
Proceedings of SIGUL2022 @LREC2022, pages 106–111
Marseille, 24-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

106

Nepali Encoder Transformers: An Analysis of Auto Encoding Transformer
Language Models for Nepali Text Classification

Utsav Maskey, Manish Bhatta, Shiva Raj Bhatta, Sanket Dhungel, Bal Krishna Bal

Information and Language Processing Research Lab
Department of Computer Science & Engineering

Kathmandu University,
Dhulikhel, Nepal
bal@ku.edu.np

{um02409118, mb02407218, sb02407118, sd02407618}@student.ku.edu.np

Abstract
Language model pre-training has significantly impacted NLP and resulted in performance gains on many NLP-related tasks,
but comparative study of different approaches on many low-resource languages seems to be missing. This paper attempts to
investigate appropriate methods for pretraining a Transformer-based model for the Nepali language. We focus on the language-
specific aspects that need to be considered for modeling. Although some language models have been trained for Nepali, the
study is far from sufficient. We train three distinct Transformer-based masked language models for Nepali text sequences:
distilbert-base (Sanh et al., 2019) for its efficiency and minuteness, deberta-base (P. He et al., 2020) for its capability of
modeling the dependency of nearby token pairs and XLM-ROBERTa (Conneau et al., 2020) for its capabilities to handle
multilingual downstream tasks. We evaluate and compare these models with other Transformer-based models on a downstream
classification task with an aim to suggest an effective strategy for training low-resource language models and their fine-tuning.

Keywords: Natural Language Processing, Nepali Language, Language Modeling, Transformers, Auto Encoders

1. Introduction
The Transformer has become the go-to method for
neural language modeling. It is highly parallelizable
and abides by the scaling laws (i.e. performance gets
better in accordance to the number of parameters,
dataset size and the amount of compute) (Kaplan et al.,
2020). In addition, ULMFiT (Howard & Ruder, 2018)
introduced techniques that allowed neural networks to
train a base language model which could then be fine-
tuned on downstream tasks such as classification, text
generation, etc. with much lesser data. Following these
techniques, many encoder-based transformer models
have achieved state-of-the-art results in text
classification including BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), XLM (Lample &
Conneau, 2019), XLM-RoBERTa (Conneau et al.,
2020), ALBERT (Z. He et al., 2018), ALBERT (Lan et
al., 2019), ELECTRA (Clark et al., 2020) and
DeBERTa (P. He et al., 2020).

However, these models are essentially trained on high-
resource languages such as English, French, etc. and
sufficient efforts and attention have not been given to
low-resourced languages. This is primarily because the
transformer model requires huge datasets and hence it
is not straightforward and easy task for low-resource
languages (Ruder, 2020).

The Nepali language belongs to the Indo-Aryan family
which is written in the Devanagari script. It is the
official language and lingua franca of Nepal and one of
the 22 scheduled languages in India. Furthermore, it is
spoken by about a quarter of the population of Bhutan
and in Burma and different parts of North East India.
According to the 2011 census, there are 16 million
native speakers with over 9 million L2 speakers
("Nepali language - Wikipedia", 2022).

Nepali is a free word order language without upper or
lower case of the characters. It is written from left to
right and follows the Subject Object Verb (SOV)
pattern as the sentential grammar structure. There are
33 consonant letters, 11 independent vowel letters and
10 dependent vowel signs or matras in Nepali. The
consonant letters may exist independently or in
conjunction with dependent symbols (matras, halanta,
etc.) to form a compound letter. The halanta symbol
(represented by U+094D (◌्) Devanagari sign Virama
in Unicode) is a dependent symbol which is used to
suppress the inherent vowel sign in any consonant
letter and is mostly used to produce half characters in
Nepali. Similarly, there are other dependent symbols
including, Chandrabindu (◌ँ) and Shirbindu (◌ं) which
indicates nasalization of a vowel and consonants
respectively. The bisarga (◌ः) dependent symbol
appears in some Nepali words, but they are not usually
pronounced. Purna biram (।) marks the end of a
sentence, similar to a full stop. The set of digits (०, १, २,
३, ४, ५, ६, ७, ८, ९) are used as numbers in Nepali. ("Nepali
alphabet", 2015).

