gold CTrees of the test set and the
structures predicted by RNNG for each setting. Ta-
ble 4 shows the result. The tendencies of F1 scores
are consistent across languages: 1) Flat structures
show highest F1 score. 2) While scores of flat struc-
tures are stable regardless of their labelings, the rest
two structures exhibit lower score on X-label. As a
whole, the result reflects the tendency discussed in
Section 4.2, which supports our hypothesis.

To further investigate the link between parseabil-
ity and the capability of solving the task, we ob-
tained parse trees of CLAMS examples that are
solvable only by flat RNNG across all seeds. We
found that only flat RNNG produces a correct con-
stituency tree, and structures obtained from left-
first and right-first RNNGs are incorrect on a crit-
ical point. For example, in Figure 5, while the
relation between the subject “author” and the target
verb “laughs” is analyzed clearly in the flat struc-
ture, it is ambiguous in the rest, possibly causing

the misinterpretation that the subject is “guards”.
These findings indicate the importance of choos-

ing the correct tree structure for syntax-aware lan-
guage modeling; it should be not only hierarchical,
but also as parseable as possible.

Through analysis of the conversions, we found
that (1) flat structure performs stably well in every
setting. (2) while CLAMS accuracy of flat structure
does not differ significantly depending on its label-
ing, for perplexity, flat-DEP performs the best for
more than half of the languages and no inferiority
can be observed for the other languages. Therefore,
we conclude that flat-DEP conversion is the most
robust conversion among languages.

5 Advantage of Syntax Injection to LMs
in a Multilingual Setting

In this section, we demonstrate the benefits of in-
jecting syntactic biases into the model in a multi-
lingual setting. We obtained the CLAMS score of
RNNG trained on the flat-DEP treebank (flat-DEP
RNNG for short) and compared it against baselines.

Experimental setup The experiment was con-
ducted in as close setting to the previous work as
possible. Following Mueller et al. (2020), we ex-
tracted Wikipedia articles of 80M tokens as train-
ing set. The hyperparameters of LSTM LM are
set following Noji and Takamura (2020) because
it performs the best for the dataset of Marvin and
Linzen (2018)4. We used subword units with a vo-
cabulary size of 30K, and the sizes of RNNG and
LSTM LM are set to be the same (35M).

Result Table 5 shows the result. In addition
to scores from the models we trained (flat-DEP
RNNG, LSTM (N20)), we display scores of LSTM
LM and mBERT reported in the original paper
(LSTM (M20) and mBERT (M20), Mueller et al.,
2020). Overall, we can see the superiority of
RNNG across languages, especially for the tasks
that require analysis on long distance dependency;
‘VP coord (long)’, ‘Across subj. rel.’, ‘Across obj.
rel.’, and ‘Across prep’. While previous work sug-
gested that LSTM LMs potentially have a limita-
tion in handling object relative clauses (Noji and
Takamura, 2020), our result suggests that RNNG
does not have such a limitation thanks to explicitly
injected syntactic biases.

4Since English set of CLAMS is a subset of Marvin and
Linzen (2018), it is reasonable to choose this model to validate
the multilingual extendability.

7

Simple VP coord
(short)

VP coord
(long)

Across
subj. rel.

Within
obj rel.

Across
obj rel.

Across
prep.

Average

flat-DEP RNNG 0.99±.01 0.87±.02 0.91±.04 0.95±.02 0.92±.05 0.92±.06 0.93±.04 0.93±.02
EnglishLSTM (N20) 0.93±.03 0.85±.01 0.83±.04 0.85±.04 0.83±.05 0.77±.04 0.87±.02 0.85±.02

LSTM (M20) 1.00±.00 0.94±.01 0.76±.06 0.60±.06 0.89±.01 0.55±.05 0.63±.02 0.77±.03
mBERT (M20) 1.00 1.00 0.92 0.88 0.83 0.87 0.92 0.92

flat-DEP RNNG 1.00±.00 1.00±.00 1.00±.00 1.00±.00 1.00±.00 1.00±.00 1.00±.00 1.00±.00
FrenchLSTM (N20) 1.00±.00 1.00±.00 0.97±.03 0.92±.06 0.85±.03 0.75±.01 1.00±.00 0.93±.01

LSTM (M20) 1.00±.00 0.97±.01 0.85±.05 0.71±.05 0.99±.01 0.52±.01 0.74±.02 0.83±.02
mBERT (M20) 1.00 1.00 0.98 0.57 — 0.86 0.57 0.83

flat-DEP RNNG 1.00±.00 0.99±.01 0.98±.01 1.00±.00 0.88±.04 0.99±.01 0.97±.02 0.97±.01
GermanLSTM (N20) 0.99±.01 0.97±.03 0.92±.05 0.99±.01 0.72±.01 0.97±.02 0.94±.01 0.93±.01

LSTM (M20) 1.00±.00 0.99±.02 0.96±.04 0.94±.04 0.74±.03 0.81±.09 0.89±.06 0.90±.04
mBERT (M20) 0.95 0.97 1.00 0.73 — 0.93 0.95 0.92

flat-DEP RNNG 0.97±.01 0.99±.00 0.92±.03 0.95±.02 1.00±.00 0.84±.05 0.95±.01 0.95±.01
HebrewLSTM (N20) 0.97±.00 0.95±.04 0.85±.02 0.89±.02 0.94±.01 0.63±.04 0.93±.01 0.88±.00

LSTM (M20) 0.95±.01 1.00±.01 0.84±.06 0.91±.03 1.00±.01 0.56±.01 0.88±.03 0.88±.02
mBERT (M20) 0.70 0.91 0.73 0.61 — 0.55 0.62 0.69

flat-DEP RNNG 0.89±.02 0.94±.02 1.00±.00 0.93±.00 0.99±.01 0.92±.02 0.85±.03 0.93±.01
RussianLSTM (N20) 0.91±.01 0.97±.00 0.97±.02 0.98±.00 0.90±.04 0.85±.07 0.86±.02 0.92±.01

LSTM (M20) 0.91±.01 0.98±.02 0.86±.04 0.88±.03 0.95±.04 0.60±.03 0.76±.02 0.85±.03
mBERT (M20) 0.65 0.80 — 0.70 — 0.67 0.56 0.68

Table 5: CLAMS scores for flat-DEP RNNG and baselines. LSTM (N20) is a model of which hyperparameters are
set as with Noji and Takamura (2020). LSTM (M20) and mBERT (M20) scores are quoted from Table 1, 2 and 5 in
Mueller et al. (2020). Hyphen means that all focus verb for the corresponding setting were out-of-vocabulary.

6 Discussion

We discussed the CTree structure that works ro-
bustly regardless of the language and the supe-
riority of injecting syntactic bias to the model.
Our claim is that we can construct language-
independent syntax-aware LMs by seeking the best
structure for learning RNNGs, which is backed
up by our experiments based on five languages.
To make this claim firm, more investigations are
needed from two aspects: fine-grained syntactic
evaluation and experiment on typologically di-
verse languages.

Fine-grained syntactic evaluation The linguis-
tic phenomenon covered in CLAMS is only an
agreement. However, previous works have invented
evaluation sets that examine more diverse syntactic
phenomena for English (Hu et al., 2020, Warstadt
et al., 2020). We need such a fine-grained evalua-
tion even in a multilingual setting, as superiority
in agreement does not imply superiority in every
syntactic knowledge; Kuncoro et al. (2019) sug-
gested that RNNG performs poorer than LSTM
LM in capturing sentential complement or simple
negative polarity items. It is challenging to design
a multiliugnal syntactic test set because even an
agreement based on grammatical categories is not
a universal phenomenon. It is required to seek
reasonable metrics that cover broad syntactic phe-
nomena and are applicable to many languages.

Experiment on typologically diverse languages
Languages included in CLAMS (English, French,
German, Hebrew and Russian) are actually not ty-

pologically diverse. Apart from language-specific
features, all of them take the same ordering of (1)
subject, verb, and object (SVO) (2) relative clause
and noun (Noun-Relative clause) (3) adposition and
noun phrase (preposition), and so on5. If we run
the same experiment for a typologically different
language, the result could be somewhat different.
Although some previous work focused on syntac-
tic assessment of other languages (Ravfogel et al.,
2018; Gulordava et al., 2018), such attempts are
scarce. As future work, it is needed to design an
evaluation set based on other languages and explore
the extendability to more diverse languages.

7 Conclusion

In this paper, we propose a methodology to learn
multilingual RNNG through dependency tree con-
version. We performed multiple conversions to
seek the robust structure which works well multilin-
gually, discussing the effect of multiple structures.
We demonstrated the superiority of our model over
baselines in capturing syntax in a multilingual set-
ting. Since our research is the first step for multilin-
gual syntax-aware LMs, it is necessary to conduct
experiments on more diverse languages to seek a
better structure. We believe that this research would
contribute to the field of theoretical/cognitive lin-
guistics as well because an ultimate goal of lin-
guistics is finding the universal rule of natural lan-
guage. Finding a reasonable structure in engineer-
ing would yield useful knowledge for that purpose.

5Typological information is obtained from WALS:
https://wals.info/

8

Acknowledgements

This paper is based on results obtained from a
project JPNP20006, commissioned by the New
Energy and Industrial Technology Development
Organization (NEDO). For experiments, compu-
tational resource of AI Bridging Cloud Infrastruc-
ture (ABCI) provided by National Institute of Ad-
vanced Industrial Science and Technology (AIST)
was used.

References
Michael Collins, Jan Hajic, Lance Ramshaw, and

Christoph Tillmann. 1999. A statistical parser for
Czech. In Proceedings of the 37th Annual Meeting of
the Association for Computational Linguistics, pages
505–512, College Park, Maryland, USA. Association
for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina
Williams, Samuel Bowman, Holger Schwenk, and
Veselin Stoyanov. 2018. XNLI: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2475–2485, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199–209, San Diego, California.
Association for Computational Linguistics.

Kristina Gulordava, Tal Linzen, and Marco Baroni.
2018. Colorless green recurrent networks dream hi-
erarchically. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 1195–1205,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

John Hale, Chris Dyer, Adhiguna Kuncoro, and
Jonathan Brennan. 2018. Finding syntax in human
encephalography with beam search. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2727–2736, Melbourne, Australia. Association
for Computational Linguistics.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger Levy. 2020. A systematic assessment
of syntactic generalization in neural language mod-
els. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1725–1744, Online. Association for Computational
Linguistics.

Dan Kondratyuk and Milan Straka. 2019. 75 languages,
1 model: Parsing Universal Dependencies univer-
sally. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2779–2795, Hong Kong, China. Association for Com-
putational Linguistics.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A.
Smith. 2017. What do recurrent neural network gram-
mars learn about syntax? In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long
Papers, pages 1249–1258, Valencia, Spain. Associa-
tion for Computational Linguistics.

Adhiguna Kuncoro, Chris Dyer, Laura Rimell, Stephen
Clark, and Phil Blunsom. 2019. Scalable syntax-
aware language models using knowledge distillation.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 3472–
3484, Florence, Italy. Association for Computational
Linguistics.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn syntax-
sensitive dependencies. Transactions of the Associa-
tion for Computational Linguistics, 4:521–535.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

Austin Matthews, Graham Neubig, and Chris Dyer.
2019. Comparing top-down and bottom-up neu-
ral generative dependency models. In Proceedings
of the 23rd Conference on Computational Natural
Language Learning (CoNLL), pages 227–237, Hong
Kong, China. Association for Computational Linguis-
tics.

9

Aaron Mueller, Garrett Nicolai, Panayiota Petrou-
Zeniou, Natalia Talmina, and Tal Linzen. 2020.
Cross-linguistic syntactic evaluation of word predic-
tion models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5523–5539, Online. Association for Computa-
tional Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 1659–1666, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection. In
Proceedings of the 12th Language Resources and
Evaluation Conference, pages 4034–4043, Marseille,
France. European Language Resources Association.

Hiroshi Noji and Yohei Oseki. 2021. Effective batching
for recurrent neural network grammars. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 4340–4352, Online.
Association for Computational Linguistics.

Hiroshi Noji and Hiroya Takamura. 2020. An analysis
of the utility of explicit negative examples to im-
prove the syntactic abilities of neural language mod-
els. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
3375–3385, Online. Association for Computational
Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101–108, Online. As-
sociation for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Shauli Ravfogel, Yoav Goldberg, and Francis Tyers.
2018. Can LSTM learn to capture agreement? The
case of Basque. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pages 98–107, Brussels,
Belgium. Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,

Berlin, Germany. Association for Computational Lin-
guistics.

Mitchell Stern, Daniel Fried, and Dan Klein. 2017. Ef-
fective inference for generative neural parsing. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
1695–1700, Copenhagen, Denmark. Association for
Computational Linguistics.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: A benchmark of linguis-
tic minimal pairs for English. In Proceedings of the
Society for Computation in Linguistics 2020, pages
409–410, New York, New York. Association for Com-
putational Linguistics.

10

Proceedings of the Sixth Workshop on Structured Prediction for NLP, pages 11 - 21
May 27, 2022 c©2022 Association for Computational Linguistics

Joint Entity and Relation Extraction Based on Table Labeling
Using Convolutional Neural Networks

Youmi Ma Tatsuya Hiraoka Naoaki Okazaki
Tokyo Institute of Technology

{youmi.ma, tatsuya.hiraoka}@nlp.c.titech.ac.jp
okazaki@c.titech.ac.jp

Abstract

This study introduces a novel approach to the
joint extraction of entities and relations by
stacking convolutional neural networks (CNNs)
on pretrained language models. We adopt ta-
ble representations to model the entities and
relations, casting the entity and relation extrac-
tion as a table-labeling problem. Regarding
each table as an image and each cell in a table
as an image pixel, we apply two-dimensional
CNNs to the tables to capture local dependen-
cies and predict the cell labels. The experi-
mental results showed that the performance of
the proposed method is comparable to those of
current state-of-art systems on the CoNLL04,
ACE05, and ADE datasets. Even when freez-
ing pretrained language model parameters, the
proposed method showed a stable performance,
whereas the compared methods suffered from
significant decreases in performance. This ob-
servation indicates that the parameters of the
pretrained encoder may incorporate dependen-
cies among the entity and relation labels during
fine-tuning.

1 Introduction

The purpose of a joint entity and relation extraction
is to recognize entities and relations in a text. A
task can be decomposed into two subtasks: named
entity recognition (NER) and relation extraction
(RE). In recent years, several researchers have built
high-performance NER and RE systems based on
contextualized representations (Yan et al., 2021;
Zhong and Chen, 2021; Wang and Lu, 2020; Eberts
and Ulges, 2020; Lin et al., 2020). These contex-
tualized representations obtained from pretrained
language models, such as bidirectional encoder
representations from transformers (BERT) Devlin
et al., 2019, have significantly improved the perfor-
mance for various NLP tasks. As a result, studies
on NER and RE have focused on the design of
task-specific layers stacked on top of pretrained
language models.

A common idea is to formulate NER and RE
as table-filling problems (Miwa and Sasaki, 2014).
The core concept is to extract entities and relations
by filling a table with entity labels in the diagonal
cells and relation labels in the off-diagonal cells.
Based on this concept, Ma et al. (2022) proposed
TablERT, which is a combined system of NER
and RE based on a pretrained BERT. TablERT
predicts the diagonal cells sequentially and off-
diagonal cells simultaneously. Although the system
is simple and effective, it ignores the dependencies
among predicted relation labels. As noted in Ma
et al. (2022), this does not improve the performance
with label dependencies incorporated through re-
fined decoding orders.

We propose TablERT-CNN, a novel NER and
RE system that encodes the dependencies among
the cells within the table. Our method employs
two-dimensional convolutional neural networks
(2D-CNNs), which are widely used neural architec-
tures for object detection (Krizhevsky et al., 2012).
We considered each table as a 2D image and each
cell as a pixel, transforming the task into a table-
labeling problem at the cell level. By applying
2D-CNNs to the output of BERT, the system is
expected to implicitly perceive local information
and label dependencies from neighboring cells. No-
tably, the range of cells to be processed is expand-
able by stacking multiple CNN layers, we model
the dependencies among distant cells.

We evaluated TablERT-CNN based on multi-
ple benchmarks: CoNLL04 (Roth and Yih, 2004),
ACE05 (Walker et al., 2006), and ADE (Gurulin-
gappa et al., 2012). The experimental results
showed that the performance of the proposed
method is on par with those of current state-of-
art systems. We hypothesized that parameter up-
dates during fine-tuning helped the BERT encoder
capture the necessary dependencies for label pre-
dictions; thus, incorporating dependencies using
the CNN became less helpful. To verify this hy-

11

pothesis, we compared the performance of several
NER and RE systems while keeping the BERT
parameters frozen and updating them during fine
tuning. In addition, we used different layers from
which the prediction model extracts token embed-
dings to analyze how parameter updates within
each layer contribute to the performance. As a
result, TablERT-CNN still performed well while
keeping the BERT parameters unchanged, whereas
the performance of the other systems significantly
decreased. This observation indicates the ability
of the BERT architecture to consider token- and
label-wise dependencies during task-specific fine
tuning. The source code for the proposed system is
publicly available at https://github.com/
YoumiMa/TablERT-CNN.

2 Related Work

2.1 NER and RE Using Contextualized
Representations

BERT and its variants have recently achieved signif-
icant performance improvements on various NLP
tasks (Devlin et al., 2019; Lan et al., 2020). These
transformer-based (Vaswani et al., 2017) encoders
learn syntactic and semantic languages, generat-
ing a contextualized representation of each input
token (Jawahar et al., 2019; Rogers et al., 2020).
Owing to the superiority of BERT encoders, recent
studies on NER and RE have tended to focus on
the design of a good prediction model that fully
utilizes BERT embeddings to further improve the
performance.

Promising and straightforward prediction mod-
els for NER and RE have been developed. Eberts
and Ulges (2020) proposed SpERT, which employs
span-level representations obtained from BERT en-
coders for linear classification based on a nega-
tive sampling strategy during training. In addition,
Zhong and Chen (2021) introduced a pipelined sys-
tem, which performs span-based NER similarly to
that of SpERT but re-encodes the input sentence
using BERT to perform RE. In the RE model, the
context and predicted entity labels are jointly en-
coded, enabling the computation of token-label at-
tention. These approaches rely mainly on parame-
ter updates in the BERT encoder during fine-tuning,
where the encoder learns to capture task-specific
dependencies. This study compares our system
with SpERT to distinguish the dependencies cap-
tured by the encoder from those captured by the
prediction model.

Some studies have used NER and RE for gen-
erative NLP tasks. Li et al. (2019) cast NER
and RE as a multiturn question-answering prob-
lem. They designed natural language question tem-
plates whose answers specify the entities and re-
lations within each sentence. In addition, Paolini
et al. (2021) tackled structured language predic-
tion tasks as sequence-to-sequence translations be-
tween augmented languages. Structural informa-
tion can be extracted by postprocessing the target
augmented language. Huguet Cabot and Navigli
(2021) followed their idea and built a translation
system that auto-regressively generates linearized
relation triplets, considering an input text. These
approaches utilize the attention mechanism within
the transformer to capture long-range dependen-
cies; however, they tend to be computationally bur-
densome. Inspired by their study, we have explored
ways to incorporate token and label dependencies
into the prediction model. However, our goal is to
develop a mechanism that is more explainable and
computationally efficient.

Another common approach is building a directed
graph, modelling entity with spans as nodes and
relations as arcs. Luan et al. (2019) and Wadden
et al. (2019) focused on information propagation
among span pairs to obtain effective span repre-
sentations for a prediction. Based on their study,
Lin et al. (2020) explicitly modeled cross-task and
cross-instance dependencies by introducing a pre-
defined set of global features. Instead of manu-
ally defining the global features, Ren et al. (2021)
introduced a text-to-graph extraction model that
automatically captures global features based on
the auto-regressive generation process of a graph.
These approaches are delicately designed to involve
graph propagation and beam search strategies, re-
sulting in a relatively high complexity.

Formulating the task as a table-filling problem
is also a common idea (Miwa and Sasaki, 2014;
Gupta et al., 2016; Zhang et al., 2017). Efforts
have recently been made to incorporate BERT into
this framework. Wang and Lu (2020) designed sep-
arate encoders for entities and relations. To use
word-word interactions captured within the BERT
model, the authors leveraged the attention weights
computed from BERT into a relation encoder. Yan
et al. (2021) applied a partition filter to divide neu-
rons into multiple partitions and generated task-
specific features based on a linear combination of
these partitions. Moreover,Ma et al. (2022) built

12

1

2

3

4

i

j

Richard

Jones

lives

in

Denison

,

Texas

5

6

7

Richard
Jones

lives
in
Denison Texas

,
1 2 3 4 5 6 7

Embeddings
H(")

Output of the 1st CNN Layer
H($)

Predictions
𝑃%(𝒀%&,()

U-LOC

⊥

⊥

⊥

⊥

⊥

⊥

1

2

3

4

i

j

Richard

Jones

lives

in

Denison

,

Texas

5

6

7

Richard
Jones

lives
in
Denison Texas

,
1 2 3 4 5 6 7

B-PER

L-PER

O

O

U-LOC

O

!"#$%& !"#$%&

!"#$%& !"#$%&

!'(%&

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥

⊥

⊥

⊥𝒉!,!
($)

1

2

3

4

i

j

Richard

Jones

lives

in

Denison

,

Texas

5

6

7

Richard
Jones

lives
in
Denison Texas

,
1 2 3 4 5 6 7

[𝒆! ; 𝒆!][𝒆! ; 𝒆"][𝒆! ; 𝒆#]

[𝒆" ; 𝒆!][𝒆" ; 𝒆"][𝒆" ; 𝒆#]

[𝒆# ; 𝒆!][𝒆# ; 𝒆"][𝒆# ; 𝒆#]

[𝒆$; 𝒆!][𝒆$; 𝒆"][𝒆$; 𝒆#]

[𝒆% ; 𝒆!][𝒆% ; 𝒆"][𝒆% ; 𝒆#]

[𝒆& ; 𝒆!][𝒆& ; 𝒆"][𝒆& ; 𝒆#]

𝒉&,!
($)

Conv. +
ReLU

(Linear +)
Softmax

Figure 1: Overview of the proposed TablERT-CNN method when setting the number of CNN layers to 1. An
example of a table-filling representation is shown on the right side. We employ the entire table to represent the
features and the upper triangular part to represent the labels.

the straightforward TablERT system by predicting
entities sequentially and relations simultaneously.
Although the model exhibited state-of-art perfor-
mance when published, it was unable to leverage
the interactions among the table cells, especially
for RE. This study applies their system as a strong
baseline and explores the effect of incorporating
local dependencies at the top of BERT. Because the
proposed system is an extension of TablERT, we re-
cap this approach (Ma et al., 2022) in the following
subsection.

2.2 TablERT

TablERT (Ma et al., 2022) is a simple and effec-
tive method for a combined system applying both
NER and RE. As shown on the right side of Fig-
ure 1, the method uses the upper triangular part of
a table to represent the label spaces of NER and
RE. The diagonal entries of the table are filled by
entity labels, adopting the BILOU scheme to iden-
tify the beginning, inside, last words of multi-word
and unit-length spans (Ratinov and Roth, 2009).
The off-diagonal entries in the table are filled with
relation labels, with directions hard-coded onto
each label. For each entity, the corresponding rela-
tion is annotated for all component words. For the
sentence shown in Figure 1, the relation “LiveIn”
pointing from “Richard Jones” to “Denison” is la-
beled as

−−−−→
LIVEIN for the entries (i = 1, j = 5)

and (i = 2, j = 5), corresponding to (Richard,
Denison) and (Jones, Denison), respectively.

Ma et al. (2022) designed two separate predic-
tion models for NER and RE. For NER, they se-
quentially assign a label to each word using fea-
tures at the current and previous timesteps. For

RE, they concatenate word embeddings with their
corresponding entity label embeddings as relation
embeddings. The relation scores of each word pair
are computed based on a matrix multiplication of
the linearly transformed relation embeddings.

Despite its simplicity, TablERT has shown
promising performance. However, the system pre-
dicts the relation labels simultaneously, discarding
label dependencies between the table cells. It has
been reported that the performance of TablERT
has shown little improvement, even when the off-
diagonal cells are decoded individually following a
predefined order Ma et al. (2022). In this study, we
are interested in the effect of incorporating label
dependencies at the top of contextualized represen-
tations. In contrast to Ma et al. (2022), we address
this problem using 2D-CNNs.

3 Proposed Method

3.1 Problem Formulation

The goal of NER and RE systems is to extract enti-
ties and relations between pairs of entities, based
on word sequences. Specifically, we consider a
sentence w1, · · · , wN . NER aims to identify every
word span si = wb, · · · , we that forms an entity
with entity type ti ∈ E . By contrast, RE aims
to extract every relation triple (s0⟨t0⟩, r, s1⟨t1⟩),
where r ∈ R represents the relation type between
s0 and s1. Here, E and R represent the label sets
of entities and relations, respectively.

3.2 TablERT-CNN

We propose TablERT-CNN as an extension of
TablERT (Ma et al., 2022), considering the depen-
dencies among labels by applying 2D-CNNs. Fig-

13

ure 1 shows an overview of TablERT-CNN under a
setting in which the prediction model contains only
one CNN layer. Based on existing studies (Miwa
and Sasaki, 2014; Gupta et al., 2016; Zhang et al.,
2017; Ma et al., 2022), we use the upper triangular
part of a table to represent the entity and relation
labels. The table representation is formally defined
as follows:

Table Representation We define a matrix Y ∈
RN×N and use the upper triangular part to repre-
sent the label space of NER and RE. A diagonal
entry Yi,i represents the entity label of word wi,
and an off-diagonal entry Yi,j(j > i) represents
the relation label of the word pair (wi, wj). We
adopt the labeling rules of NER and RE, as in Ma
et al. (2022); i.e., we annotate an entity using the
BILOU notation and annotate a relation to every
composing word of an entity span, with the direc-
tion hard-encoded into the label.

Word Embeddings We obtain word embed-
dings from contextualized representations gen-
erated from the pretrained BERT model (De-
vlin et al., 2019). Based on the existing study,
we compute the embedding of each word by
max-pooling its composing sub-words (Liu et al.,
2019; Eberts and Ulges, 2020; Ma et al., 2022).
Specifically, for word wi composed of subwords
start(i), · · · , end(i), the embedding of ei is com-
puted as follows:

ei := max(x
(l)
start(i), · · · ,x

(l)
end(i)). (1)

Here, x(l) ∈ Rdemb is the output of the pre-
trained BERT model, where l is the layer index1,
demb is the dimension size, and max(·) is the max-
pooling function. Therefore, we obtain ei ∈ Rdemb .

Prediction Model We adopt a 2D-CNN to cap-
ture the local dependencies among neighboring
cells. 2D-CNNs are widely used for extract-
ing image-classification and object-detection fea-
tures (Krizhevsky et al., 2012). To apply a 2D-CNN
to jointly extract entities and their relations, we
treat the 2D table as an image and each cell within
the table as a pixel. We then employ the 2D-CNN
to encode the representation of each cell, as shown
in Figure 1. The convolution network enables the
model to capture local dependencies, and for each

1Previous studies have adopted the top layer (Li et al.,
2019; Wadden et al., 2019; Eberts and Ulges, 2020) or the av-
erage of the top three layers (Wang and Lu, 2020) to generate
word representations.

cell, a 2D-CNN layer yields a weighted linear com-
bination among all surrounding cells within the
convolutional window. The dependency range can
be extended by stacking multiple 2D-CNN layers.

Specifically, for each word pair (wi, wj), we con-
catenate the word embeddings ei, ej , and construct
the bottom layer H(0) ∈ RN×N×2demb (i.e., layer 0)
of the 2D-CNN.

H
(0)
i,j,: = h

(0)
i,j := [ei; ej]. (2)

Here, [·; ·] represents the concatenation of two
vectors. Hence, the representation of each cell is a
vector of dimension 2× demb, which is denoted as
d0. Similarly, we denote the dimension number of
the vector representation for each cell in layer l as
dl.

We then compute the output of the first 2D-CNN
layer H(1) based on the output of the bottom layer
H(0). Analogously, the output of any layer l can be
computed by applying convolutions to the output
of the previous layer, l − 1. For any word pair
(wi, wj), we obtain its corresponding output at the
lth layer H(l)

i,j,: = h
(l)
i,j ∈ Rdl as follows:

H
(l)
i,j,: = h

(l)
i,j := b(l)+

dl−1∑

c=0

(K(l)
c,:,: ∗H(l−1)

:,:,c)i,j , (3)

where H(l−1) ∈ RN×N×dl−1 is the output of layer
l − 1, K(l) ∈ Rdl×dh×dw is a convolution kernel
with window size dh × dw, and b(l) ∈ R(l) is the
bias. Thus, for any dimension (i.e., channel) c,
we have K

(l)
c,:,: ∈ Rdh×dw and H

(l−1)
:,:,c ∈ RN×N .

A ∗B represents the operation of computing 2D
correlations. Given that A ∈ R(2α+1)×(2β+1), the
computation is defined as follows:

(A∗B)m,n :=
α∑

h=−α

β∑

w=−β

Aα+h,β+wBm+h,n+w.

(4)
The last layer of the 2D-CNN is a convolutional

classifier for RE. That is, for the last layer L, we set
its output dimension number to be the same as the
number of relation labels; i.e., dL := |R|. Thus,
for each word pair (wi, wj) where i ̸= j, we obtain
the relation label distribution Pθ(Ŷi,j) by applying
a softmax function to H

(L)
i,j,::

Pθ(Ŷi,j) := softmax(H
(L)
i,j,:), (5)

14

where P is the estimated probability function, and
θ represents the model parameters.

For NER, we linearly transform the representa-
tions of the diagonal cells at layer L to compute
the entity label distribution of each word wi.

Pθ(Ŷi,i) := softmax(W · H(L)
i,i,: + b), (6)

where W ∈ R|E|×|R| and b ∈ R|E| are the trainable
weight matrix and the bias vector, respectively.

Training and Prediction During training, we
use the sum of cross-entropy losses of NER and RE
as the objective function. Given the ground-truth
label matrix of table Y ∈ RN×N , we compute the
cross-entropy loss for NER (LNER) and RE (LRE).

LNER = −
∑

1≤i≤N

logPθ(Ŷi,i = Yi,i), (7)

LRE = −
∑

1≤i≤N
i<j≤N

logPθ(Ŷi,j = Yi,j). (8)

We minimize LNER + LRE to update the model
parameters θ.

To predict the entity label of each word wi, we se-
lect the label yielding the highest probability from
Pθ(Ŷi,i) as the predicted result. When a conflict
occurs with regard to the entity type within an en-
tity span, we select the entity type labeled to the
last word as the final prediction. To predict the
relation label for each entity pair (si, sj), we select
the last words of both entity spans to represent the
corresponding span si, sj . For example, suppos-
ing the last word of entity span si, sj is indexed as
end(i), end(j), the predicted relation label for en-
tity pair (si, sj) is determined as the label yielding
the highest probability from Pθ(Ŷend(i),end(j)).

4 Experiments

4.1 Datasets
We evaluated the performance of our proposed
system on CoNLL04 (Roth and Yih, 2004),
ACE05 (Walker et al., 2006), and ADE (Gurulin-
gappa et al., 2012), the statistics of which are listed
in Table 1. Based on the conventional evaluation
scheme for CoNLL04 and ACE05, we measured
the micro F1-scores, and for ADE, we measured
the macro F1-scores.

