
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 900 - 910

July 10-15, 2022 ©2022 Association for Computational Linguistics

CompactIE: Compact Facts in Open Information Extraction

Farima Fatahi Bayat
University of Michigan
farimaf@umich.edu

Nikita Bhutani
Megagon Labs

nikita@megagon.ai

H. V. Jagadish
University of Michigan
jag@umich.edu

Abstract

A major drawback of modern neural OpenIE
systems and benchmarks is that they prioritize
high coverage of information in extractions
over compactness of their constituents. This
severely limits the usefulness of OpenIE ex-
tractions in many downstream tasks. The util-
ity of extractions can be improved if extrac-
tions are compact and share constituents. To
this end, we study the problem of identifying
compact extractions with neural-based meth-
ods. We propose COMPACTIE, an OpenIE sys-
tem that uses a novel pipelined approach to
produce compact extractions with overlapping
constituents. It first detects constituents of the
extractions and then links them to build extrac-
tions. We train our system on compact extrac-
tions obtained by processing existing bench-
marks. Our experiments on CaRB and Wire57
datasets indicate that COMPACTIE finds 1.5x-
2x more compact extractions than previous
systems, with high precision, establishing a
new state-of-the-art performance in OpenIE.

1 Introduction

A popular domain-agnostic paradigm to structure
the raw text is open information extraction (Ope-
nIE) (Banko et al., 2007). Not relying on any pre-
defined schema, OpenIE systems typically extract
information as (subject; relation; object) triples.
The extracted information is then used in sev-
eral downstream applications, including answering
questions (Khot et al., 2017), summarizing docu-
ments (Hao et al., 2018; Ji et al., 2013), and popu-
lating knowledge bases (Fan et al., 2019).

Despite much progress, state-of-the-art neural
OpenIE systems focus on covering more informa-
tion from the input sentence often at the cost of util-
ity and compactness of the extracted triples. The ex-
tracted triples have long, over-specific constituents
(i.e. the relation and its arguments). Figure 1 illus-
trates such example triples produced by a popular

Beth is the second child of Henry, born in wedlock.

IMoJIE
Extractions

E1: (Beth ; is ; the second child of Henry born in wedlock)

Compact
Extractions

E1: (Beth ; is ; the second child of Henry)
E2: (the second child of Henry ; born ; in wedlock)

The rest of the group reach a small shop , where the crocodile
breaks through a wall and devours Annabelle.

IMoJIE
Extractions

E1: (The rest of the group ; reach ; a small shop , where the
crocodile breaks through a wall and devours Annabelle)
E2: (the crocodile ; devours ; Annabelle a small shop)

Compact
Extractions

E1: (The rest of the group ; reach ; a small shop)
E2: (crocodile ; breaks ; through a wall)
E3: (crocodile ; devours ; Annabelle)

Figure 1: Example sentences with non-compact triples
from IMoJIE vs. compact triples from our benchmark.
Compact triples can share constituents. Constituents
for subjects, relations and objects are indicated in blue,
green and orange, respectively.

OpenIE system, IMoJIE (Kolluru et al., 2020b).
As shown, the knowledge that the second child of
Henry was born in wedlock is embedded in a long
argument. This can be problematic for downstream
applications, especially knowledge base popula-
tion (Gashteovski et al., 2020; Stanovsky et al.,
2015) that derive power from merging multiple
pieces of information extracted about the same
entity. In contrast, the compact extractions are
more pliable for tasks such as identifying similar
facts and merging facts that share constituents. For
example, compact extractions in Figure 1 can be
merged to derive that Beth is born in wedlock.

Although some prior work (Corro and Gemulla,
2013; Gashteovski et al., 2017; Bhutani et al., 2016)
has explored the compactness of OpenIE triples,
these systems are rule-based and have been super-
seded by end-to-end neural OpenIE systems. In this
work, we study the problem of identifying compact
extractions with neural-based methods. Inspired by
(Corro and Gemulla, 2013), we define an extracted
triple to be compact if it does not contain infor-
mation that can be independently represented in
another triple. To further improve the suitability of

900

compact triples for knowledge base population, we
require compact triples extracted from a sentence
to have overlapping constituents.

Existing neural systems adopt a sequence label-
ing (Kolluru et al., 2020a; Wang et al., 2021; Ro
et al., 2020) or a sequence generation (Kolluru et al.,
2020b) approach to identify triples and their con-
stituents, typically all at once, or through a pipeline
that first identifies the relations and then their corre-
sponding arguments. None of these methods guar-
antee that the extracted triples will be compact and
share constituents.

We propose a novel pipeline system for find-
ing compact triples that share their constituents.
We call our OpenIE system, COMPACTIE. To en-
courage the constituents to be shared across triples,
COMPACTIE first extracts the constituents using a
Constituent Extraction model and then links them
using a Constituent Linking model to obtain triples.

We adapt a table filling method (Wang et al.,
2021) with a new schema for identifying both con-
stituent boundaries and their roles (i.e., subject
or object). This allows the constituent extraction
model to capture interactions among constituents
and minimize ambiguities in boundary detection.
For the task of constituent linking, we train a model
that builds on contextual representations specific
to a given pair of constituents and predicts their
relation type. Such a two-step approach enables us
to optimize the models for each sub-task with dif-
ferent objectives and also promote the constituent
reuse across triples.

Existing neural OpenIE systems are trained on
benchmarks that combine extractions from multi-
ple OpenIE systems . However, no such large-scale
benchmark exists for compact triples. We develop
a new benchmark using a subset of sentences in the
OpenIE2016 benchmark (Mausam, 2016). Specifi-
cally, we develop a data processing algorithm that
targets extraction from individual clauses in a sen-
tence. Given an input sentence, it identifies clauses
and then uses OpenIE systems such as IMoJIE over
the clauses to find compact triples. We train COM-
PACTIE on the new benchmark.

