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Abstract 
Language model pre-training has significantly impacted NLP and resulted in performance gains on many NLP-related tasks, 
but comparative study of different approaches on many low-resource languages seems to be missing. This paper attempts to 
investigate appropriate methods for pretraining a Transformer-based model for the Nepali language. We focus on the language-
specific aspects that need to be considered for modeling. Although some language models have been trained for Nepali, the 
study is far from sufficient. We train three distinct Transformer-based masked language models for Nepali text sequences: 
distilbert-base (Sanh et al., 2019) for its efficiency and minuteness, deberta-base (P. He et al., 2020) for its capability of 
modeling the dependency of nearby token pairs and XLM-ROBERTa (Conneau et al., 2020) for its capabilities to handle 
multilingual downstream tasks. We evaluate and compare these models with other Transformer-based models on a downstream 
classification task with an aim to suggest an effective strategy for training low-resource language models and their fine-tuning. 
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1. Introduction 
The Transformer has become the go-to method for 
neural language modeling. It is highly parallelizable 
and abides by the scaling laws (i.e. performance gets 
better in accordance to the number of parameters, 
dataset size and the amount of compute) (Kaplan et al., 
2020). In addition, ULMFiT (Howard & Ruder, 2018) 
introduced techniques that allowed neural networks to 
train a base language model which could then be fine-
tuned on downstream tasks such as classification, text 
generation, etc. with much lesser data. Following these 
techniques, many encoder-based transformer models 
have achieved state-of-the-art results in text 
classification including BERT (Devlin et al., 2019), 
RoBERTa (Liu et al., 2019), XLM (Lample & 
Conneau, 2019), XLM-RoBERTa (Conneau et al., 
2020), ALBERT (Z. He et al., 2018), ALBERT (Lan et 
al., 2019), ELECTRA (Clark et al., 2020) and 
DeBERTa (P. He et al., 2020). 

However, these models are essentially trained on high-
resource languages such as English, French, etc. and 
sufficient efforts and attention have not been given to 
low-resourced languages. This is primarily because the 
transformer model requires huge datasets and hence it 
is not straightforward and easy task for low-resource 
languages (Ruder, 2020). 

The Nepali language belongs to the Indo-Aryan family 
which is written in the Devanagari script. It is the 
official language and lingua franca of Nepal and one of 
the 22 scheduled languages in India. Furthermore, it is 
spoken by about a quarter of the population of Bhutan 
and in Burma and different parts of North East India. 
According to the 2011 census, there are 16 million 
native speakers with over 9 million L2 speakers 
("Nepali language - Wikipedia", 2022).  

Nepali is a free word order language without upper or 
lower case of the characters. It is written from left to 
right and follows the Subject Object Verb (SOV) 
pattern as the sentential grammar structure. There are 
33 consonant letters, 11 independent vowel letters and 
10 dependent vowel signs or matras in Nepali. The 
consonant letters may exist independently or in 
conjunction with dependent symbols (matras, halanta, 
etc.) to form a compound letter. The halanta symbol 
(represented by U+094D ( ◌् )  Devanagari sign Virama 
in Unicode) is a dependent symbol which is used to 
suppress the inherent vowel sign in any consonant 
letter and is mostly used to produce half characters in 
Nepali. Similarly, there are other dependent symbols 
including, Chandrabindu ( ◌ँ ) and Shirbindu ( ◌ं ) which 
indicates nasalization of a vowel and consonants 
respectively. The bisarga ( ◌ः ) dependent symbol 
appears in some Nepali words, but they are not usually 
pronounced. Purna biram ( । ) marks the end of a 
sentence, similar to a full stop. The set of digits ( ०, १, २, 
३, ४, ५, ६, ७, ८, ९ ) are used as numbers in Nepali. ("Nepali 
alphabet", 2015). 