CoNLL04 is an annotated corpus collected
from newswires. We processed the data released

Dataset # Sentences |E| |R|train dev test
CoNLL04 922 231 288 4 5
ACE05 10,051 2,424 2,050 7 6
ADE 4,272 (10-fold) 2 1

Table 1: Statistics of each dataset used in this study.

by Eberts and Ulges (2020)2 to obtain the BILOU
notations of the entities. Thus, our data split is the
same as that in Eberts and Ulges (2020).

ACE05 is an annotated corpus collected from
various sources, including newswires and online
forums. We used the data preprocessing scripts
provided by Wadden et al. (2019)3 and Luan et al.
(2019), which inherits that of Miwa and Bansal
(2016)4. After preprocessing, an entity is regarded
as correct if its label and head region are identical
to the ground truth.

Adverse Drug Effect (ADE, Gurulingappa et al.,
2012) is a corpus constructed based on the medical
reports of drug usages and their adverse effects.
Based on existing studies (Eberts and Ulges, 2020;
Wang and Lu, 2020), we removed overlapping enti-
ties from the dataset, which comprises only 2.8%
of the total number of entities.

4.2 Experimental Settings

We implemented the proposed system using Py-
Torch (Li et al., 2020) and applied the pretrained
BERT model provided by the Huggingface li-
braries (Wolf et al., 2020). Except for those within
the pretrained BERT model, the parameters were
randomly initialized. During training, we adopted
the AdamW algorithm (Loshchilov and Hutter,
2019) for parameter updates. The details of hy-
perparameters are listed in Appendix A.

All experiments were conducted on a single GPU
of an NVIDIA Tesla V100 (16 GiB). Throughout
this study, we report the average values of 5 runs
with different random seeds for all evaluation met-
rics.

4.3 Main Results

The main results of the proposed method are pre-
sented in Table 2. We adopted TablERT (Ma et al.,
2022) for the primary comparison and trained the
system from scratch with different pretrained en-

2https://github.com/lavis-nlp/spert
3https://github.com/dwadden/dygiepp
4https://github.com/tticoin/LSTM-ER

15

Dataset Method Encoder NER RE RE+

CoNLL04△

SpERT (Eberts and Ulges, 2020) BERTBASE 88.9 - 71.5
Table-Sequence (Wang and Lu, 2020) ALBERTXXLARGE 90.1 73.8 73.6
TablERT (Ma et al., 2022) BERTBASE 90.2 72.8 72.6
TablERT (Ma et al., 2022) BERTLARGE 90.5 73.8 73.8
TablERT-CNN (Ours) BERTBASE 90.5 73.2 73.2

ADE▲

SpERT (Eberts and Ulges, 2020) BERTBASE 89.3 - 79.2
Table-Sequence (Wang and Lu, 2020) ALBERTXXLARGE 89.7 80.1 80.1
PFN (Yan et al., 2021) BERTBASE 89.6 - 80.0
PFN (Yan et al., 2021) BERTLARGE 91.3 – 83.2
TablERT(Ma et al., 2022) BERTBASE 89.9 80.6 80.6
TablERT-CNN (Ours) BERTBASE 89.7 80.5 80.5

ACE05△

DyGIE++ (Wadden et al., 2019) BERTBASE 88.6 63.4 -
Table-Sequence (Wang and Lu, 2020) BERTLARGE 88.2 67.4 -
Table-Sequence (Wang and Lu, 2020) ALBERTXXLARGE 89.5 67.6 64.3
PURE (Zhong and Chen, 2021) BERTBASE 88.7 66.7 63.9
PURE (Zhong and Chen, 2021) BERTXXLARGE 89.7 69.0 65.6
PFN (Yan et al., 2021) ALBERTXXLARGE 89.0 - 66.8
TablERT (Ma et al., 2022) BERTBASE 87.6 66.2 62.6
TablERT (Ma et al., 2022) BERTLARGE 88.4 67.5 64.6
TablERT (Ma et al., 2022) ALBERTXXLARGE 89.8 67.7 65.2
TablERT-CNN (Ours) BERTBASE 87.8 65.0 61.8

Table 2: Comparison between the existing and the proposed method (TablERT-CNN). Here,△ and ▲ denote the use
of micro-and macro-average F1 scores for evaluation, respectively. The results of TablERT are our replications,
and the results of the others are reported values from the original papers. To ensure a fair comparison, the reported
values of PURE follow the single-sentence setting.

coders5.
We evaluated the RE performance based on two

criteria: RE and RE+. Specifically, REregards each
predicted relation triple as correct if the relation
label and spans of both entities are identical to the
ground truth, whereas RE+ requires the labels of
both entities to be correct. Because comparing sys-
tems using different encoders is unfair, we discuss
the condition in which the encoders are aligned.

With regard to the CoNLL04 and ADE datasets,
we observed that TablERT-CNN achieved high and
stable performance on all datasets, on par with that
of TablERT. In particular, for CoNLL04, the perfor-
mance of the proposed method surpassed TablERT
for both NER and RE. One possible explanation
for this performance gain is that CoNLL04 is a rela-
tively small dataset, as listed in Table 1. Such a low-
resource setting possibly brought out the advantage
of TablERT-CNN, as the CNN layers helped to uti-
lize rich information about dependencies among
entities and relations.

However, regarding the ACE05 dataset, we did
not observe any performance gain by stacking the
CNN layers. As listed in Table 2, TablERT-CNN
lagged its competitor TablERT for around 1.0 point
on the F1 score of RE. The reason for this can be
multifactorial, and the nature of the ACE05 dataset

5The code is available at https://github.com/
YoumiMa/TablERT.

might provide an answer. The dataset contains
entities that do not contribute to any relation triple,
which significantly confuses the model during the
RE.

5 Analysis

Although our system exhibited a good performance
based on multiple datasets, no significant improve-
ment was observed against TablERT (Ma et al.,
2022). We hypothesize that the reason for this is
the parameter updates within the BERT encoder
during fine-tuning, which overshadowed the abil-
ity of the CNNs in the prediction model. Self-
attention modules within BERT potentially learn to
encode the dependencies between word pairs dur-
ing fine-tuning, overlapping with those captured by
the CNNs.

Experiments were conducted to verify this hy-
pothesis. Specifically, we trained multiple BERT-
based NER and RE systems (i.e., systems using
a pretrained BERT as the encoder) while freezing
the BERT parameters (§ 5.1). In this manner, we
prevented the encoder from obtaining task-specific
features during fine-tuning. The performance of
these encoder-frozen systems was compared with
that of their counterparts, whose encoder parame-
ters were updated during fine-tuning. Based on this
comparison, we investigated the extent to which
the parameter updates within BERT contribute to

16

Method Parameter Encoder Layer
Updates 0 1 2 4 6 8 10 12

SpERT (Eberts and Ulges, 2020) No 27.4 30.9 32.1 36.5 41.0 40.6 37.2 8.0
Yes 51.0 70.7 79.9 85.4 85.9 86.9 86.5 87.7

TablERT (Ma et al., 2022) No 62.4 68.0 74.8 78.6 81.4 82.0 81.5 80.2
Yes 66.9 78.2 84.1 87.4 88.7 88.2 88.5 88.5

TablERT-CNN (Ours) No 80.3 81.1 83.1 85.1 86.6 86.2 86.0 85.9
Yes 80.5 83.7 85.6 87.0 88.4 88.4 88.3 88.0

Table 3: Micro-average NER F1 scores on the CoNLL04 development set with/without parameter updates within
the encoder (BERTBASE) during fine-tuning. We fed the hidden states at different encoder layers into the prediction
model for task-specific predictions.

Method Parameter Encoder Layer
Updates 0 1 2 4 6 8 10 12

SpERT (Eberts and Ulges, 2020) No 3.0 3.3 3.7 4.6 7.8 6.0 5.8 0.0
Yes 16.4 35.4 49.6 64.7 67.2 69.3 70.2 69.1

TablERT (Ma et al., 2022) No 28.8 37.4 39.3 47.1 53.0 54.0 55.9 51.7
Yes 36.0 47.9 60.9 66.5 71.3 70.5 71.0 70.7

TablERT-CNN (Ours) No 53.5 54.8 57.6 64.4 66.2 67.1 64.4 61.5
Yes 54.0 59.9 62.3 67.8 70.6 70.3 70.1 70.6

Table 4: Micro-average F1 scores of the RE on the CoNLL04 development set with/without parameter updates
within the encoder (BERTBASE) during fine-tuning. We fed the hidden states at different encoder layers into the
prediction model for task-specific predictions.

the performance of NER and RE.

In addition, we are interested in how each BERT
layer encodes dependencies that are helpful for
NER and RE. Previous studies have utilized the
outputs of the top BERT layers to produce word
representations (Wadden et al., 2019; Eberts and
Ulges, 2020; Ma et al., 2022; Wang and Lu, 2020).
However, we are curious whether the bottom or
middle BERT layers also store useful information
for solving the NER and RE. Therefore, we fed
hidden states at the {0, 1, 2, 4, 6, 8, 10, 12}th BERT
layer into the prediction model and examined the
difference in performance (§ 5.2). Here, the 0th
layer denotes the embedding layer of the BERT
encoder.

Our analysis includes SpERT (Eberts and Ulges,
2020), TablERT (Ma et al., 2022) and the proposed
method. We included TablERT for comparison be-
cause it is a counterpart of our system, incorporat-
ing no dependencies while performing RE. We in-
cluded SpERT for comparison because it is a strong
baseline utilizing a pretrained BERT encoder. Sys-
tems were trained on the CoNLL04 (Roth and Yih,
2004) training set and evaluated on the develop-
ment set, using BERTBASE (Devlin et al., 2019) as
the encoder. The experimental results are listed in
Tables 3 and 4. The plots corresponding to these
results are presented in Appendix B. Finally, we
analyze the effect of 2D-CNNs (§ 5.3).

5.1 Effect of Parameter Updates within BERT

As listed in Tables 3 and 4, while freezing the pa-
rameters within BERT, we observed a decrease in
the performance of both NER and RE for all tar-
get systems. SpERT exhibits a drastic decrease
in performance while disabling the parameter up-
dates within the encoder. This observation suggests
that the system relies heavily on parameter updates
of the encoder during task-specific fine-tuning to
solve specific tasks.

By contrast, TablERT-CNN exhibited the best
performance among the target systems, even with
BERT parameters frozen. This result indicates that
in a situation in which the parameter updates within
the encoder are infeasible (e.g., computational re-
sources are limited), TablERT-CNN can be more
promising than TablERT or SpERT in terms of
achieving high performance.

Furthermore, while freezing the BERT parame-
ters, utilizing the hidden states of the top layers (i.e.,
layer 10 and higher) hindered the performance of
all target systems. This phenomenon corresponds
to the study by Rogers et al. (2020), which con-
cluded that the final layers of BERT are usually the
most task-specific. For a pretrained BERT encoder
without any parameter updates, the top layers of
the model are specified to the pretraining task, i.e.,
the masked-language modeling (MLM) task. It can
therefore be assumed that while using the hidden

17

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0 2 4 6 8 10 12

M
ic

ro
-F

1

BERT Layer

TablERT-CNN (RE)
TablERT-CNN (NER)
TablERT (RE)
TablERT (NER)
SpERT (RE)
SpERT (NER)

Figure 2: Micro-F1 scores of all target systems while
varying the encoder layer whose outputs were fed into
the prediction model (CoNLL04 development set).

states of the top layers of BERT without any task-
specific parameter updates, the specificity toward
the MLM task adversely affects the performance
of the prediction model for both NER and RE.

5.2 Effect of BERT Layer

To visualize the performance change caused by the
choice of BERT layer, the hidden states of which
were utilized as word embeddings, we plotted the
micro-F1 scores of all target systems, as shown in
Figure 2.

Incorporating outputs from deeper BERT lay-
ers generally improves the prediction of all target
systems. The improvement was significant at the
bottom layers, but subtle at the top. Specifically, as
shown in Figure 2, from layers 0 to 6, we observed
a significant boost in the performance of NER and
RE for all target systems. The change in perfor-
mance was more evident with RE than with NER.
By contrast, the performance of all target systems
remained flat, starting from layer 8. This tendency
suggests that, while building a BERT-based NER
and RE system, it may be sufficient to employ up
to 8 layers for text encoding.

Our findings match those reported by Jawahar
et al. (2019), suggesting that BERT encodes a hi-
erarchy of linguistics from bottom to top. Jawahar
et al. (2019) found that BERT learns to encode long-
distance dependencies, e.g., subject-verb agree-
ments at deeper layers, which possibly explains
the significant improvement in the RE performance
while using outputs of the deeper BERT layers.

5.3 Effect of 2D-CNNs

As shown in Figure 2, while employing the outputs
from the bottom BERT layers (i.e., from layers 0
to 4), TablERT-CNN outperformed the other sys-
tems by a relatively large margin. We owe the

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

20M 40M 60M 80M 100M 120M
Number of Parameters

TablERT-CNN (RE)
TablERT (RE)
SpERT (RE)

Figure 3: Performance of all target systems while vary-
ing the number of trainable parameters, as measured
using the RE micro-F1 score (CoNLL04 development
set).

performance gap to the ability of TablERT-CNN
to capture local dependencies. As noted in an ex-
isting study, the bottom BERT layers encode the
surface information, for example, the phrasal syn-
tax and word order (Jawahar et al., 2019; Rogers
et al., 2020). As a result, the outputs at the bot-
tom BERT layers lack contextualized information
incorporating long-range dependencies, which are
crucial for extracting relations. Therefore, whereas
SpERT and TablERT suffer from the absence of
word-word interactions, TablERT-CNN overcomes
this issue by encoding them in the prediction model.
By observing the table representation as a 2D im-
age and each cell as a pixel, our method captures
the local dependencies within each convolution ker-
nel using 2D-CNNs. This advantage is apparent
when word embeddings are not properly contextu-
alized.

However, the superiority of TablERT-CNN be-
comes inconspicuous when the depth of the BERT
layers increases. This phenomenon indicates that,
when the contextualization ability of the encoder
improves, the strength of a 2D-CNN to incorporate
dependencies diminishes because the encoder has
already captured the necessary information.

Notably, although we have shown the superiority
of TablERT-CNN when utilizing the bottom BERT
layers, it is natural to suspect that the performance
gain resulted from the additional parameters in-
troduced by the convolutional layers. Compared
with SpERT and TablERT, TalERT-CNN introduces
more trainable parameters, thereby increasing the
ability of the system to fit the training data. To
determine whether the performance gain resulted
from the ability of the CNN to capture local de-
pendencies or merely from an increased number
of parameters, we replotted Figure 2, as shown in

18

Figure 3, the result of which shows the relationship
between the RE micro-F1 scores and the number of
trainable parameters of each target system. From
Figure 3, we observed that TablERT-CNN lies on
the left-most side among all of the target systems.
To paraphrase, when keeping the number of train-
able parameters the same, TablERT-CNN performs
better than its competitors. This tendency is ap-
parent when the number of trainable parameters
is small, which indicates that TablERT-CNN can
be a prospective option when the computational
resources are limited.

To conclude, TablERT-CNN can be a promising
architecture when parameter updates within the
encoder are infeasible or when the encoder is not
well-contextualized. Under these situations, a 2D-
CNN plays an important role in encoding the local
dependencies, thus improving the NER and RE
predictions.

6 Conclusion

We presented TablERT-CNN, a novel method for
jointly extracting entities and relations with 2D-
CNNs. The method casts NER and RE as table-
labeling problems, representing each table cell as
a pixel and each table as a 2D image. By apply-
ing 2D-CNNs, the method predicts the label of
each table cell to extract entities and relations. Ex-
periments conducted on CoNLL04, ACE05, and
ADE demonstrated that TablERT-CNN performed
on par with current state-of-art systems when the
pretrained encoders were aligned.

To explore why TablERT-CNN did not outper-
form existing systems by a significant margin, we
conducted experiments to compare their perfor-
mance with and without parameter updates of the
BERT encoder during the fine-tuning. We ob-
served that TablERT-CNN performed reasonably
well even without updating the encoder parame-
ters, whereas its competitors suffered a decrease
in performance. These results indicate that the
BERT encoder can capture task-specific dependen-
cies among tokens and labels within its architecture,
based on parameter updates during fine-tuning.

In the future, we plan to model the dependencies
among table cells using other neural architectures.
Prospective directions include 2D-transformers that
compute the attention across element pairs in a 2D
array, or Routing Transformers that utilize local
attentions.

Acknowledgements

This paper is based on results obtained from a
project, JPNP18002, commissioned by the New
Energy and Industrial Technology Development
Organization (NEDO). We appreciate the insight-
ful comments and suggestions of the anonymous
reviewers.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Markus Eberts and Adrian Ulges. 2020. Span-based
joint entity and relation extraction with transformer
pre-training. In 24th European Conference on Artifi-
cial Intelligence (ECAI).

Pankaj Gupta, Hinrich Schütze, and Bernt Andrassy.
2016. Table filling multi-task recurrent neural net-
work for joint entity and relation extraction. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical
Papers, pages 2537–2547, Osaka, Japan. The COL-
ING 2016 Organizing Committee.

Harsha Gurulingappa, Abdul Mateen Rajput, Angus
Roberts, Juliane Fluck, Martin Hofmann-Apitius, and
Luca Toldo. 2012. Development of a benchmark
corpus to support the automatic extraction of drug-
related adverse effects from medical case reports.
Journal of Biomedical Informatics, 45(5):885–892.
Text Mining and Natural Language Processing in
Pharmacogenomics.

Pere-Lluís Huguet Cabot and Roberto Navigli. 2021.
REBEL: Relation extraction by end-to-end language
generation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 2370–
2381, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651–3657, Florence, Italy. Association for
Computational Linguistics.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural
Information Processing Systems, volume 25. Curran
Associates, Inc.

19

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations (ICLR).

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,
Brian Vaughan, Pritam Damania, and Soumith Chin-
tala. 2020. Pytorch distributed: Experiences on ac-
celerating data parallel training. Proc. VLDB Endow.,
13(12):3005–3018.

Xiaoya Li, Fan Yin, Zijun Sun, Xiayu Li, Arianna Yuan,
Duo Chai, Mingxin Zhou, and Jiwei Li. 2019. Entity-
relation extraction as multi-turn question answering.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1340–
1350, Florence, Italy. Association for Computational
Linguistics.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999–8009, Online. Association for
Computational Linguistics.

Yijin Liu, Fandong Meng, Jinchao Zhang, Jinan Xu,
Yufeng Chen, and Jie Zhou. 2019. GCDT: A global
context enhanced deep transition architecture for se-
quence labeling. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2431–2441, Florence, Italy. Associa-
tion for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations (ICLR).

Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari
Ostendorf, and Hannaneh Hajishirzi. 2019. A general
framework for information extraction using dynamic
span graphs. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
3036–3046, Minneapolis, Minnesota. Association for
Computational Linguistics.

Youmi Ma, Tatsuya Hiraoka, and Naoaki Okazaki. 2022.
Named entity recognition and relation extraction us-
ing enhanced table filling by contextualized repre-
sentations. Journal of Natural Language Processing,
29(1):187–223.

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using LSTMs on sequences and tree
structures. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1105–1116, Berlin,
Germany. Association for Computational Linguistics.

Makoto Miwa and Yutaka Sasaki. 2014. Modeling joint
entity and relation extraction with table represen-
tation. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing
(EMNLP), pages 1858–1869, Doha, Qatar. Associa-
tion for Computational Linguistics.

Giovanni Paolini, Ben Athiwaratkun, Jason Krone, Jie
Ma, Alessandro Achille, RISHITA ANUBHAI, Ci-
cero Nogueira dos Santos, Bing Xiang, and Stefano
Soatto. 2021. Structured prediction as translation be-
tween augmented natural languages. In International
Conference on Learning Representations (ICLR).

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning (CoNLL-2009),
pages 147–155, Boulder, Colorado. Association for
Computational Linguistics.

Liliang Ren, Chenkai Sun, Heng Ji, and Julia Hock-
enmaier. 2021. HySPA: Hybrid span generation
for scalable text-to-graph extraction. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 4066–4078, Online. Association
for Computational Linguistics.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know about
how BERT works. Transactions of the Association
for Computational Linguistics, 8:842–866.

Dan Roth and Wen-tau Yih. 2004. A linear program-
ming formulation for global inference in natural lan-
guage tasks. In Proceedings of the Eighth Confer-
ence on Computational Natural Language Learn-
ing (CoNLL-2004) at HLT-NAACL 2004, pages 1–8,
Boston, Massachusetts, USA. Association for Com-
putational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems (NeurIPS), pages 5998–6008.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5784–
5789, Hong Kong, China. Association for Computa-
tional Linguistics.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilingual
training corpus. Philadelphia: Linguistic Data Con-
sortium.

Jue Wang and Wei Lu. 2020. Two are better than
one: Joint entity and relation extraction with table-
sequence encoders. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1706–1721, Online. As-
sociation for Computational Linguistics.

20

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Zhiheng Yan, Chong Zhang, Jinlan Fu, Qi Zhang, and
Zhongyu Wei. 2021. A partition filter network for
joint entity and relation extraction. In Proceedings of
the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 185–197, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2017.
End-to-end neural relation extraction with global op-
timization. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1730–1740, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Zexuan Zhong and Danqi Chen. 2021. A frustratingly
easy approach for entity and relation extraction. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 50–61, Online. Association for Computational
Linguistics.

A Hyper-parameters

The values of the hyperparameters used during the
experiments are listed in Table 5. CNN configura-
tions were determined by conducting grid searches
on the development split of each dataset, whereas
the training configurations were adopted directly
from Ma et al. (2022). We applied a scheduler that
linearly increases the learning rate from 0 to the
maximum value during the warm-up period and
gradually decreases it afterward.

B Effect of Parameter Updates with
BERT (cont.)

Figures 4(a) and 4(b) correspond to Tables 3 and 4,
respectively. As we can see, TablERT-CNN exhib-
ited a relatively high performance, even when the
BERT parameters were frozen. In addition, when
the BERT parameters were frozen, the performance
of all target systems decreased while incorporating
the hidden states of the top (10–12) encoder layers.

CoNLL04 ACE05 ADE
CNN Config.
kernel size Fh × Fw 3× 3 5× 5 3× 3
layers L 2 2 3

hidden dim d(l) 512 512 512|256
Training Config.
batch size 8 8 16
Learning rate (BERT) 5e-5 5e-5 5e-5
Learning rate (others) 1e-3 1e-3 1e-3
dropout 0.3 0.3 0.3
warm-up period 0.2 0.2 0.2
epochs 30 30 30

Table 5: Hyperparameters of our proposed method
(TablERT-CNN).

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0 2 4 6 8 10 12

M
ic

ro
-F

1

BERT Layer

TablERT-CNN (updated) TablERT-CNN (frozen)
TablERT (updated) TablERT (frozen)
SpERT (updated) SpERT (frozen)

(a) NER micro-F1 scores.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

0 2 4 6 8 10 12

M
ic
ro
-F
1

BERT Layer

TablERT-CNN (updated)
TablERT-CNN (frozen)
TablERT (updated)
TablERT (frozen)
SpERT (updated)
SpERT (frozen)

(b) RE micro-F1 scores.

Figure 4: Micro-F1 scores of all target systems while
varying the encoder layer whose outputs were fed
into the prediction model (CoNLL04 development set).
Here, “updated” and “frozen” indicate the status of each
parameter within BERT during the fine-tuning process.

21

Proceedings of the Sixth Workshop on Structured Prediction for NLP, pages 22 - 31
May 27, 2022 c©2022 Association for Computational Linguistics

TempCaps: A Capsule Network-based Embedding Model for Temporal
Knowledge Graph Completion

Guirong Fu∗1, Zhao Meng∗1, Zhen Han∗2,3, Zifeng Ding2,3,
Yunpu Ma2, Matthias Schubert2 Volker Tresp2,3 Roger Wattenhofer1

1ETH Zürich 2LMU Munich 3Siemens AG
{fug, zhmeng, wattenhofer}@ethz.ch, zhen.han@campus.lmu.de

{zifeng.ding,volker.tresp}@siemens.com,
cognitive.yunpu@gmail.com, schubert@dbs.ifi.lmu.de

Abstract

Temporal knowledge graphs store the dynam-
ics of entities and relations during a time pe-
riod. However, typical temporal knowledge
graphs often suffer from incomplete dynam-
ics with missing facts in real-world scenar-
ios. Hence, modeling temporal knowledge
graphs to complete the missing facts is im-
portant. In this paper, we tackle the temporal
knowledge graph completion task by propos-
ing TempCaps, which is a Capsule network-
based embedding model for Temporal knowl-
edge graph completion. TempCaps models tem-
poral knowledge graphs by introducing a novel
dynamic routing aggregator inspired by Cap-
sule Networks. Specifically, TempCaps builds
entity embeddings by dynamically routing re-
trieved temporal relation and neighbor infor-
mation. Experimental results demonstrate that
TempCaps reaches state-of-the-art performance
for temporal knowledge graph completion. Ad-
ditional analysis also shows that TempCaps is
efficient1.

1 Introduction

Knowledge graphs (KGs) organize and integrate in-
formation in a structured manner, which is human-
readable and suitable for computer processing.
This advantage of knowledge graphs is helping
to bridge the gap between humans and computers.
Numerous real-world applications have benefited
from KGs. In particular, recent advances in artifi-
cial intelligence have motivated researchers to use
knowledge graphs to boost performance in down-
stream applications, including natural language pro-
cessing (IV et al., 2019; Bosselut et al., 2019) and
computer vision (Yu et al., 2021; Marino et al.,
2017).

Despite the usefulness of knowledge graphs,
existing knowledge graphs are often incomplete,

∗The first three authors contributed equally to this work.
1Our code is available at https://github.com/

fuguigui/tempcaps

which means important facts might be missing.
To tackle this problem, researchers have devel-
oped various methods for the task of knowledge
graph completion (Nickel et al., 2011; Bordes et al.,
2013), aiming to recover missing facts for exist-
ing knowledge graphs. In particular, Nguyen
et al. (2019) explored the Capsule Network (Cap-
sNet) (Sabour et al., 2017) for modeling knowledge
graphs. CapsE(Nguyen et al., 2019) demonstrate
that each dimension of the entity, as well as rela-
tion, embeddings also have diverse variations in
different contexts. Thus, they used capsules to en-
code many characteristics in the embedding triple
and represent the entries at the corresponding di-
mension, showing superior performance to other
KG models.

Existing studies, including CapsE, focus on com-
pleting static knowledge graphs. In reality, how-
ever, multi-relational data is often time-dependent.
Moreover, static knowledge graphs fail to ade-
quately describe the changing essence of the world,
indicating that knowledge or facts being true in
the past might not always stay true. For instance,
social networks constantly change. Static knowl-
edge graphs fail to model these changes. To this
end, temporal knowledge graphs (tKGs) are intro-
duced to grasp these dynamic changes. Specifically,
temporal facts are represented as a quadruple by
extending the static triplet with a timestamp de-
scribing when these facts occurred, i.e. (Barack
Obama, inaugurated, president of the US, 2009).
Similar to static KG, tKGs also suffer from the
problem of incompleteness, making the task of tem-
poral knowledge graph completion eminent (Bor-
des et al., 2013; Lin et al., 2015).

In this paper, we take advantage of the Capsule
Network paradigm and generalize it for modeling
tKGs. We introduce TempCaps, which is a Capsule
network-based embedding model for Temporal
knowledge graph completion. As shown in Fig-
ure 1, TempCaps consists of a neighbor selector, an

22

entity embedding layer, a dynamic routing aggre-
gator and a multi-layer perceptron (MLP) decoder.
Unlike CapsE, we incorporate the temporal infor-
mation of tKGs into our model: First, we pose
temporal constraints on neighbor selection by in-
troducing a time window. At a given time step, we
only take the neighbors that interact with the source
entity within the time window into account for cap-
turing the entity features. Second, we propose a
time-dependent dynamic routing mechanism that
incorporates time information into routing weight
matrix. Third, we exploit the temporal weight-
ing vectors generated during the dynamic routing
to calculate the output probability, which reflects
how tightly lower capsules connect with higher
capsules.

Our contributions are in the following: (i) We
propose TempCaps, which leverages Capsule Net-
works by dynamically routing retrieved temporal
relations and neighboring entities. An advantage
of our model is that different capsules can capture
different aspects of the same entity. Such advan-
tage is important for modeling temporal knowledge
graphs, which are dynamic, and often involve one
entity in multiple timestamps. (ii) Our TempCaps
improves the performance of temporal knowledge
graph completion. Experimental results show that
our model achieves state-of-the-art performance on
the GDELT and ICEWS datasets. Furthermore, our
model is light-weighted and efficient compared to
previous methods for modeling tKGs. (iii) As far as
we know, we are the first to use Capsule Networks
for tKGs. Our experiments show that by leveraging
dynamic routing, TempCaps is suitable for both dis-
crete and continuous timestamps and can be easily
generalized to unseen timestamps. (iv) We conduct
additional ablation studies to understand how each
part of TempCaps contributes to the model perfor-
mance. We also show that TempCaps is efficient
by analyzing time and space complexity.

2 Related Work

2.1 Knowledge Graph Embedding

Knowledge Graph Embedding (KGE) maps enti-
ties and relations into low-dimensional continuous
vectors. Two types of KGEs, including static KGE
and temporal KGE, have attracted attention from
the community. In the rest of this subsection, we
give an overview of static and temporal KGE.

Static Knowledge Graph Embedding. Embed-
ding approaches for static KGs can generally be cat-
egorized into bilinear models and transition-based
models. TransE (Bordes et al., 2013) leverages
the transition-based approach, which measures the
plausibility of a triple as the distance between the
object entity’s embedding and the embedding of
the subject after the relational transition. Simi-
larly, by using additional projection vectors, Wang
et al. (2014) extend TransE to translate entity em-
beddings into the vector space of relations. Other
works including RESCAL (Nickel et al., 2011),
DisMult (Yang et al., 2015), and SimplE (Kazemi
and Poole, 2018) use a bilinear score function,
which represents predicates as linear transforma-
tions of entity embeddings. However, these KGE
methods are not suitable for tKGs as they cannot
capture the temporal dynamics of tKGs.

Temporal Knowledge Graph Embedding.
Temporal KGE approaches aim to capture both
temporal and relational information to improve
the performance of the completion task. Han
et al. (2021b) assessed well-known temporal
embeddings of tKGE models via an extensive
experimental study and released the first open
unified open-source framework for temporal
KG completion models with full composability.
HyTE (Dasgupta et al., 2018) embeds time infor-
mation in the entity-relation space by arranging
a temporal hyperplane to each timestamp and
uses TransE as interaction model to compute the
plausibility score of facts. DE-SimplE (Goel
et al., 2020) extends SimplE by exploring the
diachronic function to model entity embeddings at
different timestamps. TA-DistMult (García-Durán
et al., 2018) utilizes recurrent neural networks to
learn time-aware representations of relations and
adopt DistMult as the score function. Moreover,
Han et al. (2020a) introduced a non-Euclidean
embedding approach that learns evolving entity
representations in a product of Riemannian
manifolds. Besides, Han et al. (2022) enhanced
temporal knowledge embedding using contex-
tualized language representations and achived
state-of-the-art results. Besides the completion
task, researchers have also paid attention to use
temporal KGE for forecasting on tKGs (Trivedi
et al., 2017; Jin et al., 2020; Han et al., 2020b,c,
2021a; Sun et al., 2021). Forecasting tasks predict
future links based on past observations, while
the completion tasks interpolate missing links at

23

observed timestamps. In this work, we focus on
the tKG completion task.