Our experiments on a fine-grained benchmark,
Wire57, show that COMPACTIE outperforms exist-
ing non-neural and neural systems by 5.8 F1 pts
and 7.1 F1 pts, respectively. Manual evaluation
over a coarse-grained benchmark, CaRB, indicates
that COMPACTIE produces 1.5x-2x more compact
extractions than existing systems with comparable

precision, establishing a new state-of-the-art for the
OpenIE task1.

2 Background and Preliminaries

Given a sentence s = w1w2...wn, an OpenIE sys-
tem generates triples of the form (subject; relation;
object), where subject, relation and object are the
constituents of a triple.

2.1 Extracting Compact Triples
A recent study (Gashteovski et al., 2020) shows
that triples from modern neural OpenIE systems
are difficult to align to knowledge bases such as
DBpedia. Less than 77% of triples from neural
OpenIE systems had the same arguments as DBpe-
dia facts. In contrast, the corresponding alignment
ratio for some of the non-neural OpenIE systems
was as high as 98%. They attribute this behavior
to the specificity of the triples. A compact triple,
which does not contain complete clauses as part of
a constituent or contain additional information, is
easier to align to DBpedia. Our goal is to leverage
neural-based methods to extract compact triples.

2.2 System Architecture
We focus on extraction from individual clauses
within a sentence, where each clause includes a
subject, a verb, optionally a direct object, and
a compliment. Since extractions from different
clauses share information, we split the OpenIE task
into two sub-tasks: constituent extraction and con-
stituent linking.

The task of constituent extraction is to find a
set of constituents such that each constituent c is a
contiguous span of words c.span = {(wi, wj)}
and has a pre-defined type c.type ∈ Yc where
Yc = {Argument, Predicate}. The constituent
that takes the relation role in a triple has c.type =
Predicate, and subject and object constituents
have c.type = Argument. This schema simpli-
fies the task and provides more information to the
constituent linking model.

The task of constituent linking is to connect a
given set of Predicate constituents {p1, . . .pm}
and Argument constituents {a1, . . .an} to ob-
tain triples. We formulate this as a relation clas-
sification task where the set of relations is Yr =
{Subject, Object}. The model predicts relations
r between each px and {a1, . . .an} such that:

1Source code, benchmark dataset, and related resources are
available at https://github.com/FarimaFatahi/
CompactIE

901

https://github.com/FarimaFatahi/CompactIE
https://github.com/FarimaFatahi/CompactIE

∃(i, j) : r(ai, px) = Subject , r(px, aj) = Object

to construct triple (ai; px; aj).

Beth was the second child of Henry born in wedlock

Beth A S N N N N N N N N

was S P O O O O O N N N

the N O A A A A A S N N

second N O A A A A A S N N

child N O A A A A A S N N

of N O A A A A A S N N

Henry N O A A A A A S N N

born N N S S S S S P O O

in N N N N N N N O A A

wedlock N N N N N N N O A A

Figure 2: Table filling based on the relation between
each pair of words in the sentence. Argument (A) and
Predicate (P) are constituent types. Subject (S) and Ob-
ject (O) declare the relation between two constituents
(N stands for no relation).

3 Approach

In this section we describe our pipeline system,
COMPACTIE. We first detail the constituent extrac-
tion model, its training constraints, and the decod-
ing algorithm in Section 3.1. Then, we describe the
constituent linking model in Section 3.2. Figure 3
shows an overview of COMPACTIE architecture.

3.1 Constituent Extraction Model

The constituent extraction model aims to find con-
stituent spans and their types in a sentence. Fol-
lowing recent progress in entity-relation extrac-
tion (Wang et al., 2021), we model this as a ta-
ble filling problem. However, we design a new
table schema for the constituent extraction task.
Figure 2 shows an example schema. A sentence
s with |s| tokens corresponds to a table T |s|×|s|

such that each cell is labeled based on the rela-
tion between the pair of words. For each con-
stituent, corresponding cells are labeled with yc ∈
{Argument, Predicate}. For relations between
different constituents, corresponding cells are la-
beled with yr ∈ {Subject, Object}. The cells
with no relations are labeled None. Graphically,
constituents are squares on the diagonal, and rela-
tions are rectangles off the diagonal.

3.1.1 Table Filling Model
Given the tabular formulation, the constituent ex-
tractor performs two tasks: a) fill the table by pre-
dicting labels for each word pair, b) extract the
constituents given the label probabilities. Follow-
ing (Wang et al., 2021), we adopt a biaffine atten-
tion mechanism, described next, to learn interac-
tions between word pairs when filling the table.
Given the input sentence s, we first obtain contex-
tual representation hi for each word using a pre-
trained language model (e.g. BERT (Devlin et al.,
2018)). We then employ two MLPs to identify
the head and tail role of the word given its vector
representation hi.

hheadi =MLPhead(hi), h
tail
i =MLPtail(hi)

Next, using the biaffine scoring function, we calcu-
late the scoring vector of each pair of words (e.g.
wi, wj) as follows:

ti,j = (hheadi)TU (1)htailj +(hheadi ⊕htailj)TU (2)+b

where U (1), U (2) are weight parameters, b is the
bias term and ⊕ denotes concatenation. Then, we
feed the score vector ti, j into a softmax function
to calculate the probability distribution of the corre-
sponding labels l ∈ Y , where Y = Yc∪Yr∪None.

P (yi,j |s) = Softmax(ti,j)

Finally, we train the 2D table to minimize the fol-
lowing training objective:

Lentry = − 1

|s|2
|s|∑

i=1

|s|∑

j=1

log(P (yi,j = Yi,j |s))

whereYi,j is the gold label for cell (i, j) in the table.