In the context of low-resource language modeling with 
transformers, Indic-Transformers (Jain et al., 2020) 
train and benchmark three languages, namely, Hindi, 
Bengali and Telugu on tasks including classification, 
POS tagging and Question Answering. Similarly, in 
line to this, we focus on investigating various 
approaches to modeling the Nepali language using 
contemporary transformer models. 

As for the Nepali language, attempts have been made 
to understand the grammatical structure of the Nepali 
Language in the work of  (Bal, 2004a; 2004b). Some 
notable works related to Nepali language NLP 
includes, summarization (Mishra et al., 2020), Named 
entity recognition (Maharjan G., Bal B.K., 2019), etc. 
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However, not much effort has been made on working 
with contemporary transformer models. Some 
encoder-based transformer models including 
nepaliBERT (Pudasaini, 2022) and NepaliBERT 
(Rajan, 2021) have been trained for Nepali, whose 
performance is yet to be analyzed. 

In this work, we focus on training three encoder-based 
transformer models, DistilBERT (Sanh et al., 2019), 
DeBERTa (P. He et al., 2020) and XLM-R (Conneau 
et al., 2020) for Nepali. The objective is to find a 
suitable procedure for training low-resource languages 
like Nepali.  

The contributions of our paper are as follows: 

• We train an SPM, Sentence Piece Model (Kudo 
& Richardson, 2018) for sub-word tokenization 
of texts. Devanagari characters are different 
compared to the languages on which most 
transformer-trained models are trained and 
therefore, the development of a suitable tokenizer 
model should be considered. The XLM-R paper 
(Conneau et al., 2020) shows that they observed 
negligible loss in performance using SPM as 
compared to models trained with language-
specific pre-processing. This SPM tokenizer will 
be used for training the language models. 

• We train various encoder-based models to 
compare which transformer architectures are 
feasible for Nepali Language training. 

• We present a comparison of these models by 
evaluating them on a downstream text-
classification task. And since fine-tuning 
multilingual models is a popular method for 
modeling a low-resource language, we also 
reflect the performance of a multilingual model, 
XLM-R through a comparative study. 

2. Background & Related Work 
Representation learning aims to learn representations 
of raw data as useful information for further 
classification or prediction. Early attempts in this 
direction account to pre-trained word embeddings on a 
large and diverse corpus (Mikolov et al., 2013). An 
inductive transfer is then performed by fine-tuning on 
top of the learned embeddings that allowed neural 
networks to train on various NLP tasks. Recurrent 
neural networks (RNNs) along with usage of 
techniques including long short-term memory (LSTM) 
(Hochreiter & Schmidhuber, 1997) and gated recurrent 
units (GRU) (Chung et al., 2014) on top of learned 
representations achieved state-of-the-art on many NLP 
tasks. 

The paper, Universal Language Model Fine-tuning 
(ULMFiT) (Howard & Ruder, 2018) introduced how 
Causal Language Modeling (CLM) can be pre-trained 
on neural networks as opposed to word embeddings 
which used only a single neural network layer for pre-
training the diverse corpus. Recent methodologies, 
however, use Masked Language Modeling (MLM) for 
pre-training encoder-based transformers. 

2.1 Masked Language Modeling (MLM) 
As opposed to CLM, where the model attempts to 
predict the next sequences in a sentence, MLM 
attempts to predict the middle words in the sentence 
(Devlin et al., 2019). This ensures that the model learns 
contextual word representations and the learning is bi-
directional. Specifically, given a sequence of text X = 
{xi}, X is corrupted into X	̃ by masking some percentile 
of its tokens at random and then a language model is 
trained to re-construct X by predicting the masked 
tokens x	̃. The percentile of tokens masked on the 
original BERT is 15%, however in the work by (Wettig 
et al., 2022), they suggest that 20% masking performs 
better for small-sized transformer models whereas 
huge models favor MLM probability as high as  40%.	