2.2 Capsule Network
Sabour et al. (2017) propose Capsule Networks to
capture different entities in images by leveraging
dynamic routing between different layers of Cap-
sule Networks. As a result, capsule Networks reach
comparable or even better performance when com-
pared to convolutional neural networks, while at
the same time being more efficient and more robust
to affine transformation. Following Sabour et al.
(2017), researchers have proposed various methods
to improve the performance of Capsule Networks.
Hahn et al. (2019) boost the performance of Cap-
sule Networks by using a novel self-routing mech-
anism. Tsai et al. (2020) propose to use inverted
dot-product attention routing to improve Capsule
Networks. We give more details on the basics of
Capsule Networks in Section 3.2.2.

Apart from the vision domain, previous work has
shown that Capsule Networks are also useful for
modeling static knowledge graphs. (Nguyen et al.,
2019) propose CapsE, which represents each triplet
fact (subject, relation, object) in a knowledge graph
as a 3-column matrix, each of which corresponds
to an entity in a fact. CapsE reaches state-of-the-art
performance on static knowledge graph completion
tasks.

This paper proposes TempCaps, which uses Cap-
sule Networks to model tKGs. Despite all previous
works on Capsule Networks, we are the first to
model tKGs with Capsule Networks to the best
of our knowledge. Experimental results show that
TempCaps achieves competitive performance on
the temporal knowledge graph completion task. We
present the details of TempCaps in Section 3.2.

3 Methodology

3.1 Task Formulation
A temporal knowledge graph (tKG) is a collection
of valid facts with temporal information. A fact
in tKG is a quadruple of (s, r, o, t), which consists
of subject s, relation r, object o, and timestamp t.
We use E, R, and T to denote the sets of entities,
relations, and timestamps involved in at least one
fact in a given tKG. |E|, |R| and |T | are the number
of elements in each set, respectively. A tKG can
be viewed as the union of KG snapshots at each
timestamp. Formally, we have:

G = G(t1) ∪G(t2) ∪ · · ·G(ti) · · · ∪G(tmax),

where G(ti) = {(s, r, o, ti)|ti ∈ T} is a snapshot
of G at timestamp ti, and tmax = max(ti|ti ∈ T).

Temporal Knowledge Graph Completion
(TKGC) aims to predict unobserved missing
facts from incomplete tKGs. In TKGC, both
unobserved and observed facts share the same
period of time. Let O be the observed true facts
from a complete tKG G (G contains both observed
true facts and to-be-predicted facts), we denote the
set of missing facts as Ō = G \ O which should
be predicted in the context of TKGC. In our work,
we only consider predicting the missing subject
or the missing object of the missing facts. For
every missing fact (s, r, o, t) ∈ Ō, two prediction
queries (s, r, ?, t) and (?, r, o, t) are generated, and
our model aims to rank the ground-truth subject
entity s from (?, r, o, t), as well as the ground-truth
object entity o from (s, r, ?, t), as high as possible
among all candidate entities. For simplicity, we
present the equations and illustrate our method
with only object prediction. During training and
evaluation of our experiments, we include both
subject prediction and object prediction.

3.2 Model Architecture

3.2.1 Overview

We propose TempCaps, a Capsule network-based
embedding model for Temporal knowledge graph
completion. TempCaps first selects two types of
neighboring entities, i.e., local entities and global
relational entities, for each entity of the tKG. Then
it learns the embeddings of entities based on the
retrieved neighbors using a dynamic routing mod-
ule (see Section 3.2.5). Finally, TempCaps ranks
the entities from the candidate set by feeding the
embeddings of the entities to a scoring module.
Figure 1 gives an illustration of TempCaps.

3.2.2 Capsule Network

Capsule networks are built with two critical com-
ponents: capsules and the dynamic routing mecha-
nism.

A capsule is a set of neurons processing different
information about an entity, and the activities of
the neurons within an active capsule represent the
various properties of a particular entity (Sabour
et al., 2017). We use a squash function proposed
by Sabour et al. to guarantee that the length of the

24

observed TKG facts

(Biden,
Make statement,

?,
2021-05-03)

Russia

China

India

Iran

......

Dynamic
Routing

Aggregator

Inference: Iran

MLP
Decoder

Neighbor
Selector

(2021-03-29, Russia)
(2021-04-29, China)
(2021-05-01, North Korea)

local neighbor:

(2021-05-02, Nayib Bukele)
(2021-05-02, Malaysia)
(2021-05-02, India)

global relational neighbor:

Entity
Embedding

Layer

...

Biden

Figure 1: Overview of TempCaps. Assume we want to predict the ground truth object of a prediction query
(Biden,Make statement, ?, 2021-05-03), given all the observed facts. TempCaps first selects different types of
neighboring entities of the query subject Biden, and embeds these neighbors with capsules. Then it utilizes the
dynamic routing aggregator to learn Biden’s contextualized embedding. A multi-layer perceptron (MLP) decoder
takes the learned embedding and performs a multi-class classification over all candidates, producing scores for every
entity in the candidate set. The entity with the highest score (Iran in this example) is the predicted object.

vector stays between 0 and 1:

vj =
∥sj∥2

1 + ∥sj∥2
sj
∥sj∥

, (1)

where sj is the input of a capsule and vj is its
squashed output.

Routing by agreements regulates how capsules
communicate between layers. The dynamic routing
mechanism (Sabour et al., 2017) works as follows.
All output vectors ui of capsules in the lower layer
are first multiplied by a weight matrix Wij . Then,
the weighted sum of newly obtained vectors are
input into a capsule sj in the next layer:

ûj|i = Wijui, sj =
∑

i

cij ûj|i, (2)

where cij is the coupling coefficient between cap-
sule i and capsule j. In our work, we initialize each
entity’s embedding with a capsule in the first cap-
sule layer. By performing routing by agreements,
we achieve information aggregation between an
entity and its selected neighbors.

3.2.3 Neighbor Selector
Similar to static KGs, in tKGs, we can still treat
entities as nodes (relations as edges). Inspired by
previous works in graph neural network (Kipf and

Welling, 2017; Velickovic et al., 2018; Xu et al.,
2019), where the embeddings of nodes are derived
by the n-hop neighbors of the nodes, TempCaps
computes the embedding of each node, i.e., entity
in the context of tKGs, by leveraging information
from the temporal neighbors of that node in the
tKG. Given a prediction query (s, r, ?, t), Temp-
Caps selects two types of neighbors, namely, local
entities and global relational entities, for the query
subject s.

A local entity is an object entity o′ which orig-
inates from an observed fact (s, r, o′, t′), where t′

can be any timestamp within a fixed range around
the query timestamp. We denote the set of all local
entities at all timestamps as El(s, r):

El(s, r) = {o′|(s, r, o′, t′),
max(t−∆te, t1) ≤ t′ ≤ min(t+∆te, tmax)}}.

To avoid including excessive entities into El, Tem-
pCaps samples local entities from all observed facts
within a pre-defined time window ∆te.

A global relational entity is an object entity o′

which originates from an observed fact (s′, r, o′, t′),
where s′ can be any entity and t′ can be any times-
tamp within a fixed range around the query times-
tamp. We denote the set of all local entities at all

25

timestamps as Eg:

Eg(r) = {o′|(s′, r, o′, t′),
max(t−∆tr, t1) ≤ t′ ≤ min(t+∆tr, tmax)}.

Similarly, global relational entities are selected
within a time window ∆tr.

We further define the set of all selected neigh-
bors as En = {El, Eg}. By restricting neighbors
within time windows around the query timestamp,
TempCaps selects entities that have greater influ-
ence on the query subject s. We employ different
time windows to select local entities, and global
relational entities as different types of neighbors
have different influence on the query subject s. We
treat the time windows, i.e., ∆te and ∆tr, as hy-
perparameters during finetuning.

3.2.4 Temporal Weighting Function
In CapsNet (Sabour et al., 2017), the log prior prob-
ability bij between two capsules i and j are learned
depending on the locations and the types of both
capsules. It is used to compute the coupling coef-
ficient stated in Equation 2: cij =

exp(bij)∑
k exp(bik)

. In-
spired by CapsNet, we initialize the log prior prob-
ability between the query subject s and its selected
neighbor o′ with a temporal weighting function, as
we consider the time difference between these two
entities as the difference of capsule locations. The
intuition is that, for a prediction query (s, r, ?, t),
a neighbor that connects with s near to t should
have more influence on s than a temporally-farther
neighbor. Hence, we assign a higher probability to
nearer neighbors than farther neighbors. Formally,
given a prediction query (s, r, ?, t) and a selected
neighbor o′ (derived from an observed fact at t′),
bo′ is initialized as:

bo′ =
γ + 1

γ + |t′ − t|+ 1
, (3)

where γ is a hyperparameter. Figure 2 illustrates
the temporal weighting function with different γ.
The temporal weighting function with a lower γ
leads to higher differences in the values of coupling
coefficients regarding various neighboring entities.

3.2.5 Dynamic Routing Aggregator
Based on the selected neighboring entities from the
neighbor selector, TempCaps then learns the repre-
sentation of an entity by leveraging a dynamic rout-
ing aggregator. Inspired by CapsE (Nguyen et al.,

Figure 2: Temporal weighting function with different γ.
The horizontal axis is t and the vertical axis is the value
of weight(t).

2019) that uses Capsule Networks to model static
KGs, we design two layers of capsules for Temp-
Caps, and then apply a modified dynamic routing
algorithm. The first capsule layer consists of N
capsules, where N is the number of the selected
neighboring entities from the neighbor selector. As-
sume we have a prediction query (s, r, ?, t), and for
the query subject s, we have the selected neighbors
En. For every neighboring entity e ∈ En, a cap-
sule maps its embedding u(0) with a multi-layer
perceptron to obtain u(1). Then in the second cap-
sule layer, we use the dynamic routing algorithm
to compute the contextualized representation es of
the query subject s. Let σ(·) be an activation func-
tion, we use the following functions to compute
contextualized representations:

u(1)
i = σ(Wu(0)

i + ϵ), (4)

e = DynamicRouting(u(1)
1 , · · · ,u(1)

N), (5)

where W is the weighting matrix, ϵ is a bias, and N
is the number of selected neighbors. Algorithm 1
shows the details of the dynamic routing module.

3.2.6 MLP Decoder

The multi-layer perceptron (MLP) decoder takes
the representation e from the dynamic routing mod-
ule as the input and estimates the probabilities of
all candidates being the predicted answer by lever-
aging a softmax function:

PMLP(o|s, r, t) =
exp(σ(WMLPeo + ϵMLP))∑

o′∈E exp(σ(WMLPeo′ + ϵMLP))
,

(6)
where WMLP is a weight matrix, ϵMLP ∈ R|E| is a
bias vector, and σ(·) is the activation function.

26

Algorithm 1: Modified dynamic routing
algorithm

input :{u(0)
i }, number of iteration m

output :e, c
for all capsule i ∈ first capsule layer do

bi ← weight(ti)
end
for m iterations do

for all capsule i ∈ first capsule layer do
ci ← exp(bi)∑

k exp(bk)
;

end
for all capsule i ∈ second capsule layer

do
s←∑

i ciu
(0)
i ;

end
for all capsule i ∈ second capsule layer

do
e← squash(s);

end
for all capsule i ∈ first capsule layer do

bi ← bi + u(0)
i

⊺
· e

end
end

3.2.7 Parameter Estimation and Inference
Following previous works about tKG reason-
ing (Jin et al., 2020; Zhu et al., 2021), we treat
temporal knowledge graph completion as a multi-
class classification task, where each class corre-
sponds to a candidate entity. The learning objective
is to minimize the negative log-likelihood L on all
observed facts with the object (or subject) masked
during training:

L = −
∑

(s,r,o,t)∈G
log[P (o|s, r, t)], (7)

where P (o|s, r, t) = (1 − α) · PMLP(o|s, r, t) +
α · PDyR(o|s, r, t) is the probability of the en-
tity o being the ground truth missing object
given (s, r, ?, t). This probability consists of two
parts: PMLP(o|s, r, t) and PDyR(o|s, r, t), where
PMLP(o|s, r, t) is defined by Equation 6 and
PDyR(o|s, r, t) is the softmax output c from the last
iteration of Algorithm 1. For the entities not se-
lected into the set of neighbors, we force the value
of their PDyR to 0. α ∈ [0, 1] is the balancing pa-
rameter that controls the importance of each proba-
bility term.

During inference time, for a prediction query

(s, r, ?, t), we follow the training process and re-
trieve the combined probabilities of all entities. The
candidate entity with the highest combined proba-
bility is selected as the model prediction:

opred = argmax
o′∈E

P (o|s, r, t). (8)

The learning objective for subject prediction is sim-
ilar. We omit it in the paper for simplicity.

4 Experimental Results

4.1 Experimental Setup

Datasets We use three datasets for evaluation in
our experiments: Global Database of Events, Lan-
guage, and Tone (GDELT) (Leetaru and Schrodt,
2013), two subsets of Integrated Crisis Early Warn-
ing System (ICEWS) (Boschee et al., 2015), i.e,
ICEWS05-15 and ICEWS14. GDELT collects
human societal-scale behaviors and events occur-
ring from April 1, 2015, to March 31, 2016 in
news media. The ICEWS dataset records political
events with timestamps. ICEWS14 and ICEWS05-
15 are two subsets from ICEWS, which contains
events in 2014, and from 2005 to 2015, respec-
tively. For all our experiments, we split the dataset
by 80%/10%/10% for train/validation/test. Table 2
gives the statistics of the datasets.
Metrics For each fact (s, r, o, t) in the dataset,
we create two sub-tasks: (1) predicting the object
(s, r, ?, t) and (2) predicting the subject (?, r, o, t).
We report four metrics for the two tasks separately
and take the average between the two sub-tasks.
The metrics we used are MRR and Hits@1/3/10.
Let |Q| denote the number of queries. MRR, de-
fined as 1

|Q|
∑

i
1

ranki
, is the average of reciprocal

ranks. Hits@K = 1
|Q|
∑

i 1[ranki ≤ K] shows the
ratio of the cases where the ground-truth entities
are ranked within the top K. We filter the candidate
object set during evaluation in the same manner
as (Goel et al., 2020) do. During the evaluation, in
one timestamp, a subject may be connected with
multiple objects under the same relation. Hence,
objects except the groundtruth o are not necessar-
ily wrong. We therefore filter the candidate set E
during evaluation. In other words, instead of con-
sidering all the entities E, the model gives the rank
of the actual missing object among entities in o∪Ēt,
where Ēt are entities not connected to s under r at
time t. To be specific, Ēt = {o′|(s, r, o′, t) /∈ Gt}.
Baselines We compare the performance of our
model with both static and temporal state-of-the-art

27

Model GDELT ICEWS05-15 ICEWS14

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
TransE 11.3 0.0 - 15.8 29.4 9.0 - 66.3 28.0 9.4 - 63.7

DistMult 19.6 11.7 20.8 34.8 45.6 33.7 - 69.1 43.9 32.3 - 67.2
SimplE 20.6 12.4 22.0 36.6 47.8 35.9 53.9 70.8 45.8 34.1 51.6 68.7

HyTE 11.8 0.0 16.5 32.6 31.6 11.6 44.5 68.1 29.7 10.8 41.6 65.5
TA-DistMult 20.6 12.4 21.9 36.5 47.4 34.6 - 72.8 47.7 36.3 - 68.6
DE-SimplE 23.0 14.1 24.8 40.3 51.3 39.2 57.8 74.8 52.6 41.8 59.2 72.5

TempCaps 25.8 18.0 27.7 40.4 52.1 42.3 57.6 70.5 48.9 38.8 54.4 67.9

Table 1: Model performance on GDELT, ICEWS05-15 and ICEWS14. We use MRR and Hits@1/3/10 as our
evaluation metric. Results of the baseline models are directly adapted from the original papers. "-" indicates the
number is not available.

Dataset #Ent # Rel #Train #Valid #Test Gap #Gaps

ICEWS14 7,128 230 72,826 8,941 8,963 24H 365
ICEWS05-15 10,488 251 368,962 46,275 46,092 24H 4,017

GDELT 500 20 2,735,685 341,961 341,961 24H 366

Table 2: Statistics on datasets. The columns are the
name of the dataset, the number of all entities, the num-
ber of all relation types, the number of facts in the
train/validation/test sets, the time gap, and total time
gaps. In the column Gap, "H" indicates hours. For
example, "24H" means that the difference between two
consecutive timestamps is 24 hours.

KG embedding models. The static models include
TransE (Bordes et al., 2013), DistMult (Yang et al.,
2015) and SimplE (Kazemi and Poole, 2018) while
temporal models are HyTE (Dasgupta et al., 2018),
TA-DistMult (García-Durán et al., 2018), and DE-
SimplE (Goel et al., 2020).
Implementations Details All our experiments are
conducted on a single Titan Xp GPU. We use the
ADAM optimizer with a weight decay rate of 1e-5.
In addition, we set the learning rate to 1e-3, batch
size to 300, the initial entity embedding size to 100,
the size of the linear transformation in dynamic
routing aggregator to 200 × 100, the routing iter-
ation times as 1, the temporal weighting decay γ
to 4, the loss balancing factor α to 0.1 and dropout
rate to 0.3. The neighborhood candidate numbers
are 80 for local entities and 40 for global relational
entities.

4.2 Results
Table 1 gives the results of our model performance.
We can observe that our model reaches state-of-the-
art performance on the GDELT and ICEWS05-15
datasets. On GDELT, our model outperforms the
baseline models on all four metrics. For MRR,
our model outperforms the second-best model by
2.8%, and leads Hits@1 by 3.9%. On ICEWS05-
15, our model is state-of-the-art on two of the most

important metrics, MRR and Hits@1. Additionally,
our model leads the second-best model by 3.1% for
Hits@1, indicating that our model can retrieve the
ground-truth entity with high accuracy.

On ICEWS14, our model is not the best but is
still comparable to the state-of-the-art model. For
example, our model reaches an MRR of 48.9% on
ICEWS14, while the best-performed model DE-
SimplE reaches an MRR of 52.6%.

4.3 Ablation Studies

We study the following hyperparameters or design
choices on ICEWS14: (1) the number of candidate
entities (local/global relational);(2) the length of
visible time window (tr, te, ta); (3) the number
of routing iterations; (4) the temporal weighting
decay rate γ; (5) whether or not we use an MLP
decoder in the final layer of the model; (6) the loss
balancing factor α. Table 3 details the results of
the ablation studies.

From model variants on the number of candidate
numbers, we can see that mixing different types of
neighbors is helping. The local entities are particu-
larly helpful, and adding global relational entities
further improves the performance.

For the length of visible time window, the opti-
mal number is 6 days (tr = ta = 3 days) accord-
ing to the results in Figure 3(a). We argue that a
too-short window results in insufficient informa-
tion, while a too-long window would contain too
much noise, which might harm the model perfor-
mance.

From Figure 4, we can see how the number of
routing iterations affects model performance and
that the dynamic routing aggregator outperforms
the mean aggregator on MRR. Finally, figure 3(b)
illustrates the model performance when using dif-
ferent weight decay rates γ, where we can observe
that the optimal value of γ is 4. Additionally, we

28

(a) Time window size (days). (b) Temporal weighting decay γ. (c) Balancing factor α.

Figure 3: Ablation studies. The configuration in our final model is marked in orange.

Figure 4: Ablation studies. Effects of the number of
iterations. 0 indicates the model uses a mean aggregator,
otherwise the model uses the dynamic routing aggrega-
tor.

notice that dropping the final MLP decoder results
decreases model performance (see Table 3). In
Figure 3(c), we show that a loss balance factor
α = 0.1 leads to better performance than when set-
ting α = 0. This indicates that our model benefits
from both PMLP and PDyR.

4.4 Analysis

We analyze the space and time complexity of our
model from the empirical and theoretical points
of view. As is shown in Figure 1, the trainable
parameters of our model consists of three parts:
(1) E1 ∈ R|E|×D1 in the entity embedding layer,
(2) W1 ∈ RD2×D1 and e1 ∈ RD2 in the dynamic
routing aggregator and (3) W2 ∈ R|E|×D2 and
e2 ∈ R|E|×D2 in the final MLP decoder. In sum-
mary, our model has O(|E|) parameters, which
is optimal for representing a knowledge graph
with |E| entities. In our experiments, taking the
ICEWS14 dataset as an example, each training
epoch costs only 54 seconds on average, and the
total evaluation process for the testing dataset costs
21 seconds. This indicates our model is efficient
both in training and inference and saves consider-
able time and memory compared to previous works
for temporal knowledge graph completion.

Variants MRR Hits@1 Hits@3 Hits@10

Candidates

(120,0) 47.7 37.4 53.2 67.0
(0,120) 16.7 8.3 18.0 34.8
(60,60) 48.3 38.1 54.0 67.4

(80,40)* 48.9 38.8 54.4 67.9
(90,30) 48.6 38.4 54.1 67.7

(100,20) 48.2 38.0 53.6 67.4

Neighbor length

1 47.8 37.8 53.2 66.2
2 48.7 38.5 54.4 67.6
3* 48.9 38.8 54.4 67.9
4 48.5 38.2 54.2 67.8
5 48.6 38.3 54.1 68.0
7 48.3 38.1 53.9 67.9
10 47.9 37.5 53.5 67.4

Iterations

0 (mean) 46.8 36.3 52.1 67.3
1* 48.9 38.8 54.4 67.9
2 48.5 38.6 53.7 67.0
4 47.4 38.0 51.9 65.1
7 46.3 37.5 50.1 63.0
10 45.6 37.2 49.1 62.0

Weight decay γ

0 48.4 38.2 54.0 67.6
1 48.7 38.5 54.3 67.8
4* 48.9 38.8 54.4 67.9
7 48.8 38.7 54.3 67.8
9 48.7 38.5 54.2 67.8
14 48.6 38.4 54.2 67.8
19 48.5 38.3 54.0 67.7

Final MLP decoder No 48.6 38.6 53.8 67.1
Yes* 48.9 38.8 54.4 67.9

Loss weight α

0 48.3 38.3 53.3 67.3
0.05 48.7 38.4 54.3 67.9
0.1* 48.9 38.8 54.4 67.9
0.15 48.8 38.7 54.3 67.8
0.2 48.7 38.5 54.2 67.8
0.4 47.9 37.9 53.2 66.7
0.8 47.8 37.7 53.0 67.4
1.0 0.017 0.017 0.017 0.017

Table 3: The complete results of our ablation studies. *
indicates configurations used in our final model.

The space complexity of the embedding compu-
tation before aggregation is O(|B|D1D2) where
|B| is the batch size and Di is the embedding
size defined in the model. Then, the space com-
plexity of going through the dynamic routing ag-
gregator (Algorithm 1) is O(r|B||C|D2

2), where
|C| is the candidate number. At last, the MLP
decoder takes another O(|B||E|D2), where |E|
is the total number of entities. Thus, for each

29

epoch of training or testing, the space complexity
is O(|Q|(D1D2+ |C|D2

2+ |E|D2)), which can be
simplified as O(c · |Q||E|). Here c is a constant
related to pre-defined parameters, and |Q| is the
training/testing dataset size.

5 Conclusion

In this paper, we propose TempCaps, which is a
light-weighted Capsule Network-based embedding
model for temporal knowledge graph completion.
TempCaps consists of a neighbor selector, a dy-
namic routing aggregator, and an MLP decoder.
Experimental results show that TempCaps reaches
state-of-the-art performance on the GDELT and
ICEWS05-15 dataset. We conduct additional abla-
tion studies to understand how each part of Temp-
Caps and hyperparameter choices contribute to the
model performance. Our analysis also shows that
TempCaps is efficient both in time and space. In the
future, we plan to extend TempCaps to forecasting
in temporal knowledge graphs.

Acknowledgements

This work has been funded by the German Federal
Ministry of Education and Research (BMBF) under
Grant No. 01IS18036A. The authors of this work
take full responsibilities for its content.

References
Antoine Bordes, Nicolas Usunier, Alberto García-

Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NeurIPS.

Elizabeth Boschee, Jennifer Lautenschlager, Sean
O’Brien, Steve Shellman, James Starz, and Michael
Ward. 2015. ICEWS Coded Event Data.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: commonsense transformers for auto-
matic knowledge graph construction. In ACL.

Shib Sankar Dasgupta, Swayambhu Nath Ray, and
Partha P. Talukdar. 2018. Hyte: Hyperplane-based
temporally aware knowledge graph embedding. In
EMNLP.

Alberto García-Durán, Sebastijan Dumancic, and Math-
ias Niepert. 2018. Learning sequence encoders for
temporal knowledge graph completion. In EMNLP.

Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker,
and Pascal Poupart. 2020. Diachronic embedding for
temporal knowledge graph completion. In AAAI.

Taeyoung Hahn, Myeongjang Pyeon, and Gunhee Kim.
2019. Self-routing capsule networks. In NeurIPS.

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp.
2020a. Dyernie: Dynamic evolution of riemannian
manifold embeddings for temporal knowledge graph
completion. In EMNLP.

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp.
2020b. Explainable subgraph reasoning for forecast-
ing on temporal knowledge graphs. In ICLR.

Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu,
and Volker Tresp. 2021a. Temporal knowledge
graph forecasting with neural ode. arXiv preprint
arXiv:2101.05151.

Zhen Han, Ruotong Liao, Beiyan Liu, Yao Zhang,
Zifeng Ding, Heinz Köppl, Hinrich Schütze, and
Volker Tresp. 2022. Enhanced temporal knowledge
embeddings with contextualized language represen-
tations. arXiv preprint arXiv:2203.09590.

Zhen Han, Yunpu Ma, Yuyi Wang, Stephan Günnemann,
and Volker Tresp. 2020c. Graph hawkes neural net-
work for forecasting on temporal knowledge graphs.
In AKBC.

Zhen Han, Gengyuan Zhang, Yunpu Ma, and Volker
Tresp. 2021b. Time-dependent entity embedding is
not all you need: A re-evaluation of temporal knowl-
edge graph completion models under a unified frame-
work. In EMNLP.

Robert L. Logan IV, Nelson F. Liu, Matthew E. Peters,
Matt Gardner, and Sameer Singh. 2019. Barack’s
wife hillary: Using knowledge graphs for fact-aware
language modeling. In ACL.

Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren.
2020. Recurrent event network: Autoregressive struc-
ture inferenceover temporal knowledge graphs. In
EMNLP.

Seyed Mehran Kazemi and David Poole. 2018. Simple
embedding for link prediction in knowledge graphs.
In NeurIPS.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In ICLR.

Kalev Leetaru and Philip A. Schrodt. 2013. Gdelt:
Global data on events, location, and tone. ISA Annual
Convention.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation embed-
dings for knowledge graph completion. In AAAI.

Kenneth Marino, Ruslan Salakhutdinov, and Abhinav
Gupta. 2017. The more you know: Using knowledge
graphs for image classification. In CVPR.

30

Dai Quoc Nguyen, Thanh Vu, Tu Dinh Nguyen,
Dat Quoc Nguyen, and Dinh Q. Phung. 2019. A
capsule network-based embedding model for knowl-
edge graph completion and search personalization.
In NAACL.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In ICML.

Sara Sabour, Nicholas Frosst, and Geoffrey E. Hin-
ton. 2017. Dynamic routing between capsules. In
NeurIPS.

Haohai Sun, Jialun Zhong, Yunpu Ma, Zhen Han, and
Kun He. 2021. TimeTraveler: Reinforcement learn-
ing for temporal knowledge graph forecasting. In
EMNLP.

Rakshit Trivedi, Hanjun Dai, Yichen Wang, and
Le Song. 2017. Know-evolve: Deep reasoning in
temporal knowledge graphs. In ICML.

Yao-Hung Hubert Tsai, Nitish Srivastava, Hanlin Goh,
and Ruslan Salakhutdinov. 2020. Capsules with in-
verted dot-product attention routing. In ICLR.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In ICLR.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In AAAI.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2019. How powerful are graph neural net-
works? In ICLR.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2015. Embedding entities and relations
for learning and inference in knowledge bases. In
ICLR.

Fei Yu, Jiji Tang, Weichong Yin, Yu Sun, Hao Tian, Hua
Wu, and Haifeng Wang. 2021. Ernie-vil: Knowledge
enhanced vision-language representations through
scene graphs. In AAAI.

Cunchao Zhu, Muhao Chen, Changjun Fan, Guangquan
Cheng, and Yan Zhang. 2021. Learning from history:
Modeling temporal knowledge graphs with sequen-
tial copy-generation networks. In AAAI.

31

Proceedings of the Sixth Workshop on Structured Prediction for NLP, pages 32 - 39
May 27, 2022 c©2022 Association for Computational Linguistics

SlotGAN: Detecting Mentions in Text via Adversarial Distant Learning

Daniel Daza1,2,3, Michael Cochez1,3, Paul Groth2,3

1Vrije Universiteit Amsterdam
2University of Amsterdam

3Discovery Lab, Elsevier, The Netherlands
d.dazacruz@vu.nl, m.cochez@vu.nl, p.groth@uva.nl

Abstract

We present SlotGAN, a framework for training
a mention detection model that only requires
unlabeled text and a gazetteer. It consists of
a generator trained to extract spans from an
input sentence, and a discriminator trained to
determine whether a span comes from the gen-
erator, or from the gazetteer. We evaluate the
method on English newswire data and com-
pare it against supervised, weakly-supervised,
and unsupervised methods. We find that the
performance of the method is lower than these
baselines, because it tends to generate more and
longer spans, and in some cases it relies only on
capitalization. In other cases, it generates spans
that are valid but differ from the benchmark.
When evaluated with metrics based on overlap,
we find that SlotGAN performs within 95% of
the precision of a supervised method, and 84%
of its recall. Our results suggest that the model
can generate spans that overlap well, but an
additional filtering mechanism is required.

1 Introduction

Detecting mentions of entities in text is an impor-
tant step towards the extraction of structured in-
formation from natural language sources. Men-
tion Detection (MD) components can be found fre-
quently in systems for Named Entity Recognition
(NER) (Straková et al., 2019; Wang et al., 2021),
entity linking (Wu et al., 2020; Cao et al., 2021),
relationship extraction (Katiyar and Cardie, 2017;
Zhong and Chen, 2021), and coreference resolu-
tion (Joshi et al., 2019; Xu and Choi, 2020; Kirstain
et al., 2021), where accurately modeling mentions
is crucial for downstream performance.

The MD task is often subsumed under NER,
where most effective approaches employ super-
vised learning with exhaustively annotated datasets.
These methods become less feasible in cases where
we need to rapidly build MD systems, for example,
when moving to a domain with incompatible NER
classes; or when there are not enough resources to

create a labeled dataset. In contrast, we assume
that we have access to an unlabeled corpus, and
a list of known entity names (i.e. a gazetteer).
We propose SlotGAN– a framework for detecting
mentions that uses a generator to extract spans con-
ditioned on some input text, and a discriminator
that determines whether a span comes from the
generator, or from the gazetteer (see Fig. 1). In
contrast with distant supervision methods that re-
quire training with false negatives (Ratner et al.,
2016; Giannakopoulos et al., 2017; Shang et al.,
2018), SlotGAN relies on the discriminator to learn
patterns that are not likely to be names of entities
(such as verb phrases, or very long spans, which
rarely occur in a gazzetteer), thereby improving the
generator’s ability to detect valid mentions.