3.1.2 Training Constraints
(Wang et al., 2021) shows that structural constraints
imposed on the table during training can signifi-
cantly enhance the model. We adopt their symmetry
and implication constraints. However, we observed
that these alone are not sufficient if certain labels
are preferred over others. For example, all triples
must have a subject, but some may not have an ob-
ject. We propose a new triple constraint to further
enhance our model. In this section, we describe
the three constraints in detail. We also introduce
P ∈ R|s|×|s|×|Y | that denotes the stack of P (yi,j |s)
for all word pairs in sentence s.
Symmetry: This constraint ensures that the table
is symmetric i.e. the squares are symmetric about
the diagonal. As shown in Figure 2, this ensures
the label assigned to the (second, Henry) cell is the

902

Pretrained Language M
odel

B
iaffine M

odel

Decoder

Beth

was

the

...

wedlock

h1

h2

h3

h10

...

...

...
...

...

...

...

......

...

...

...

...

Subject

Predicates

was

born

Arguments

Beth
the

second
child of
Henry

in wedlock

Object

(a) Constituent Extraction

(b) Constituent Linking

<Arg> Beth </Arg> <Pr> was </Pr> <Arg> the second child of Henry </Arg> born <Arg> in wedlock </Arg>

Subject Object

<Arg> Beth </Arg> was <Arg> the second child of Henry </Arg> <Pr> born </Pr> <Arg> in wedlock </Arg>

...

(Beth; was; the second child of Henry)

(the second child of Henry; born; in wedlock)

(c) Triple Outputs

ConstituentsProbability TensorEmbeddingsSentence Tokens

Figure 3: Overview of system architecture. Given the sentence: “Beth was the second child of Henry, born in
wedlock.”, the Constituent Extraction model identifies the span and type of constituents (top-right). Next, the
Constituent Linking model (b) searches for Arguments of each Predicate constituent independently. Thus,
for each of the two extracted Predicates, it modifies the input sentence by inserting typed constituent markers
(<Arg>,</Arg> to specify the start and end of arguments and<Pr>,</Pr> for predicates). Finally, the modified
sentence is fed into a classifier to find Subject and Object of each Predicate and form triples (c).

same as the cell (Henry, second). Given matrix P ,
We formulate this constraint as symmetrical loss:

Lsym = − 1

|s|2
|s|∑

i=1

|s|∑

j=1

∑

t∈Yr∪Yc

|Pi,j,t − Pj,i,t|

Implication: This constraint implies that no re-
lation would appear unless its constituents are
present in the table. This is imposed on P:
for each word in the diagonal, maximum pos-
sibility over the constituent type space Yc =
{Argument, Predicate} is not lower than the
maximum possibility for other words in the same
row or column over the relation type space Yr =
{Subject, Object}.

Limp =
−1
|s|

|s|∑

i=1

[
max
t∈Yr

(Pi,:,t,P:,i,t)−max
t∈Yc

(Pi,i,t)
]

∗
2

Triple Constraint: This constraint enables the
model to increase the likelihood of certain roles
(e.g. Subject) over the others (e.g. Object) to en-
sure the triples are valid. We enforce this constraint
on P: For each column or row corresponding to
a Predicate constituent, the maximum possibility
of off-diagonal words over Subject type is not
lower than the maximum possibility of off-diagonal
words over Object type. We formulate this con-
straint as triple loss.

2[u]∗ = max(u, 0) is the hinge loss.

Ltriple =
−1
2|ps|

∑

i∈ps

[
{max(Pi,:,O)−max(Pi,:,S}

+ {max(P:,i,O)−max(P:,i,S)}
]

where ps is union of Predicate spans in sentence.
Finally, we jointly optimize four objectives in

training: Lentry + Lsym + Limp + Ltriple

3.1.3 Decoding
Given the label probability tensor P , we need to
decode the constituents in the testing phase. We
follow a 2-step decoding procedure that finds spans
of constituents first and then assigns a label to each
span. The decoder first calculates the distance be-
tween adjacent rows and columns of the table to
find constituents’ boundaries. Next, it assigns a
type to each span and filters out any None con-
stituents before passing the output to the linking
model. The upper part of Figure 3 shows the out-
put of the decoder, which extracts two constituents
(“was”, “born”) of type Predicate and three con-
stituents (“Beth”, “the second child of Henry”, “in
wedlock”) of type Argument. We provide a de-
tailed description of the decoding algorithm in Ap-
pendix A.2.

3.2 Constituent Linking Model

The constituent linking model aims to take a
Predicate constituent and a set of Argument
constituents as input and predict a relation label

903

Yr = {Subject, Object,None}. This procedure
is repeated for each predicate constituent in the sen-
tence. We formulate this as a relation classification
task where the model classifies relation labels of
given constituent pairs based on context.

Following prior work (Zhang et al., 2019; Zhong
and Chen, 2020), we modify the token sequence
of input sentence by adding marker tokens <Pr>,
</Pr>, <Arg>, </Arg> to highlight the con-
stituent spans and their types. The markers help
the linking model combine context information and
constituent information for relation classification.
As shown in Figure 3.a, two types of constituents
are extracted from the input sentence. For each
constituent of type Predicate, we modify the in-
put sentence by highlighting the location of the
Predicate and all Argument constituents. Then,
we feed this processed sentence to a pre-trained
encoder (BERT).

Next, we concatenate the output representation
of the start position of predicate p with the output
representation of the start position of argument ai:

Xr(p, ai) = hstart(p) ⊕ hstart(ai)
Finally, we feed the concatenated representation
into a multi-layer perceptron (MLP) to predict the
probability distribution of the relation type r ∈
Yr ∪None:

P (r|p, ai) =MLP (Xr)

4 Benchmark Creation

To train the constituent extraction and constituent
linking models for extracting compact triples, we
need a benchmark of compact triples. Existing
OpenIE benchmark 3 is created by combining ex-
tractions from multiple existing OpenIE systems.
Although widely adopted, we observed that it in-
cludes over-specific and sometimes incorrect ex-
tractions from previous systems. This encouraged
us to design a data processing algorithm that can
extract compact triples from scratch. Inspired by
rule-based OpenIE system (Corro and Gemulla,
2013), we find compact triples by extracting the
following clauses within a sentence:
Main Clauses are independent clauses that express
a complete concept.
Complement Clauses are subordinate clauses that
serve to complete the meaning of a verb or noun in
the sentence.

