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Abstract

Conversations between a clinician and a patient,
in natural conditions, are valuable sources of
information for medical follow-up. The auto-
matic analysis of these dialogues could help
extract new language markers and speed up the
clinicians’ reports. Yet, it is not clear which
model is the most efficient to detect and iden-
tify the speaker turns, especially for individu-
als with speech disorders. Here, we proposed
a split of the data that allows conducting a
comparative evaluation of different diarization
methods. We designed and trained end-to-end
neural network architectures to directly tackle
this task from the raw signal and evaluate each
approach under the same metric. We also stud-
ied the effect of fine-tuning models to find the
best performance. Experimental results are re-
ported on naturalistic clinical conversations be-
tween Psychologists and Interviewees, at differ-
ent stages of Huntington’s disease, displaying
a large panel of speech disorders. We found
out that our best end-to-end model achieved
19.5% IER on the test set, compared to 23.6%
achieved by the finetuning of the X-vector ar-
chitecture. Finally, we observed that we could
extract clinical markers directly from the au-
tomatic systems, highlighting the clinical rele-
vance of our methods.

1 Introduction

During the last decades, it became easier to collect
large naturalistic corpora of speech data. It is now
possible to obtain new realistic measurements of
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turn-takings and linguistic behaviours (Ash and
Grossman, 2015). These measurements can be
especially useful during clinical interviews as they
augment the current clinical panel of assessments
and unlock home-based assessments (Matton et al.,
2019). The remote automatic measure of symptoms
of patients with Neurodegenerative diseases could
greatly improve the follow-up of patients and speed-
up ongoing clinical trials.

Yet, this methodology relies on the heavy bur-
den of manual annotation to reach the necessary
amount needed to draw significant conclusions. It
is now indispensable to have robust speech process-
ing pipelines to extract meaningful insights from
these long naturalistic datasets (Lahiri et al., 2020).
Huntington’s Disease represents a unique opportu-
nity to design and test these speech algorithms for
Neurodegenerative diseases. Indeed, individuals
with the Huntington’s disease can exhibit a large
spectrum of speech and language symptoms (Vo-
gel et al., 2012) and it is possible to follow gene
carriers even before the official clinical onset of the
disease (Hinzen et al., 2018). The first unavoidable
computational tasks to extract speech and linguistic
information from medical interviews is the diariza-
tion: (1) the detection of speaker-homogeneous
portions of voice activity (Graf et al., 2015) and
(2) the identification of speaker (Bigot et al., 2010).
Speaker turns are clinically informative for diag-
nostic in Huntington’s Disease (Perez et al., 2018;
Vogel et al., 2012).

First, a number of studies are trying to solve
this problem directly from the audio signal and
linguistic outputs, also referred to as Speaker
Role Recognition. They are taking advantage of
the specificities (ex: prosody, specific vocabulary,
adapted language models) of each role in the dif-
ferent domains: Broadcast news programs (Bigot
et al., 2010), Meetings (Sapru and Valente, 2012),
Medical conversations (Flemotomos et al., 2018),
Child-centered recordings (Lavechin et al., 2020;
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Figure 1: Two approaches for the diarization of conver-
sational clinical interviews. The steps for the Speaker
Enrollment Protocol are in Blue, and Green for the
Speaker Role Recognition.

Koluguri et al., 2020).

Another approach relies on Speaker Enrollment
(Snyder et al., 2017; Heigold et al., 2016), it aims
to check the identity of a given speech segment
based on a enrolled speaker template. Our study
differ from these studies as they are evaluating
their pipelines with already segmented speaker-
homogeneous speech segments. Another related
approach is Personal VAD (Voice Activity Detec-
tion) model from (Ding et al., 2020) where they
used enrolled speaker template to detect speech
segments from each individual speaker.

None of these approaches have been compared
under the same evaluation metric, despite prior
works aiming at solving both these tasks (García
et al., 2019) and their high degree of similarities.

Here in this paper, we aimed to detect automat-
ically the portions of speech and to identify the
speakers in medical conversation between Psychol-
ogists and Interviewees. These interviewees are
either Healthy Controls (C), gene carriers with-
out overt manifestation of Huntington’s Disease
(preHD) and manifest gene carriers of Hunting-
ton’s Disease (HD). We introduced a novel way to
split the datasets so that we are now capable to com-
pare two different speech processing approaches
to deal with these 2 problems (Figure 1): Speaker
Role Recognition and Speaker Enrollment Protocol.
We showed the clinical relevance of these pipelines
with the extraction speech markers that have been
found predictive in Huntington’s Disease.