We evaluate the method in a MD task using the
CoNLL 2003 English dataset (Tjong Kim Sang
and De Meulder, 2003). We observe that the ab-
sence of strong supervision in SlotGAN results in
different, yet valid notions of what constitutes an
entity. For instance, while in the sentence “On the
road to Tripoli airport...” the word Tripoli is se-
lected as a gold mention, SlotGAN selects Tripoli
airport. In this case, exact match metrics for NER
underestimate performance, assigning zero preci-
sion and recall. To account for this, we introduce
overlap-based metrics into the evaluation.

When using exact boundary match metrics, Slot-
GAN exhibits lower performance compared to dif-
ferent baselines. When evaluating overlap, preci-
sion (how much of the predicted span overlaps with
the gold span) is within 95% of the performance of
the supervised baseline, while recall (how much of
the gold span is actually predicted) is within 84%.
We observe that SlotGAN tends to generate more
and longer spans than those in the benchmark, and
in some cases it relies only on capitalization.

Our contributions are the following: 1) A frame-
work towards distantly-supervised MD that avoids
explicit training with false negatives, and an imple-

32

The Nobel Committee in Norway

Sweden

emb

emb pad

Gazetteer

Figure 1: SlotGAN consists of a generator G trained to extract spans from an input sentence. We represent spans as
matrices containing embeddings of words in a span, padded with zeros to a fixed length L. True spans are generated
from a gazetteer. A discriminator D is trained to determine if a span was generated from G or from the gazetteer.

mentation via an end-to-end differentiable architec-
ture for extracting distinct spans; 2) Evidence for
the use of overlap-based metrics into the evaluation
of MD methods to account for ambiguous cases
in gold annotations; 3) An analysis of the perfor-
mance of SlotGAN, identifying its failure modes
and outlining directions of improvement.

2 SlotGAN

In the MD task, we are given a sentence from a
corpus as a sequence of words (w1, w2, ..., wn).
The output of the system is a set of spans that con-
tain a mention, and each span is a tuple (is, ie)
where is is an integer indicating the position where
the span starts, and ie the position where it ends.
Additionally, we have access to a gazetteer E =
(e1, e2, ..., eN) containing names of entities rele-
vant to a particular domain.

SlotGAN is a method for MD based on Gen-
erative Adversarial Networks (Goodfellow et al.,
2014; Mirza and Osindero, 2014). It consists of a
generator trained to extract spans from a sentence,
and a discriminator that determines whether a span
comes from the generator or from the gazetteer.

We define the embedding of a sentence w =
(w1, ..., wn) as a matrix emb(w) ∈ Rd×n, where
emb is a function that maps words to d-dimensional
pretrained embeddings (for example, from the input
embedding layer of BERT (Devlin et al., 2019)).

We represent each mention span in a sequence
as a matrix in a space S = Rd×L, where L is
the length of the sequence. For a span (is, ie), the
matrix contains the embeddings of the words within
the span, from column is to column ie, and is zero
in the remaining columns.

The generator takes as input the embedding ma-
trix emb(w) of a sentence, and assigns each of its
columns to one of k slots. The output is a sequence

of k span representations (Si)
k
i=1 with Si ∈ S,

such that the j-th column of Si contains the j-th
column of the input matrix, if it was assigned to
slot i. Unused columns of Si are filled with zeros.

When sampling a name e of an entity in the
gazetteer, we embed it as emb(e) and then add zero
padding via a pad function until reaching a maxi-
mum length L, to obtain a span representation in
S. The amount of padding is added randomly to
both sides of an entity name, with the purpose of
emulating how in a sentence, a mention can appear
at an arbitrary position. The discriminator takes as
input span representations in S , and outputs a score
that should be high for samples from the gazetteer,
and low for samples from the generator.

Denoting as pw the distribution used to sample
sentences from the corpus, and as pe the distribu-
tion for sampling names from the gazetteer, the
generator and discriminator are trained via gradient
descent using the W-GAN (Arjovsky et al., 2017)
minimax optimization objective:

min
G

max
D

Ee∼pe [D(pad(emb(e)))]−

Ew∼pw

[
k∑

i=1

D(G(emb(w))i)

]
, (1)

where we have denoted as G(emb(w))i the i-th
span representation produced by the generator.

To allow also not extracting any mentions when
not required, we randomly introduce empty spans
in the gazetteer, and we reformulate the genera-
tor objective with an equality constraint. Follow-
ing Bastings et al. (2019), we define the constraint
in terms of a differentiable function C such that
C(G(emb(w)i) counts the number of transitions
from zero to non-zero, and vice versa, in a span rep-
resentation. For valid spans, this should be equal
to 2. We solve the problem introducing a Lagrange

33

multiplier λ, and the term in Eq. 1 that depends on
the generator becomes

min
λ,G

Ew∼pw

[
k∑

i=1

−D(Si(w))− λ(2− C(Si(w))

]
,

(2)
where Si(w) is a shorthand for G(emb(w))i. This
constraint prevents the generator from producing
only empty spans.

At test time, we can use the spans produced by
the generator as predictions for mentions. Alter-
natively, we can balance precision and recall by
leveraging the discriminator, by only keeping spans
with a score D(Si(w)) > t where t is a threshold.

We implement the generator using BERT (De-
vlin et al., 2019), followed by a modified Slot Atten-
tion layer (Locatello et al., 2020) to model discrete
selections of distinct spans. The discriminator is a
temporal CNN. For more details on the architecture,
we refer the reader to Appendix A.

3 Related Work

The task of MD has been addressed under NER
effectively via supervised learning (Devlin et al.,
2019; Straková et al., 2019; Peters et al., 2018; Yu
et al., 2020; Wang et al., 2021). Some works ad-
dress the lack of labeled data in a target domain by
applying adaptation techniques from a source do-
main with labeled data (Zhou et al., 2019; Li et al.,
2019; Zhang et al., 2021). In this work we focus
on the case where annotations are not available.

Closer to our work are methods for weakly
or distantly supervised learning, where heuristics
and domain-specific rules are used to generate a
noisy training set, often using external sources like
gazetteers (Safranchik et al., 2020; Lison et al.,
2020; Zhao et al., 2021; Ratner et al., 2016; Shang
et al., 2018; Li et al., 2021a). These methods are
limited by false negatives that reduce recall in MD.
Furthermore, even though rules can be used to an-
notate a dataset at a large scale, the process of
devising these rules in the first place can be tedious,
and might require domain expert knowledge.

Luo et al. (2020) recently introduced a fully un-
supervised method for NER that uses a pipeline
of clustering over word embeddings, a generative
model, and reinforcement learning to solve the
NER task without any labels or external sources.
These elements are optimized separately, whereas
SlotGAN provides an end-to-end architecture.

4 Experiments

Datasets We evaluate MD performance using
the CoNLL 2003 English dataset for NER (Tjong
Kim Sang and De Meulder, 2003). For meth-
ods that require a dictionary of entity types or a
gazetteer, we build it using the annotations in the
training set. We also explore a pretraining strat-
egy for SlotGAN, where we sample sentences from
Wikipedia articles, and names of entities from Wiki-
data. Both are obtained from the July 2019 dumps.

Experimental setup We evaluate the perfor-
mance of SlotGAN when trained with the CoNLL
2003 data only, and when pretraining with
Wikipedia and Wikidata. We apply a threshold
to all spans based on the discriminator score, se-
lected using the validation set. Training and hyper-
parameter details can be found in Appendix B. Our
implementation is available online1.

Baselines We consider a string matching baseline
where we label all spans present in the gazetteer,
giving precedence to longer spans. We also
compare with methods ranging from supervised,
weakly supervised, to unsupervised. ACE (Wang
et al., 2021) is a state-of-the-art method for su-
pervised NER. AutoNER (Shang et al., 2018) is a
weakly supervised method that requires a type dic-
tionary. Lastly, we compare with the unsupervised
method of Luo et al. (2020)2.

Evaluation Recent works have highlighted the
presence of unlabeled mentions in the CoNLL
dataset, which has a negative effect when training
and evaluating models based on exact match (Jie
et al., 2019; Li et al., 2021b). Exact match met-
rics also penalize more strongly models that do not
match boundaries exactly, than a model that does
not predict a span at all (Manning, 2006; Esuli
and Sebastiani, 2010). With this motivation, we
also report overlap3 by computing the intersection
between gold and predicted spans. Precision is de-
fined as the length of the intersection divided by the
length of the predicted span, and recall is the length
of the intersection divided by the length of the gold
span. We denote these as OP and OR, respectively.
Overlap F1 (OF1) is the harmonic mean of OP and
OR. We report the average over all gold spans.

1https://github.com/dfdazac/slotgan
2Their implementation is not available. Results for P, R,

and F1 from their paper.
3Partial matches have been considered by Segura-Bedmar

et al. (2013), though not taking span lengths into account.

34

Method Data P R F1 OP OR OF1

String matching Gazetteer 76.2 54.0 63.2 57.4 61.3 58.6
ACE (Wang et al., 2021) Gold labels 96.0 97.1 96.5 98.3 98.1 98.1
AutoNER (Shang et al., 2018) Type dictionary 88.4 94.2 91.2 97.4 97.2 96.9
Unsupervised (Luo et al., 2020) Domain concepts 80.0 72.0 76.0 — — —

SlotGAN - no pretraining
Gazetteer

55.9 66.1 60.6 82.9 79.5 82.9
SlotGAN - pretrained 60.1 71.1 65.2 93.2 83.0 84.7

Table 1: Mention detection results evaluated via exact match precision (P), recall (R), and F1 score; and overlap
metrics (preceded with O). The “Data” column indicates what is required to train the model in addition to a corpus.

Gold on the road to [Tripoli] airport
Predicted on the road to [Tripoli airport]

Gold [Belgian] police said on Saturday
Predicted [Belgian police] said on Saturday

Gold [JOHNSON] WINS UNANIMOUS POINTS VERDICT
Predicted [JOHNSON WINS UNANIMOUS POINTS VERDICT]

Gold BASKETBALL - [BENETTON] BEAT [DINAMO] 92 - 81
Predicted [BASKETBALL] - [BENETTON BEAT DINAMO] 92 - 81

Table 2: Comparison of gold spans and spans predicted
by SlotGAN.

Results We present MD results in Table 1. We ob-
serve that pretraining with Wikipedia and Wikidata
entity names helps to improve the performance over
a version trained with the CoNLL 2003 data only.
The higher recall of SlotGAN in comparison with
the string matching baseline shows that the gener-
ator is not simply memorizing the gazetteer and
can thus detect mentions not seen during training.
However, its precision and recall are low compared
to other systems. We attribute this partly to the
lack of strong supervision of the generator, which
results in boundaries that differ from gold spans,
and detection of more mentions than those present
in the dataset. The overlap-based metrics show that
on average, predicted spans overlap 93% and gold
spans overlap 83% with the intersection. This indi-
cates that extra words are added to predicted spans,
and boundary mismatch, though these values of
precision and recall are within 95% and 84% of the
supervised baseline, respectively.

A closer analysis of the length of overlapping
spans shows that in 69.4% of the cases the length is
the same as gold spans, in 21.1% the predicted span
is longer, and in 9.5% it is shorter. This often leads
to mentions that are actually correct, as shown in
Table 2. However, SlotGAN also produces spans
that do not overlap with any gold span. This can be
observed by plotting the average number of words

0 20 40
Gold

0

10

20

30

40

Pr
ed

ic
te

d

Figure 2: Number of words assigned to a mention per
sentence, computed over gold and predicted spans.

assigned to a mention by the model versus the gold
annotations, as shown in Fig 2. We see that across
different numbers of mention words for the gold
annotations, SlotGAN produces a higher number
in average. We also find cases where it relies on
capitalization only, which becomes problematic in
upper case sentences: for regular sentences, there
is no exact boundary match in 11% of the cases.
For sentences in upper case, this increases to 23%.

5 Conclusion

We have presented SlotGAN, a method for training
a mention detector that only requires unlabeled text
and a list of entity names, that relies on implicit
supervision provided by a discriminator that is also
optimized during training. This results in spans that
overlap well with gold spans, but also a tendency
towards generating more and longer spans, and
relying on capitalization only. This suggests that
spans predicted by SlotGAN are likely to be correct,

35

but an additional mechanism is needed to filter
them. This can be enforced via tighter constraints
on generated spans, or a stronger discriminator.

Even though its performance is close to a su-
pervised model according to overlap-based met-
rics, it cannot match other methods that also use
a gazetteer or are unsupervised. In spite of this,
we consider SlotGAN a promising framework for
other IE tasks with less supervision, for example,
where relations between slots could be induced.
The end-to-end architecture also presents an oppor-
tunity for fine-tuning with gold labels, which we
plan to explore in future work.

Acknowledgments
This project was funded by Elsevier’s Discovery
Lab.

References
Martín Arjovsky, Soumith Chintala, and Léon Bottou.

2017. Wasserstein generative adversarial networks.
In Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, volume 70 of Proceed-
ings of Machine Learning Research, pages 214–223.
PMLR.

Jasmijn Bastings, Wilker Aziz, and Ivan Titov. 2019.
Interpretable neural predictions with differentiable
binary variables. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2963–2977, Florence, Italy. Associa-
tion for Computational Linguistics.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Andrea Esuli and Fabrizio Sebastiani. 2010. Evalu-
ating information extraction. In Multilingual and
Multimodal Information Access Evaluation, Interna-
tional Conference of the Cross-Language Evaluation
Forum, CLEF 2010, Padua, Italy, September 20-23,
2010. Proceedings, volume 6360 of Lecture Notes in
Computer Science, pages 100–111. Springer.

Athanasios Giannakopoulos, Claudiu Musat, Andreea
Hossmann, and Michael Baeriswyl. 2017. Unsuper-
vised aspect term extraction with B-LSTM & CRF
using automatically labelled datasets. In Proceedings
of the 8th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Analysis,
pages 180–188, Copenhagen, Denmark. Association
for Computational Linguistics.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C.
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in Neural Information
Processing Systems 27: Annual Conference on Neu-
ral Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada, pages 2672–
2680.

Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vin-
cent Dumoulin, and Aaron C. Courville. 2017. Im-
proved training of wasserstein gans. In Advances in
Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Sys-
tems 2017, December 4-9, 2017, Long Beach, CA,
USA, pages 5767–5777.

Zhanming Jie, Pengjun Xie, Wei Lu, Ruixue Ding, and
Linlin Li. 2019. Better modeling of incomplete anno-
tations for named entity recognition. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 729–734, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019. BERT for coreference reso-
lution: Baselines and analysis. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5803–5808, Hong Kong,
China. Association for Computational Linguistics.

Arzoo Katiyar and Claire Cardie. 2017. Going out on a
limb: Joint extraction of entity mentions and relations
without dependency trees. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 917–928,
Vancouver, Canada. Association for Computational
Linguistics.

Yuval Kirstain, Ori Ram, and Omer Levy. 2021. Coref-
erence resolution without span representations. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 14–19,
Online. Association for Computational Linguistics.

Jiacheng Li, Haibo Ding, Jingbo Shang, Julian McAuley,
and Zhe Feng. 2021a. Weakly supervised named en-
tity tagging with learnable logical rules. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International

36

Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4568–4581, Online.
Association for Computational Linguistics.

Jing Li, Deheng Ye, and Shuo Shang. 2019. Adver-
sarial transfer for named entity boundary detection
with pointer networks. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10-
16, 2019, pages 5053–5059. ijcai.org.

Yangming Li, Lemao Liu, and Shuming Shi. 2021b.
Empirical analysis of unlabeled entity problem in
named entity recognition. In 9th International Con-
ference on Learning Representations, ICLR 2021, Vir-
tual Event, Austria, May 3-7, 2021. OpenReview.net.

Pierre Lison, Jeremy Barnes, Aliaksandr Hubin, and
Samia Touileb. 2020. Named entity recognition with-
out labelled data: A weak supervision approach. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1518–
1533, Online. Association for Computational Linguis-
tics.

Francesco Locatello, Dirk Weissenborn, Thomas Un-
terthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas
Kipf. 2020. Object-centric learning with slot atten-
tion. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual.

Ying Luo, Hai Zhao, and Junlang Zhan. 2020. Named
entity recognition only from word embeddings. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 8995–
9005. Association for Computational Linguistics.

Christopher Manning. 2006. Doing named entity recog-
nition? don’t optimize for F1. NLPers Blog, 25.
Accessed on November, 2021.

Mehdi Mirza and Simon Osindero. 2014. Conditional
generative adversarial nets. CoRR, abs/1411.1784.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

John C. Platt and Alan H. Barr. 1987. Constrained differ-
ential optimization. In Neural Information Process-
ing Systems, Denver, Colorado, USA, 1987, pages
612–621. American Institue of Physics.

Alexander J. Ratner, Christopher De Sa, Sen Wu, Daniel
Selsam, and Christopher Ré. 2016. Data program-
ming: Creating large training sets, quickly. In Ad-
vances in Neural Information Processing Systems 29:

Annual Conference on Neural Information Process-
ing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pages 3567–3575.

Esteban Safranchik, Shiying Luo, and Stephen H. Bach.
2020. Weakly supervised sequence tagging from
noisy rules. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 5570–5578. AAAI Press.

Isabel Segura-Bedmar, Paloma Martínez, and María
Herrero-Zazo. 2013. SemEval-2013 task 9 : Extrac-
tion of drug-drug interactions from biomedical texts
(DDIExtraction 2013). In Second Joint Conference
on Lexical and Computational Semantics (*SEM),
Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
pages 341–350, Atlanta, Georgia, USA. Association
for Computational Linguistics.

Jingbo Shang, Liyuan Liu, Xiaotao Gu, Xiang Ren,
Teng Ren, and Jiawei Han. 2018. Learning named en-
tity tagger using domain-specific dictionary. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2054–
2064, Brussels, Belgium. Association for Computa-
tional Linguistics.

Jana Straková, Milan Straka, and Jan Hajic. 2019. Neu-
ral architectures for nested NER through lineariza-
tion. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
5326–5331, Florence, Italy. Association for Compu-
tational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. 2021.
Automated concatenation of embeddings for struc-
tured prediction. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing, ACL/IJCNLP 2021,
(Volume 1: Long Papers), Virtual Event, August 1-6,
2021, pages 2643–2660. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

37

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Scalable zero-
shot entity linking with dense entity retrieval. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6397–6407, Online. Association for Computa-
tional Linguistics.

Liyan Xu and Jinho D. Choi. 2020. Revealing the myth
of higher-order inference in coreference resolution.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8527–8533, Online. Association for Computa-
tional Linguistics.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020.
Neural mention detection. In Proceedings of the
12th Language Resources and Evaluation Confer-
ence, pages 1–10, Marseille, France. European Lan-
guage Resources Association.

Tao Zhang, Congying Xia, Philip S. Yu, Zhiwei Liu,
and Shu Zhao. 2021. PDALN: Progressive domain
adaptation over a pre-trained model for low-resource
cross-domain named entity recognition. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 5441–5451,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Xinyan Zhao, Haibo Ding, and Zhe Feng. 2021.
GLaRA: Graph-based labeling rule augmentation for
weakly supervised named entity recognition. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 3636–3649, Online.
Association for Computational Linguistics.

Zexuan Zhong and Danqi Chen. 2021. A frustratingly
easy approach for entity and relation extraction. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 50–61, Online. Association for Computational
Linguistics.

Joey Tianyi Zhou, Hao Zhang, Di Jin, Hongyuan Zhu,
Meng Fang, Rick Siow Mong Goh, and Kenneth
Kwok. 2019. Dual adversarial neural transfer for low-
resource named entity recognition. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3461–3471, Florence,
Italy. Association for Computational Linguistics.

A Architectures

In our implementation of SlotGAN, the embed-
ding function emb(w) used to obtain embeddings
of sentences and names in the gazetteer uses the
pretrained WordPiece embeddings from the input
layer of BERT (Devlin et al., 2019).

The generator consists of BERT, which for
an input sentence of length n, outputs a matrix

Layer Output features Activation

3× 3 Conv 128 ReLU
3× 3 Conv 64 ReLU
3× 3 Conv 64 ReLU
3× 3 Conv 64 —
Flatten —
Linear 32 ReLU
Linear 1 —

Table 3: Architecture of the discriminator used in our
experiments.

H ∈ Rd×n where d is the dimension of the
output layer of BERT, equal to 768. We use
the bert-base-cased implementation in Hugging-
Face’s Transformer library (Wolf et al., 2019).

The output matrix is passed to a modified Slot
Attention layer (Locatello et al., 2020), which we
use as a differentiable mechanism to assign n input
embeddings to k slots. In the original implemen-
tation, Slot Attention would assign each of the n
outputs in the columns of H to k slots, by using a
differentiable clustering algorithm. This algorithm
works for a variable number of slots, by sampling
k initial slot representations from a Gaussian distri-
bution. In our experiments we use k = 10, and the
number of iterations of the clustering algorithm is
set to 3.

In the MD case, for words that do not belong
to any mention, we want the generator to be able
to assign them to a “default” slot. We achieve this
by introducing an extra slot, whose representation,
instead of sampled, is a single vector with a learned
representation. Slot Attention in the generator thus
contains k+1 slots, but the default slot is discarded
when passing generated spans to the discriminator.

After discarding the default slot, the result is an
attention mask M ∈ Rk×n where the mij entry
indicates the fraction of input j assigned to slot i,
and each column is normalized to 1. The i-th span
representation is then obtained as

Si = emb(w)⊙Mi:, (3)

where Mi: is the i-th row of M, and⊙ is broadcast
element-wise multiplication.

For the discriminator we use a temporal CNN,
where convolutions are applied along the sequence
axis. The input is a matrix of span representations
of shape d × L, and the output is a scalar. The
architecture is described in Table 3.

38

B Training Procedure

We train SlotGAN with mini-batches of 32 sen-
tences. We update the generator once for every 5
updates of the discriminator. To let the discrimina-
tor accept empty spans as valid, we replace names
from the gazetteer with an empty span with a prob-
ability of 0.5. We use a gradient penalty coeffi-
cient (Gulrajani et al., 2017) of 10 when computing
the discriminator loss.

We use a learning rate of 2 × 10−5, with a lin-
ear warm-up schedule for the first 10% of epochs.
For the Lagrange multiplier, we use the Modified
Differential Method of Multipliers (Platt and Barr,
1987) with a constant learning rate of 1× 10−3.

We run our experiments in a workstation with
an Intel Xeon processor, 1 NVIDIA GeForce GTX
1080 Ti GPU with 11GB of memory, and 60GB
of RAM. When pretraining with Wikipedia and
Wikidata, we train SlotGAN with 20,000 updates
of the generator, and 5,000 when training with the
CoNLL 2003 dataset.

39

Proceedings of the Sixth Workshop on Structured Prediction for NLP, pages 40 - 51
May 27, 2022 c©2022 Association for Computational Linguistics

A Joint Learning Approach for Semi-supervised Neural Topic Modeling

Jeffrey Chiu∗ Rajat Mittal∗ Neehal Tumma∗ Abhishek Sharma Finale Doshi-Velez
Harvard University, Cambridge, MA

Abstract

Topic models are some of the most popular
ways to represent textual data in an interpret-
able manner. Recently, advances in deep gen-
erative models, specifically auto-encoding vari-
ational Bayes (AEVB), have led to the intro-
duction of unsupervised neural topic models,
which leverage deep generative models as op-
posed to traditional statistics-based topic mod-
els. We extend upon these neural topic models
by introducing the Label-Indexed Neural Topic
Model (LI-NTM), which is, to the extent of our
knowledge, the first effective upstream semi-
supervised neural topic model. We find that LI-
NTM outperforms existing neural topic models
in document reconstruction benchmarks, with
the most notable results in low labeled data
regimes and for data-sets with informative la-
bels; furthermore, our jointly learned classi-
fier outperforms baseline classifiers in ablation
studies.

1 Introduction

Topic models are one of the most widely used and
studied text modeling techniques, both because of
their intuitive generative process and interpretable
results (Blei, 2012). Though topic models are
mostly used on textual data (Rosen-Zvi et al., 2012;
Yan et al., 2013), use cases have since expanded to
areas such as genomics modeling (Liu et al., 2016)
and molecular modeling (Schneider et al., 2017).

Recently, neural topic models, which leverage
deep generative models have been used success-
fully for learning these probabilistic models. A lot
of this success is due to the development of varia-
tional autoencoders (Rezende et al., 2014; Kingma
and Welling, 2014) which allow for inference of in-
tractable distributions over latent variables through
a back-propagation over an inference network. Fur-
thermore, recent research shows promising results
for Neural Topic Models compared to traditional

∗Equal contribution

topic models due to the added expressivity from
neural representations; specifically, we see signifi-
cant improvements in low data regimes (Srivastava
and Sutton, 2017; Iwata, 2021).

Joint learning of topics and other tasks have been
researched in the past, specifically through super-
vised topic models (Blei and McAuliffe, 2010; Huh
and Fienberg, 2012; Cao et al., 2015; Wang and
Yang, 2020). These works are centered around the
idea of a prediction task using a topic model as a
dimensionality reduction tool. Fundamentally, they
follow a downstream task setting (Figure 1), where
the label is assumed to be generated from the latent
variable (topics). On the other hand, an upstream
setting would be when the input (document) is gen-
erated from a combination of the latent variable
(topics) and label, which has the benefit of better di-
rectly modeling how the label affects the document,
resulting in topic with additional information be-
ing injected from the label information. Upstream
variants of supervised topic models are much less
common, with, to the extent of our knowledge, no
neural architectures to this date. (Ramage et al.,
2009; Lacoste-Julien et al., 2008).

Our model, the Label-Indexed Neural Topic
Model (LI-NTM) stands uniquely with respect to
all existing topic models. We combine the bene-
fits of an upstream generative processes (Figure 1),
label-indexed topics, and a topic model capable of
semi-supervised learning and neural topic model-
ing to jointly learn a topic model and label classifier.
Our main contributions are:

1. The introduction of the first upstream semi-
supervised neural topic model.

2. A label-indexed topic model that allows more
cohesive and diverse topics by allowing the
label of a document to supervise the learned
topics in a semi-supervised manner.

3. A joint training framework that allows for
users to tune the trade-off between document

40

classifier and topic quality which results in
a classifier that outperforms same classifier
trained in an isolated setting for certain hyper-
parameters.

2 Related Work

2.1 Neural Topic Models

Most past work in neural topic models focused on
designing inference networks with better model
specification in the unsupervised setting. One line
of recent research attempts to improve topic model
performance by modifying the inference network
through changes to the topic priors or regularization
over the latent space (Miao et al., 2016; Srivastava
and Sutton, 2017; Nan et al., 2019). Another line
of research looks towards incorporating the expres-
sivity of word embeddings to topic models (Dieng
et al., 2019a,b).

In contrast to existing work on neural topic
models, our approach does not mainly focus on
model specification; rather, we create a broader
architecture into which neural topic models of all
specifications can be trained in an upstream, semi-
supervised setting. We believe that our architecture
will enable existing neural topic models to be used
in a wider range of real-word scenarios where we
leverage labeled data alongside unlabeled data and
use the knowledge present in document labels to
further supervise topic models. Moreover, by di-
rectly tying our topic distributions to the labels
through label-indexing, we create topics that are
specific to labels, making these topics more inter-
pretable as users are directly able to glean what
types of documents each of the topics are summa-
rizing.

2.2 Downstream Supervised Topic Models

Most supervised topic models follow the down-
stream supervised framework introduced in s-LDA
(Blei and McAuliffe, 2010). This framework as-
sumes a two-stage setting in which a topic model
is trained and then a predictive model for the doc-
ument labels is trained independently of the topic
model. Neural topic models following this frame-
work have also been developed, with the predictive
model being a discriminative layer attached to the
learned topics, essentially treating topic modeling
as a dimensionality reduction tool (Wang and Yang,
2020; Cao et al., 2015; Huh and Fienberg, 2012).

In contrast to existing work, LI-NTM is an up-
stream generative model (Figure 2, Figure 3) fol-

y θ

x

(a) Upstream Generative

x θ

y

(b) Downstream Generative

Figure 1: Generative process for downstream vs up-
stream supervision. Note that in upstream supervision,
the label, y, supervises the document, x, whereas in
downstream supervision the document supervises the
label. θ is an arbitrary latent variable, in our case repre-
senting topic proportions.

lowing a prediction-constrained framework. The
upstream setting allows us to implicitly train our
classifier and topic model in a one-stage setting
that is end-to-end. This has the benefit of allow-
ing us to tune the trade-off between our classi-
fier and topic model performance in a prediction-
constrained framework, which has been shown to
achieve better empirical results when latent vari-
able models are used as a dimensionality reduction
tool (Hughes et al., 2018; Hope et al.; Sharma et al.,
2021). Furthermore, the upstream setting allows
us to introduce the document label classifier as a
latent variable, enabling our model to work in semi-
supervised settings.

3 Background

LI-NTM extends upon two core ideas: Latent
Dirichlet Allocation (LDA) and deep generative
models. For the rest of the paper, we assume a
setting where we have a document corpus of D doc-
uments, a vocabulary with V unique words, and
each document having a label from the L possible
labels. Furthermore let us represent wdn as the n-th
word in the d-th document.

3.1 Latent Dirichlet Allocation (LDA)
LDA is a probabilistic generative model for topic
modeling (Blei et al., 2003; Blei and McAuliffe,
2010). Through the process of estimation and in-
ference, LDA learns K topics β1:K . The generative
process of LDA posits that each document is a mix-
ture of topics with the topics being global to the
entire corpus. For each document, the generative
process is listed below:

1. Draw topic proportions θd ∼ Dirichlet(αθ)

41

α θ z

βy

w

N

M

Figure 2: Generative Process for LI-NTM: The label
y indexes into our label-topic-word matrix β, which is
"upstream" of the observed words in the document w.

2. For each word w in document:

(a) Draw topic assignment zdn ∼ Cat(θd)
(b) Draw word wdn ∼ Cat(βzdn)

3. Draw responses y|z1:N , η, σ2 ∼ N (ηT z̄, σ2)
(if supervised)

where z̄ := 1
N

∑N
i=1 zn and the parameters η, σ2

are estimated during inference. αθ is a hyper-
parameter that serves as a prior for topic mix-
ture proportions. In addition we also have hyper-
parameter αβ that we use to place a dirichlet prior
on our topics, βk ∼ Dirichlet(αβ).

3.2 Deep Generative Models
Deep Generative Models serve as the bridge be-
tween probabilistic models and neural networks.
Specifically, deep generative models treat the pa-
rameters of distributions within probabilistic mod-
els as outputs of neural networks. Deep genera-
tive models fundamentally work because of the
re-parameterization trick that allows for backpro-
pogation through Monte-Carlo samples of distribu-
tions from the location-scale family. Specifically,
for any distribution g(·) from the location-scale
family, we have that

z ∼ g(µ, σ2) ⇐⇒ z = µ+ σ · ϵ, ϵ ∼ g(0, 1)

thus allowing differentiation with respect to µ, σ2.
The Variational Auto-encoder is the simplest

deep generative model (Kingma and Welling, 2014)
and it’s generative process is as follows:

pθ(x, z) = pθ(x|z)p(z)
pθ(x|z) ∼ N (µθ(z),Σθ(z))

p(z) ∼ N (0, I)
where µθ(z),Σθ(z) are both parameterized by neu-
ral networks with variational parameters θ. Infer-
ence on a variational autoencoder is done through

x x

β

π

µ

σ

Encoder

Classifier

Decoder

θ

qν(y|x)

qϕ(δ|x)

softmax((βTπ)θd)

Figure 3: Architecture for LI-NTM in the un-labeled
setting. y is used instead of obtaining a probability dis-
tribution π from the classifier in the labeled setting.
q(·|x) are distributions parameterized by neural net-
works. Note that we can optimize the classifier, encoder,
and decoder in one backwards pass.

approximating the true posterior p(z|x) which is of-
ten intractable with an approximation qϕ(z|x) that
is parametrized by a neural network.