In the context of low-resource language modeling with
transformers, Indic-Transformers (Jain et al., 2020)
train and benchmark three languages, namely, Hindi,
Bengali and Telugu on tasks including classification,
POS tagging and Question Answering. Similarly, in
line to this, we focus on investigating various
approaches to modeling the Nepali language using
contemporary transformer models.

As for the Nepali language, attempts have been made
to understand the grammatical structure of the Nepali
Language in the work of (Bal, 2004a; 2004b). Some
notable works related to Nepali language NLP
includes, summarization (Mishra et al., 2020), Named
entity recognition (Maharjan G., Bal B.K., 2019), etc.

107

However, not much effort has been made on working
with contemporary transformer models. Some
encoder-based transformer models including
nepaliBERT (Pudasaini, 2022) and NepaliBERT
(Rajan, 2021) have been trained for Nepali, whose
performance is yet to be analyzed.

In this work, we focus on training three encoder-based
transformer models, DistilBERT (Sanh et al., 2019),
DeBERTa (P. He et al., 2020) and XLM-R (Conneau
et al., 2020) for Nepali. The objective is to find a
suitable procedure for training low-resource languages
like Nepali.

The contributions of our paper are as follows:

• We train an SPM, Sentence Piece Model (Kudo
& Richardson, 2018) for sub-word tokenization
of texts. Devanagari characters are different
compared to the languages on which most
transformer-trained models are trained and
therefore, the development of a suitable tokenizer
model should be considered. The XLM-R paper
(Conneau et al., 2020) shows that they observed
negligible loss in performance using SPM as
compared to models trained with language-
specific pre-processing. This SPM tokenizer will
be used for training the language models.

• We train various encoder-based models to
compare which transformer architectures are
feasible for Nepali Language training.

• We present a comparison of these models by
evaluating them on a downstream text-
classification task. And since fine-tuning
multilingual models is a popular method for
modeling a low-resource language, we also
reflect the performance of a multilingual model,
XLM-R through a comparative study.

2. Background & Related Work
Representation learning aims to learn representations
of raw data as useful information for further
classification or prediction. Early attempts in this
direction account to pre-trained word embeddings on a
large and diverse corpus (Mikolov et al., 2013). An
inductive transfer is then performed by fine-tuning on
top of the learned embeddings that allowed neural
networks to train on various NLP tasks. Recurrent
neural networks (RNNs) along with usage of
techniques including long short-term memory (LSTM)
(Hochreiter & Schmidhuber, 1997) and gated recurrent
units (GRU) (Chung et al., 2014) on top of learned
representations achieved state-of-the-art on many NLP
tasks.

The paper, Universal Language Model Fine-tuning
(ULMFiT) (Howard & Ruder, 2018) introduced how
Causal Language Modeling (CLM) can be pre-trained
on neural networks as opposed to word embeddings
which used only a single neural network layer for pre-
training the diverse corpus. Recent methodologies,
however, use Masked Language Modeling (MLM) for
pre-training encoder-based transformers.

2.1 Masked Language Modeling (MLM)
As opposed to CLM, where the model attempts to
predict the next sequences in a sentence, MLM
attempts to predict the middle words in the sentence
(Devlin et al., 2019). This ensures that the model learns
contextual word representations and the learning is bi-
directional. Specifically, given a sequence of text X =
{xi}, X is corrupted into X	̃ by masking some percentile
of its tokens at random and then a language model is
trained to re-construct X by predicting the masked
tokens x	̃. The percentile of tokens masked on the
original BERT is 15%, however in the work by (Wettig
et al., 2022), they suggest that 20% masking performs
better for small-sized transformer models whereas
huge models favor MLM probability as high as 40%.	

2.2 Auto Encoding Transformers
Transformer models are based on attention
mechanisms (Vaswani et al., 2017) which consists of
Encoder and/or Decoder sub-architectures. The
Encoder gets good at understanding the input text and
extracting its feature representations, whereas the
Decoder gets good at predicting the targeted output
sequences. The Encoder part of transformer
architecture can independently be used as a many-to-
one sequential model, where the sequence length of
input tokens may vary provided that the model’s output
size remains constant. Such auto-encoding
transformers pre-trained with language modeling
objectives are the state-of-the-art models on the GLUE
benchmark (Wang et al., 2018) which measures
Natural Language Understanding (NLU) across several
tasks of varying difficulty. Auto encoding models that
use BERT-like architecture (Devlin et al., 2019) still
dominate research and industry when fine-tuned on
NLU tasks such as text classification, named entity
recognition, and question answering.