3https://github.com/dair-iitd/imojie/
tree/master/benchmark

Our Benchmark OIE2016
Total Train Valid

Sentence 54.9k 54.5k 500 92.7k
Triples 121.8k 120.6k 1155 190.6k

Avg. # triples per sent. 3.165 - - 2.542
Avg. constituent length 4.587 - - 7.893

Table 1: Statistics of our benchmark and OpenIE2016
benchmark.

Coordinate Clauses are independent clauses
joined to the main clause using coordinating con-
junctions such as and, or, but, etc.
We identify clauses within a sentence using its de-
pendency graph. We first build a sentence tree such
that the root is the head of the main clauses and
the first-level children are clauses modifying the
root word. We then perform a postfix traversal of
the tree until we find a sub-tree with no clausal
children. At this point, we run a standard Ope-
nIE system, IMoJIE (Kolluru et al., 2020b), over
the clause corresponding to the sub-tree to obtain
triples. We then backtrack and extract triples for
other clausal children and lastly the parent. We
provide pseudo-code of algorithm in Appendix A.
We run our algorithm on each multi-clause sentence
in the OpenIE2016 benchmark and obtain a new
benchmark tailored for extracting compact triples.
Figure 1 shows example sentences and compact
triples from this benchmark.

5 Experimental Setup

Training Dataset: We train COMPACTIE using
the benchmark described in Section 4. Table 1
compares the statistics of our new benchmark and
bootstrapped OpenIE2016 benchmark. As shown,
our benchmark has 1.25 times more extractions per
sentence than OpenIE2016 and its constituents are
more compact. We use about 1% of sentences for
validation and the remaining for training.
Comparison Systems: We compare COMPACTIE
against state-of-the-art sequence-labeling systems,
OpenIE6 (Kolluru et al., 2020a) and Multi2OIE
(Ro et al., 2020), and sequence-generation system,
IMoJIE (Kolluru et al., 2020b)). We also compare
it against traditional non-neural systems designed
for extracting compact facts: NestIE (Bhutani et al.,
2016) and MinIE (Gashteovski et al., 2017).
Evaluation Datasets and Metrics: We evaluate
the OpenIE systems both automatically and man-
ually on standardized benchmarks. For automatic

904

https://github.com/dair-iitd/imojie/tree/master/benchmark
https://github.com/dair-iitd/imojie/tree/master/benchmark

Dataset Wire57 CaRB
Proc Orig Proc Orig

Sentences 56 57 577 641
Triples 309 325 2101 2715

Table 2: Statistics of evaluation datasets, Wire57 and
CaRB, before (Orig) and after processing (Proc).

evaluation, we first assess all systems with CaRB4

test and Wire57 5 datasets. Since these datasets
are not targeted for compact triples, for a fair com-
parison we exclude triples that have at least one
clause within a constituent. Table 2 shows the statis-
tics of the original and processed datasets. Each
dataset also provides its own scoring function. We
report precision (P), recall (R), and F1 computed by
these scoring functions. Wire57 contains more fine-
grained extractions than the CaRB dataset and its
scoring function is more rigorous for compact facts
since it penalizes over-specific extractions. How-
ever, both CaRB and Wire57 scoring functions are
based on token-level matching of system extrac-
tions against ground truth facts. Moreover, these
benchmarks are incomplete, meaning that the gold
extractions do not include all acceptable surface
realizations of the same fact. These drawbacks en-
couraged us to additionally perform a fact-centered
evaluation using the BenchIE (Gashteovski et al.,
2021) benchmark and scoring paradigm. Finally,
we carry out a manual evaluation on 100 sentences
to avoid bias towards different scorers.
Implementation Details: Since the schema de-
sign of the table filling model does not support con-
junctions inside constituents, we follow previous
work (Kolluru et al., 2020a) and pre-process the
sentences into smaller conjunction-free sentences
before passing them to the system.

For a fair comparison to previous work, we use
bert-based-uncased (Devlin et al., 2018) as the text
encoder for both the constituent extraction model
and constituent linking model. Each model con-
tains nearly 110M parameters. For both models, we
set the max sequence length to 512, initial learning
rate to 5e-5, weight decay to 1e-5, and the batch
size to 32. We use AdamW optimizer to fine-tune
each model. The batch size is 300 for constituent
extraction model and 20 for the constituent linking
model, both equipped with early stopping. We use
NVIDIA GeForce RTX 2080 Ti GPU to train both
models for a cumulative time of 8 hours.

4https://github.com/dair-iitd/CaRB
5https://github.com/rali-udem/WiRe57

6 Experimental Results

6.1 Automatic Token-level Evaluation
Table 3 summarizes the performance of OpenIE
systems across the CaRB and Wire57 datasets and
scoring functions. On the fine-grained Wire57
dataset with a strict Wire57 scorer, COMPACTIE
outperforms neural OpenIE systems (by 7.2 - 9 F1
pts) and non-neural systems (by 5.8 - 10.8 F1 pts).