2.2 Auto Encoding Transformers 
Transformer models are based on attention 
mechanisms (Vaswani et al., 2017) which consists of 
Encoder and/or Decoder sub-architectures. The 
Encoder gets good at understanding the input text and 
extracting its feature representations, whereas the 
Decoder gets good at predicting the targeted output 
sequences. The Encoder part of transformer 
architecture can independently be used as a many-to-
one sequential model, where the sequence length of 
input tokens may vary provided that the model’s output 
size remains constant. Such auto-encoding 
transformers pre-trained with language modeling 
objectives are the state-of-the-art models on the GLUE 
benchmark (Wang et al., 2018) which measures 
Natural Language Understanding (NLU) across several 
tasks of varying difficulty. Auto encoding models that 
use BERT-like architecture (Devlin et al., 2019) still 
dominate research and industry when fine-tuned on 
NLU tasks such as text classification, named entity 
recognition, and question answering. 

3. Experimental Workflow 
Our experiments are performed on Auto-encoding 
Transformers. As for training the language models, we 
set up a pipelined procedure consisting of data 
collection, tokenization, language model training and 
its comparative evaluation on a downstream 
classification task. 

3.1 Nepali Text Data  
With the objective of training language models from 
scratch, we use monolingual unlabeled Nepali texts. 
We gathered 13 million text sequences (phrases and 
paragraphs) by combining and de-duplicating three 
publicly available datasets: OSCAR (Suárez et al., 
2020), cc100 dataset (Conneau et al., 2020) and the 
iNLTK dataset (Arora, 2020). 

3.2 Tokenization 
Tokenizing Devanagari texts differs from that of 
English texts due to different ways of combining 
consonants, vowels and vowel modifiers. For example, 
the compound letter, ‘लु’ (ल + ◌ु) is formed by 
combining the free form character, ‘ल’ and the vowel-
sign, ‘◌ु’. However, the tokenizer used by BERT and 
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the original Multilingual BERT removes some vowel 
symbols and other dependent symbols, and only the 
free form character remains. For example, the letter ‘लु’ 
is tokenized as: 

‘लु’ (ल + ◌ु) → ‘ल’ (‘◌ु’ is removed) 

The use of Unicode normalizations causes this 
behavior in languages with non-Latin alphabets. When 
tokenizing a decomposed character sequence into 
multiple pieces, we may break the original meaning of 
the character. This creates ambiguities in the Nepali 
Language.  

For example, the word, ‘फु्ल’ can be tokenized as: 
 

Before Tokenization Tokenized 
Decomposition: फु्ल (फ + ◌् + ल + ◌ु) फल (फ+ ल) 
Meaning: Flu Fruit 

Table 1: Decomposition of the word, ‘‘फु्ल’’ 

The removal of the vowel, ‘◌ु’ and the halanta, ‘◌्’ 
changes the original meaning of the word and causes 
ambiguity resulting in two different words having the 
same meaning. 
We opted for a Sentence Piece Model (Kudo & 
Richardson, 2018) for training the tokenizer on the 
dataset that we collected. This approach is also used by 
the XLM-R for training multilingual models. 
As for testing the tokenizers, we consider two sub-
word tokenization approaches:  

3.2.1 WordPiece Tokenizer 
WordPiece tokenizer is used by nepaliBERT 
(Pudasaini, 2022) and NepaliBERT (Rajan, 2021). 
WorldPiece tokenization distinguishes workpieces at 
the start of a word from pieces starting in the middle 
(Song et al., 2020). The latter start with a special 
symbol ‘##’ in BERT, which is called the suffix 
indicator. For example, the word चन्द्रािगिरमा may be 
tokenized as [‘चन्द्रािगिर’, ‘##मा’]. 

3.2.2 Sentencepiece Tokenizer (SPM) 
SentencePiece tokenizer treats the input texts just as a 
sequence of Unicode characters. Even the whitespace 
is handled as a normal symbol. SentencePiece first 
escapes the whitespaces with a meta symbol, ‘_’ 
(U+2581) and tokenizes the input into an arbitrary sub-
word sequence.  