3. Experimental Workflow
Our experiments are performed on Auto-encoding
Transformers. As for training the language models, we
set up a pipelined procedure consisting of data
collection, tokenization, language model training and
its comparative evaluation on a downstream
classification task.

3.1 Nepali Text Data
With the objective of training language models from
scratch, we use monolingual unlabeled Nepali texts.
We gathered 13 million text sequences (phrases and
paragraphs) by combining and de-duplicating three
publicly available datasets: OSCAR (Suárez et al.,
2020), cc100 dataset (Conneau et al., 2020) and the
iNLTK dataset (Arora, 2020).

3.2 Tokenization
Tokenizing Devanagari texts differs from that of
English texts due to different ways of combining
consonants, vowels and vowel modifiers. For example,
the compound letter, ‘लु’ (ल + ◌ु) is formed by
combining the free form character, ‘ल’ and the vowel-
sign, ‘◌ु’. However, the tokenizer used by BERT and

108

the original Multilingual BERT removes some vowel
symbols and other dependent symbols, and only the
free form character remains. For example, the letter ‘लु’
is tokenized as:

‘लु’ (ल + ◌ु) → ‘ल’ (‘◌ु’ is removed)

The use of Unicode normalizations causes this
behavior in languages with non-Latin alphabets. When
tokenizing a decomposed character sequence into
multiple pieces, we may break the original meaning of
the character. This creates ambiguities in the Nepali
Language.

For example, the word, ‘फु्ल’ can be tokenized as:

Before Tokenization Tokenized
Decomposition: फु्ल (फ + ◌् + ल + ◌ु) फल (फ+ ल)
Meaning: Flu Fruit

Table 1: Decomposition of the word, ‘‘फु्ल’’

The removal of the vowel, ‘◌ु’ and the halanta, ‘◌्’
changes the original meaning of the word and causes
ambiguity resulting in two different words having the
same meaning.
We opted for a Sentence Piece Model (Kudo &
Richardson, 2018) for training the tokenizer on the
dataset that we collected. This approach is also used by
the XLM-R for training multilingual models.
As for testing the tokenizers, we consider two sub-
word tokenization approaches:

3.2.1 WordPiece Tokenizer
WordPiece tokenizer is used by nepaliBERT
(Pudasaini, 2022) and NepaliBERT (Rajan, 2021).
WorldPiece tokenization distinguishes workpieces at
the start of a word from pieces starting in the middle
(Song et al., 2020). The latter start with a special
symbol ‘##’ in BERT, which is called the suffix
indicator. For example, the word चन्द्रािगिरमा may be
tokenized as [‘चन्द्रािगिर’, ‘##मा’].

3.2.2 Sentencepiece Tokenizer (SPM)
SentencePiece tokenizer treats the input texts just as a
sequence of Unicode characters. Even the whitespace
is handled as a normal symbol. SentencePiece first
escapes the whitespaces with a meta symbol, ‘_’
(U+2581) and tokenizes the input into an arbitrary sub-
word sequence.

Input Text : “फु्लको कारणले हुने पिहलोनेपाली भवकृष्ण भट्टराई”
Tokenizer Tokenized output
 Shushant/
nepaliBERT

[‘फल’, ‘##को’, ‘कारण’, ‘##ल’, ‘ह’,
##न’,‘पिहलो’, ‘##न’, ‘##पाली’, ‘भव’,
‘##क’, ‘##षण’, ‘भट’, ‘##टर’, ‘##◌ाई’]

 R4J4N/
NepaliBERT

[‘फु्ल’, ‘##को’, ‘कारणले’, ‘हुने’, ‘पिहलो’,
‘##नेपाली’, ‘भव’, ‘##कृष्ण’, ‘भट्टराई’]

Sentence Piece
Model [Ours]

