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Abstract

Self-supervised pretraining has made few-shot
learning possible for many NLP tasks. But
the pretraining objectives are not typically
adapted specifically for in-context few-shot
learning. In this paper, we propose to use self-
supervision in an intermediate training stage
between pretraining and downstream few-shot
usage with the goal to teach the model to per-
form in-context few shot learning. We pro-
pose and evaluate four self-supervised objec-
tives on two benchmarks. We find that the
intermediate self-supervision stage produces
models that outperform strong baselines. Ab-
lation study shows that several factors af-
fect the downstream performance, such as the
amount of training data and the diversity of the
self-supervised objectives. Human-annotated
cross-task supervision and self-supervision are
complementary. Qualitative analysis suggests
that the self-supervised-trained models are bet-
ter at following task requirements.

1 Introduction

In-context few-shot learning seeks to solve unseen
tasks at inference time by conditioning on a few
training examples. In particular, in this case we
are interested in methods that forgo any weight up-
dates (Brown et al., 2020). Prior work has been fo-
cused on improving inference time algorithms (e.g.,
rescoring generated outputs (Zhao et al., 2021), se-
lecting (Liu et al., 2021) and ordering (Lu et al.,
2021) the given few-shot examples) and incorpo-
rating extra resources (e.g., fine-tuning models on
human-annotated datasets (Mishra et al., 2021; Ye
et al., 2021; Wei et al., 2022)).

We hypothesise that a different way to improve
in-context few-shot learning is through designing
self-supervised objectives that more closely resem-
ble the format of tasks that the model will be asked
to perform. To do so, we cast the self-supervised

∗Work done during an internship at Meta AI.

training as an intermediate training stage between
language model pretraining and downstream few-
shot evaluation. In particular, we construct training
datasets based on the self-supervised objectives
following similar formats used in the downstream
tasks, fine-tune pretrained language model check-
points on the training datasets, and then evaluate
the models on benchmarks.

In experiments, we consider four self-supervised
objectives, including masked word prediction and
classification tasks related to next sentence pre-
diction (Devlin et al., 2019). We evaluate mod-
els on two benchmarks (13 tasks in total): Super-
GLUE (Wang et al., 2019) and Natural-Instructions
(Mishra et al., 2021). SuperGLUE focuses on dis-
criminative tasks, and Natural-Instructions is a set
of generative tasks.

Empirically, we experiment with pretrained lan-
guage models of two sizes: 125 million parameters
and 1.3 billion parameters. We show that in our best
setting, the 1.3 billion parameters model trained by
the self-supervision performs better than the initial
pretrained language models and two strong base-
lines on average.

Further analysis reveals that (1) the effectiveness
of the self-supervision depends on the amount of
training data, but the benefit of adding more data is
diminishing; (2) the improvements brought by the
self-supervision are in part due to the semantic sim-
ilarity between the training and evaluation tasks;
(3) adding more self-supervised objectives may not
help model performance because adding them does
not contribute to the diversity of the self-supervised
tasks; (4) choosing similar task templates for both
self-supervised and downstream tasks plays a vi-
tal role in improving model performance; (5) self-
supervised tasks and human-annotated datasets are
complementary; (6) generation examples show that
compared to the initial pretrained language models,
self-supervised-trained models are better at follow-
ing the task instructions.
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2 Related Work

In-Context Few-Shot Learning. Brown et al.
(2020) discover that large pretrained language mod-
els can solve unseen tasks at inference time. Recent
work has improved the in-context few-shot perfor-
mance by rescoring generated outputs (Zhao et al.,
2021), selecting (Liu et al., 2021) and ordering (Lu
et al., 2021) the given few-shot examples. Other
work studies pretrained language models’ cross-
task generalization abilities for in-context few-
shot or zero-shot learning using human-annotated
datasets (Ye et al., 2021; Wei et al., 2022; Sanh
et al., 2022; Min et al., 2021; Xu et al., 2022) via
instructions (Weller et al., 2020; Efrat and Levy,
2020; Mishra et al., 2021; Ouyang et al., 2022)
and retrieved examples (Hu et al., 2022; Lin et al.,
2022). Our work differs in that we focus on self-
supervised training.

Fine-Tuning for Few-Shot Learning. Pre-
trained language models for few-shot learning
typically follows the “pretrain then fine-tune”
paradigm (Howard and Ruder, 2018; Radford
et al., 2018; Devlin et al., 2019, inter alia), where
recent work has focused on designing templates
for few-shot fine-tuning (Reynolds and McDonell,
2021; Schick and Schütze, 2021a,c,b; Le Scao and
Rush, 2021; Tam et al., 2021; Gao et al., 2021;
Sorensen et al., 2022), and optimizing soft prompts
(Li and Liang, 2021; Qin and Eisner, 2021; Lester
et al., 2021; Gu et al., 2021; Zhang et al., 2022).
Other work focuses on unifying task formats
to maximize the benefits of human annotations,
including question answering (Zhong et al., 2021),
textual entailment (Yin et al., 2019, 2020; Wang
et al., 2021a), and many other tasks (McCann
et al., 2018; Keskar et al., 2019; Raffel et al., 2020;
Bragg et al., 2021). In contrast, our focus is on
in-context few-shot learning, without fine-tuning
models on downstream task examples.