The M2 model is the semi-supervised extension
of the variational auto-encoder where the input is
modeled as being generated by both a continuous
latent variable z and the class label y as a latent
variable (Kingma et al., 2014). It follows the gen-
erative process below:

pθ(x, z, y) = pθ(x|y, z)p(y)p(z)
pθ(x|y, z) ∼ N (µθ(y, z),Σθ(y, z))

p(y) ∼ Cat(y|π)
p(z) ∼ N (0, I)

where π is parameterizing the distribution on y
and µθ(y, z),Σθ(y, z) are both parameterized by
neural networks. We then approximate the true
posterior p(y, z|x) using by saying

p(y, z|x) ≈ qϕ(z|y, x)qϕ(y|x)

where qϕ(y|x) is a classifier that’s used in the un-
labeled case and qϕ(z|y, x) is a neural network that
takes in the true labels if available and the outputted
labels from qϕ(y|x) if unavailable.

4 The Label-Indexed Neural Topic Model

LI-NTM is a neural topic model that leverages the
labels y as a latent variable alongside the topic
proportions θ in generating the document x.

Notationally, let us denote the bag of words rep-
resentation of a document as x ∈ RV and the one-

42

hot encoded document label as y ∈ RL. Further-
more, we denote our latent topic proportions as
θd ∈ RK and our topics are represented using a
three dimensional matrix β ∈ RL×K×V .

Under the LI-NTM, the generative process (also
depicted in Figure 2) of the d-th document xd is
the following:

1. Draw topic proportions θd ∼ LN (0, I)

2. Draw document label yd ∼ π

3. For each word w in document:

(a) Draw topic assignment zdn ∼ Cat(θd)
(b) Draw word wdn ∼ Cat(βyd,zdn)

In Step 1, we draw from the Logistic-Normal
LN (·) to approximate the Dirichlet Distribution
while remaining in the location-scale family nec-
essary for re-parameterization (Blei et al., 2003).
This is done obtained through:

δd ∼ N (0, I), θd = softmax(δd)

Note that since we sample from the Logistic-
Normal, we do not require the Dirichlet prior hyper-
parameter α.

Step 2 is unique for LI-NTM , in the unlabeled
case, we sample a label yd from π, which is the
output of our classifier. In the labeled scenario, we
skip step 2 and simply pass in the document label
for our yd. Step 3 is typical of traditional LDA, but
one key difference is that in step 3b we also index
by the β by yd instead of just zdn. This step is mo-
tivated by how the M2 model extended variational
autoencoders to a semi-supervised setting (Kingma
et al., 2014).

A key contribution of our model is the idea of
label-indexing. We introduce the supervision of the
document labels by having different topics for dif-
ferent labels. Specifically, we have L×K different
topics and we denote the k-th topic for label l as
the V dimensional vector, βl,k. Under this setting,
we can envision LI-NTM as running a separate
LDA for each label once we index our corpus by
document labels.

Label-indexing allows us to effectively train our
model in a semi-supervised setting. In the un-
labeled data setting, our jointly-learned classifier,
qϕ(y|x), outputs a distribution over the labels, π.
By computing the dot-product between π and our
topic matrix β, this allows us to partially index
into each label’s topic proportional to the classi-
fier’s confidence and update the topics based on the
unlabeled examples we are currently training on.

Algorithm 1 Topic Modeling with LI-NTM
Initialize model and variational parameters
for iteration i = 1, 2, . . . do

for each document c in c1, c2, · · · , cd do
Get normalized bag-of-word representa-

tion xd
Compute µd = NNencoder(xd|ϕµ)
Compute Σd = NNencoder(xd|ϕΣ)
if labeled then

π = yd
else

π = NNclassifier(xd|ν)
end if
Sample θd ∼ LN (µd,Σd)
for each word in the document do

p(wdn|θd, π) = softmax(β)Tπθd
end for

end for
Compute the ELBO and its gradient (back-

prop.)
Update model parameters β
Update variational parameters (ϕµ, ϕΣ, ν)

end for

5 Inference and Estimation

Given a corpus of normalized bag-of-word repre-
sentation of documents x1, x2, · · · , xd we aim to
fit LI-NTM using variational inference in order
to approximate intractable posteriors in maximum
likelihood estimation (Jordan et al., 1999). Fur-
thermore, we amortize the loss to allow for joint
learning of the classifier and the topic model.

5.1 Variational Inference

We begin first by looking at a family of variational
distributions qϕ(δd|xd) in modeling the untrans-
formed topic proportions and qν(yd|xd) in model-
ing the classifier. More specifically, qϕ(δd|xd) is
a Gaussian whose mean and variance are parame-
terized by neural networks with parameter ϕ and
qν(yd|xd) is a distribution over the labels parame-
terized by a MLP with parameter ν (Kingma and
Welling, 2014; Kingma et al., 2014).

We use this family of variational distribu-
tions alongside our classifier to lower-bound the
marginal likelihood. The evidence lower bound
(ELBO) is a function of model and variational pa-
rameters and provides a lower bound for the com-
plete data log-likelihood. We derive two ELBO-
based loss functions: one for the labeled case and

43

one for the unlabeled case and we compute a lin-
ear interpolation of the two for our overall loss
function.

Lu =
D∑

d=1

Nd∑

n=1

Eq[log p(wdn|δd, qν(yd|xd)]

− τKL(qϕ(δd|xd)||p(δd)) (1)

Ll =
D∑

d=1

Nd∑

n=1

Eq[log p(wdn|δd, qν(yd|xd)]

− τKL(qϕ(δd|xd)||p(δd))
+ ρH(yd, qν(yd|xd)) (2)

where Equation 1 serves as our unlabeled loss and
Equation 2 serves as our labeled loss. H(·, ·) is
the cross-entropy function. τ and ρ are hyper-
parameters on the KL and cross-entropy terms in
the loss respectively.

These hyper-parameters are well motivated. τ
is seen to be a hyper-parameter that tempers our
posterior distribution over weights, which has been
well-studied and shown to increase robustness to
model mis-specification (Mandt et al., 2016; Wen-
zel et al., 2020). Lower values τ would result in
posterior distributions with higher probability den-
sities around the modes of the posterior. Further-
more, the ρ hyperparameter in our unlabeled loss is
the core hyperparameter that makes our model fit
the prediction-constrained framework, essentially
allowing us to trade-off the between classifier and
topic modeling performance (Hughes et al., 2018).
Increasing values of ρ corresponds to emphasizing
classifier performance over topic modeling perfor-
mance.

We treat our overall loss as a combination of our
labeled and unlabeled loss with λ ∈ (0, 1) being
a hyper-parameter weighing the labeled and un-
labeled loss. λ allows us weigh how heavily we
want our unlabeled data to influence our models.
Example cases where we may want high values of
λ are when we have poor classifier performance or
a disproportionate amount of unlabeled data com-
pared to label data, causing the unlabeled loss to
completely outweigh the labeled loss.

L = λLl + (1− λ)Lu (3)

We optimize our loss with respect to both the
model and variational parameters and leverage the
reparameterization trick to perform stochastic opti-
mization (Kingma and Welling, 2014). The training

procedure is shown in Algorithm 1 and a visualiza-
tion of a forward pass is given in Figure 3. This loss
function allows us to jointly learn our classification
and topic modeling elements and we hypothesize
that the implicit regularization from joint learning
will increase performance for both elements as seen
in previous research studies (Zweig and Weinshall,
2013).

6 Experimental Setup

We perform an empirical evaluation of LI-NTM
with two corpora: a synthetic dataset and AG News.

6.1 Baselines
We compare our topic model to the Embedded
Topic Model (ETM), which is the current state of
the art neural topic model that leverages word em-
beddings alongside variational autoencoders for
unsupervised topic modeling (Dieng et al., 2019a).
Further details about ETM are shown in the ap-
pendix (subsection A.2). Furthermore, our baseline
for our jointly trained classifier is a classifier with
the same architecture outside of our jointly trained
setting.

6.2 Synthetic Dataset
We constructed our synthetic data to evaluate LI-
NTM in ideal and worst-case settings.

• Ideal Setting: An ideal setting for LI-NTM
consists of a corpus with similar word distribu-
tions for documents with the same label and
very dissimilar word distributions for docu-
ments with different labels

• Worst Case Setting worst-case setting for LI-
NTM consists of a corpus where the label has
little to no correlation with the distribution of
words in a document.

Since the labels are a fundamental aspect of LI-
NTM we wanted to investigate how robust LI-NTM
is in a real-word setting, specifically looking at how
robust it was to certain types of mis-labeled data
points. By jointly training our classifier with our
topic model, we hope that by properly trading off
topic quality and classification quality, our model
will be more robust to mis-labeled data since we
are able to manually tune how much we want to
depend on the data labels.

We use the same distributions to generate the
documents for both the ideal and worst-case data.
In particular, we consider a vocabulary with V =

44

20 words, and a task with L = 2 labels. Documents
are generated from one of two distributions, D1

andD2. D1 generates documents which have many
occurrences of the first 10 words in the vocabulary
(and very few occurrences of the last 10 words),
while D2 does the opposite, generating documents
which have many occurrences of the last 10 words
in the vocabulary (and very few occurrences of
the first 10 words). The distributions D1 and D2

have parameters which are generated randomly for
each trial, although the shape of the distributions is
largely the same from trial to trial.

In the ideal case, the label corresponds directly
to the distribution from which the document was
generated. For the worst-case data, the label is 0
if the number of words in the document is an even
number, and 1 otherwise, ensuring there is little
to no correlation between label and word distribu-
tions in a document. Note that in our synthetic data
experiments, all of the data is labeled. The effec-
tiveness of LI-NTM in semi-supervised domains is
evaluated in our AG News experiments.

6.3 AG News Dataset

The AG News dataset is a collection of news articles
collected from more than 2,000 news sources by
ComeToMyHead, an academic news search engine.
This dataset includes 118,000 training samples and
7,600 test samples. Each sample is a short text with
a single four-class label (one of world, business,
sports and science/technology).

6.4 Evaluation Metrics

To evaluate our models, we used accuracy as a
metric to gauge the quality of the classifier and
perplexity to gauge the quality of the model as a
whole. We opted to use perplexity as it is a measure
for how well the model generalizes to unseen test
data.

7 Synthetic Data Experimental Results

We used our synthetic dataset to examine the per-
formance of LI-NTM relative to ETM in a setting
where the label strongly partitions our dataset into
subsets that have distinct topics to investigate the
effect and robustness of label indexing.

LI-NTM was trained on the fully labeled version
of the both the ideal and worse case label synthetic
dataset and ETM was trained on the same dataset
with the label excluded, as ETM is a unsupervised
method. We varied the number of topics in both LI-

Figure 4: Topic-word probability distribution visualiza-
tion for LI-NTM on ideal case synthetic dataset with
one topic per label. We observe that we learn topics that
are strongly label partitioned.

NTM and ETM to explore realistic settings K =
2, 8 and the extreme setting K = 20.

7.1 Effect of Number of Topics
Takeaway: More topics lead to better perfor-
mance, especially when the label is uninforma-
tive.

First, we note that as we increase the number of
topics, the performance of LI-NTM on ideal case
labels, LI-NTM on worst case labels, and ETM
improves as shown in Table 1. This is expected as
having more topics gives the model the capacity to
learn more diverse topic-word distributions which
leads to an improved reconstruction. However, we
note that LI-NTM trained on the worst-case labels
benefits most from the increase in the number of
topics.

7.2 Informative Labels
Takeaway: Label Indexing is highly effective
when labels partition the dataset well.

Next, we note that LI-NTM trained on the
ideal case label synthetic dataset outperforms
ETM with respect to perplexity (see Table 1).
This result can be attributed to the fact that
LI-NTM leverages label indexing to learn the
label-topic-word distribution. Since the ideal case
label version of the dataset was constructed such
that the label strongly partitions the dataset into
two groups (each of which has a very distinct
topic-word distribution), and since we had perfect
classifier accuracy (the ideal case label dataset was
constructed such that the classification problem
was trivial), LI-NTM is able to use the output

45

Total Num. Topics ETM Ideal LI-NTM WC LI-NTM (V1) WC LI-NTM (V2) Perplexity Lower Bound

2 11.78 11.42 19.71 18.70 −
8 11.27 10.72 12.83 10.90 −
20 10.88 10.50 11.20 10.77 9.50

Table 1: Perplexities of LI-NTM (ideal and worst case synthetic data) compared to ETM for a varied number of
topics. WC LI-NTM (V1) corresponds to training the model normally in the worst case setting, while WC LI-NTM
(V2) corresponds to training with ρ = 0. Note that LI-NTM is able to outperform ETM in both the ideal and worst
case scenarios.

Total Num. Topics Worst Case Labels Ideal Case Labels

2 50.2± 0.6 54.2± 2.0
8 50.4± 0.5 84.3± 8.8
20 50.4± 0.2 93.7± 6.2

Table 2: Accuracies of classifier LI-NTM (V2) on ideal case and worst case labels. LI-NTM (V2) is trained only on
worst-case labels but evaluated on both worst case and ideal case label test sets. Note that even though α = 0 and
the training set is only worst case labels, the reconstruction loss distantly supervises the classifier to learn the true
ideal case labels.

from the classifier to index into the topic-word
distribution with 100% accuracy.

If we denote the topic-word distribution corre-
sponding to label 0 by β0 and the topic-word distri-
bution corresponding to label 1 by β1, we note that
LI-NTM is able to leverage β0 to specialize in gen-
erating the words for the documents corresponding
to label 0 while using β1 to specialize in generating
the words for the documents corresponding to label
1 (see Figure 4). Overall, this result suggests that
LI-NTM performs well in settings when the dataset
exhibits strong label partitioning.

7.3 Uninformative Labels

Takeaway: With proper hyperparameters,
LI-NTM is able to achieve good topic model
performance even when we have uninformative
labels.

We now move to examining the results pro-
duced by LI-NTM trained on the worst-case labels.
In this data setting, we investigated the robustness
of the LI-NTM architecture. Specifically, we
looked at a worst-case dataset, where we have
labels that are uninformative and are thus not good
at partitioning the dataset into subsets that have
distinct topics.

In the worst-case setting, we define the following
two instances of the LI-NTM model.

• LI-NTM (V1) This model refers to the normal
(ρ ̸= 0) version of the model trained in the

worst case setting.

• LI-NTM (V2) This model refers to a LI-
NTM model with zero-ed out classification
loss (ρ = 0), essentially pushing the model to
only accurately reconstruct the original data.

For LI-NTM (V1), we did see decreases in per-
formance; namely, that V1 has a worse perplexity
than both ETM and ideal case LI-NTM. This aligns
with our expectation that having a label with very
low correlation to the topic-word distributions in
the document results in poor performance in LI-
NTM. This can be attributed to the failure of LI-
NTM to adequately label-index in cases where this
occurs.

However, for LI-NTM (V2) we found that we
were actually able to achieve lower perplexity than
ETM when the model was told to produce more
than 2 topics, even with uninformative labels. To
understand why this was happening, we analyzed
the accuracy of the original classifier in LI-NTM
(V2) on both the worst-case labels (which it was
trained on) and the ideal-case labels (which it was
not trained on). We report our results in Table 2.
The key takeaway is that we observed a much
higher accuracy on the ideal labels compared to the
worst-case labels. This suggests that when ρ = 0
the classifier implicitly learns the ideal labels that
are necessary to learn a good reconstruction of the
data, even when the provided labels are heavily un-
informative or misspecified. This shows the benefit

46

Data Regime ETM Perplexity LI-NTM Perplexity LI-NTM Accuracy Baseline Accuracy

5% labeled, 5% unlabeled 205.93 210.76± 2.17 86.3% 86.2%
5% labeled, 15% unlabeled 190.10 187.66± 2.23 86.3% 86.2%
5% labeled, 55% unlabeled 177.71 175.43± 5.01 86.8% 86.2%
5% labeled, 95% unlabeled 177.34 169.40± 4.08 87.2% 86.2%

Table 3: The results from ETM, LI-NTM, and a baseline classifier for the AG News dataset. The baseline classifier
was the same for each data regime, hence the duplicate values. Note that in the high data settings, LI-NTM
outperformed ETM in terms of perplexity, although in the lowest data setting, the lack of data hurt LI-NTM since it
further partitions the topics by labels. Accuracy increased near linearly as unlabeled data increased.

Sports Science/Technology World Business

series web minister stocks
game search prime oil
red google palestinian prices

boston new gaza reuters
run online israel company

night site leader shares
league internet arafat inc

yankees engine said percent
new com yasser yesterday
york yahoo sharon percent

Table 4: Example topics (top ten words) corresponding to each label from LI-NTM run on the AG-News Dataset.
Each topic is assigned a label and it is clear that the distribution of words for each topic depends on the label.

of label-indexing and of jointly learning our topic
model and classifier in a semi-supervised fashion.
Even in cases with uninformative data points, by
setting ρ = 0, the joint learning setting of our clas-
sifier and topic model pushes the classifier, through
the need for successful document reconstruction, to
generate a probability distribution over labels that
is close to the true, ideal-case labels despite only
being given uninformative or mis-labeled data.

8 AG News Experimental Results

We used the AG News dataset to evaluate the per-
formance of LI-NTM in the semi-supervised set-
ting. Specifically, we aimed to analyze the extent to
which unlabeled data can improve the performance
of both the classifier and topic model in the LI-
NTM architecture. Ideally, in the unlabeled case,
the distant supervision provided to the classifier
from the reconstruction loss would align with the
task of predicting correct labels.

We ran four experiments on ETM and LI-NTM
in which the amount of unlabeled data was grad-
ually increased, while the amount of labeled data
was kept fixed. In each of the experiments, 5%
of the dataset was considered labeled, while 5%,

15%, 55%, and 95% of the whole dataset was con-
sidered unlabeled in each of the four experiments
respectively.

8.1 Semi-Supervised Learning: Topic Model
Performance

Takeaway: Combining label-indexing with
semi-supervised learning increases topic model
performance.

In Table 3 we observe that perplexity de-
creases as the model sees more unlabeled data.
We also note that LI-NTM has a lower perplexity
than ETM in higher data settings, supporting the
hypothesis that guiding the reconstruction of a
document exclusively via label-specific topics
makes reconstruction an easier task. In the lowest
data regime (5% labeled, 5% unlabeled), LI-NTM
performs worse than ETM. This suggests that
while in high-data settings, LI-NTM is able to
effectively leverage L = 4 sets of topics, in
low-data settings there are not enough documents
to learn sufficient structure.

47

8.2 Semi-Supervised Learning: Classifier
Performance

Takeaway: Topic modeling supervises the
classifier, resulting in better classification
performance.

Jointly learning the classifier and topic model
also seem to benefit the classifier; Table 3 shows
classification performance increases linearly with
the amount of unlabeled data. The accuracy
increase suggest the task of reconstructing the bag
of words is helpful in news article classification.

Select topics learned from LI-NTM on the AG
News Dataset are presented in Table 4 and the dis-
tributions are visualized in the appendix Figure A1.

9 Conclusion

In this paper, we introduced the LI-NTM, which,
to the extent of our knowledge, is the first upstream
neural topic model with applications to a semi-
supervised data setting. Our results show that when
applied to both a synthetic dataset and AG News,
LI-NTM outperforms ETM with respect to perplex-
ity. Furthermore, we found that the classifier in
LI-NTM was able to outperform a baseline that
doesn’t leverage any unlabeled data. Even more
promising is the fact that the classifier in LI-NTM
continued to experience gains in accuracy when
increasing the proportion of unlabeled data. While
we aim to iterate upon our results, our current find-
ings indicate that LI-NTM is comparable with cur-
rent state-of-the-art models while being applicable
in a wider range of real-world settings.

In future work, we hope to further experiment
with the idea of label-indexing. While in LI-NTM
every topic is label-specific, real datasets have
some common words and topics that are label-
agnostic. Future work could augment the existing
LI-NTM framework with additional label-agnostic
global topics which prevent identical topics from
being learned across multiple labels. We are also
interested in extending our semi-supervised, up-
stream paradigm to a semi-parametric setting in
which the number of topics we learn is not a prede-
fined hyperparameter but rather something that is
learned.

10 Acknowledgements

AS is supported by R01MH123804, and FDV is
supported by NSF IIS-1750358. All authors ac-
knowledge insightful feedback from members of

CS282 Fall 2021.

References
David M Blei. 2012. Probabilistic topic models. Com-

munications of the ACM, 55(4):77–84.

David M Blei, Thomas L Griffiths, Michael I Jordan,
Joshua B Tenenbaum, et al. Hierarchical topic mod-
els and the nested chinese restaurant process.

David M Blei and John D Lafferty. 2007. A correlated
topic model of science. The annals of applied statis-
tics, 1(1):17–35.

David M. Blei and Jon D. McAuliffe. 2010. Supervised
topic models.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. the Journal of
machine Learning research, 3:993–1022.

Ziqiang Cao, Sujian Li, Yang Liu, Wenjie Li, and Heng
Ji. 2015. A novel neural topic model and its super-
vised extension. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 29.

Adji B. Dieng, Francisco J. R. Ruiz, and David M. Blei.
2019a. Topic modeling in embedding spaces.

Adji B Dieng, Francisco JR Ruiz, and David M Blei.
2019b. The dynamic embedded topic model. arXiv
preprint arXiv:1907.05545.

Caitlin Doogan and Wray Buntine. 2021. Topic model
or topic twaddle? re-evaluating semantic inter-
pretability measures. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3824–3848, Online.
Association for Computational Linguistics.

Gabriel Hope, Michael C Hughes, Finale Doshi-Velez,
and Erik B Sudderth. Prediction-constrained hidden
markov models for semi-supervised classification.

Alexander Hoyle, Pranav Goel, Andrew Hian-Cheong,
Denis Peskov, Jordan Boyd-Graber, and Philip
Resnik. 2021. Is automated topic model evaluation
broken? the incoherence of coherence. Advances in
Neural Information Processing Systems, 34.

Michael Hughes, Gabriel Hope, Leah Weiner, Thomas
McCoy, Roy Perlis, Erik Sudderth, and Finale Doshi-
Velez. 2018. Semi-supervised prediction-constrained
topic models. In Proceedings of the Twenty-First
International Conference on Artificial Intelligence
and Statistics, volume 84 of Proceedings of Machine
Learning Research, pages 1067–1076. PMLR.

Seungil Huh and Stephen E Fienberg. 2012. Discrim-
inative topic modeling based on manifold learning.
ACM Transactions on Knowledge Discovery from
Data (TKDD), 5(4):1–25.

48

Tomoharu Iwata. 2021. Few-shot learning for topic
modeling. arXiv preprint arXiv:2104.09011.

Michael I Jordan, Zoubin Ghahramani, Tommi S
Jaakkola, and Lawrence K Saul. 1999. An intro-
duction to variational methods for graphical models.
Machine learning, 37(2):183–233.

Diederik P. Kingma, Danilo J. Rezende, Shakir Mo-
hamed, and Max Welling. 2014. Semi-supervised
learning with deep generative models.

Diederik P Kingma and Max Welling. 2014. Auto-
encoding variational bayes.

Durk P Kingma, Tim Salimans, and Max Welling. 2015.
Variational dropout and the local reparameterization
trick. Advances in neural information processing
systems, 28.

Simon Lacoste-Julien, Fei Sha, and Michael Jordan.
2008. Disclda: Discriminative learning for dimen-
sionality reduction and classification. Advances in
neural information processing systems, 21.

Lin Liu, Lin Tang, Wen Dong, Shaowen Yao, and Wei
Zhou. 2016. An overview of topic modeling and its
current applications in bioinformatics. SpringerPlus,
5(1):1–22.

Stephan Mandt, James McInerney, Farhan Abrol, Ra-
jesh Ranganath, and David Blei. 2016. Variational
tempering. In Artificial intelligence and statistics,
pages 704–712. PMLR.

Xianling Mao, Zhaoyan Ming, Tat-Seng Chua, Si Li,
Hongfei Yan, and Xiaoming Li. 2012. Sshlda:
A semi-supervised hierarchical topic model. In
EMNLP-CoNLL, pages 800–809.

Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural
variational inference for text processing.

Feng Nan, Ran Ding, Ramesh Nallapati, and Bing Xi-
ang. 2019. Topic modeling with wasserstein autoen-
coders.

Yves Petinot, Kathleen McKeown, and Kapil Thadani.
2011. A hierarchical model of web summaries. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 670–675, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Daniel Ramage, David Hall, Ramesh Nallapati, and
Christopher D. Manning. 2009. Labeled lda: A su-
pervised topic model for credit attribution in multi-
labeled corpora. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing: Volume 1 - Volume 1, EMNLP ’09, page
248–256, USA. Association for Computational Lin-
guistics.

Jason Ren, Russell Kunes, and Finale Doshi-Velez.
2020. Prediction focused topic models via feature
selection. In International Conference on Artificial
Intelligence and Statistics, pages 4420–4429. PMLR.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. 2014. Stochastic backpropagation and ap-
proximate inference in deep generative models. In
International conference on machine learning, pages
1278–1286. PMLR.

Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers,
and Padhraic Smyth. 2012. The author-topic
model for authors and documents. arXiv preprint
arXiv:1207.4169.

Nadine Schneider, Nikolas Fechner, Gregory A. Lan-
drum, and Nikolaus Stiefl. 2017. Chemical topic
modeling: Exploring molecular data sets using a
common text-mining approach. Journal of Chem-
ical Information and Modeling, 57(8):1816–1831.
PMID: 28715190.

Abhishek Sharma, Catherine Zeng, Sanjana Narayanan,
Sonali Parbhoo, and Finale Doshi-Velez. 2021. On
learning prediction-focused mixtures. arXiv preprint
arXiv:2110.13221.

Akash Srivastava and Charles Sutton. 2017. Autoencod-
ing variational inference for topic models.

Xinyi Wang and Yi Yang. 2020. Neural topic model
with attention for supervised learning. In Interna-
tional Conference on Artificial Intelligence and Statis-
tics, pages 1147–1156. PMLR.

Florian Wenzel, Kevin Roth, Bastiaan Veeling, Jakub
Swiatkowski, Linh Tran, Stephan Mandt, Jasper
Snoek, Tim Salimans, Rodolphe Jenatton, and Sebas-
tian Nowozin. 2020. How good is the bayes posterior
in deep neural networks really? In International Con-
ference on Machine Learning, pages 10248–10259.
PMLR.

Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi
Cheng. 2013. A biterm topic model for short texts.
In Proceedings of the 22nd international conference
on World Wide Web, pages 1445–1456.

Alon Zweig and Daphna Weinshall. 2013. Hierarchical
regularization cascade for joint learning. In Inter-
national Conference on Machine Learning, pages
37–45. PMLR.

A Appendix

A.1 Optimization Procedure

During optimization, there are three components
of LI-NTM that are being trained: the encoder
neural network, β (the word distributions per la-
bel and topic), and the classifier neural network.
We found randomly initializing all three trainable

49

components and training them together lead to un-
desirable local minima (both perplexity and classifi-
cation accuracy were undesirable). Instead, we con-
sistently achieved our best results by first training
the classifier normally on the task before training
all three components together. All experimental
results shown used this optimization procedure.

A.2 Embedded Topic Model (ETM)
Please find the generative process for ETM below
(Dieng et al., 2019a). Note that ETM has two latent
dimensions. There is the L-dimensional embed-
ding space which the vocabulary is embedded into
and each document is represented by K latent top-
ics. Furthermore, note that in ETM, each topic is
represented by a vector αk ∈ RL which is the em-
bedded representation of the topic in embedding
space. Furthermore, ETM defines an embedding
matrix ρ with dimension L×K where the column
ρv is the embedding of word v.

1. Draw topic proportions θd ∼ LN (0, I)

2. For each word n in document:

(a) Draw topic assignment zdn ∼ Cat(θd)
(b) Draw word wdn ∼ softmax(ρTαzdn)

A.3 Visualization of Topics
See Figure A1

50

Figure A1: The probabilities of the top words from 5 selected topics from LINT-m. Note that LINT-m has the nice
property that topics are naturally sorted by label unlike ETM. The first topic, with words like "series", "yankees",
"red", "sox", corresponds to baseball. Note that perplexity will still be high even if this topic is correctly given
a high proportion in a baseball-themed news article since there are many potential baseball teams and baseball
terminology that the article could be referencing. The second topic corresponds to search engines, and the third
corresponds to the Israeli–Palestinian conflict.

51

Proceedings of the Sixth Workshop on Structured Prediction for NLP, pages 52 - 66
May 27, 2022 c©2022 Association for Computational Linguistics

Neural String Edit Distance

Jindřich Libovický1 and Alexander Fraser2
1Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

2Center for Information and Language Processing, LMU Munich, Germany
libovicky@ufal.mff.cuni.cz fraser@cis.lmu.de

Abstract

We propose the neural string edit distance
model for string-pair matching and string
transduction based on learnable string edit dis-
tance. We modify the original expectation-
maximization learned edit distance algorithm
into a differentiable loss function, allowing us
to integrate it into a neural network provid-
ing a contextual representation of the input.
We evaluate on cognate detection, transliter-
ation, and grapheme-to-phoneme conversion,
and show that we can trade off between per-
formance and interpretability in a single frame-
work. Using contextual representations, which
are difficult to interpret, we match the per-
formance of state-of-the-art string-pair match-
ing models. Using static embeddings and a
slightly different loss function, we force inter-
pretability, at the expense of an accuracy drop.

1 Introduction

State-of-the-art models for string-pair classification
and string transduction employ powerful neural ar-
chitectures that lack interpretability. For example,
BERT (Devlin et al., 2019) compares all input sym-
bols with each other via 96 attention heads, whose
functions are difficult to interpret. Moreover, atten-
tion itself can be hard to interpret (Jain and Wallace,
2019; Wiegreffe and Pinter, 2019).

In many tasks, such as in transliteration, a rela-
tion between two strings can be interpreted more
simply as edit operations (Levenshtein, 1966). The
edit operations define the alignment between the
strings and provide an interpretation of how one
string is transcribed into another. Learnable edit
distance (Ristad and Yianilos, 1998) allows learn-
ing the weights of edit operations from data using
the expectation-maximization (EM) algorithm. Un-
like post-hoc analysis of black-box models, which
depends on human qualitative judgment (Adadi and
Berrada, 2018; Hoover et al., 2020; Lipton, 2018),
the restricted set of edit operations allows direct

Figure 1: An example of applying the dynamic pro-
gramming algorithm used to compute the edit probabil-
ity score. It gradually fills the table of probabilities that
prefixes of the word “equal” transcribe into prefixes of
phoneme sequence “IY K W AH L”. The probability
(gray circles) depends on the probabilities of the pre-
fixes and probabilities of plausible edit operations: in-
sert (blue arrows), substitute (green arrows) and delete
(red arrows).

interpretation. Unlike hard attention (Mnih et al.,
2014; Indurthi et al., 2019) which also provides a
discrete alignment between input and output, edit
distance explicitly says how the input symbols are
processed. Also, unlike models like Levenshtein
Transformer (Gu et al., 2019), which does not ex-
plicitly align source and target uses edit operations
to model intermediate generation steps only within
the target string, learnable edit distance considers
both source and target symbols to be a subject of
the edit operations.