Input Text : “फु्लको कारणले हुने पिहलोनेपाली भवकृष्ण भट्टराई” 
Tokenizer Tokenized output 
 Shushant/ 
nepaliBERT 

[‘फल’, ‘##को’, ‘कारण’, ‘##ल’, ‘ह’, 
##न’,‘पिहलो’, ‘##न’, ‘##पाली’, ‘भव’, 
‘##क’, ‘##षण’, ‘भट’, ‘##टर’, ‘##◌ाई’] 

 R4J4N/ 
NepaliBERT 

[‘फु्ल’, ‘##को’, ‘कारणले’, ‘हुने’, ‘पिहलो’, 
‘##नेपाली’, ‘भव’, ‘##कृष्ण’, ‘भट्टराई’] 

Sentence Piece 
Model [Ours] 

[‘▁फु्ल’,  ‘को’,  ‘▁कारणले’,  ‘▁हुने’,  
‘▁पिहलो’,  ‘नेपाली’,  ‘▁’,  ‘भव’,  
‘कृष्ण’,  ‘▁भट्टराई’] 

Table 2: Comparison of tokenizer outputs 

We observe that the approach used by nepaliBERT 
frequently misses the dependent symbols. The 
NepaliBERT tokenizer performs quite well, but we 
choose to use the SPM tokenizer for its flexibility in 
generating text sequences on auto-regressive 
transformers. The tokenizer model is trained with a 
vocabulary size of 24,576 tokens. We use this 
tokenizer for all the language models that are trained. 

3.3 MLM Training Feasibility Test 
With the dataset and tokenizer developed, we train 
some of the popular language models and analyze the 
performance based on training data size, training time 
and computational resource constraints. We set a 
baseline cut-off perplexity of 54.598 (i.e. training loss 
of 4.0) and perform a constrained training in order to 
determine suitable models for training the language 
model. 

Following models are considered for the constrained 
training: 

• De-berta-base (P. He et al., 2020) 
• Distilbert-base (Sanh et al., 2019) 
• XLM-roberta (XLM-R) (Conneau et al., 

2020) 

Figure 1: Training loss vs. Time 

Model Batch 
Size 

MLM 
Probability 

Time 
taken 
(hh:mm) 

No. of 
training 
samples 

distilbert 28 15% 3:59 406,000 
de-berta 6 20% 1:39 546,000 
xlm-r 1 15% 9:16 154,000 

Table 3: Summary of the feasibility test. Comparison 
between the models for reaching the baseline 
perplexity 

The DeBERTa model, despite being trained on a 
difficult task of MLM probability of 20%, reaches the 
targeted perplexity the fastest and also by a large 
margin. The xlm-roberta model, which is trained 
stochastically (with most training steps), reaches the 
baseline when trained with the least amount of data; but 
the training is noisy and the computational training 
requirement is massive. Therefore, we discarded xlm-
roberta-base for its huge architecture and constrained 
computational training. 
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We hence decide on training two models: DeBERTa 
model that focuses on attaining the best performance, 
and the DistilBERT model which focuses on being 
lightweight with capabilities of on-device 
computations. 

3.4 Language Model Pre-Training 
 We proceed with the training of distilbert and de-berta 
models for 5 epochs on the dataset that we gathered and 
obtain the following results: 

Model Train/loss Batch size Perplexity 
(eval) 

Distilbert-base 2.6412 28 12.3802 
De-berta-base 1.9375 6 6.4237 

Table 4: Summary of LM training for 5 Epochs with 
MLM probability of 20% 

In terms of perplexity, we obtain better results using 
the deberta model. The distilbert model, despite 
training much faster, produces a respectable 
performance. We further evaluate the performance of 
language models by comparing them on a downstream 
classification task in the next section. 

4. Results and Analysis 
4.1 Text Classification 
The classification task performance evaluation is 
performed on the “16 Nepali News” dataset 
(Chaudhary & Sabin, 2017). The dataset consists of 
approximately 14,364 Nepali language news 
documents, partitioned (unevenly) across 16 different 
newsgroups: Auto, Bank, Blog, Business Interview, 
Economy, Employment, Entertainment, Interview, 
Literature, National News, Opinion, Sports, 
Technology, Tourism, and World.  