Pretraining for Few-Shot Learning. Several
papers have adapted various resources for pretrain-
ing models to enhance their performances on few-
shot learning, such as pretraining on hypertext
(Aghajanyan et al., 2021b), question-infused pre-
training (Jia et al., 2021), and self-training (Du
et al., 2021; Vu et al., 2021; Wang et al., 2021b).
Pretraining approaches have targeted specific tasks,
such as task-oriented dialog (Mi et al., 2021), intent
detection (Zhang et al., 2021), and data-to-text gen-
eration (Chen et al., 2020). Our work differs as we

use plain text as opposed to (naturally-occurring)
human-annotated resources. Relatedly, Bansal et al.
(2020) used self-supervised meta-learning for few-
shot text classification rather than in-context few-
shot learning.

Intermediate Fine-Tuning. Since our approach
involves an extra training stage between pretrain-
ing and downstream evaluation, it is also related
to prior work that uses multi-stage fine-tuning on
human-annotated datasets for generic tasks (Phang
et al., 2018; Pruksachatkun et al., 2020; Chang and
Lu, 2021; Aghajanyan et al., 2021a; Poth et al.,
2021) and text classification (Zhang and Zhang,
2021). Relevant work also studies intermediate
fine-tuning using crosslingual supervision (Phang
et al., 2020; Moghe et al., 2021). Rubino and
Sumita (2020) use an intermediate self-supervised
training stage for machine translation quality esti-
mation.

3 Method

We describe four self-supervised training objectives
that will be used to train models before downstream
evaluations.

We begin by defining the example and the in-
stance used during our self-supervised training. An
example is an input-output pair. To differentiate
the input and the output, we append special tokens
“Input:” and “Output:” to the beginning of input
text and output text respectively where the two
texts are also separated by the 〈newline〉 token (see
Figure 1 for examples).1

An instance is a linearized string formed by sev-
eral examples from the same task (e.g., see Fig-
ure 2). As we encode the text using causal atten-
tion, the examples closer to the beginning of input
sequences can be seen as task demonstrations, re-
sulting in efficient computation.

When constructing the training examples, we
pick three or more consecutive sentences (depend-
ing on the minimum sequence length we enforce on
the sentences) and then apply task-specific rules to
automatically create training data. To form a train-
ing instance, we randomly select examples from the
same task until reaching the maximum sequence
length (i.e., 2048). During training, we compute
a cross-entropy loss on tokens in the output texts.

1We chose this special symbol because we always start
the self-supervised training from a pretrained language model
checkpoint.
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Natural language processing is a subfield 
of computer science concerned with the 
interactions between computers and 
human language. The goal is a computer 
capable of "understanding" the contents 
of documents.

Masked Word Prediction

Input: Natural language processing is a subfield 
of computer science concerned with the 
interactions between ___. The goal is a 
computer capable of "understanding" the 
contents of documents.
Output: computers and human language

Original Raw Text

Input: Natural language processing is a subfield 
of computer science concerned with the 
interactions between computers and human 
language. Question: The goal is a computer 
capable of "understanding”?
Output: the contents of documents.

Last Phrase Prediction (Generation) Input: Natural language processing is a subfield 
of computer science concerned with the 
interactions between computers and human 
language. Question: The goal is a computer 
capable of "understanding”? Answer: the 
development of new models.
Output: False

Last Phrase Prediction (Classification)

Input: Natural language processing is a subfield 
of computer science concerned with the 
interactions between computers and human 
language. The following is a list of some of the 
most commonly researched tasks in computer 
vision.
Output: False

Classification

Input: Natural language processing is a 
subfield of computer science concerned 
with the interactions between 
computers and human language.
Output: The goal is a computer capable 
of "understanding" the contents of 
documents.

Next Sentence Generation

Figure 1: Examples of our self-supervised training tasks. Each example is an input-output pair constructed from
the raw text.

Input: Natural language processing is … <newline> Output: … the contents of documents. <newline> Input: Computer vision deals with … <newline> Output: … visual system. <newline>

First example Second example

Figure 2: An example of a training instance. Each instance is formed by several training examples. During training,
we use left-to-right language models and compute a cross-entropy loss on the output texts (indicated by the red
color in the shown example). We note that when computing the loss on the second example, the first example can
be seen as task demonstrations. For brevity, we show part of the input and output texts.

We describe details of the self-supervised tasks in
the following subsections.

3.1 Next Sentence Generation

In light of the strong performance of language mod-
els on in-context few-shot learning (Brown et al.,
2020), we incorporate the language modeling as
one of our self-supervised tasks, which we call
“next sentence generation” (NSG). NSG asks the
model to generate the next sentence given previous
sentences as context. When building data for this
task, we use the last sentence as output and the rest
of the sentences as input.