[‘▁फु्ल’, ‘को’, ‘▁कारणले’, ‘▁हुने’,
‘▁पिहलो’, ‘नेपाली’, ‘▁’, ‘भव’,
‘कृष्ण’, ‘▁भट्टराई’]

Table 2: Comparison of tokenizer outputs

We observe that the approach used by nepaliBERT
frequently misses the dependent symbols. The
NepaliBERT tokenizer performs quite well, but we
choose to use the SPM tokenizer for its flexibility in
generating text sequences on auto-regressive
transformers. The tokenizer model is trained with a
vocabulary size of 24,576 tokens. We use this
tokenizer for all the language models that are trained.

3.3 MLM Training Feasibility Test
With the dataset and tokenizer developed, we train
some of the popular language models and analyze the
performance based on training data size, training time
and computational resource constraints. We set a
baseline cut-off perplexity of 54.598 (i.e. training loss
of 4.0) and perform a constrained training in order to
determine suitable models for training the language
model.

Following models are considered for the constrained
training:

• De-berta-base (P. He et al., 2020)
• Distilbert-base (Sanh et al., 2019)
• XLM-roberta (XLM-R) (Conneau et al.,

2020)

Figure 1: Training loss vs. Time

Model Batch
Size

MLM
Probability

Time
taken
(hh:mm)

No. of
training
samples

distilbert 28 15% 3:59 406,000
de-berta 6 20% 1:39 546,000
xlm-r 1 15% 9:16 154,000

Table 3: Summary of the feasibility test. Comparison
between the models for reaching the baseline
perplexity

The DeBERTa model, despite being trained on a
difficult task of MLM probability of 20%, reaches the
targeted perplexity the fastest and also by a large
margin. The xlm-roberta model, which is trained
stochastically (with most training steps), reaches the
baseline when trained with the least amount of data; but
the training is noisy and the computational training
requirement is massive. Therefore, we discarded xlm-
roberta-base for its huge architecture and constrained
computational training.

109

We hence decide on training two models: DeBERTa
model that focuses on attaining the best performance,
and the DistilBERT model which focuses on being
lightweight with capabilities of on-device
computations.

3.4 Language Model Pre-Training
 We proceed with the training of distilbert and de-berta
models for 5 epochs on the dataset that we gathered and
obtain the following results:

Model Train/loss Batch size Perplexity
(eval)

Distilbert-base 2.6412 28 12.3802
De-berta-base 1.9375 6 6.4237

Table 4: Summary of LM training for 5 Epochs with
MLM probability of 20%

In terms of perplexity, we obtain better results using
the deberta model. The distilbert model, despite
training much faster, produces a respectable
performance. We further evaluate the performance of
language models by comparing them on a downstream
classification task in the next section.

4. Results and Analysis
4.1 Text Classification
The classification task performance evaluation is
performed on the “16 Nepali News” dataset
(Chaudhary & Sabin, 2017). The dataset consists of
approximately 14,364 Nepali language news
documents, partitioned (unevenly) across 16 different
newsgroups: Auto, Bank, Blog, Business Interview,
Economy, Employment, Entertainment, Interview,
Literature, National News, Opinion, Sports,
Technology, Tourism, and World.

We evaluate Nepali Language Models and compare
them in terms of accuracy. The evaluation is performed
with varying hyperparameters and for a number of
epochs before the models tend to overfit. The following
models are considered for the evaluation:

• De-berta-base [Ours]
• Distilbert-base [Ours]
• Shusant/nepaliBERT (Pudasaini, 2022)
• Rajan/NepaliBERT (Rajan, 2021)
• XLM-roberta-base (Conneau et al., 2020)

Figure 2: Evaluating language models on “16 Nepali
News” Dataset. Training are performed with varying
hyperparameters. Each progression in the x-axis
represents an Epoch.

Model Epoch Train
steps

Highest
Accuracy

deberta-base [ours] 3 4845 88.93%
distilbert-base [ours] 3 1212 88.31%
nepaliBERT 4 3231 85.96%
NepaliBERT 6 3230 81.05%
XLM-Roberta 5 8075 84.02%

Table 5: Highest accuracy attained by the models

All the models cross the baseline accuracy of 80%. The
de-berta model attains an accuracy of 88.93% which
highlights the significance of training domain-adapted
language models. Distilbert attains a respectable
accuracy of 88.31% with the least number of training
steps, which implies that the model trains the fastest for
downstream tasks. The performance difference
compared to the de-berta model is marginal, and being
the smallest and the lightest model, it best suits a
production environment with computational
constraints.