On the more coarse-grained CaRB dataset, al-
most all OpenIE systems achieve comparable per-
formance in terms of overall F1 using the CaRB
scoring function. The neural systems still outper-
form non-neural systems in terms of F1, which is
in line with previous studies. However, neural Ope-
nIE systems are tuned based on the CaRB scoring
function and thus tend to produce extractions that
are biased towards this scoring method. Previous
works (Kolluru et al., 2020a) also report issues with
the scoring function not being able to handle con-
junctions properly. Table 7 shows the limitations of
the CaRB benchmark and scoring function through
an example. As illustrated, the set of extractions
produced by COMPACTIE is more exhaustive than
IMoJIE and ground truth extractions. However, the
CaRB scoring function assigns an F1 score of 62.0
to IMoJIE extractions, and 39.7 to COMPACTIE ex-
tractions. To resolve incompleteness of the CaRB
benchmark and potential bias towards its scoring
function, we undertake a fact-centered evaluation,
detailed in Section 6.2, and a manual evaluation,
described in Section 6.3.

6.2 Fact-centric Evaluation
(Gashteovski et al., 2021) claims that CaRB and
Wire57 benchmarks and scoring functions overes-
timate a system’s ability to extract correct facts.
They propose an alternative benchmark and evalu-
ation framework, BenchIE, that exhaustively lists
all fact-equivalent extractions and clusters them
into fact synsets. The scoring function considers
an extraction as correct, if and only if it exactly
matches any of the gold extractions from any of the
fact synsets. They report Precision, Recall, and F1
based on exact triple matching.

Table 5 shows the performance of different Ope-
nIE systems on BenchIE. As shown, COMPACTIE
outperforms all other systems except MinIE. We
found that MinIE aims to exhaustively produce
different representations of the same fact. In con-
trast, COMPACTIE follows the setup of neural Ope-
nIE systems and encourages at most one repre-

905

https://github.com/dair-iitd/CaRB
https://github.com/rali-udem/WiRe57

System Wire57 CaRB
P R F1 ACL NCC RPA P R F1 ACL NCC RPA

NestIE 35.0 15.0 21.0 4.65 0.07 1.16 53.4 32.8 40.6 4.29 0.08 1.21
MinIE 31.3 30.7 31.0 4.93 0.2 1.6 35.3 50.5 41.6 4.97 0.4 1.57
IMoJIE 41.2 20.1 27.0 6.23 0.26 1.07 48.5 44.6 46.5 6.43 0.39 1.08
OpenIE6 27.7 19.4 22.8 5.98 0.66 1.14 44.3 44.5 44.4 6.26 0.56 1.29
Multi2OIE 33.4 18.9 24.1 5.54 0.42 1.05 48.2 44.5 46.3 6.06 0.42 1.08
COMPACTIE 41.4 25.8 31.8 5.23 0.05 1.37 51.3 39.9 45.0 5.08 0.07 1.32

Table 3: Performance of OpenIE systems on Wire57 and CaRB datasets. The three analytic metrics (ACL, NCC,
RPA) are discussed in Section 7.

System Precision Compactness
NestIE 49.1 (84/171) 98.8 (83/84)
MinIE 58.0 (217/374) 78.8 (171/217)
IMoJIE 90.0 (156/173) 53.2 (83/156)
OpenIE6 78.0 (210/269) 65.2 (137/210)
Multi2OIE 78.6 (151/192) 59.6 (90/151)
COMPACTIE 75.8 (175/231) 94.9 (166/175)

Table 4: Manual evaluation of OpenIE systems on
CaRB validation set. Precision indicates the percent-
age of correct extractions. Compactness indicates the
percentage of compact extractions amongst the correct
ones.

sentation per fact. As a result, MinIE produces
1.36x more extractions than COMPACTIE, achiev-
ing much higher recall than its neural counterparts.

6.3 Manual Evaluation

Limitations in the aforementioned benchmarks and
evaluation frameworks encouraged us to perform
human evaluation on triples generated by various
systems. To this end, we randomly select 100 sen-
tences from the CaRB validation set and feed them
to all systems to investigate the generated triples.
Next, we ask two graduate CS students, blind to the
OpenIE systems, to mark each triple for correctness
(0 or 1) based on whether it is asserted in the text
and correctly captures the semantic information.
They also label extractions for compactness (0 or
1). We consider an extraction compact if none of its
constituents is longer than 10 words, includes con-
junction or can be an independent extraction. We
found an inter-annotator agreement of 0.68 on cor-
rectness and 0.83 on compactness using the Cohens
Kappa metric. We report the results of the manual
evaluation in Table 4. Neural systems target infor-
mativeness, which results in high precision at the
cost of compactness. On the other hand, non-neural
systems that aim for compact triples suffer from
low precision. COMPACTIE offers a better trade-

System BenchIE
P R F1

NestIE 37.1 10.2 16.0
MinIE 42.9 27.8 33.7
IMoJIE 34.3 12.8 18.6
OpenIE6 31.1 21.4 25.3
Multi2OIE 39.2 16.1 22.8
COMPACTIE 40.3 19.0 26.2

Table 5: Performances of OpenIE systems on the
BenchIE dataset.

off between precision and compactness. It achieves
comparable precision to neural models (-6 %) while
providing substantially more compact extractions
(+36 %). Compared to the MinIE, COMPACTIE
produces triples with significantly higher precision
(+22 %) while producing a comparable number of
compact triples. NestIE achieves comparable com-
pactness rate to COMPACTIE but suffers from low
precision and total number of extractions.

7 Analysis

7.1 Compact and Overlapping Constituents
To understand the performance of COMPACTIE in
generating compact triples that share constituents,
we introduce the following metrics:
• Average Constituent Length (ACL): aver-

age length of constituents across all system-
generated triples. This is a “syntactic” measure
of compactness. The lower the ACL score, the
higher the compactness of triples.
• Number of Constituent Clauses (NCC): average

number of clauses per constituent that could be
extracted as independent triples. The lower the
NCC score, the better the compactness of triples.
• Repetitions Per Argument (RPA): number of to-

tal arguments divided by the number of unique
arguments. The higher the RPA score, the higher
fraction of total constituents produced per sen-

906

tence are shared.