We reformulate the EM training used to train
learnable edit distance as a differentiable loss func-
tion that can be used in a neural network. We pro-
pose two variants of models based on neural string
edit distance: a bidirectional model for string-pair
matching and a conditional model for string trans-
duction. We evaluate on cognate detection, translit-
eration, and grapheme-to-phoneme (G2P) conver-

52

sion. The model jointly learns to perform the task
and to generate a latent sequence of edit operations
explaining the output. Our approach can flexibly
trade off performance and intepretability by using
input representations with various degrees of con-
textualization and outperforms methods that offer a
similar degree of interpretability (Tam et al., 2019).

2 Learnable Edit Distance

Edit distance (Levenshtein, 1966) formalizes tran-
scription of a string s = (s1, . . . , sn) of n symbols
from alphabet S into a string t = (t1, . . . , tm) of
m symbols from alphabet T as a sequence of op-
erations: delete, insert and substitute, which have
different costs.

Ristad and Yianilos (1998) reformulated opera-
tions as random events drawn from a distribution of
all possible operations: deleting any s ∈ S, insert-
ing any t ∈ T , and substituting any pair of symbols
from S × T . The probability P(s, t) = αn,m of t
being edited from s can be expressed recursively:

αn,m = αn,m−1 · Pins(tm) + (1)

αn−1,m · Pdel(sn) +

αn−1,m−1 · Psubs(sn, tm)

This can be computed using the dynamic pro-
gramming algorithm of Wagner and Fischer (1974),
which also computes values of αi,j for all prefixes
s:i and t:j . The operation probabilities only depend
on the individual pairs of symbols at positions i,
j, so the same dynamic programming algorithm
is used for computing the suffix-pair transcription
probabilities βi,j (the backward probabilities).

With a training corpus of pairs of matching
strings, the operation probabilities can be estimated
using the EM algorithm. In the expectation step,
expected counts of all edit operations are estimated
for the current parameters using the training data.
Each pair of symbols si and tj contribute to the
expected counts of the operations:

Esubs(si, tj) += αi−1,j−1Psubs(si, tj)βi,j/αn,m

(2)
and analogically for the delete and insert operations.
In the maximization step, operation probabilities
are estimated by normalizing the expected counts.
See Algorithms 1–5 in Ristad and Yianilos (1998)
for more details.

3 Neural String Edit Distance Model

In our model, we replace the discrete table of op-
eration probabilities with a probability estimation

based on a continuous representation of the input,
which brings in the challenge of changing the EM
training into a differentiable loss function that can
be back-propagated into the representation.

Computation of the transcription probability is
shown in Figure 1. We use the same dynamic pro-
gramming algorithm (Equation 1 and Algorithm 2
in Appendix A) that gradually fills a table of prob-
abilities row by row. The input symbols are repre-
sented by learned, possibly contextual embeddings
(yellow and blue boxes in Figure 1) which are used
to compute a representation of symbol pairs with
a small feed-forward network. The symbol pair
representation is used to estimate the probabilities
of insert, delete and substitute operations (blue, red
and green arrows in Figure 1).

Formally, we embed the source sequence s of
length n into a matrix hs ∈ Rn×d and analogically
t into ht ∈ Rm×d (yellow and blue boxes in Fig-
ure 1). We represent the symbol-pair contexts as a
function of the respective symbol representations
(small gray rectangles in Figure 1) as a function of
repspective symbol representation ci,j = f(hs

i ,h
t
j)

depending on the task.
The logits (i.e., the probability scores before

normalization) for the edit operations are obtained
by concatenation of the following vectors (corre-
sponds to red, green and blue arrows in Figure 1):

• zi,jdel = Linear(ci−1,j) ∈ Rddel ,

• zi,jins = Linear(ci,j−1) ∈ Rdins ,

• zi,jsubs = Linear(ci−1,j−1) ∈ Rdsubs ,

where Linear(x) = Wx+ b where W and b are
trainable parameters of a linear projection and ddel,
dins and dsubs are the numbers of possible delete,
insert and substitute operations given the vocabu-
laries. The distribution Pi,j ∈ Rddel+dins+dsubs over
operations that lead to prefix pair s:i and t:j in a
single derivation step is

Pi,j = softmax(zi,jdel ⊕ zi,jins ⊕ zi,jsubs).i, j (3)

The probabilities Pi,j
del, P

i,j
ins and Pi,j

subs are obtained
by taking the respective values from the distribution
corresponding to the logits.1 Note that Pi,j only
depends on (possibly contextual) input embeddings
hs
i , h

s
i−1, ht

j , and ht
j−1, but not on the derivation

of prefix t:j from s:i.

1Using Python-like notation Pi,j
del = Pi,j [: ddel],

Pi,j
ins = Pi,j [ddel : ddel+dins], Pi,j

subs = Pi,j [ddel+dins :].

53

Algorithm 1 Expectation-Maximization Loss
1: LEM ← 0
2: for i = 1 . . . n do
3: for j = 1 . . .m do
4: plausible← 0 . Indication vector
5: . I.e., operations that can be used given si and tj
6: if j > 1 then . Insertion is plausible
7: plausible += 1(insert tj)
8: E ins

i,j ← αi,j−1 · Pins(•|ci,j−1) · βi,j
9: if i > 1 then . Deletion is plausible

10: plausible += 1(delete si)
11: Edel

i,j ← αi−1,jPdel(•|ci−1,j)βi,j

12: if i > 1 and j > 1 then . Subs. is plausible
13: plausible += 1(substitute si → tj)
14: Esubs

i,j ← αi−1,j−1 · Psubs(•|ci−1,j−1) · βi,j
15: expected← normalize(plausible �
16:

[
E ins

i,j ⊕ Edel
i,j ⊕ Esubs

i,j

]
)

17: . Expected distr. can only contain plausible ops.
18: LEM += KL(Pi,j || expected)
19: return LEM

The transduction probability αi,j , i.e., a prob-
ability that s:i transcribes to t:j (gray circles in
Figure 1) is computed in the same way as in Equa-
tion 1.

The same algorithm with the reversed order of
iteration can be used to compute probabilities βi,j ,
the probability that suffix si: transcribes to tj:. The
complete transduction probability is the same, i.e.,
β1,1 = αn,m. Tables α and β are used to compute
the EM training loss LEM (Algorithm 1) which is
then optimized using gradient-based optimization.
Symbol • in the probability stands for all possible
operations (the operations that the model can assign
a probability score to), “normalize”’ means scale
the values such that they sum up to one.

Unlike the statistical model that uses a single dis-
crete multinomial distribution and stores the proba-
bilities in a table, in our neural model the operation
probabilities are conditioned on continuous vectors.
For each operation type, we compute the expected
distribution given the α and β tables (line 6–14).
From this distribution, we only select operations
that are plausible given the context (line 15), i.e.,
we zero out the probability of all operations that
do not involve symbols si and tj . Finally (line 18),
we measure the KL divergence of the predicted
operation distribution Pi,j (Equation 3) from the
expected distribution, which is the loss function
LEM.

With a trained model, we can estimate the prob-
ability of t being a good transcription of s. Also,
by replacing the summation in Equation 1 by the
max operation, we can obtain the most probable

operation sequence of operation transcribing s to t
using the Viterbi (1967) algorithm.

Note that the interpretability of our model de-
pends on how contextualized the input representa-
tions hs and ht are. The degree of contextualiza-
tion spans from static symbol embeddings with the
same strong interpretability as statistical models,
to Transformers with richly contextualized repre-
sentations, which, however, makes our model more
similar to standard black-box models.

3.1 String-Pair Matching

Here, our goal is to train a binary classifier decid-
ing if strings t and s match. We consider strings
matching if t can be obtained by editing s, with the
probability P(s, t) = αn,m higher than a threshold.
The model needs to learn to assign a high probabil-
ity to derivations of matching the source string to
the target string and low probability to derivations
matching different target strings.

The symbol-pair context ci,j is computed as

LN
(
ReLU

(
Linear(hs

i ⊕ ht
j)
))
∈ Rd, (4)

where LN stands for layer normalization and ⊕
means concatenation.

The statistical model assumes a single multino-
mial table over edit operations. A non-matching
string pair gets little probability because all deriva-
tions (i.e., sequence of edit operations) of non-
matching string pairs consist of low-probability
operations and high probability is assigned to oper-
ations that are not plausible. In the neural model,
the same information can be kept in model param-
eters and we can thus simplify the output space
of the model (see Appendix B for thought experi-
ments justifying the design choices).

We no longer need to explicitly model the proba-
bility of implausible operations and can only use a
single class for each type of edit operation (insert,
delete, substitute) and one additional non-match op-
tion that stands for the case when the inputs strings
do not match and none of the plausible edit op-
erations is probable (corresponding to the sum of
probabilities of the implausible operations in the
statistical model).

The value of P(s, t) = αm,n serves as a classi-
fication threshold for the binary classification. As
additional training signal, we also explicitly opti-
mize the probability using the binary cross-entropy
as an auxiliary loss, pushing the value towards 1
for positive examples and towards 0 for negative

54

examples. We set the classification threshold dy-
namically to maximize the validation F1-score.

3.2 String Transduction

In the second use case, we use neural string edit
distance as a string transduction model: given a
source string, edit operations are applied to gener-
ate a target string. Unlike classification, we model
the transcription process with vocabulary-specific-
operations, but still use only a single class for
deletion. For the insertion and substitution opera-
tion, we use |T | classes corresponding to the target
string alphabet. Unlike classification, we do not
add the non-match class. To better contextualize
the generation, we add attention to the symbol-pair
representation ci,j :

LN
(
ReLU

(
Linear(hs

i ⊕ ht
j)
)
⊕Att

(
ht
j ,h

s
))

(5)
of dimension 2d, where Att(q,v) is a multihead
attention with queries q and keys and values v.

While generating the string left-to-right, the only
way a symbol can be generated is either by inserting
it or by substituting a source symbol. Therefore, we
estimate the probability of inserting symbol tj+1

given a target prefix t:j from the probabilities of
inserting a symbol after tj or substituting any si by
tj+1 (i.e., averaging over a row in Figure 1):

P (tj+1|t̂:j , s) =
|S|∑

j=1

αi,jPins(tj+1|ci,j)

+

|S|∑

j=2

αi,jPsubs(si, tj+1|ci,j). (6)

Probabilities Pins and Psubs are respective parts of
the distribution Pi,j (Equation 3). Probablity Pdel
is unkown at this point because computing it would
be computed based on state ci,j+1 which is impos-
sible without what the (j + 1)-th target symbol is,
where logits for Pins and Psubs use ci,j and ci−1,j .
Therefore, we approximate Equation 3 as

P̂i,j = softmax
(
zi,jins ⊕ zi,jsubs

)
. (7)

At inference time, we decide the next symbol t̂j
based on P̂i,j . Knowing the symbol allows com-
puting the Pi,j distribution and values α•,j that are
used in the next step of inference. The inference
can be done using the beam search algorithm as is
done with sequence-to-sequence (S2S) models.

We also use the probability distribution P̂ to
define an additional training objective which is the
negative log-likelihood of the ground truth output
with respect to this distribution, analogically to
training S2S models,

LNLL = −
|t|∑

j=0

log

|s|∑

i=0

P̂i,j/|s|. (8)

3.3 Interpretability Loss
In our preliminary experiments with Viterbi decod-
ing, we noticed that the model tends to avoid the
substitute operation and chose an order of insert
and delete operations that is not interpretable. To
prevent this behavior, we introduce an additional
regularization loss. To decrease the values of α
that are further from the diagonal, we add the term∑n

i=1

∑m
j=1 |i− j| ·αi,j to the loss function. Note

that this formulation assumes that the source and
target sequence have similar lengths. For tasks
where the sequence lengths vary significantly, we
would need to consider the sequence length in the
loss function.

In the string transduction model, optimization
of this term can lead to a degenerate solution by
flattening all distributions and thus lowering all
values in table α. We thus compensate for this loss
by adding the − logαn,m term to the loss function
which enforces increasing the α values.

4 Experiments

We evaluate the string-pair matching model on cog-
nate detection, and the string transduction model
on Arabic-to-English transliteration and English
grapheme-to-phoneme conversion.

In all tasks, we study four ways of representing
the input symbols with different degrees of con-
textualization. The interpretable context-free (uni-
gram) encoder uses symbol embeddings summed
with learned position embeddings. We use a 1-D
convolutional neural network (CNN) for locally
contexualized representation where hidden states
correspond to consecutive input n-grams. We use
bidirectional recurrent networks (RNNs) and Trans-
formers (Vaswani et al., 2017) for fully contextual-
ized input representations.

Architectural details and hyperparameters are
listed in Appendix C. All hyperparameters are
set manually based on preliminary experiments.
Further hyperparameter tuning can likely lead to
better accuracy of both baselines and our model.

55

Method # Param.
Indo-European Austro-Asiatic

Plain + Int. loss Time Plain + Int. loss Time

Learnable edit distance 0.2M 32.8 ±1.8 — 0.4h 10.3 ±0.5 — 0.2h
Transformer [CLS] 2.7M 93.5 ±2.1 — 0.7h 78.5 ±0.8 — 0.6h

ST
A

N
C

E unigram 0.5M 46.2 ±4.9 — 0.2h 16.6 ±0.3 — 0.1h

RNN 1.9M 80.6 ±1.2 — 0.3h 15.9 ±0.2 — 0.2h
Transformer 2.7M 76.7 ±1.3 — 0.3h 16.7 ±0.3 — 0.2h

ou
rs

unigram 0.5M 78.5 ±1.0 80.1 ±0.8 1.5h 47.8 ±0.7 48.4 ±0.6 0.7h
CNN (3-gram) 0.7M 94.0 ±0.7 93.9 ±0.8 0.9h 77.9 ±1.5 76.2 ±1.9 0.5h

RNN 1.9M 96.9 ±0.6 97.1 ±0.6 1.9h 84.0 ±0.4 83.7 ±0.5 1.2h
Transformer 2.7M 87.2 ±1.6 87.3 ±1.8 1.6h 69.9 ±1.0 70.7 ±1.1 1.0h

Table 1: F1 and training time for cognate detection. F1 on validation is in Table 6 in the Appendix.

However, preliminary experiments showed that
increasing the model size only has a small ef-
fect on model accuracy. We run every experi-
ment 5 times and report the mean performance
and the standard deviation to control for train-
ing stability. The source code for the experi-
ments is available at https://github.com/jlibovicky/
neural-string-edit-distance.

Cognate Detection. Cognate detection is the
task of detecting if words in different languages
have the same origin. We experiment with
Austro-Asiatic languages (Sidwell, 2015) and Indo-
European languages (Dunn, 2012) normalized into
the international phonetic alphabet as provided by
Rama et al. (2018).2

For Indo-European languages, we have 9,855
words (after excluding singleton-class words) from
43 languages forming 2,158 cognate classes. For
Austro-Asiatic languages, the dataset contains
11,828 words of 59 languages, forming only 98 cog-
nate classes without singletons. We generate classi-
fication pairs from these datasets by randomly sam-
pling 10 negative examples for each true cognate
pair. We use 20k pairs for validation and testing,
leaving 1.5M training examples for Indo-European
and 80M for Austro-Asiatic languages.

Many cognate detection methods are unsuper-
vised and are evaluated by comparison of a cluster-
ing from the method with true cognate classes. We
train a supervised classifier, so we use F1-score on
our splits of the dataset.

Because the input and the output are from the
same alphabet, we share the parameters of the en-
coders of the source and target sequences.

As a baseline we use the original statistical learn-
2https://www.aclweb.org/anthology/attachments/

N18-2063.Datasets.zip

able edit distance (Ristad and Yianilos, 1998). The
well-performing black-box model used as another
baseline for comparison with our model is a Trans-
former processing a concatenation of the two input
strings. Similar to BERT (Devlin et al., 2019), we
use the representation of the first technical symbol
as an input to a linear classifier. We also com-
pare our results with the STANCE model (Tam
et al., 2019), a neural model utilizing optimal-
transport-based alignment over input text repre-
sentation which makes similar claims about inter-
pretability as we do. Similar to our model, we
experiment with various degrees of representation
contextualization.

Transliteration and G2P Conversion. For
string transduction, we test our model on two
tasks: Arabic-to-English transliteration (Rosca and
Breuel, 2016)3 and English G2P conversion using
the CMUDict dataset (Weide, 2017)4.

The Arabic-to-English transliteration dataset
consists of 12,877 pairs for training, 1,431 for val-
idation, and 1,590 for testing. The source-side
alphabet uses 47 different symbols; the target side
uses 39. The CMUDict dataset contains 108,952
training, 5,447 validation, and 12,855 test exam-
ples, 10,999 unique. The dataset uses 27 different
graphemes and 39 phonemes.

We evaluate the output strings using Character
Error Rate (CER): the standard edit distance be-
tween the generated hypotheses and the ground
truth string divided by the ground-truth string
length; and Word Error Rate (WER): the propor-
tion of words that were transcribed incorrectly. The
CMUDict dataset contains multiple transcriptions

3https://github.com/google/transliteration
4https://github.com/microsoft/CNTK/tree/master/

Examples/SequenceToSequence/CMUDict/Data

56

<s> v i: </s>

<s>

h

:

r

</s>

<s> p a s </s>

<s>

i

n

d

</s>

Figure 2: Visualization of the α table (0 is dark blue, 1
is yellow) for cognate detection using a unigram model.
Left: A cognate pair, Right: a non-cognate pair

for some words, as is usually done we select the
transcription with the lowest CER as a reference.

Unlike the string-matching task, the future target
symbols are unknown. Therefore, when using the
contextual representations, we encode the target
string using a single-direction RNN and using a
masked Transformer, respectively.

To evaluate our model under low-resource con-
ditions, we conduct two sets of additional experi-
ments with the transliteration of Arabic. We com-
pare our unigram and RNN-based models with the
RNN-based S2S model trained on smaller subsets
of training data (6k, 3k, 1.5k, 750, 360, 180, and
60 training examples) and different embedding and
hidden state size (8, 16, . . . , 512).

For the G2P task, where the source and target
symbols can be approximately aligned, we further
quantitatively assess the model’s interpretability
by measuring how well it captures alignment be-
tween the source and target string. We consider the
substitutions in the Viterbi decoding to be aligned
symbols. We compare this alignment with statis-
tical word alignment and report the F1 score. We
obtain the source-target strings alignment using
Efmaral (Östling and Tiedemann, 2016), a state-of-
the-art word aligner, by running the aligner on the
entire CMUDict dataset. We use grow-diagonal for
alignment symmetrization.

The baseline models are RNN-based (Bahdanau
et al., 2015) and Transformer-based (Vaswani et al.,
2017) S2S models.

5 Results

Cognate Detection. The results of cognate detec-
tion are presented in Table 1 (learning curves are
in Figure 5 in Appendix). In cognate detection, our
model significantly outperforms both the statistical
baseline and the STANCE model. The F1-score

Loss functions F1

Complete loss 97.1 ±0.6
— binary XENT for αm,n 96.1 ±0.3
— expectation-maximization (Alg. 1) 96.3 ±0.7

Table 2: Ablation study for loss function on Cognate
classification with a model with RNN contextualizer.

200 103 104

Training data size

.2

.4

.6

.8

C
E

R

S2S
unigram
RNN

8 16 32 64 128 256 512
Symbol representation size

0.25

0.50

0.75

1.00

1.25 S2S
unigram
RNN

Figure 3: Character Error Rate for Arabic translitera-
tion into English for various training data sizes (left)
and various representation sizes (right).

achieved by the unigram model is worse than the
Transformer classifier by a large margin. Local
representation contextualization with CNN reaches
similar performance as the black-box Transformer
classifier while retaining a similar strong inter-
pretability to the static embeddings. Models with
RNN encoders outperform the baseline classifier,
whereas the Transformer encoder yields slightly
worse results. Detecting cognates seems to be
more difficult in Austro-Asiatic languages than in
Indo-European languages. The training usually
converges before finishing a single epoch of the
training data. An example of how the α captures
the prefix-pair probabilities is shown in Figure 2.
The interpretability loss only has a negligible (al-
though mostly slightly negative) influence on the
accuracy, within the variance of training runs. The
ablation study on loss functions (Table 2) shows
that the binary cross-entropy plays a more impor-
tant role. The EM loss alone works remarkably
well given that it was trained on positive examples
only.

Transliteration and G2P Conversion. The re-
sults for the two transduction tasks are presented
in Table 3 (learning curves are in Figure 5 in Ap-
pendix). Our transliteration baseline slightly out-
performs the baseline presented with the dataset
(Rosca and Breuel, 2016, 22.4% CER, 77.1%
WER). Our baselines for the G2P conversion
perform slightly worse than the best models by

57

Method

#
Pa

ra
m

. Arabic→ English CMUDict

Plain + Interpret. loss Time Plain + Interpret. loss Time
CER WER CER WER CER WER Align. CER WER Align.

RNN Seq2seq 3.3M 22.0 ±0.2 75.8 ±0.6 — — 12m 5.8 ±0.1 23.6 ±0.9 24.5 — — — 1.8h
Transformer 3.1M 22.9 ±0.2 78.5 ±0.4 — — 11m 6.5 ±0.1 26.6 ±0.3 33.2 — — — 1.1h

ou
rs

unigram 0.7M 31.7 ±1.8 85.2 ±0.9 31.2 ±1.4 85.0 ±0.5 36m 20.9 ±0.3 67.5 ±1.0 55.7 20.6 ±0.3 66.3 ±0.2 59.5 2.4h
CNN (3-gram) 1.1M 24.6 ±0.6 80.5 ±0.3 24.5 ±0.9 80.1 ±0.9 41m 12.8 ±1.0 48.4 ±3.1 35.4 12.8 ±0.2 48.4 ±0.6 38.1 2.5h

Deep CNN 3.0M 24.4 ±0.5 80.0 ±0.7 23.8 ±0.3 79.3 ±0.1 52m 10.8 ±0.5 41.4 ±1.9 23.3 10.8 ±0.5 42.1 ±1.6 28.8 2.5h
RNN 2.9M 24.1 ±0.2 77.0 ±2.0 22.0 ±0.3 77.4 ±0.8 60m 7.8 ±0.3 31.9 ±1.3 44.7 7.3 ±0.4 33.3 ±1.5 48.9 2.3h
Transformer 3.2M 24.3 ±0.9 79.0 ±0.7 23.9 ±1.6 78.6 ±1.3 1.2h 10.7 ±1.0 41.8 ±3.1 33.3 10.2 ±1.1 43.6 ±3.2 37.9 2.3h

Table 3: Model error rates for Arabic-to-English transliteration and English G2P generation and respective training
times. For the second data set, we also report the alignment F1 scores (Align.). Our best models are in bold. The
error rates on the validation data are in Table 7 in the Appendix.

Loss functions CER WER

Complete loss 22.5 ±0.3 77.4 ±0.8
— expectation maximization 68.2 ±7.4 93.5 ±1.0
— next symbol NLL 27.2 ±1.4 81.1 ±2.2
— αm,n maximization 23.5 ±1.3 79.2 ±2.5

Table 4: Ablation study for loss function on Arabic-to-
English transliteration using RNN and the underlying
representation.

Yolchuyeva et al. (2019), which had 5.4% CER and
22.1% WER with a twice as large model, and 6.5%
CER and 23.9% WER with a similarly sized one.

The transliteration of Arabic appears to be a sim-
pler problem than G2P conversion. The perfor-
mance matches S2S, has fast training times, and
there is a smaller gap between the error rates of the
context-free and contextualized models.

The training time of our transduction models is
2–3× higher than with the baseline S2S models
because the baseline models use builtin PyTorch
functions, whereas our model is implemented us-
ing loops using TorchScript5 (15% faster than plain
Python). The performance under low data condi-
tions and with small model capacity is in Figure 3.

Models that use static symbol embeddings as
the input perform worse than the black-box S2S
models in both tasks. Local contextualization with
CNN improves the performance over static sym-
bol embeddings. Using the fully contextualized
input representation narrows the performance gap
between S2S models and neural string edit distance
models at the expense of decreased interpretability
because all input states can, in theory, contain infor-
mation about the entire input sequence. The ability
to preserve source-target alignment is highest when
the input is represented by embeddings only. RNN
models not only have the best accuracy, but also

5https://pytorch.org/docs/stable/jit.html

capture quite well the source-target alignment. We
hypothesize that RNNs work well because of their
inductive bias towards sequence processing, which
might be hard to learn from position embeddings
given the task dataset sizes.

Including the interpretability loss usually slightly
improves the accuracy and improves the alignment
between the source and target strings. It manifests
both qualitatively (Table 5) and quantitatively in
the increased alignment accuracy.

Compared to S2S models, beam search decoding
leads to much higher accuracy gains, with beam
search 5 reaching around 2× error reduction com-
pared to greedy decoding. For all input represen-
tations except the static embeddings, length nor-
malization does not improve decoding. Unlike ma-
chine translation models, accuracy doesn’t degrade
with increasing beam size. See Figure 4 in Ap-
pendix.

The ablation study on loss functions (Table 4)
shows that all loss functions contribute to the final
accuracy. The EM loss is most important, direct
optimization of the likelihood is second.

6 Related Work

Weighted finite-state transducers. Rastogi
et al. (2016) use a weighted-finite state transducer
(WFST) with neural scoring function to model
sequence transduction. As in our model, they
back-propagate the error via a dynamic program.
Our model is stronger because, in the WFST,
the output symbol generation only depends on
the contextualized source symbol embedding,
disregarding the string generated so far.

Lin et al. (2019) extend the model by including
contextualized target string representation and edit
operation history. This makes their model more
powerful than ours, but the loss function cannot be
exactly computed by dynamic programming and

58

graphemes phonemes edit operations

GOELLER G OW L ER G)G -O -E -L L)OW +L -E R)ER
G)G O)OW -E -L L)L -E R)ER

VOGAN V OW G AH N V)V -O G)OW +G +AH -A N)N
V)V +OW -O G)G -A N)N

FLAGSHIPS F L AE G SH IH P S F)F L)L -A -G S)AE +G -H +SH -I P)IH +P +S
F)F L)L +AE -A G)G -S H)SH +IH -I P)P S)S

ENDLER EH N D L ER +EH -E N)N D)D L)L -E R)ER
E)EH N)N D)D L)L -E R)ER

SWOOPED S W UW P T S)S W)W +UW -O -O P)P -E D)T
S)S W)W -O O)UW P)P -E D)T

Table 5: Edit operations predicted by RNN-based model for grapheme (blue) to phoneme (green) conversion with
and without the interpretability loss (when provided ground-truth target). Green boxes are insertions, blue boxes
deletions, yellow boxes substitutions.

requires sampling possible operation sequences.

Segment to Segment Neural Transduction. Yu
et al. (2016) use two operation algorithm (shift and
emit) for string transduction. Unlike our model
directly, it models independently the operation type
and target symbols and lacks the concept of symbol
substitution.

Neural sequence matching. Several neural
sequence-matching methods utilize a scoring func-
tion similar to symbol-pair representation. Cuturi
and Blondel (2017) propose integrating alignment
between two sequences into a loss function that
eventually leads to finding alignment between the
sequences. The STANCE model (Tam et al., 2019),
which we compare results with, first computes the
alignment as an optimal transfer problem between
the source and target representation. In the sec-
ond step, they assign a score using a convolutional
neural network applied to a soft-alignment matrix.
We showed that our model reaches better accuracy
with the same input representation. Similar to our
model, these approaches provide interpretability
via alignment. They allow many-to-many align-
ments, but cannot enforce a monotonic sequence
of operations unlike WFSTs and our model.

Learnable edit distance. McCallum et al.
(2005) used trainable edit distance in combination
with CRFs for string matching. Recently, Riley and
Gildea (2020) integrated the statistical learnable
edit distance within a pipeline for unsupervised
bilingual lexicon induction. As far as we know, our
work is the first using neural networks directly in
dynamic programming for edit distance.

Edit distance in deep learning. LaserTagger
(Malmi et al., 2019) and EditNTS (Dong et al.,
2019) formulate sequence generation as tagging
of the source text with edit operations. They use
standard edit distance to pre-process the data (so,
unlike our model cannot work with different alpha-
bets) and then learn to predict the edit operations.
Levenshtein Transformer (Gu et al., 2019) is a par-
tially non-autoregressive S2S model generating the
output iteratively via insert and delete operations.
It delivers a good trade-off of decoding speed and
translation quality, but is not interpretable.

Dynamic programming in deep learning.
Combining dynamic programming and neural-
network-based estimators is a common technique,
especially in sequence modeling. Connectionist
Temporal Classification (CTC; Graves et al.,
2006) uses the forward-backward algorithm to
estimate the loss of assigning labels to a sequence
with implicit alignment. The loss function of a
linear-chain conditional random field propagated
into a neural network (Do and Artieres, 2010)
became the state-of-the-art for tasks like named
entity recognition (Lample et al., 2016). Loss
functions based on dynamic programming are
also used in non-autoregressive neural machine
translation (Libovický and Helcl, 2018; Saharia
et al., 2020).

Cognate detection. Due to the limited amount
of annotated data, cognate detection is usually ap-
proached using unsupervised methods. Strings
are compared using measures such as pointwise
mutual information (Jäger, 2014) or LexStat sim-
ilarity (List, 2012), which are used as an input to
a distance-based clustering algorithm (List et al.,

59

2016). Jäger et al. (2017) used a supervised SVM
classifier trained on one language family using fea-
tures that were previously used for clustering and
applied the classifier to other language families.

Transliteration. Standard S2S models (Bah-
danau et al., 2015; Gehring et al., 2017; Vaswani
et al., 2017) or CTC-based sequence-labeling
(Graves et al., 2006) are the state of the art for both
transliteration (Rosca and Breuel, 2016; Kundu
et al., 2018) and G2P conversion (Yao and Zweig,
2015; Peters et al., 2017; Yolchuyeva et al., 2019).

7 Conclusions

We introduced neural string edit distance, a neural
model of string transduction based on string edit
distance. Our novel formulation of neural string
edit distance critically depends on a differentiable
loss. When used with context-free representations,
it offers a direct interpretability via insert, delete
and substitute operations, unlike widely used S2S
models. Using input representations with differ-
ing amounts of contextualization, we can trade off
interpretability for better performance. Our ex-
perimental results on cognate detection, Arabic-to-
English transliteration and grapheme-to-phoneme
conversion show that with contextualized input rep-
resentations, the proposed model is able to match
the performance of standard black-box models. We
hope that our approach will help motivate more
work on this type of interpretable model and that
our framework will be useful in such future work.

Acknowledgments

The work at LMU Munich was supported by
was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020
research and innovation programme (No. 640550)
and by the German Research Foundation (DFG;
grant FR 2829/4-1). The work at CUNI was
supported by the European Commission via its
Horizon 2020 research and innovation programme
(No. 870930).

References
Amina Adadi and Mohammed Berrada. 2018. Peek-

ing inside the black-box: A survey on explainable
artificial intelligence (xai). IEEE Access, 6:52138–
52160.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E.

Hinton. 2016. Layer normalization. CoRR,
abs/1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Mike Schuster, Noam Shazeer, Niki Parmar,
Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser,
Zhifeng Chen, Yonghui Wu, and Macduff Hughes.
2018. The best of both worlds: Combining recent
advances in neural machine translation. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 76–86, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Marco Cuturi and Mathieu Blondel. 2017. Soft-DTW:
a differentiable loss function for time-series. vol-
ume 70 of Proceedings of Machine Learning Re-
search, pages 894–903, International Convention
Centre, Sydney, Australia. PMLR.