2 Data, evaluation splits, metrics

2.1 Dataset
Ninety four participants were included from
two observational cohorts (NCT01412125 and
NCT03119246) in this ancillary study at the Hospi-
tal Henri-Mondor Créteil, France): 72 people tested
with a number of CAG repeats on the Huntingtin
gene above 35 (CAG > 35), and 22 Healthy Con-
trols (C). Mutant Huntington gene carriers were
considered premanifest if they both score less than
five at the Total Motor score (TMS) and their To-
tal functional capacity (TFC) equals 13 (Tabrizi
et al., 2009) using the Unified Huntington Disease
Rating Scale (UHDRS). All participants signed an
informed consent and conducted an interview with
an expert psychologist. Therefore in the diarization
setting, there are two roles in each interview: a
Psychologist and an Interviewee. The speech data
were annotated with Seshat (Titeux* et al., 2020)
and Praat (Boersma et al., 2002) softwares. The
dataset is composed of K = 94 interviews I1...K .
We designed a new way to split of speech dataset
to compare different diarization approaches: an
end-to-end Speaker Role Recognition model and a
Speaker Enrollment pipeline (See Figure 2). The
dataset is split in three sets which we refer to meta-
train set Mtrain, meta-dev set Mdev and meta-test
set Mtest with the ratio of 60%, 20%, and 20%, re-
spectively. Interview I ∈ I1...K is composed of NI

segments I = {U0, U2, . . . , UNI
}. Each segment

Ui is pronounced by a speaker si. We summarized
the corpus statistics in Table 1.

Each interview I in the meta-dev and meta-test
is split in two sets which we refer dev set Xdev and
test set Xtest. Xtest is always kept fixed through all
experiments, and we study the influence of the size
of the Xdev based on Tdev that filters the segments
(cf Figure 2).

All the data from the meta-train set Mtrain is
used to train or fine-tune the neural network models
for voice activity detection, speaker change detec-
tion, speaker role recognition, and speaker enroll-
ment. The dev set Xdev of the meta-dev set Mdev

and the dev set Xdev of the meta-test set Mtest are
only used for the speaker enrollment experiments,
to build the template representation of each speak-
ers. The results on the test set Xtest of the meta-dev
set Mdev are used to select all the hyper-parameters
and select the best model for each experiment. The
final comparison is done with the test set Xtest of
the meta-test set Mtest.
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Figure 2: Illustration of the data split with 4 interviews.
Each line Ii represents an interview between the Inter-
viewee and the Psychologist. The elevation of each row
indicates ’who speaks when’. The segments can over-
lap.

Table 1: Corpus statistics. P stands for Psychologist.
IT stands for Interviewee. Dur stands for Duration and
reported in hour. Durations are reported in hours.

Mtrain Mdev Mtest

#Interviews 57 18 19
#Segments IT 21400 7503 7788
#Segments P 4184 1381 1517
Dur Role IT 7.65 3.02 3.21
Dur Role P 3.54 1.14 1.15
Dur Overlap 1.10 0.50 0.45
C/preHD/HD 13/11/33 4/4/10 5/3/11

2.2 Metrics
To compare final performance of each approach,
we use the Identification Error Rate (IER) taking
into account both the segmentation and confusion
errors. IER is obtained with pyannote.metrics

(Bredin, 2017):

IER =
Tfalse alarm + Tmissed detection + Tconfusion

TTotal

The Tconfusion
TTotal

component in the IER is related
to the Miss-classification Rate (MR%) used in
Speaker Role Recognition study (Flemotomos
et al., 2019), which is based on Frames and not
duration of the turns. We compared the different
approaches as a function of the size of the enroll-
ment Tdev in Figure 3.

3 Methods

3.1 Speaker Role Recognition
We adapted the approach from (Lavechin et al.,
2020) for the Speaker Role Recognition. We

trained on Mtrain a unique model to detect each
role (Psychologist,Interviewee), and selects the
best epoch on Mdev. This is a multi-label multi-
class segmentation problem. A threshold parameter
for each role is optimized on the Meta-dev set Mdev

for the two output units of the model. Therefore
the two classes can be activated at the same time,
i.e. we can also detect overlapped speech. To solve
and model this task, we used SincNet filters (Ra-
vanelli and Bengio, 2018) to obtain adapted speech
features vectors from the audio signal. The Sinc-
Net output is fed to a stack of 2 bi-recurrent LSTM
layers with hidden size of 128, then pass to a stack
of 2 feed-forward layers of size 128 before a final
decision layer. We used a binary cross-entropy loss
and a cyclic scheduler as training procedure. The
hyper-parameters to train our model can be found
here 1.