We note that all models except XLM-roberta-base are
domain-adapted to the Nepali language. We can see a
general trend of domain-adapted models reaching their
peak accuracy on the second or third epoch, whereas
multilingual models prefer more training epochs. As a
result, domain-adapted language models accelerate
downstream task training.

5. Language Model Training and Fine-
tuning Approach

We approached language model training and
its finetuning with the following considerations:

5.1 Tokenizer:
Language-specific pre-processing of text benefits the
training of language models. Modeling a Sentence
Piece Model (SPM) tokenization performs comparably
with the language-specific approach and can be used
for a variety of languages. Using this approach, lesser
focus may be given to the language-specific aspects
and one may train language models on a language
whose structure may not be familiar to them.

5.2 MLM with Less Data Resources
Considering limited data availability constraints,
models are trained for multiple epochs by increasing
the number of masked tokens on every preceding
epoch. This progressive masking approach adds noise
to the data and gradually increases the training
difficulty in the later epochs. Also, de-duplicating the
dataset improves the model performance.

5.3 Fine-tuning on a Downstream Task
As for fine-tuning the language model on a
downstream task, our models performed optimally
when trained with a learning rate of 2e-5 or 3e-5 with
a linear learning rate scheduler.

110

6. Conclusion
In this work, we have analyzed the need and
effectiveness of pre-training Transformer language
models for Nepali. We focused on the language-
specific aspects that are needed to be considered while
modeling a low-resourced language and undertook
approaches to tackle data availability constraints. We
trained two auto-encoding transformer models, the
DeBERTa model that focuses on attaining the best
performance, and the DistilBERT model which focuses
on being lightweight with capabilities for on-device
computations. Our approaches are compared with other
transformer models by evaluating them in terms of
downstream classification accuracy and the result
highlights the need of domain-adapted Language
Model training on low-resourced languages.

7. Acknowledgements
This research was supported in part through
computational resources provided by the
Supercomputer Center Kathmandu University, which
was established with equipment donated by CERN.

8. References
Arora, G. (2020). i{NLTK}: Natural Language

Toolkit for Indic Languages. Proceedings of
Second Workshop for NLP Open Source Software
(NLP-OSS), 66–71.
https://doi.org/10.18653/v1/2020.nlposs-1.10

Bal, B. K. (2004a). Structure of Nepali Grammar.
PAN Localization, Working Papers 2004-2007,
332–396.

Bal, B. K. (2004b). A Morphological Analyzer and
Stemmer for Nepali. PAN Localization, Working
Papers 2004-2007, 324–331.

Biewald, L. (2020). Experiment Tracking with
Weights and Biases. Software available from
wandb.com. https://www.wandb.com/.

Chaudhary, A., & Sabin. (2017). 16NepaliNews
Corpus. https://github.com/sndsabin/Nepali-News-
Classifier

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y.
(2014). Empirical evaluation of gated recurrent
neural networks on sequence modeling. In NIPS
2014 Workshop on Deep Learning, December
2014.

 Clark, K., Luong, M. T., Le, Q. V., & Manning, C.
D. (2020). Electra: Pre-training text encoders as
discriminators rather than generators. 8th
International Conference on Learning
Representations.

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary,
V., Wenzek, G., Guzmán, F., Grave, E., Ott, M.,
Zettlemoyer, L., & Stoyanov, V. (2020).

Unsupervised Cross-lingual Representation
Learning at Scale. Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, 8440–8451.
https://doi.org/10.18653/v1/2020.acl-main.747

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. NAACL
HLT 2019 - 2019 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies - Proceedings of the Conference.

He, P., Liu, X., Gao, J., & Chen, W. (2020). Deberta:
Decoding-enhanced bert with disentangled
attention. arXiv preprint arXiv:2006.03654.