Yann N. Dauphin, Angela Fan, Michael Auli, and
David Grangier. 2017. Language modeling with
gated convolutional networks. In Proceedings of the
34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learn-
ing Research, pages 933–941. PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Trinh–Minh–Tri Do and Thierry Artieres. 2010. Neu-
ral conditional random fields. In Proceedings of the
Thirteenth International Conference on Artificial In-
telligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pages 177–184, Chia
Laguna Resort, Sardinia, Italy. PMLR.

Yue Dong, Zichao Li, Mehdi Rezagholizadeh, and
Jackie Chi Kit Cheung. 2019. EditNTS: An neural

60

programmer-interpreter model for sentence simplifi-
cation through explicit editing. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3393–3402, Florence,
Italy. Association for Computational Linguistics.

Michael Dunn. 2012. Indo-European lexical cognacy
database (IELex). Nijmegen, The Netherlands. Max
Planck Institute for Psycholinguistics.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Convolu-
tional sequence to sequence learning. In Proceed-
ings of the 34th International Conference on Ma-
chine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Ma-
chine Learning Research, pages 1243–1252. PMLR.

Alex Graves, Santiago Fernández, Faustino Gomez,
and Jürgen Schmidhuber. 2006. Connectionist
temporal classification: labelling unsegmented se-
quence data with recurrent neural networks. In Pro-
ceedings of the 23rd international conference on Ma-
chine learning, pages 369–376. ACM.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019.
Levenshtein transformer. In Advances in Neural In-
formation Processing Systems, pages 11179–11189.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 770–778.
IEEE Computer Society.

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2020. exBERT: A Visual Analysis Tool
to Explore Learned Representations in Transformer
Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 187–196, Online. As-
sociation for Computational Linguistics.

Sathish Reddy Indurthi, Insoo Chung, and Sangha Kim.
2019. Look harder: A neural machine translation
model with hard attention. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3037–3043, Florence,
Italy. Association for Computational Linguistics.

Gerhard Jäger. 2014. Phylogenetic inference from
word lists using weighted alignment with empiri-
cally determined weights. In Quantifying Language
Dynamics, pages 155–204. Brill.

Gerhard Jäger, Johann-Mattis List, and Pavel Sofroniev.
2017. Using support vector machines and state-of-
the-art algorithms for phonetic alignment to identify
cognates in multi-lingual wordlists. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Vol-
ume 1, Long Papers, pages 1205–1216, Valencia,
Spain. Association for Computational Linguistics.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543–3556, Minneapolis, Minnesota.
Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Soumyadeep Kundu, Sayantan Paul, and Santanu Pal.
2018. A deep learning based approach to translitera-
tion. In Proceedings of the Seventh Named Entities
Workshop, pages 79–83, Melbourne, Australia. As-
sociation for Computational Linguistics.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.

Jindřich Libovický and Jindřich Helcl. 2018. End-to-
end non-autoregressive neural machine translation
with connectionist temporal classification. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3016–
3021, Brussels, Belgium. Association for Computa-
tional Linguistics.

Chu-Cheng Lin, Hao Zhu, Matthew R. Gormley, and
Jason Eisner. 2019. Neural finite-state transducers:
Beyond rational relations. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 272–283, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Zachary C. Lipton. 2018. The mythos of model inter-
pretability. Queue, 16(3):31–57.

Johann-Mattis List. 2012. LexStat: Automatic de-
tection of cognates in multilingual wordlists. In
Proceedings of the EACL 2012 Joint Workshop
of LINGVIS & UNCLH, pages 117–125, Avignon,
France. Association for Computational Linguistics.

Johann-Mattis List, Philippe Lopez, and Eric Bapteste.
2016. Using sequence similarity networks to iden-
tify partial cognates in multilingual wordlists. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 599–605, Berlin, Germany. As-
sociation for Computational Linguistics.

61

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil
Mirylenka, and Aliaksei Severyn. 2019. Encode,
tag, realize: High-precision text editing. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5054–5065, Hong
Kong, China. Association for Computational Lin-
guistics.

Andrew McCallum, Kedar Bellare, and Fernando C. N.
Pereira. 2005. A conditional random field for
discriminatively-trained finite-state string edit dis-
tance. In UAI ’05, Proceedings of the 21st Confer-
ence in Uncertainty in Artificial Intelligence, Edin-
burgh, Scotland, July 26-29, 2005, pages 388–395.
AUAI Press.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Ko-
ray Kavukcuoglu. 2014. Recurrent models of visual
attention. In Advances in Neural Information Pro-
cessing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-
13 2014, Montreal, Quebec, Canada, pages 2204–
2212.

Robert Östling and Jörg Tiedemann. 2016. Effi-
cient word alignment with Markov Chain Monte
Carlo. Prague Bulletin of Mathematical Linguistics,
106:125–146.

Ben Peters, Jon Dehdari, and Josef van Genabith.
2017. Massively multilingual neural grapheme-to-
phoneme conversion. In Proceedings of the First
Workshop on Building Linguistically Generalizable
NLP Systems, pages 19–26, Copenhagen, Denmark.
Association for Computational Linguistics.

Taraka Rama, Johann-Mattis List, Johannes Wahle, and
Gerhard Jäger. 2018. Are automatic methods for
cognate detection good enough for phylogenetic re-
construction in historical linguistics? In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 393–400, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner.
2016. Weighting finite-state transductions with neu-
ral context. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 623–633, San Diego, California.
Association for Computational Linguistics.

Parker Riley and Daniel Gildea. 2020. Unsupervised
bilingual lexicon induction across writing systems.
CoRR, abs/2002.00037.

Eric Sven Ristad and Peter N. Yianilos. 1998. Learn-
ing string-edit distance. IEEE Trans. Pattern Anal.
Mach. Intell., 20(5):522–532.

Mihaela Rosca and Thomas Breuel. 2016. Sequence-
to-sequence neural network models for translitera-
tion. CoRR, abs/1610.09565.

Chitwan Saharia, William Chan, Saurabh Saxena, and
Mohammad Norouzi. 2020. Non-autoregressive ma-
chine translation with latent alignments. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
1098–1108, Online. Association for Computational
Linguistics.

Paul Sidwell. 2015. Austroasiatic dataset for phyloge-
netic analysis: 2015 version. Mon-Khmer Studies
(Notes, Reviews, Data-Papers), 44:lxviii–ccclvii.

Derek Tam, Nicholas Monath, Ari Kobren, Aaron Tray-
lor, Rajarshi Das, and Andrew McCallum. 2019. Op-
timal transport-based alignment of learned character
representations for string similarity. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5907–5917, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 5998–6008.

Andrew J. Viterbi. 1967. Error bounds for convolu-
tional codes and an asymptotically optimum decod-
ing algorithm. IEEE Trans. Inf. Theory, 13(2):260–
269.

Robert A. Wagner and Michael J. Fischer. 1974.
The string-to-string correction problem. J. ACM,
21(1):168–173.

Robert Weide. 2017. The Carnegie-Mellon pronounc-
ing dictionary [cmudict. 0.7]. Pittsburgh, PA, USA.
Carnegie Mellon University.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is
not not explanation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 11–20, Hong Kong, China. Associ-
ation for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

62

Kaisheng Yao and Geoffrey Zweig. 2015. Sequence-
to-sequence neural net models for grapheme-to-
phoneme conversion. In INTERSPEECH 2015, 16th
Annual Conference of the International Speech Com-
munication Association, Dresden, Germany, Septem-
ber 6-10, 2015, pages 3330–3334. ISCA.

Sevinj Yolchuyeva, Géza Németh, and Bálint Gyires-
Tóth. 2019. Transformer based grapheme-to-
phoneme conversion. In Interspeech 2019, 20th
Annual Conference of the International Speech
Communication Association, Graz, Austria, 15-19
September 2019, pages 2095–2099. ISCA.

Lei Yu, Jan Buys, and Phil Blunsom. 2016. Online seg-
ment to segment neural transduction. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1307–1316,
Austin, Texas. Association for Computational Lin-
guistics.

A Inference algorithm

Algorithm 2 is a procedural implementation of
Equation 1. In the Viterbi decoding used for ob-
taining the alignment, the summation on line 6, 8
and 10 is replaced by taking the maximum.

Algorithm 2 Forward evaluation
1: α ∈ Rn×m ← 0
2: α0,0 ← 1
3: for i = 1 . . . n do
4: for j = 1 . . .m do
5: if j > 0 then
6: αi,j += Pins(tj |ci,j−1) · αi,j−1

7: if i > 0 then
8: αi,j += Pdel(si|ci−1,j) · αi−1,j

9: if i > 0 and j > 0 then
10: αi,j += Psubs(si) tj |ci−1,j−1) · αi−1,j−1

B Motivation for design choices in the
string-matching model

Let us assume a toy example transliteration. The
source alphabet is {A, B, C}, the target alphabet is
{a, b, c}, the transcription rules are:

1. If B is at the beginning of the string, delete it.

2. Multiple As rewrite to a single a.

3. Rewrite B to b and C to c.

The statistical learnable edit distance would not
be capable of properly learning rules 1 and 2 be-
cause it would not know that B was at the beginning
of the string and if an occurrence of A is the first
A. This problem gets resolved by introducing a
contextualized representation of the input.

The original statistical EM algorithm only needs
positive examples to learn the operation distribu-
tion. For instance, rewriting B to c will end up as
improbable due to the inherent limitation of a sin-
gle sharing static probability table. Using a single
table regardless of the context means that if some
operations become more probable, the others must
become less probable. A neural network does not
have such limitations. A neural model can in the-
ory find solutions that maximize the probability of
the training data, however, do not correspond to
the original set of rules by finding a highly proba-
ble sequence of operations for any string pair. For
instance, it can learn to count the positions in the
string:

1′. Whatever symbols at the same position i (si
and ti) are, substitute si with tj with the prob-
ability of 1.

2′. If i < j, assign probability of 1 to deleting si.

3′. If i > j, assign probability of 1 to inserting
tj .

For this reason, we introduce the binary cross-
entropy as an additional loss function. This should
steer the model away from degenerate solutions as-
signing a high probability score to any input string
pair.

But our ablation study in Table 2 showed that
even without the binary cross-entropy loss, the
model converges to a good non-degenerate solu-
tion.

This thought experiment shows keeping the full
table of possible model outcomes is no longer cru-
cial for the modeling strength. Let us assume that
the output distribution of the neural model con-
tains all possible edit operations as they are in
the static probability tables of the statistical model.
The model can learn to rely on the position infor-
mation only and select the correct symbols in the
output probability distribution ignoring the actual
content of the symbols, using their embeddings as
a key to identify the correct item from the output
distribution. The model can thus learn to ignore
the function the full probability table had in the
statistical model. Also, given the inputs, it is al-
ways clear what the plausible operations are, it is
easy for the model not to assign any probability
to the implausible operations (unlike the statistical
model).

These thoughts lead us to the conclusion that
there is no need to keep the full output distribution

63

and we only can use four target classes: one for
insertion, one for deletion, one for substitution, and
one special class that would get the part of proba-
bility mass that would be assigned to implausible
operations in the statistical model. We call the last
one the non-match option.

C Model Hyperparameters

Following Gehring et al. (2017), the CNN uses
gated linear units as non-linearity (Dauphin et al.,
2017), layer normalization (Ba et al., 2016) and
residual connections (He et al., 2016). The symbol
embeddings are summed with learnable position
embeddings before the convolution.

The RNN uses gated recurrent units (Cho et al.,
2014) and follows the scheme of Chen et al.
(2018), which includes residual connections (He
et al., 2016), layer normalization (Ba et al., 2016),
and multi-headed scaled dot-product attention
(Vaswani et al., 2017).

The Transformers follow the architecture deci-
sions of BERT (Devlin et al., 2019) as implemented
in the Transformers library (Wolf et al., 2020).

All hyperparameters are set manually based on
preliminary experiments. For all experiments, we
use embedding size of 256. The CNN encoder
uses a single layer with kernel size 3 and ReLU
non-linearity. For both the RNN and Transformer
models, we use 2 layers with 256 hidden units. The
Transformer uses 4 attention heads of dimension
64 in the self-attention. The same configuration
is used for the encoder-decoder attention for both
RNN and Transformer. We use the same hyperpa-
rameters also for the baselines.

We include all main loss functions with weight
1.0, i.e., for string-pair matching: the EM loss,
non-matching negative log-likelihood and binary
cross-entropy; for string transduction: the EM loss
and next symbol negative log-likelihood. We test
each model with and without the interpretability
loss, which is included with weight 0.1.

We optimize the models using the Adam opti-
mizer (Kingma and Ba, 2015) with an initial learn-
ing rate of 10−4, and batch size of 512. We validate
the models every 50 training steps. We decrease
the learning rate by a factor of 0.7 if the validation
performance does not increase in two consecutive
validations. We stop the training after the learning
rate decreases 10 times.

D Notes on Reproducibility

The training times were measured on machines
with GeForce GTX 1080 Ti GPUs and with In-
tel Xeon E5–2630v4 CPUs (2.20GHz). We report
average wall time of training including data prepro-
cessing, validation and testing. The measured time
might be influenced by other processes running on
the machines.

Validation scores are provided in Tables 6 and 7.

64

RNN Sequence-to-sequence

1 10 20 30 40

Beam size

6.80×
10−2

6.81×

6.82×

C
E

R

Ours w/ static embeddings

1 10 20 30 40

Beam size

0.215

0.220

0.225

0.230

0.235

C
E

R

Ours w/ shallow CNN

1 10 20 30 40

Beam size

0.124

0.126

0.128

0.130

C
E

R

Ours w/ deep CNN

1 10 20 30 40

Beam size

0.112

0.114

0.116

0.118

0.120

C
E

R

Ours w/ RNN

1 10 20 30 40

Beam size

0.084

0.086

0.088

0.090

C
E

R

Ours w/ Transformer

1 10 20 30 40

Beam size

0.102

0.104

0.106

0.108

0.110

C
E

R

Lenght normalization: � 0.0 � 0.2 � 0.4 � 0.6 � 0.8 � 1.0 � 1.2 � 1.4 � 1.6

Figure 4: Effect of beam search on test data for grapheme-to-phoneme conversion.

Cognate detection on IELEX

0 2000 4000 6000 8000 10000

Training steps

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai

ni
ng

lo
ss

ours: embeddings
ours: CNN
ours: RNN
ours: Transformer

0 2000 4000 6000 8000 10000

Training steps

0.2

0.4

0.6

0.8

1.0

V
al

id
at

io
n

F 1
sc

or
e

Transformer
STANCE RNN
ours: embeddings
ours: CNN
ours: RNN
ours: Transformer

Grapheme-to-phoneme conversion

0 10000 20000 30000 40000

Training steps

0.0

0.5

1.0

1.5

Tr
ai

ni
ng

lo
ss

ours: embeddings
ours: CNN
ours: RNN
ours: Transformer

0 10000 20000 30000 40000

Training steps

0.2

0.4

0.6

V
al

id
at

io
n

C
E

R

S2S RNN
S2S Transformer
ours: embeddings
ours: RNN
ours: CNN
ours: Transformer

Figure 5: Learning curves for Cognate classification for Indo-European languages (left) and for grapheme-to-
phoneme conversion (right).

65

Method Indo-European Austro-Asiatic

Base + Int. loss Base + Int. loss

Transformer [CLS] 91.4 ±2.8 — 78.8 ±0.8 —

ST
A

N
C

E unigram 46.5 ±4.7 — 16.5 ±0.4 —

RNN 80.4 ±1.6 — 16.5 ±0.1 —
Transformer 76.8 ±1.3 — 17.2 ±0.2 —

ou
rs

unigram 81.2 ±1.0 82.0 ±0.5 52.6 ±0.8 53.9 ±0.6
CNN (3-gram) 95.2 ±0.6 94.9 ±0.7 78.9 ±0.8 78.1 ±1.7

RNN 97.2 ±0.2 88.8 ±1.1 82.8 ±0.6 83.1 ±0.7
Transformer 88.8 ±1.6 88.7 ±1.1 71.5 ±1.1 71.5 ±1.1

Table 6: F1-score for cognate detection on the validation data.

Method Arabic→ English CMUDict

Base + Int. loss Base + Int. loss

CER WER CER WER CER WER CER WER

RNN Seq2seq 21.7 ±0.1 75.0 ±0.6 — — 7.4 ±0.0 31.5 ±0.1 — —
Transformer 22.8 ±0.2 77.7 ±0.6 — — 7.8 ±0.1 32.7 ±0.3 — —

ou
rs

unigram 28.4 ±0.7 84.1 ±0.8 28.3 ±0.5 84.3 ±0.7 21.2 ±1.0 66.4 ±1.9 21.5 ±0.8 68.0 ±2.1
CNN (3-gram) 34.4 ±1.1 86.5 ±0.8 32.2 ±1.1 86.5 ±0.8 36.0 ±5.7 80.9 ±3.2 33.8 ±3.5 79.0 ±2.8

RNN 42.4 ±9.0 90.9 ±5.4 45.2 ±2.6 90.9 ±1.8 59.1 ±2.5 96.2 ±0.7 43.6 ±5.6 80.5 ±5.6
Transformer 41.2 ±9.1 91.7 ±4.4 47.7 ±3.6 92.5 ±2.4 24.6 ±4.3 73.8 ±6.1 43.5 ±3.6 84.9 ±2.5

Table 7: Model error-rates for Arabic-to-English transliteration and English G2P generation on validation data.
.

66

Proceedings of the Sixth Workshop on Structured Prediction for NLP, pages 67 - 81
May 27, 2022 c©2022 Association for Computational Linguistics

Predicting Attention Sparsity in Transformers
Marcos Treviso1,2 António Góis5∗ Patrick Fernandes1,2,3

Erick Fonseca6∗ André F. T. Martins1,2,4
1Instituto de Telecomunicações, Lisbon, Portugal

2Instituto Superior Técnico & LUMLIS (Lisbon ELLIS Unit), Lisbon, Portugal
3Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA

4Unbabel, Lisbon, Portugal
5Mila, Université de Montréal, Canada

6Kaufland e-commerce, Cologne, Germany

Abstract

Transformers’ quadratic complexity with re-
spect to the input sequence length has moti-
vated a body of work on efficient sparse ap-
proximations to softmax. An alternative path,
used by entmax transformers, consists of hav-
ing built-in exact sparse attention; however this
approach still requires quadratic computation.
In this paper, we propose Sparsefinder, a sim-
ple model trained to identify the sparsity pattern
of entmax attention before computing it. We
experiment with three variants of our method,
based on distances, quantization, and cluster-
ing, on two tasks: machine translation (atten-
tion in the decoder) and masked language mod-
eling (encoder-only). Our work provides a new
angle to study model efficiency by doing exten-
sive analysis of the tradeoff between the spar-
sity and recall of the predicted attention graph.
This allows for detailed comparison between
different models along their Pareto curves, im-
portant to guide future benchmarks for sparse
attention models.

1 Introduction

Transformer-based architectures have achieved re-
markable results in many NLP tasks (Vaswani et al.,
2017; Devlin et al., 2019; Brown et al., 2020). How-
ever, they also bring important computational and
environmental concerns, caused by their quadratic
time and memory computation requirements with
respect to the sequence length. This comes in ad-
dition to the difficulty of interpreting their inner
workings, caused by their overparametrization and
large number of attention heads.

There is a large body of work developing ways to
“sparsify” the computation in transformers, either
by imposing local or fixed attention patterns (Child
et al., 2019; Tay et al., 2020; Zaheer et al., 2020), by
applying low-rank kernel approximations to soft-
max (Wang et al., 2020; Choromanski et al., 2021),

∗Work done at Instituto de Telecomunicações. Correspon-
dence to marcos.treviso@tecnico.ulisboa.pt

th
e qu

ick
br

ow
n

fox ju
mps

ov
er

th
e

laz
y

do
g

a) Extract α-entmax graph

b) Project and group qi and kj c) Add local + global patterns

Figure 1: (a) Extract sparse attention graphs from a
pretrained α-entmax transformer; (b) Project query and
key vectors to a smaller and appropriated space such
that similar points are likely to fall in the same vicinity;
(c) Additionally, we can combine window and global
patterns (green blocks) with the learned pattern (yellow
blocks) to increase the recall in recovering ground-truth
edges from the sparse graph at the top (starred blocks).

or by learning which queries and keys should be
grouped together (Kitaev et al., 2019; Daras et al.,
2020; Roy et al., 2021; Wang et al., 2021). Most
of the existing work seeks to approximate softmax-
based attention by ignoring the (predicted) tails
of the distribution, which can lead to performance
degradation. An exception is transformers with
entmax-based sparse attention (Correia et al.,
2019), a content-based approach which is natively
sparse – this approach has the ability to let each
attention head learn from data how sparse it should
be, eliminating the need for heuristics or approxi-
mations. The disadvantage of this approach is that
it still requires a quadratic computation to deter-
mine the sparsity pattern, failing to take computa-
tional advantage of attention sparsity.

In this paper, we propose Sparsefinder, which
fills the gap above by making entmax attention
more efficient (§4). Namely, we investigate three

67

methods to predict the sparsity pattern of entmax
without having to compute it: one based on metric
learning, which is still quadratic but with a better
constant (§4.3), one based on quantization (§4.4),
and another based on clustering (§4.5). In all cases,
the predictors are trained offline on ground-truth
sparse attention graphs from an entmax transformer,
seeking high recall in their predicted edges without
compromising the total amount of sparsity. Figure 1
illustrates our method.

More precisely, to evaluate the effectiveness
of our method across different scenarios, we per-
form experiments on two NLP tasks, encompassing
encoder-only and decoder-only configurations: ma-
chine translation (MT, §5) and masked language
modeling (MLM, §6), doing an extensive analysis
of the tradeoff between sparsity and recall (i.e., per-
formance on the attention graph approximation),
and sparsity and accuracy (performance on down-
stream tasks). We compare our method with four
alternative solutions based on efficient transform-
ers: Longformer (Beltagy et al., 2020), Bigbird (Za-
heer et al., 2020), Reformer (Kitaev et al., 2020),
and Routing Transformer (Roy et al., 2021), along
their entire Pareto curves. We complement these
experiments by analyzing qualitatively what is se-
lected by the different attention heads at the several
layers and represented in different clusters/buckets.
Overall, our contributions are:1

• We propose a simple method that exploits learn-
able sparsity patterns to efficiently compute
multi-head attention (§4).

• We do an extensive analysis of the tradeoff be-
tween sparsity and recall, and sparsity and accu-
racy in MT (§5) and MLM (§6), showing that
there is clear room for improvement in the design
of efficient transformers.

• We qualitatively analyze what is selected by the
different attention heads at various layers and
represented in different clusters/buckets.

2 Related Work

Interpreting multi-head attention. Several
works analyze the functionalities learned by dif-
ferent attention heads, such as positional and local
context patterns (Raganato and Tiedemann, 2018;
Voita et al., 2019). Building upon prior work on

1https://github.com/deep-spin/
sparsefinder

sparse attention mechanisms (Peters et al., 2019),
Correia et al. (2019) constrain the attention heads to
induce sparse selections individually for each head,
bringing interpretability without post-hoc manip-
ulation. Related approaches include the explicit
sparse transformer (Zhao et al., 2019) and recti-
fied linear attention (Zhang et al., 2021), which
drops the normalization constraint. Raganato et al.
(2020) show that it is possible to fix attention pat-
terns based on previously known behavior (e.g. fo-
cusing on previous token) while improving trans-
lation quality. However, a procedure that exploits
learnable sparsity patterns to accelerate multi-head
attention is still missing.

Low-rank softmax approximations. Methods
based on low-rank approximation to the softmax
such as Linearized Attention (Katharopoulos et al.,
2020), Linformer (Wang et al., 2020), and Per-
former (Choromanski et al., 2021) reduce both
speed and memory complexity of the attention
mechanism from quadratic to linear, but make inter-
pretability more challenging because the scores are
not computed explicitly. On the other hand, meth-
ods that focus on inducing sparse patterns provide
interpretable alignments and also have performance
gains in terms of speed and memory.

Fixed attention patterns. Among fixed pattern
methods, Sparse Transformer (Child et al., 2019)
and LongFormer (Beltagy et al., 2020) attend to
fixed positions by using strided/dilated sliding win-
dows. BigBird uses random and two fixed patterns
(global and window) to build a block sparse ma-
trix representation (Zaheer et al., 2020), taking ad-
vantage of block matrix operations to accelerate
GPU computations. In contrast, we replace the
random pattern with a learned pattern that mimics
pretrained α-entmax sparse attention graphs.

Learnable attention patterns. Learnable pat-
tern methods usually have to deal with assignment
decisions within the multi-head attention mech-
anism. Clustered Attention (Vyas et al., 2020)
groups query tokens into clusters and computes
dot-products only with centroids. Reformer (Ki-
taev et al., 2020) and SMYRF (Daras et al., 2020)
use locality-sensitive hashing to efficiently group
tokens in buckets. More similar to our work, Rout-
ing Transformer (Roy et al., 2021) and Cluster-
Former (Wang et al., 2021) cluster queries and keys
with online k-means and compute dot-products
over the top-k cluster points. Some queries and

68

keys are discarded due to this filtering, which af-
fects the overall recall of the method (as we show in
§5 and §6). The ability of Routing Transformer to
benefit from contextual information has been ana-
lyzed by Sun et al. (2021). In contrast, Sparsefinder
learns to cluster based on sparsity patterns from at-
tention graphs generated by α-entmax.

3 Background

3.1 Transformers

The main component of transformers is the multi-
head attention mechanism (Vaswani et al., 2017).
Given as input a matrix Q ∈ Rn×d containing
d-dimensional representations for n queries, and
matrices K,V ∈ Rm×d for m keys and values,
the scaled dot-product attention at a single head is
computed in the following way:

att(Q,K,V) = π

(
QK⊤
√
d

)

︸ ︷︷ ︸
Z∈Rn×m

V ∈ Rn×d. (1)

The π transformation maps rows to distributions,
with softmax being the most common choice,
π(Z)ij = softmax(zi)j . Multi-head attention is
computed by evoking Eq. 1 in parallel for each
head h:

headh(Q,K,V) = att(QWQ
h ,KWK

h ,VWV
h),

where WQ
h , WK

h , WV
h are learned linear transfor-

mations. This way, heads are able to learn spe-
cialized phenomena. According to the nature of
the input, transformers have three types of multi-
head attention mechanism: encoder self-attention
(source-to-source), decoder self-attention (target-
to-target), and decoder cross-attention (target-to-
source). While there are no restrictions to which el-
ements can be attended to in the encoder, elements
in position j > i in the decoder self-attention are
masked at timestep i (“causal mask”).

3.2 Extmax Transformers and Learned
Sparsity

The main computational bottleneck in transformers
is the matrix multiplication QK⊤ in Eq. 1, which
costs O(nmd) time and can be impractical when
n and m are large. Many approaches, discussed
in §2, approximate Eq. 1 by ignoring entries far
from the main diagonal or computing only some
blocks of this matrix, with various heuristics. By

doing so, the result will be an approximation of the
softmax attention in Eq. 1. This is because the orig-
inal softmax-based attention is dense, i.e., it puts
some probability mass on all tokens – not only a
computational disadvantage, but also making inter-
pretation harder, as it has been observed that only
a small fraction of attention heads capture relevant
information (Voita et al., 2019).

An alternative to softmax is the α-entmax trans-
formation (Peters et al., 2019; Correia et al., 2019),
which leads to sparse patterns directly, without any
approximation:

α-entmax(z) = [(α− 1)z− τ(z)1]
1/α−1

+ , (2)

where [·]+ is the positive part (ReLU) function, and
τ : Rn → R is a normalizing function satisfying∑

j [(α − 1)zj − τ(z)]
1/α−1

+ = 1 for any z. That
is, entries with score zj ≤ τ(z)/α−1 get exactly
zero probability. In the limit α → 1, α-entmax
recovers the softmax function, while for any value
of α > 1 this transformation can return sparse
probability vectors (as the value of α increases,
the induced probability distribution becomes more
sparse). When α = 2, we recover sparsemax (Mar-
tins and Astudillo, 2016). In this paper, we use
α = 1.5, which works well in practice and has a
specialized fast algorithm (Peters et al., 2019).

Although sparse attention improves interpretabil-
ity and head diversity when compared to dense al-
ternatives (Correia et al., 2019), the learned sparsity
patterns cannot be trivially exploited to reduce the
quadratic burden of self-attention, since we still
need to compute dot-products between all queries
and keys (QK⊤) before applying the α-entmax
transformation. In the next section (§4), we pro-
pose a simple method that learns to identify these
sparsity patterns beforehand, avoiding the full ma-
trix multiplication.

4 Sparsefinder

We now propose our method to extract sparse atten-
tion graphs and learn where to attend by exploiting
a special property of α-entmax: sparse-consistency
(§4.1). We design three variants of Sparsefinder to
that end, based on metric learning (§4.3), quantiza-
tion (§4.4), and clustering (§4.5).

4.1 Attention graph and sparse-consistency
For each attention head h, we define its attention
graph as Gh = {(qi,kj) | pi,j > 0}, a bipartite
graph connecting query and key pairs qi,kj ∈ Rd

69

for which the α-entmax probability pi,j is nonzero.
An example of attention graph is shown in Figure 1.
We denote by |Gh| the total size of an attention
graph, i.e., its number of edges. With α-entmax
with α = 1.5 we typically have |Gh| ≪ nm. In
contrast, softmax attention always leads to a com-
plete graph, |Gh| = nm.

Problem statement. Our goal is to build a model
– which we call Sparsefinder – that predicts Ĝh ≈
Gh without having to perform all pairwise compar-
isons between queries and keys. This enables the
complexity of evaluating Eq. 1 to be reduced from
O(nmd) toO(|Ĝh|d), effectively taking advantage
of the sparsity of α-entmax. In order to learn such a
model, we first extract a dataset of sparse attention
graphs {Gh} from a pretrained entmax-based trans-
former, which acts as a teacher. Then, the student
learns where to pay attention based on this informa-
tion. This procedure is motivated by the following
sparse-consistency property of α-entmax:

Proposition 1 (Sparse-consistency property). Let
b be a binary vector such that bj = 1 if p⋆j > 0,
and bj = 0 otherwise. For any binary mask vector
m “dominated” by b (i.e. m⊙ b = b), we have

α-entmax(z) = α-entmax(z|m), (3)

where zj |m = zj if mj = 1 and −∞ if mj = 0.

Proof. See §A in the supplemental material.

This property ensures that, if Ĝh is such that
Gh ⊆ Ĝh, then we obtain exactly the same result as
with the original entmax attention. Therefore, we
are interested in having high recall,

recall(Ĝh;Gh) =
|Ĝh ∩ Gh|
|Gh|

, (4)

meaning that our method is nearly exact, and high
sparsity,

sparsity(Ĝh) = 1− |Ĝh|
nm

, (5)

which indicates that computation can be made ef-
ficient.2 Although a high sparsity may indicate
that many computations can be ignored, converting
this theoretical result into efficient computation is
not trivial and potentially hardware-dependent. In
this paper, rather than proposing a practical com-
putational efficient method, we focus on showing

2For the decoder self-attention the denominator in Eq. 5
becomes n(n+ 1)/2 due to “causal” masking.

that such methods do exist and that they can be
designed to outperform fixed and learned pattern
methods while retaining a high amount of sparsity
when compared to the ground-truth graph.