Table 3 summarizes the performance on these
metrics over CaRB and Wire57 benchmarks. We
do not conduct a separate analysis over BenchIE
since it uses a subset of CaRB sentences. As shown,
the ACL scores of COMPACTIE are significantly
lower than its neural counterparts and closely fol-
lows MinIE. The average constituent length (ACL)
of NestIE triples is the lowest since it breaks sen-
tences into small triples with verb, noun, preposi-
tion, and adjective mediated relations. For instance,
the sentence: “2 million people died of AIDS.” is
broken down into T1: (2 million people; died), and
T2: (T1; of; AIDS). However, its fine-grained strat-
egy greatly sacrifices F1 for compactness. COM-
PACTIE achieves the lowest NCC score which in-
dicates that the constituents in triples contain the
fewest verbal clauses. As a result, these triples are
more suitable for downstream applications such as
text summarization and knowledge-base construc-
tion than other counterparts.

Finally, high RPA scores of COMPACTIE demon-
strate the effectiveness of our approach as it enables
the system to reuse the same constituent to generate
multiple triples. MinIE achieves a slightly higher
RPA score than COMPACTIE since it extracts mul-
tiple triples to represent the same fact leading to a
higher repetition of unique constituents.

7.2 Effectiveness of Design Choices

Pipelined Approach vs. Unified Table Filling.
To compare our pipelined approach with a unified
extraction model, we follow UniRE (Wang et al.,
2021), which decodes a single table to identify
entities and relations jointly. We follow their 3-step
decoding algorithm to obtain the constituents and
links between them from the same table (with the
schema shown in Figure 2). We refer to this model
as COMPACTIEuni. We report the performances
in Table 6 and show that performance drops by
jointly training the constituent and linking model.
This aligns with the observations in recent entity-
relation extraction work that pipelined approaches
are more effective than joint models.
Effectiveness of Schema Design. Our table
schema for constituent extraction includes both
labels for constituents as well as labels to link
them. We argued that this design captures the con-
textual dependency information between the con-
stituents that boosts extraction performance. We
compare the effectiveness of this schema design to

Method Wire57 CaRB
COMPACTIE 31.8 45.0
COMPACTIEuni 17.6 35.8
COMPACTIEconst table 26.0 40.1

Table 6: Comparing F1 scores of CompactIE against
joint extraction systems.

another schema that uses only constituent labels
Yc : {Argument, Predicate} ∪None. Note that
we use the same constituent linking model to obtain
triples from the extracted constituents. We refer to
this setting as COMPACTIEconst table. Table 6 illus-
trates the performance of this system on both CaRB
and Wire57 datasets. We find that COMPACTIE
achieves significantly higher F1 compared to COM-
PACTIEconst table and conclude that incorporating
additional context in the table schema improves the
performance of the constituent extraction model.

7.3 Error Analysis

We examine COMPACTIE triples produced for 50
randomly selected sentences of the CaRB valida-
tion dataset and 20 randomly selected sentences
of the Wire57 dataset. Upon close analysis, we
identify five major sources of error:
Constituent Not Found: (49.29%) We find that
the constituent extraction model can fail to cor-
rectly label the constituents in the table. We
found that the model gets biased towards producing
None labels due to the imbalanced distribution of
labels.
Wrong Relation Type: (28.17%) These involve
errors where the constituent linking model fails to
correctly predict the link between the constituents.
The current model encodes one sentence per pred-
icate to find its arguments. Alternatively, we can
encode one sentence per predicate-argument pair
to focus more on each relation. Relation labels in
the constituent extraction model can also assist the
linking model in predicting the correct relations.
We reserve this issue for future work.
Boundary Detection Error: (11.26%) These in-
clude errors where the decoder in constituent ex-
traction fails to correctly identify the boundaries
of the constituents. Boundary detection in con-
stituent extraction model is highly dependant on
the choice of distance threshold (α), as explained
in A.2, which limits its robustness.
Inexpressive Table Error: (7.04%) These include
errors where constituents have overlapping spans
that participate in two roles within the same extrac-

907

System Subject Predicate Object F1

Gold
Applications use this service to record activity for a system
other OSIDs use the service to record data -
other OSIDs use the service to record data during analysis

IMoJIE
Applications use this service to record activity for a system

62.0
other OSIDs use the service to record data during ... analysis

COMPACTIE

Applications use this service to record activity for a system

39.7
other OSIDs use service to record data during development
other OSIDs use the service
the service record data during debugging
the service record data during analysis

Table 7: Gold, IMoJIE and COMPACTIE extractions for the sentence: “Applications use this service to record
activity for a system while other OSIDs use the service to record data during development, debugging, or analysis.”
and their CaRB F1 score that evaluates extractors triples against gold triples.

tion or two different extractions.
Less than 4.22% of the errors were because of

incorrect constituent type predictions. This indi-
cates the effectiveness of our table filling method
on constituent type detection.

8 Related Work

OpenIE has been studied extensively for over a
decade with a history of statistical and rule-based
systems (Banko et al., 2007; Fader et al., 2011;
Corro and Gemulla, 2013; Mausam et al., 2012; An-
geli et al., 2015) that extract triples from sentences
without using any training data. Recently, neural
models have been developed that are trained end-
to-end on extractions bootstrapped from previous
OpenIE systems. These can broadly be classified
into labeling-based and generation-based systems.

Labeling-based systems (Stanovsky et al., 2018;
Kolluru et al., 2020a; Ro et al., 2020) tag each word
in the sentence and construct triples in an auto-
regressive manner or by using a unique predicate
for each triple. Generation-based systems (Kolluru
et al., 2020b; Bhutani et al., 2019) use a sequence-
to-sequence model to generate triples one word
at a time. Labeling-based systems can handle re-
dundancy in extracted triples and are faster than
generation-based systems (Kolluru et al., 2020a).
Compactness in OpenIE: There has been prior
work (Bhutani et al., 2016; Gashteovski et al., 2017;
Stanovsky and Dagan, 2016; Angeli et al., 2015)
that focuses on finding compact triples and shows
that concise triples are useful in several seman-
tic tasks. However, recent studies (Léchelle et al.,
2018; Gashteovski et al., 2020) indicate that neural
OpenIE systems produce more specific triples with
additional information than conventional OpenIE
systems and are harder to align with existing knowl-
edge bases. Therefore, we focus on designing a
neural OpenIE system that extracts compact triples.