3.2 Speaker enrollment protocol

The Speaker enrollment protocol can be decom-
posed into four tasks: (1) Voice Activity Detection
(2) Speaker Change Detection, (3) Enrollment, (4)
Identification. We extended the speech processing
toolkit from (Bredin et al., 2020) pyannote.audio
to run our experiments. Clinical laboratories can
not all re-train in-domain speech processing mod-
els due to data scarcity or a lack of computational
resources. Therefore, we evaluated pretrained mod-
els on open-source datasets and transfer models on
our dataset to evaluate these out-of-domain perfor-
mances with real clinical conversational conditions.

3.2.1 Voice Activity Detection
The first step is the Voice Activity Detection (VAD),
i.e. obtain the speech segments in the audio signal.
It can be modeled as an audio sequence labeling
task. There are 2 classes (Speech or Non-Speech).
The VAD labels for each interview I are the pres-
ence or not of a segment Ui at time t.

The model can be used already Pretrained or Re-
trained on the meta-train set Mtrain of our dataset.
We choose the DIHARD dataset (Ryant et al., 2019)
as a potential pretrained dataset as it contains multi-
ple source domain data (clinical interviews among
them). When trained from scratch, the training is
done for 200 pyannote epochs and the model is
selected on the Meta-dev Mdev. The model is also
composed of SincNet filters with 2 bi-recurrent
LSTM layers and 2 feed-forward layers. The full

1https://tinyurl.com/etfrky3w
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specifications can be found here2.

3.2.2 Speaker Change Detection
The second step is the Speaker Change Detection
(SCD), i.e. obtain the moment when one of a
speaker starts or stops talking. It can aslo be mod-
eled as an audio sequence labeling task. There are
2 classes (Change or No-Change). The SCD labels
for each interview I are the start or end of a seg-
ment Ui at time t. We also compared Pretrained
on DIHARD and Retrained models. We used the
same model as for the Voice Activity Detection.
The full specifications can be found here.

Based on VAD and SCD outputs, for each Inter-
view I we obtain a set of N ′

I candidates speaker-
homogeneous segments {Û1, . . . ÛN ′

I
}.

3.2.3 Enrollment
In the enrollment stage, we need to get a Speaker
Embedding function fθ for our specific task. We
combined SincNet filters and the X-vector archi-
tecture (Snyder et al., 2017) as in (Bredin et al.,
2020). For finetuning, we froze all layers and fine-
tuned the last layer. We used the VoxCeleb2 dataset
(Nagrani et al., 2017) as a pretraining dataset as
it contains a diverse distribution of speakers and
recording conditions.

Then, we used the set of segments from the
dev set Xdev of the meta-dev and meta-test to
build a template vector mj for each speaker j in
the interview I . Xdev contain a set of segments
Uenrollment speaker j from each speaker j. The start of
each segment Uenrollment speaker j needs to be smaller
than Tdev. We computed the average of the repre-
sentations for each speaker j:

mj =
1

|Uenrollment speaker j |
∑

U∈Uenrollment speaker j

fθ(U)

(1)
In principle, the more data you have to build tem-
plate of each speaker, the easier it is to distin-
guish them. Thus, we studied the effect of the
size of the enrollment based on the parameter
Tdev ∈ (90s, 100s, . . . , 180s) to build the template
mj (Larcher et al., 2014).

3.2.4 Identification
For the identification stage, we use the function fθ
and the different representation mj of the speakers
from the enrollment stage. We used the following

2https://tinyurl.com/44677f7c

Figure 3: Identification Error Rates for the different
combination of approaches on the test set Xtest of the
meta-test set Mtest as a function of the size of the en-
rollment parameter Tdev. Spk Emb., VAD,SCD stand
for Speaker Embedding, Voice Activity Detection and
Speaker Change Detection. Best performance of each
approach is displayed at the best Tdev .

cosine distance D to build a scoring function and
compare each segment Û ∈ {Û1, . . . ÛN ′

I
} to each

template mj :

D(Û ,mj) =
1

2


1− fθ(Û)⊤mj[

∥fθ(Û)∥ ∥mj∥
]


 (2)

argminj D(Û ,mj) : Selects Speaker j (3)

In addition, we analysed topline performance of the
speaker embedding models when the Ground Truth
Segmentation is provided. Finally, we computed
a chance baseline based on speaker Enrollment
by randomly permutating all the cosine distances.
Spearman correlation is computed to compare clin-
ical markers extracted from our best system to
ground truth extractions (Figures 4 and 5).