Our strategies. We teach the student model to
predict Ĝh ≈ Gh by taking inspiration from the
Reformer model (Kitaev et al., 2020) and the Rout-
ing Transformer (Roy et al., 2021). Formally, we
define a set of B buckets, B = {1, . . . , B}, and
learn functions fq, fk : Rd → 2B \ {∅}, which
assign a query or a key to one or more buckets. We
will discuss in the sequel different design strategies
for the functions fq, fk. Given these functions, the
predicted graph is:

Ĝh = {(qi,kj) | fq(qi) ∩ fk(kj) ̸= ∅}, (6)

that is, an edge is predicted between qi and kj iff
they are together in some bucket.

We present three strategies, based on distance-
based pairing (§4.3), quantization (§4.4) and clus-
tering (§4.5). As a first step, all strategies require
learning a metric that embeds the graph (projecting
queries and keys) into a lower-dimensional space
Rr with r ≪ d, such that positive query-key pairs
are close to each other, and negative pairs are far
apart.

4.2 Learning projections
According to the α-entmax sparse-consistency
property, in order to get a good approximation of
Gh, we would like that fq and fk produce a graph
Ĝh that maximizes recall, defined in Eq. 4. How-
ever, maximizing recall in this setting is difficult
since we do not have ground-truth bucket assign-
ments. Instead, we recur to a contrastive learning
approach by learning projections via negative sam-
pling, which is simpler and more scalable than
constrained clustering approaches (Wagstaff et al.,
2001; de Amorim, 2012).

For each head, we start by projecting the orig-
inal query and key q,k ∈ Rd vectors into lower
dimensional vectors q′,k′ ∈ Rr such that r ≪ d.
In practice, we use a simple head-wise linear pro-
jection for all queries and keys gθ : Rd → Rr. To
learn the parameters of the projection layer we min-
imize a hinge loss with margin ω for each head h:

Lθ(Gh) =
[
ω+∥q′−k′

P∥22−∥q′−k′
N∥22
]
+
, (7)

where (q′,k′
P) ∈ Gh is a positive pair and

(q′,k′
N) /∈ Gh is a negative pair sampled uniformly

70

at random. In words, we want the distance between
a query vector to negative pairs to be larger than
the distance to positive pairs by a margin ω. This
approach can also be seen as a weakly-supervised
learning problem, where the goal is to push dissim-
ilar points away while keeping similar points close
to each other (Xing et al., 2002; Weinberger and
Saul, 2009; Bellet et al., 2015).

4.3 Distance-based pairing
To take advantage of the proximity of data points
on the embedded space, we first propose a sim-
ple method to connect query and key pairs whose
Euclidean distance is less than a threshold t, i.e.
Ĝh = {(qi,kj) | ∥q′

i − k′
j∥2 ≤ t}. Although

this method also requires O(n2) computations, it
is more efficient than a vanilla transformer since
it reduces computations by a factor of d/r by us-
ing the learned projections. This method is also
useful to probe the quality of the embedded space
learned by the projections, since the recall of our
other methods will be contingent on it.

4.4 Buckets through quantization
Our second strategy quantizes each dimension
1, . . . , r of the lower-dimensional space into β bins,
placing the queries and keys into the corresponding
buckets (B = rβ buckets in total). This way, each
qi and kj will be placed in exactly r buckets (one
per dimension). If qi and kj are together in some
bucket, Sparsefinder predicts that (qi,kj) ∈ Ĝh.
Note that for this quantization strategy no learn-
ing is needed, only the hyperparameter β and the
binning strategy need to be chosen. We propose a
fixed-size binning strategy: divide each dimension
into β bins such that all bins have exactly ⌈n/β⌉
elements. In practice, we append padding symbols
to the input to ensure that bins are balanced.

4.5 Buckets through clustering
The clustering strategy uses the low-dimensional
projections and runs a clustering algorithm to as-
sign qi and kj to one or more clusters. In this
case, each cluster corresponds to a bucket. In our
paper, we employed k-means to learn B centroids
{c1, . . . , cB}, where each cb ∈ Rr, over a small
portion of the training set. This strategy is simi-
lar to the Routing Transformer’s online k-means
(Roy et al., 2021), but with two key differences: (a)
our clustering step is applied offline; (b) we assign
points to the top-k closest centroids rather than
assigning the closest top-k closest points to each

centroid, ensuring that all queries are assigned to a
cluster.3 At test time, we use the learned centroids
to group queries and keys into k clusters each:

fq(qi) = arg top-k
1≤b≤B

−∥qi − cb∥22, (8)

fk(kj) = arg top-k
1≤b≤B

−∥kj − cb∥22, (9)

where the arg top-k operator returns the indices of
the kth largest elements. As in the quantization-
based approach, queries and keys will attend to
each other, i.e., Sparsefinder predicts (qi,kj) ∈ Ĝh
if they share at least one cluster among the k closest
ones. Smaller values of k will induce high sparsity
graphs, whereas a larger k is likely to produce a
denser graph but with a higher recall.

4.6 Computational cost

Let L be the maximum number of elements in a
bucket. The time and memory cost of bucketed
attention computed through quantization or clus-
tering is O(BL2). With balanced buckets, we get
a complexity of O(n1.5) by setting B =

√
n. Al-

though this cost is sub-quadratic, leveraging the
sparse structure of Ĝh in practice is challenging,
since it might require specialized hardware or ker-
nels. In general, we have |Ĝh| =

∑B
b=1 nbmb ≪

nm, where nb and mb are the number of queries
and keys in each bucket, since we have small com-
plete bipartite graphs on each bucket. Instead of
viewing quadratic methods only in light of their
performance, we adopt an alternative view of as-
sessing the tradeoff of these methods in terms of
sparsity and recall of their approximation Ĝh. This
offers a theoretical perspective to the potential per-
formance of each approximation on downstream
tasks, helping to find the best approximations for a
desired level of sparsity.

4.7 Combining learned and fixed patterns

As pointed out in prior work (Voita et al., 2019),
several attention heads rely strongly in local pat-
terns or prefer to attend to a particular position,
more promimently in initial layers. Therefore,
we take inspiration from the Longformer (Beltagy
et al., 2020) and BigBird (Zaheer et al., 2020) and
combine learned sparse patterns with window and

3The difference relies on the dimension on which the top-
k operation is applied. Routing Transformer applies top-k
to the input dimension, possibly leaving some queries unat-
tended, whereas Sparsefinder applies to the centroids dimen-
sion, avoiding this problem.

71

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.4

0.6

0.8

1.0

Re
ca

ll

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0

10

20

30

BL
EU

Baseline BigBird Longformer Reformer Routing Sf. distance Sf. k-means Sf. quant.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.4

0.6

0.8

1.0

Re
ca

ll

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0

10

20

30

BL
EU

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.4

0.6

0.8

1.0

Re
ca

ll

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

10

20

30

40

BL
EU

Figure 2: Sparsity-recall (left) and sparsity-BLEU (right) tradeoff averaged across all layers and heads on IWSLT
EN→DE (top) and EN→FR (bottom). The vertical dashed line represents the gold sparsity obtained by the original
α-entmax transformer (which requires quadratic computation), and the starred marks depict its BLEU score: 34.47
on EN→DE and 42.65 on EN→FR.

global patterns by adding connections in the pre-
dicted graph Ĝh to improve the recall of all meth-
ods. Figure 1 illustrates how these patterns are
combined in the last step.

5 Experiments: Machine Translation

Setup. We pretrain a transformer-large model (6
layers, 16 heads) on the Paracrawl dataset (Esplà
et al., 2019). Next, we finetune it with α-entmax,
fixing α = 1.5 for all heads, on EN→DE and
EN→FR language pairs from IWSLT17 (Cettolo
et al., 2017). We use the 2011-2014 sets as valida-
tion data and the 2015 set as test data. We encode
each word using byte pair encoding (BPE, Sen-
nrich et al. 2016) with a joint segmentation of 32k
merges. As Vaswani et al. (2017), we finetune our
models using the Adam optimizer with an inverse
square root learning rate scheduler, with an initial
value of 5× 10−4 and a linear warm-up in the first
4000 steps. We evaluate translation quality with
sacreBLEU (Post, 2018). Training details, hyper-
parameters, and data statistics are described in §C.

Learning projections. To learn projections for
queries and keys (§4.2), we randomly selected 10K
long instances (n > 20 tokens) from the training
set and extracted the α-entmax attention graphs
Gh from the decoder self-attention for each head.
This led to an average of 8M and 9M positive pairs
(qi,kj) per layer for EN→DE and EN→FR, respec-
tively. In practice, due to the small number of pa-
rameters for each head (only 4,160), a single epoch

with Adam was sufficient to optimize the loss in
Eq. 7. The hyperparameters and the training details
for learning projections can be found in §C.

Pareto-curves. Using the learned projections,
we investigate the recall and the accuracy of all
Sparsefinder variants by comparing them with
Longformer, BigBird, Reformer, and Routing
Transformer. To get a fair comparison, we ana-
lyze each method for different levels of sparsity by
varying the following hyperparameters:

• Distance-based methods: the threshold t within
{0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}.

• Bucketing-based methods: the number of buck-
ets B within {2, 4, 6, 8, 10, 12, 16, 20}.

• Fixed-pattern methods: the number of random
blocks of size 1 within {2, 4, 6, 8, 10, 12, 16, 20}
for BigBird; and the number of random global to-
kens within {2, 4, 6, 8, 10, 12, 16, 20} for Long-
former.

We also add global and local patterns to
all methods, varying the window size within
{0, 1, 3, 5, 7, 9, 11, 15, 19, 23, 27} to get different
levels of locality. We further compare all meth-
ods with a simple window baseline that only in-
duces the window and global patterns. Since all
methods exhibit a tradeoff between sparsity and re-
call/accuracy, we plot the scores obtained by vary-
ing the hyperparameters and draw their respective
Pareto frontier to see the optimal Pareto-curve.

72

Methods whose points lie below this frontier are
said to be Pareto-dominated, meaning that their
recall/accuracy cannot be increased without sac-
rificing sparsity, or vice-versa. Concretely, each
point on the curve is measured as a function of the
approximation to the ground-truth α-entmax atten-
tion graph Gh by replacing it by Ĝh at test time.

Sparsity-recall tradeoff. Pareto-curves for the
sparsity-recall tradeoff are shown on the left of
Figure 2 for both language pairs. Overall, both
language pairs have similar trends for all meth-
ods. Sparsefinder’s distance-based and clustering
approaches Pareto-dominates the other methods,
followed by Routing Transformer. Interestingly,
Longformer, BigBird, Routing Transformer, and
Sparsefinder’s bucketing approach perform on par
with the baseline, indicating that a simple local
window is a hard baseline to beat. Since the LSH
attention in Reformer shares queries and keys be-
fore hashing, the resultant buckets are also shared
for queries and keys, explaining the high recall and
the low sparsity of Reformer.

Sparsity-accuracy tradeoff. We show the trade-
off between sparsity and BLEU on the right of
Figure 2. For lower levels of sparsity, all meth-
ods perform well, close to the full entmax trans-
former. But as sparsity increases, indicating that
only a few computations are necessary, we see
that the distance-based and k-means variants of
Sparsefinder Pareto-dominate other methods, keep-
ing a very high BLEU without abdicating sparsity.
In particular, Sparsefinder’s distance and clustering
approaches perform on par with the full entmax
transformer when the amount of sparsity is close
to the original entmax transformer (around the ver-
tical dashed line). Overall, these plots show that
methods with a high recall for higher levels of spar-
sity also tend to have a higher BLEU score.

Learned patterns. We select some heads and
show in Figure 3 examples of the pattern learned
by our k-means variant on EN→FR. More exam-
ples can be found in §E. We note that the window
pattern is useful to recover local connections. We
can see that the k-means variant groups more query
and key pairs than the actual number of ground-
truth edges (left plots). However, due to the sparse-
consistency property (right plots), most of these
predictions receive zero probability by α-entmax,
resulting in a very accurate approximation.

Figure 3: Learned patterns by Sparsefinder k-means
(left) and the subsequent attention weights (right).
Starred blocks represent ground-truth edges.

6 Experiments: Masked LM

Setup. Following Beltagy et al. (2020), we initial-
ize our model from a pretrained RoBERTa check-
point. We use the roberta-base model from
Huggingface’s transformers library, with 12 layers
and 12 heads.4 We finetune on WikiText-103 (Mer-
ity et al., 2017), replacing softmax by α-entmax
with α = 1.5 for all heads. Training details, model
hyperparameters, and data statistics can be found
in §D.

Learning projections. As done for MT experi-
ments, we learn to project keys and queries from
the original 64 dimensions into r = 4 dimensions.
To this end, we use 1K random samples from the
training set, each with length of 512, keeping half
for validation. We extract the α-entmax attention
graphs Gh but from the encoder self-attention of
each head, leading to an average of 3M positive
pairs per layer. Due to the small number of learn-
able parameters for each head (256), training was
done with Adam for one epoch.

Results. Our full transformer trained with α-
entmax achieved a perplexity score of 3.5004 with
an overall sparsity of 0.9804 on WikiText-103.
As in sentence-level MT experiments, we mea-
sure the sparsity-recall and the sparsity-perplexity
tradeoff via the change of Gh with Ĝh at test
time. Moreover, since MLM has longer inputs,
we increased the range of the window pattern to
{31, 41, 51, 75, 101, 125, 151, 175, 201, 251}.

We show in Figure 4 the Pareto curves for the
tradeoff between sparsity and recall (left), and the
tradeoff between sparsity and perplexity (right).
The curves for the sparsity-recall tradeoff are simi-
lar to the ones found in MT experiments, with the
distance-based method outperforming all methods,

4https://huggingface.co/roberta-base

73

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0.4

0.6

0.8

1.0

Re
ca

ll

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

0

10

20

30

BL
EU

Baseline BigBird Longformer Reformer Routing Sf. distance Sf. k-means Sf. quant.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Sparsity

0.70

0.75

0.80

0.85

0.90

0.95

Re
ca

ll

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Sparsity

6.0

5.5

5.0

4.5

4.0

3.5

Ne
g.

 P
er

pl
ex

ity

Figure 4: Sparsity-recall and sparsity-(neg-)perplexity tradeoff averaged across all layers and heads on WikiText-103.
The vertical dashed line represents the gold sparsity obtained by the full α-entmax transformer.

followed by the k-means variant of Sparsefinder
and Routing Transformer. In terms of perplexity,
our distance-based approach also Pareto-dominates
other methods, followed by our clustering vari-
ant and Routing Transformer. As in the MT ex-
periments, the window baseline yields a similar
sparsity-recall curve to other approaches, reinforc-
ing the importance of local patterns. Although the
distance-based method requires a quadratic num-
ber of computations, it reduces them by a factor
of d/r = 64/4 = 16, as described in §4.3, and
achieves better recall and perplexity than any other
tested method. This finding indicates clear room
for improvement in designing efficient attention
methods that have a better tradeoff between effi-
ciency and accuracy than existing approaches.

Learned patterns. In Figure 5 we show
Sparsefinder k-means’ predicted attention graphs
for a specific attention head that originally learned
to focus on coreference tokens. We can see that the
pattern induced by Sparsefinder keeps the behav-
ior of attending to coreferences. Concretely, our
method achieves a high recall score (∼ 80%) with
a high sparsity rate (∼ 75%) on this attention head.

Figure 5: Attention pattern learned by Sparsefinder k-
means that focus on coreference tokens.

Cluster analysis. To understand what is repre-
sented in each cluster learned by Sparsefinder k-
means, we run the following experiment: we obtain
POS tags using spaCy,5 and calculate the distribu-
tion of each tag over clusters for all heads. We
show an example in Figure 6, where Sparsefinder
learned a cluster that makes verbs and nouns attend
to themselves, and additionally to most auxiliary
verbs.

ADJ
ADP

ADV
AUX

CCONJ
DET INTJ

NOUN
NUM

PA
RT

PR
ON

PR
OPN

PU
NCT

SC
ONJ

SP
ACE

SY
M

VER
B X

0%

20%

40%

60%

80% Queries
Keys

Figure 6: Percentage of POS tags assigned to a given
cluster on the entire Wikitext 103 validation set.

7 Conclusions

We proposed Sparsefinder, a method to identify
the sparsity pattern of entmax-based transformers
while avoiding full computation of the score matrix.
Our method learns a low-dimensional projection of
queries and keys with a contrastive objective, and
comes with three variants: distance, quantization,
and clustering-based. We compared these variants
against competing approaches on two tasks: ma-
chine translation and masked language modeling.
We obtained favorable sparsity-recall and sparsity-
accuracy tradeoff curves. Our theoretical sparsity
provides a lower bound for how much computa-
tional sparsity can be achieved, and may guide
future research on efficient transformers.

5https://spacy.io/

74

Acknowledgments

This work was supported by the European Re-
search Council (ERC StG DeepSPIN 758969),
by the P2020 project MAIA (LISBOA-01-
0247- FEDER045909), and by the Fundação
para a Ciência e Tecnologia through project
PTDC/CCI-INF/4703/2021 (PRELUNA) and con-
tract UIDB/50008/2020.

References
Aurélien Bellet, Amaury Habrard, and Marc Sebban.

2015. Metric learning. Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning, 9(1):1–151.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv:2004.05150.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Advances in Neural Information Process-
ing Systems (NeurIPS), volume 33, pages 1877–1901.
Curran Associates, Inc.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli,
Niehues Jan, Stüker Sebastian, Sudoh Katsuitho,
Yoshino Koichiro, and Federmann Christian. 2017.
Overview of the iwslt 2017 evaluation campaign. In
Proceedings of the 14th International Workshop on
Spoken Language Translation (IWSLT), pages 2–14.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019. Generating long se-
quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, David Benjamin Be-
langer, Lucy J Colwell, and Adrian Weller. 2021. Re-
thinking attention with performers. In International
Conference on Learning Representations (ICLR).

Gonçalo M. Correia, Vlad Niculae, and André F. T.
Martins. 2019. Adaptively sparse transformers. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2174–
2184, Hong Kong, China. Association for Computa-
tional Linguistics.

Giannis Daras, Nikita Kitaev, Augustus Odena, and
Alexandros G Dimakis. 2020. Smyrf - efficient at-
tention using asymmetric clustering. In Advances in
Neural Information Processing Systems, volume 33,
pages 6476–6489. Curran Associates, Inc.

Renato Cordeiro de Amorim. 2012. Constrained clus-
tering with minkowski weighted k-means. In 2012
IEEE 13th International Symposium on Computa-
tional Intelligence and Informatics (CINTI), pages
13–17. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Miquel Esplà, Mikel Forcada, Gema Ramírez-Sánchez,
and Hieu Hoang. 2019. ParaCrawl: Web-scale paral-
lel corpora for the languages of the EU. In Proceed-
ings of Machine Translation Summit XVII Volume 2:
Translator, Project and User Tracks, pages 118–119,
Dublin, Ireland. European Association for Machine
Translation.

Patrick Fernandes, Kayo Yin, Graham Neubig, and An-
dré F. T. Martins. 2021. Measuring and increasing
context usage in context-aware machine translation.
In Joint Conference of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing (ACL-IJCNLP), Virtual.

A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret.
2020. Transformers are rnns: Fast autoregressive
transformers with linear attention. In Proceedings of
the International Conference on Machine Learning
(ICML).

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3499–3505, Florence, Italy. Association for
Computational Linguistics.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In In-
ternational Conference on Learning Representations
(ICLR).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Andre Martins and Ramon Astudillo. 2016. From soft-
max to sparsemax: A sparse model of attention and
multi-label classification. In International Confer-
ence on Machine Learning (ICML), volume 48 of
Proceedings of Machine Learning Research, pages
1614–1623, New York, New York, USA. PMLR.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations (ICLR).

75

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research
(JMLR), 12:2825–2830.

Ben Peters, Vlad Niculae, and André F. T. Martins. 2019.
Sparse sequence-to-sequence models. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 1504–1519, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Alessandro Raganato, Yves Scherrer, and Jörg Tiede-
mann. 2020. Fixed encoder self-attention patterns
in transformer-based machine translation. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 556–568, Online. Association
for Computational Linguistics.

Alessandro Raganato and Jörg Tiedemann. 2018. An
analysis of encoder representations in transformer-
based machine translation. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
287–297, Brussels, Belgium. Association for Com-
putational Linguistics.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2021. Efficient content-based sparse
attention with routing transformers. Transactions
of the Association for Computational Linguistics
(TACL), 9:53–68.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-
Micke, and Mohit Iyyer. 2021. Do long-range lan-
guage models actually use long-range context? In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 807–
822, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and
Da-Cheng Juan. 2020. Sparse sinkhorn attention.
In International Conference on Machine Learning
(ICML), pages 9438–9447. PMLR.

Constantino Tsallis. 1988. Possible generalization of
boltzmann-gibbs statistics. Journal of Statistical
Physics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 30, pages 5998–
6008. Curran Associates, Inc.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797–5808, Florence, Italy.
Association for Computational Linguistics.

A. Vyas, A. Katharopoulos, and F. Fleuret. 2020. Fast
transformers with clustered attention. In Proceedings
of the International Conference on Neural Informa-
tion Processing Systems (NeurIPS).

Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan
Schrödl. 2001. Constrained k-means clustering with
background knowledge. In International Conference
on Machine Learning (ICML), page 577–584.

Shuohang Wang, Luowei Zhou, Zhe Gan, Yen-Chun
Chen, Yuwei Fang, Siqi Sun, Yu Cheng, and Jingjing
Liu. 2021. Cluster-former: Clustering-based sparse
transformer for question answering. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 3958–3968, Online. Association
for Computational Linguistics.

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768.

Kilian Q Weinberger and Lawrence K Saul. 2009. Dis-
tance metric learning for large margin nearest neigh-
bor classification. Journal of Machine Learning Re-
search (JMLR), 10(2).

Eric P Xing, Andrew Y Ng, Michael I Jordan, and Stuart
Russell. 2002. Distance metric learning with applica-
tion to clustering with side-information. In Advances
in Neural Information Processing Systems (NeurIPS),
volume 15, page 12.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in Neural Information
Processing Systems (NeurIPS), 33.

Biao Zhang, Ivan Titov, and Rico Sennrich. 2021.
Sparse attention with linear units. arXiv preprint
arXiv:2104.07012.

Guangxiang Zhao, Junyang Lin, Zhiyuan Zhang, Xu-
ancheng Ren, Qi Su, and Xu Sun. 2019. Explicit
sparse transformer: Concentrated attention through
explicit selection. arXiv preprint arXiv:1912.11637.

76

A Sparse Attention

A natural way to get a sparse attention distribution is by using the sparsemax transformation (Martins
and Astudillo, 2016), which computes an Euclidean projection of the score vector onto the probability
simplex△n := {p ∈ Rn | p ≥ 0, 1⊤p = 1}, or, more generally, the α-entmax transformation (Peters
et al., 2019):

α-entmax(z) := arg max
p∈△n

p⊤z+Hα(p), (10)

where Hα is a generalization of the Shannon and Gini entropies proposed by Tsallis (1988), parametrized
by a scalar α ≥ 1:

Hα(p) :=

{
1

α(α−1)

∑
j(pj − pαj), α ̸= 1

−∑j pj log pj , α = 1.
(11)

Setting α = 1 recovers the softmax function, while for any value of α > 1 this transformation can return
a sparse probability vector. Letting α = 2, we recover sparsemax. A popular choice is α = 1.5, which
has been successfully used in machine translation and morphological inflection applications (Peters et al.,
2019; Correia et al., 2019).

Proof to Proposition 1.

Proof. From the definition of z|m and from Eq. 2, we have that
{
zj |m = zj >

τ(z)
α−1 if p∗j > 0

zj |m ≤ zj ≤ τ(z)
α−1 if p∗j = 0.

(12)

We first prove that τ(z|m) = τ(z). From the definition of τ(z) we have that
∑

j [(α−1)zj−τ(z)]
1/α−1

+ = 1.
Plugging the (in)equalities from Eq. 12, we thus have

1 =
∑

j

[(α− 1)zj − τ(z)]
1/α−1

+ =
∑

j

[(α− 1)zj |m − τ(z)]
1/α−1

+ . (13)

Since τ(z) satisfies the second equation – which is the condition that defines τ(z|m) – we thus conclude
that τ(z|m) = τ(z). Combining the results in Eqs. 12–13, we see that the supports of α-entmax(z) and
α-entmax(z|m) are the same and so are the thresholds τ , and therefore from Eq. 2 we conclude that
α-entmax(z|m) = α-entmax(z).

B Computing infrastructure

Our infrastructure consists of 4 machines with the specifications shown in Table 1. The machines were
used interchangeably, and all experiments were executed in a single GPU. Despite having machines with
different specifications, we did not observe large differences in the execution time of our models across
different machines.

GPU CPU

1. 4 × Titan Xp - 12GB 16 × AMD Ryzen 1950X @ 3.40GHz - 128GB
2. 4 × GTX 1080 Ti - 12GB 8 × Intel i7-9800X @ 3.80GHz - 128GB
3. 3 × RTX 2080 Ti - 12GB 12 × AMD Ryzen 2920X @ 3.50GHz - 128GB
4. 3 × RTX 2080 Ti - 12GB 12 × AMD Ryzen 2920X @ 3.50GHz - 128GB

Table 1: Computing infrastructure.

C Machine Translation

C.1 Setup
Data. Statistics for all datasets used in MT experiments can be found below in Table 2.

77

DATASET # TRAIN # TEST AVG. SENTENCE LENGTH

IWSLT17 (EN→DE) 206K 1080 20 ±14 / 19 ±13
IWSLT17 (EN→FR) 233K 1210 20 ±14 / 21 ±15

Table 2: Statistics for MT datasets.

Training and Model. We replicated the sentence-level model of Fernandes et al. (2021) with the
exception that we used α-entmax with α = 1.5 instead of softmax in all attention heads and layers. Table 3
shows some architecture (transformer large) and training hyperparameters used for MT experiments. We
refer to the original work of Fernandes et al. (2021) for more training details.

HYPERPARAM. VALUE

Hidden size 1024
Feedforward size 4096
Number of layers 6
Number of heads 16
Attention mapping π 1.5-entmax
Optimizer Adam
Number of epochs 20
Early stopping patience 10
Learning rate 0.0005
Scheduling Inverse square root
Linear warm-up steps 4000
Dropout 0.3
CoWord dropout 0.1
Beam size 5

Table 3: Hyperparmeters for neural machine translation models.

C.2 Projections setup
Data. Statistics for the subsets of IWSLT used in the projection analysis can be found below in Table 4.

TRAIN VALIDATION

PAIR # SENT. # POS. PAIRS AVG. SENT. LENGTH # SENT. # POS. PAIRS AVG. SENT. LENGTH

EN→DE 9K 8M ±1M 35 ±16 1K 330K ±56K 36 ±17
EN→FR 9K 9M ±1M 37 ±17 1K 334K ±58K 37 ±16

Table 4: Statistics for subsets of IWSLT used for training and evaluating projections.

Training. After extracting the α-entmax graphs, we optimize the learnable parameters of Equation 7 with
Adam over a single epoch. Moreover, we used the k-means implementation from scikit-learn (Pedregosa
et al., 2011) for our clustering-based approach. The hyperparameters used both for training the projections
and for clustering with k-means are shown in Table 5.

Projection analysis. We compare Sparsefinder, varying B ∈ {2, 4, 6, 8, 10, 12} for bucket-based
methods, and t ∈ {0.5, 1.0, 1.5, 2.0, 2.5} for the distance-based variant, with the following methods:

• Window baseline: connect all query and key pairs within a sliding window of size w ∈
{0, 1, 3, 5, 7, 9, 11, 15, 19, 23, 27}.

• Learnable patterns: Reformer by varying the number of buckets within {2, 4, 6, 8, 10, 12}; Routing
transformer by varying the number of clusters within c ∈ {2, 4, 6, 8, 10} with top-k set to ⌈n/c⌉ (i.e.
balanced clusters).

• Fixed patterns: BigBird by varying the number of random blocks within {2, 4, 6, 8, 10} with a block
size of 1; Longformer by varying the number of random global tokens within {4, 8, 12, 16, 20}.

78

HYPERPARAM. VALUE

Projection dim. r 4
Loss margin ω 1.0
Batch size 16
Optimizer Adam
Number of epochs 1
Learning rate 0.01
ℓ2 regularization 0
k-means init k-means++
k-means max num. inits 10
k-means max iters 300

Table 5: Hyperparmeters for MT projections.

Sparsity-recall tradeoff per layer and head. Plots are shown in Figures 7 and 8 for EN→DE and
EN→FR, respectively.

Figure 7: Sparsity-recall tradeoffs with a fixed window pattern of size 11 for EN→DE.

Figure 8: Sparsity-recall tradeoffs with a fixed window pattern of size 11 for EN→FR.

D Masked Language Modeling

D.1 Setup
Data and model. In order to have a transformer model trained with α-entmax, we finetuned RoBERTa-
Base (Liu et al., 2019) on WikiText-103 (Merity et al., 2017) over 3000 steps with Adam (learning rate of

79

3× 10−5). To mimic the finetuning approach adopted by Longformer, we employed a batch size of 2 by
accumulating gradients over 32 steps due to GPU memory constraints. Table 6 shows some architecture
(transformer large) and training hyperparameters used for MT experiments. We refer to the original work
of Liu et al. (2019) for more architecture details.

HYPERPARAM. VALUE

Hidden size 64
Feedforward size 3072
Max input length 514
Number of layers 12
Number of heads 12
Attention mapping π 1.5-entmax
Optimizer Adam
Number of steps 3000
Learning rate 0.00003

Table 6: Hyperparmeters for masked language modeling models.

D.2 Projections setup
Data and training. The subset used for Masked LM projections experiments contains 500 instances for
training and 500 instances for validation. Moreover, all instances have a sentence length of 512 tokens.
We got 3M (±1M) positive pairs for training and 2.5M (±1M) for validation. The hyperparameters for
Masked LM are the same as the ones used in the MT experiments, shown in Table 5.

Projection analysis. We perform the same analysis as in MT, but now we vary the window size of the
baseline within {0, 1, 3, 7, 11, 25, 31, 41, 51, 75, 101, 125, 151, 175, 201, 251, 301, 351, 401, 451, 501,
512}.

Sparsity-recall tradeoff per layer and head. Plots are shown next in Figure 9.

Figure 9: Sparsity-recall tradeoffs with a fixed window pattern of size 25 for MLM.

E Attention plots

Examples of attention maps can be seen in Figure 10 and 11.

80

Figure 10: Learned patterns by Sparsefinder k-means (left) and the subsequent attention weights (right). Starred
blocks represent ground-truth edges.

Figure 11: Learned patterns by Sparsefinder k-means (left) and the subsequent attention weights (right). Starred
blocks represent ground-truth edges.

81

Author Index

Chiu, Jeffrey, 40
Cochez, Michael, 32

Daza, Daniel, 32
Ding, Zifeng, 22
Doshi-Velez, Finale, 40

Fernandes, Patrick, 67
Fonseca, Erick Rocha, 67
Fraser, Alexander, 52
Fu, Guirong, 22

Groth, Paul, 32
Góis, António, 67

Han, Zhen, 22
Hiraoka, Tatsuya, 11

Kando, Shunsuke, 1

Libovický, Jindřich, 52

Ma, Youmi, 11
Ma, Yunpu, 22
Martins, Andre, 67
Meng, Zhao, 22
Mittal, Rajat, 40
Miyao, Yusuke, 1

Noji, Hiroshi, 1

Okazaki, Naoaki, 11

Schubert, Matthias, 22
Sharma, Abhishek, 40

Tresp, Volker, 22
Treviso, Marcos Vinicius, 67
Tumma, Neehal, 40

Wattenhofer, Roger, 22

82