Grid Labeling: Also known as table filling, grid
labeling has been recently applied to entity relation
extraction (Gupta et al., 2016; Wang et al., 2021)
and open information extraction tasks (Kolluru
et al., 2020b). However, these models map entities
(constituents) and relations (subject, object) in a
unified label space to capture the inter-dependency
between them. (Zhong and Chen, 2020) shows
that a pipelined approach for entity and relation
extraction outperforms prior joint models that use
the same encoder for the two sub-tasks. In this
work, we validate this claim for the OpenIE task.
Furthermore, we design a grid labeling schema
that identifies constituents and their types, akin to
entities in the entity relation extraction task.

9 Conclusion

In this work we extract compact triples from sin-
gle sentences using an end-to-end pipelined ap-
proach, first extracting triple constituents using a
novel table filling model and then determining rela-
tions between them with a classifier. Our method
achieves excellent performance in producing ex-
haustive compact triples with high precision. We
hope that COMPACTIE serves as a strong baseline
and makes us re-think the value of all-at-once in-
formation extraction systems.

10 Acknowledgments

The research described herein was sponsored by
the U.S. Army Research Institute for the Behav-
ioral and Social Sciences, Department of the Army
(Contract No. W911NF-20-C-0028). The views
expressed in this presentation are those of the au-
thor and do not reflect the official policy or position
of the Department of the Army, DOD, or the U.S.
Government.

908

References
Gabor Angeli, Melvin Jose Johnson Premkumar, and

Christopher D Manning. 2015. Leveraging linguis-
tic structure for open domain information extraction.
In Proc. ACL-IJCNLP ’15, pages 344–354.

Michele Banko, Michael J. Cafarella, Stephen Soder-
land, Matt Broadhead, and Oren Etzioni. 2007.
Open information extraction from the web. In Proc.
IJCAI ’07, page 2670–2676, San Francisco, CA,
USA.

Nikita Bhutani, H. V. Jagadish, and Dragomir Radev.
2016. Nested propositions in open information ex-
traction. In Proc. EMNLP ’16, pages 55–64, Austin,
Texas. Association for Computational Linguistics.

Nikita Bhutani, Yoshihiko Suhara, Wang-Chiew Tan,
Alon Halevy, and HV Jagadish. 2019. Open infor-
mation extraction from question-answer pairs. In
Proc. NAACL-HLT ’19, pages 2294–2305.

Luciano Corro and Rainer Gemulla. 2013. Clausie:
Clause-based open information extraction. In Proc.
WWW ’13, pages 355–366.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proc. EMNLP ’11, pages 1535–1545.

Angela Fan, Claire Gardent, Chloé Braud, and Antoine
Bordes. 2019. Using local knowledge graph con-
struction to scale seq2seq models to multi-document
inputs. CoRR, abs/1910.08435.

Kiril Gashteovski, Rainer Gemulla, and Luciano del
Corro. 2017. MinIE: Minimizing facts in open in-
formation extraction. In Proc. EMNLP ’17, pages
2630–2640, Copenhagen, Denmark.

Kiril Gashteovski, Rainer Gemulla, Bhushan Kotnis,
Sven Hertling, and Christian Meilicke. 2020. On
aligning openie extractions with knowledge bases:
A case study. In Proc. EMNLP ’20 Workshop on
Evaluation and Comparison of NLP Systems, pages
143–154.

Kiril Gashteovski, Mingying Yu, Bhushan Kotnis, Car-
olin Lawrence, Goran Glavas, and Mathias Niepert.
2021. Benchie: Open information extraction
evaluation based on facts, not tokens. CoRR,
abs/2109.06850.

Pankaj Gupta, Hinrich Schütze, and Bernt Andrassy.
2016. Table filling multi-task recurrent neural net-
work for joint entity and relation extraction. In Proc.
COLING ’16, pages 2537–2547.

Zengguang Hao, Binxia Xu, Shiyuan Zheng, and Yang
Gao. 2018. Structured text summarization via open
domain information extraction. In Proc. CSCWD

’18, pages 701–706. IEEE.

Heng Ji, Benoit Favre, Wen-Pin Lin, Dan Gillick, Dilek
Hakkani-Tur, and Ralph Grishman. 2013. Open-
domain multi-document summarization via informa-
tion extraction: Challenges and prospects. In Multi-
source, multilingual information extraction and sum-
marization, pages 177–201. Springer.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2017.
Answering complex questions using open informa-
tion extraction. CoRR, abs/1704.05572.

Keshav Kolluru, Vaibhav Adlakha, Samarth Aggarwal,
Mausam, and Soumen Chakrabarti. 2020a. Openie6:
Iterative grid labeling and coordination analysis for
open information extraction.

Keshav Kolluru, Samarth Aggarwal, Vipul Rathore,
Mausam, and Soumen Chakrabarti. 2020b. Imojie:
Iterative memory-based joint open information ex-
traction.

William Léchelle, Fabrizio Gotti, and Philippe
Langlais. 2018. Wire57: A fine-grained benchmark
for open information extraction. arXiv preprint
arXiv:1809.08962.

Mausam, Michael Schmitz, Stephen Soderland, Robert
Bart, and Oren Etzioni. 2012. Open language learn-
ing for information extraction. In Proc. EMNLP ’12,
pages 523–534, Jeju Island, Korea. Association for
Computational Linguistics.