We evaluate Nepali Language Models and compare 
them in terms of accuracy. The evaluation is performed 
with varying hyperparameters and for a number of 
epochs before the models tend to overfit. The following 
models are considered for the evaluation: 

• De-berta-base [Ours] 
• Distilbert-base [Ours] 
• Shusant/nepaliBERT (Pudasaini, 2022) 
• Rajan/NepaliBERT (Rajan, 2021) 
• XLM-roberta-base (Conneau et al., 2020) 

Figure 2: Evaluating language models on “16 Nepali 
News” Dataset. Training are performed with varying 
hyperparameters. Each progression in the x-axis 
represents an Epoch. 

Model Epoch Train 
steps 

Highest 
Accuracy 

deberta-base [ours] 3 4845 88.93% 
distilbert-base [ours] 3 1212 88.31% 
nepaliBERT 4 3231 85.96% 
NepaliBERT 6 3230 81.05% 
XLM-Roberta 5 8075 84.02% 

Table 5: Highest accuracy attained by the models 

All the models cross the baseline accuracy of 80%. The 
de-berta model attains an accuracy of 88.93% which 
highlights the significance of training domain-adapted 
language models. Distilbert attains a respectable 
accuracy of 88.31% with the least number of training 
steps, which implies that the model trains the fastest for 
downstream tasks. The performance difference 
compared to the de-berta model is marginal, and being 
the smallest and the lightest model, it best suits a 
production environment with computational 
constraints. 

We note that all models except XLM-roberta-base are 
domain-adapted to the Nepali language. We can see a 
general trend of domain-adapted models reaching their 
peak accuracy on the second or third epoch, whereas 
multilingual models prefer more training epochs. As a 
result, domain-adapted language models accelerate 
downstream task training. 

5. Language Model Training and Fine-
tuning Approach 

We approached language model training and 
its finetuning with the following considerations: 

5.1 Tokenizer: 
Language-specific pre-processing of text benefits the 
training of language models. Modeling a Sentence 
Piece Model (SPM) tokenization performs comparably 
with the language-specific approach and can be used 
for a variety of languages. Using this approach, lesser 
focus may be given to the language-specific aspects 
and one may train language models on a language 
whose structure may not be familiar to them. 

5.2 MLM with Less Data Resources 
Considering limited data availability constraints, 
models are trained for multiple epochs by increasing 
the number of masked tokens on every preceding 
epoch. This progressive masking approach adds noise 
to the data and gradually increases the training 
difficulty in the later epochs. Also, de-duplicating the 
dataset improves the model performance. 

5.3 Fine-tuning on a Downstream Task 
As for fine-tuning the language model on a 
downstream task, our models performed optimally 
when trained with a learning rate of 2e-5 or 3e-5 with 
a linear learning rate scheduler. 
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6. Conclusion 
In this work, we have analyzed the need and 
effectiveness of pre-training Transformer language 
models for Nepali. We focused on the language-
specific aspects that are needed to be considered while 
modeling a low-resourced language and undertook 
approaches to tackle data availability constraints. We 
trained two auto-encoding transformer models, the 
DeBERTa model that focuses on attaining the best 
performance, and the DistilBERT model which focuses 
on being lightweight with capabilities for on-device 
computations. Our approaches are compared with other 
transformer models by evaluating them in terms of 
downstream classification accuracy and the result 
highlights the need of domain-adapted Language 
Model training on low-resourced languages. 
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9. Appendix 
A. Training of Language Models 

In this section we show some of the plots of pre-
training the language models. Weights and Biases 
(Biewald, 2020) platform was used to track the training 
process. 

 A1.  DeBERTa Model 

A2.  DistilBERT Model 

Distilbert Model trained with progressive masking. 

 

 