He, Z., Bao, S., & Chung, A.C. (2018). 3D Deep
Affine-Invariant Shape Learning for Brain MR
Image Segmentation. DLMIA/ML-CDS@MICCAI.

 Hochreiter, S., & Schmidhuber, J. (1997). Long
Short-Term Memory. Neural Computation, 9(8),
1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735

Howard, J., & Ruder, S. (2018). Universal language
model fine-tuning for text classification. ACL 2018
- 56th Annual Meeting of the Association for
Computational Linguistics, Proceedings of the
Conference (Long Papers).
https://doi.org/10.18653/v1/p18-1031

Jain, K., Deshpande, A., Shridhar, K., Laumann, F., &
Dash, A. (2020). Indic-transformers: An analysis of
transformer language models for Indian
languages. arXiv preprint arXiv:2011.02323.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T.
B., Chess, B., Child, R., ... & Amodei, D. (2020).
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Kudo, T., & Richardson, J. (2018). SentencePiece: A
simple and language independent subword
tokenizer and detokenizer for Neural Text
Processing. EMNLP.

Lample, G., & Conneau, A. (2019). Cross-lingual
Language Model Pretraining. NeurIPS.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma,
P., & Soricut, R. (2020). ALBERT: A Lite BERT
for Self-supervised Learning of Language
Representations. ArXiv, abs/1909.11942.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen,
D., Levy, O., Lewis, M., Zettlemoyer, L., &
Stoyanov, V. (2019). RoBERTa: A Robustly
Optimized BERT Pretraining Approach. ArXiv,
abs/1907.11692.

111

Maharjan G., Bal B.K., R. S. (2019). Named Entity
Recognition (NER) for Nepali. Communications in
Computer and Information Science,
1084(Creativity in Intelligent Technologies and
Data Science).

Mikolov, T., Chen, K., Corrado, G., & Dean, J.
(2013). Efficient estimation of word representations
in vector space. 1st International Conference on
Learning Representations, ICLR 2013 - Workshop
Track Proceedings.

Mishra, K., Rathi, J., & Banjara, J. (2020). Encoder
Decoder based Nepali News Headline Generation.
International Journal of Computer Applications,
175, 975–8887.
https://doi.org/10.5120/ijca2020920735

Nepali language - Wikipedia. En.wikipedia.org.
(2022). Retrieved 22 May 2022, from
https://en.wikipedia.org/wiki/Nepali_language

Nepali alphabet. nepalilanguage.org. (2015).
Retrieved 22 May 2022, from
https://nepalilanguage.org/alphabet

Pudasaini, S. (2022). Pretraining Nepali Masked
Language Model using BERT Architecture. 3rd
International Conference on Natural Language
Processing, Information Retrieval, and AI

Rajan. (2021). NepaliBERT.
https://huggingface.co/Rajan/NepaliBERT

Ruder, S. (2020). Why You Should Do NLP Beyond
English. https://ruder.io/nlp-beyond-english/

Sanh, V., Debut, L., Chaumond, J., & Wolf, T.
(2019). DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter. 5th Workshop
on Energy Efficient Machine Learning and
Cognitive Computing.

Song, X., Salcianu, A., Song, Y., Dopson, D., &
Zhou, D. (2021). Fast WordPiece
Tokenization. EMNLP.

Ortiz Suarez, P., Romary, L., & Sagot, B. (2020). A
Monolingual Approach to Contextualized Word
Embeddings for Mid-Resource Languages. ACL.

Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A.N., Kaiser, L., &
Polosukhin, I. (2017). Attention is All you
Need. ArXiv, abs/1706.03762.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., &
Bowman, S. R. (2019). {GLUE}: A Multi-Task
Benchmark and Analysis Platform for Natural
Language Understanding. International Conference
on Learning Representations.

Wettig, A., Gao, T., Zhong, Z., & Chen, D. (2022).
Should You Mask 15% in Masked Language
Modeling? ArXiv, abs/2202.08005.

9. Appendix
A. Training of Language Models

In this section we show some of the plots of pre-
training the language models. Weights and Biases
(Biewald, 2020) platform was used to track the training
process.

 A1. DeBERTa Model

A2. DistilBERT Model

Distilbert Model trained with progressive masking.