Mausam Mausam. 2016. Open information extraction
systems and downstream applications. In Proc. IJ-
CAI ’16, page 4074–4077.

Youngbin Ro, Yukyung Lee, and Pilsung Kang. 2020.
Multi2oie: Multilingual open information extrac-
tion based on multi-head attention with bert. arXiv
preprint arXiv:2009.08128.

Gabriel Stanovsky and Ido Dagan. 2016. Creating a
large benchmark for open information extraction. In
Proc. EMNLP ’16, pages 2300–2305, Austin, Texas.

Gabriel Stanovsky, Ido Dagan, et al. 2015. Open ie as
an intermediate structure for semantic tasks. In Proc.
ACL-IJCNLP ’15, pages 303–308.

Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer,
and Ido Dagan. 2018. Supervised open information
extraction. In Proc. NAACL ’18, pages 885–895.

Yijun Wang, Changzhi Sun, Yuanbin Wu, Hao Zhou,
Lei Li, and Junchi Yan. 2021. Unire: A unified label
space for entity relation extraction.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. Ernie: En-
hanced language representation with informative en-
tities. arXiv preprint arXiv:1905.07129.

Zexuan Zhong and Danqi Chen. 2020. A frustratingly
easy approach for joint entity and relation extraction.
CoRR, abs/2010.12812.

909

https://doi.org/10.18653/v1/D16-1006
https://doi.org/10.18653/v1/D16-1006
https://doi.org/10.1145/2488388.2488420
https://doi.org/10.1145/2488388.2488420
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1910.08435
http://arxiv.org/abs/1910.08435
http://arxiv.org/abs/1910.08435
https://doi.org/10.18653/v1/D17-1278
https://doi.org/10.18653/v1/D17-1278
http://arxiv.org/abs/2109.06850
http://arxiv.org/abs/2109.06850
http://arxiv.org/abs/1704.05572
http://arxiv.org/abs/1704.05572
http://arxiv.org/abs/2010.03147
http://arxiv.org/abs/2010.03147
http://arxiv.org/abs/2010.03147
http://arxiv.org/abs/2005.08178
http://arxiv.org/abs/2005.08178
http://arxiv.org/abs/2005.08178
https://aclanthology.org/D12-1048
https://aclanthology.org/D12-1048
https://doi.org/10.18653/v1/D16-1252
https://doi.org/10.18653/v1/D16-1252
http://arxiv.org/abs/2107.04292
http://arxiv.org/abs/2107.04292
http://arxiv.org/abs/2010.12812
http://arxiv.org/abs/2010.12812

A Appendix

A.1 Benchmark Creation

The Algorithm 2 gives a high-level overview of
our benchmark creation mechanism while a lot
of details and difficulties have been omitted. The
Benchmark Creation Algorithm extracts triples for
each sentence using the Algorithm 1. The OpenIE
system used to produce triples out of simple clauses
is IMoJIE (Kolluru et al., 2020b).

The following example illustrates the benchmark
creation algorithm. Given the sentence: “The
group reach a small shop, where the crocodile
breaks through a wall”, the algorithm first builds
the sentence tree as shown in Figure 4. Then, start-
ing from the root, ExtractTriple function traverses
the tree until it reaches a child (“breaks”) with no
further clausal children. At this point, a clause
for the subtree rooted at “breaks” is generated
and fed into the IMoJIE system. IMoJIE extracts
triple: (the crocodile; breaks; through a wall) out
of this clause. Then, since both children of the root
(“reach”) are processed, the IMoJIE triple of the
root’s corresponding clause is extracted as (The
rest of the group; reach; a small shop).

Algorithm 1: ExtractTriples
Data: Tree Node R
Result: Set of compact triples T
T = set() ;
for child in R.children do

if child has no clausal child then
T += IMoJIE(child.clause) ;

end
else

T+= ExtractTriples(child) ;
end

end
T += IMoJIE(R.clause) ;
return T

Algorithm 2: Benchmark Creation
Data: Sentence List S = [s1, s2, .., sn]
Result: B benchmark of compact triples for

sentences in S
B = set() ;
for sentence in S do

root = build sentence tree(sentence) ;
B += ExtractTriples(root) ;

end
return B

reach

the group a small shop

breaks

a crocodile through a wall

subject object

subject object

Clausal Compliment

Figure 4: Sentence Tree for input sentence: “The group
reach a small shop, where the crocodile breaks through
a wall”.

A.2 Table Decoding
Following the (Wang et al., 2021) work, in the test-
ing phase, we rely on the label probability tensor
P ∈ R|s|×|s|×|Y | of the sentence s, to first extract
constituent spans, and then predict the constituent
type. Next, we describe the decoding procedure.

A.2.1 Constituent Span Detection
One important observation of the ground truth ta-
ble is that a constituent’s corresponding rows and
columns are identical (e.g., row 2 and row 3 of
Figure 2 are identical). Therefore, given the ten-
sor P , we compute the distance of adjacent rows
(and columns). If the distance is larger than a pre-
defined threshold α (which is set to 1.2), a split po-
sition is detected. This means that the two adjacent
rows (columns) belong to different constituents
or one belongs to a constituent while the other is
not. Following the (Wang et al., 2021) work, we
flatten the P tensor from both row and column per-
spectives and calculate the euclidean distance of
adjacent rows and adjacent columns. Finally, we
average these two distances as the final distance
and compare the final distance to α to find the span
of different constituents.

A.2.2 Constituent Type Detection
Given a constituent’s span (i, j), we decode the
constituent type t∗ ∈ Y , where Y = Yc ∪ Yr ∪
None, according to its corresponding square sym-
metric about the diagonal:

t∗ = argmaxt∈{Yc∪None}Avg(Pi:j,i:j,t)

Spans with predicted type t∗ ∈ Yc are regarded as
constituents and passed to the constituent linking
model.

910