4 Results and discussions

Figure 3 shows results in term of IER for the differ-
ent approaches. Both approaches greatly improved
over chance. If we consider pipelines solving both
segmentation and identification, our best perfor-
mance is obtained using the Speaker Role Recogni-
tion approach with IER=19.5% while the Speaker
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Table 2: Speaker Role Recognition Ablation study:
Identification Error Rates on the test set Xtest of the
meta-test set Mtest as a function of the percentage of
interview in the meta-train set Mtrain. MD stands for
Missed detection, FA for False Alarm and Conf. for
Confusion

% of Mtrain MD FA Conf. IER
10% 8.0 14.5 3.9 26.5
20% 7.8 12.4 3.8 24.0
50% 7.5 10.4 2.5 20.7
100% 7.1 10.2 2.3 19.5

Figure 4: Ratio of Silence from the Ground truth seg-
mentation and from the best Speaker role recognition
pipeline.

Enrollment Protocol obtained at best IER=23.6%
at Tdev = 120s, with Retrained VAD/SCD models
and Finetuned Speaker Embedding. Even though,
the Speaker Enrollment protocol has per-speaker
templates, it is not surpassing the Speaker Role
Recognition approach. The topline with Ground
Truth Segmentation (IER=9.1%) indicated that
Speaker Enrollment could benefit greatly from
a better detection of speaker-homogeneous turns.
Errors of Speaker Enrollment are accumulated
through the steps and can not be recovered, while
Speaker Role Recognition takes advantage of solv-
ing all steps together in an end-to-end approach.
Increasing the size of the Template Enrollment mj

for each speaker with Tdev lead to slight improve-
ments to all Speaker Enrollment methods. The fine-
tuning of the X-vector speaker embedding model
with in-domain is especially crucial (ex: Based on
retrained VAD/SCD the IER decreases from 28.2%

Figure 5: Standard Deviations (SD) of the Duration of
Utterances of Interviewees from the Ground truth seg-
mentation and the best Speaker role recognition system.

to 23.6%). We ran an additional ablation experi-
ment (Table 2) for the Speaker Role Recognition
to measure the amount of data necessary. This ab-
lation study informed us on the necessary amount
of data to reach certain level of performance. Even
though models are better than Chance, we found
out that at least 50% of our dataset (28 Interviews)
is necessary to outperform the Speaker Enrollment
Protocol pipeline (IER of 20.7% vs 23.6%). The
analysis of the pattern of errors showed that the
most important component is the False Alarm (FA),
and a tenfold increase in dataset size allows to gain
4 points of FA. Therefore, most of the errors come
from the voice activity detection part of the sys-
tem. One of our hypothesis is that the system is
confused by too much ambient noises from the hos-
pital environment and thus potentially trigger too
much positive presence of speech.

In previous studies in Huntington’s Disease (Vo-
gel et al., 2012; Perez et al., 2018), the Ratio of
Silence and Statistics on utterances were informa-
tive to distinguish between classes of Individu-
als. These speech markers can be extracted di-
rectly from the predictions of the Speaker Role
Recognition outputs. We computed the Ratio of
Silence and the Standard Deviation of Duration
of Utterances on the test set of the Meta-test set
Mtest. This computation was done both from the
Ground Truth Segmentation and the segmentation
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provided by the Speaker role recognition system
(Figures 4, 5. We observed that the automatic sys-
tem outputs behaved differently as a function of
clinical marker. The Ratio of Silence was bet-
ter predicted (significant spearman correlation of
r = 0.579, p = 0.009) than the SD of Duration of
Utterances (non significant spearman correlation
of r = 0.325, p = 0.175). One potential interpre-
tation of our results is that the difference between
the ratio and the standard deviation reveals that our
pipeline is great overall to obtain summary statis-
tics of the interview, but its precision at the turn-
taking level is not sufficient to obtain turn statistics.
Some bias of the predictive system might not hurt
the IER metric but hurt the reliability of some clin-
ical measures.

5 Conclusion and future work

Detection and Identification of speaker turns are
fundamental problems in speech processing, es-
pecially in healthcare applications. While works
studying these problems in isolation has provided
valuable insights, in this work, we showed that
Speaker Role Recognition was the most suitable
approach for Interviewees at different stages of
Huntington’s Disease. For future work, we plan
to investigate the use of these methods to derive
robust biomarkers automatically and compare them
to more classic approaches (Riad et al., 2020; Perez
et al., 2018; Romana et al., 2020).
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