3.2 Masked Word Prediction

The second task we consider is based on masked
word prediction (MWP) which is commonly used
in pretraining generic text encoders (Devlin et al.,
2019; Liu et al., 2019). The task asks the model
to fill in the missing information based on the sur-
rounding context. Specifically, MWP randomly
replaces words in input sentences with a special
symbol and requires models to recover the masked
words in the input. For this task, we create input
text by randomly replacing 1∼20 words in the input
text with a special token2 and use the masked out

2We randomly select the special token from the following
list: ___, 〈〈〉〉, @@@, (()), $$$, %%%, ###, ***, and +++.
We use random symbols instead of a fixed symbol because
we found that it gives better performance in our preliminary
experiments.

words as the output text.

3.3 Last Phrase Prediction

Inspired by the LAMBADA dataset (Paperno et al.,
2016), a question answering dataset which asks
models to predict the last word in a sentence given
several sentences of context, we create a “last
phrase prediction” (LPP) task, which requires pre-
dicting the last phrase in a sentence. To solve this
task, models need to draw relevant information
from the context and the learned knowledge during
pretraining. We cast LPP as either a generation
task or a classification task. The latter variant of
LPP is a binary classification task that labels if the
given answer is the correct phrase. To facilitate a
unified format of these two tasks, we append a spe-
cial token “Question:” to the beginning of the last
sentence and replace the last phrase with a ques-
tion mark. For the classification LPP, we separate
the given answer and the previous context and sen-
tences with a special token “Answer:”. An example
of this task is shown in Figure 1.

More specifically, we identify the last phrase of
a sentence based on a set of function words (see
appendix A.5 for the list of function words). If
there are multiple function words in a sentence, we
pick the last one. Then we treat the text segment
starting from the function word as the last phrase.3

3We ensure that the last sentence in raw text for this task
always has at least one valid function word and the function
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Natural language processing is a subfield 
of computer science concerned with the 
interactions between computers and 
human language. The goal is a computer 
capable of "understanding" the contents 
of documents.

Shuffled Sentences

The goal is a computer capable of 
"understanding" the contents of 
documents. Natural language processing is 
a subfield of computer science concerned 
with the interactions between computers 
and human language. 

Original Sentences

Computer vision deals with 
how computers can gain high-level 
understanding from digital 
images or videos. It seeks to 
understand and automate tasks that 
the human visual system can do.

Different Documents

Natural language processing is a subfield of 
computer science concerned with the 
interactions between computers and human 
language. The following is a list of some of the 
most commonly researched tasks in computer 
vision.

Multiple Documents

Input: Natural language processing is … <newline> Output: True <newline>
Input: Computer vision deals with … <newline> Output: False <newline>
Input: Natural language processing has been … <newline> Output: True <newline>
Input: Computer Vision was … <newline> Output: False <newline>

From document A
From document B
From document A
From document B

Figure 3: Example illustrating the construction of training instances for our classification task. There are four
input types, and each training instance has two or three types. As the shown instance has the following two types:
"original sentences" and "different documents", it comprises examples from two different documents. The instance
resembles the next sentence prediction task, encouraging models to compare topical similarities between the two
examples.

When selecting negative answers, we randomly
choose from the phrases extracted from the same
function words (to make the negative answers more
challenging).

3.4 Classification

Similar to the next sentence prediction task (Devlin
et al., 2019) and the sentence ordering prediction
task (Jernite et al., 2017; Chen et al., 2019) for pre-
training language representations, we create a clas-
sification task (CL) for our self-supervised training.
As shown in Figure 3, for this task, we consider
four types of input: original sentences, shuffled sen-
tences, sentences from a different document, and
sentences from multiple documents. In particular,
for original sentences, we directly use text from
original human-written documents. For shuffled
sentences, we randomly shuffle all the input sen-
tences. For sentences from multiple documents,
we randomly replace 50% of the input sentences
with sentences from another document. We also
ensure that the selected sentences (from both the in-
put and another document) are consecutive in their
original documents. For sentences from different
documents, we replace the input sentences with
sentences from another document. See Figure 3 for
an example of each type of input.

When constructing a training instance, we ran-
domly pick one or two additional input types and
combine them with the original sentences to form
a binary or three-way classification task. We also
randomly assign label strings to input types in each
instance to ensure that models follow the infor-
mation given by earlier examples when making
predictions.

The classification task is different from the other
self-supervised tasks described in earlier subsec-

word lies at the second half of the sentence.

tions. It explicitly requires models to compare in-
puts across examples in a training instance to de-
termine if the given input shares similar properties
with the others.

4 Experiment

4.1 Training Setup

For the pretrained language model checkpoints, we
use the 125 million parameters (125M) and the
1.3 billion parameters (1.3B) dense model from
Artetxe et al. (2021). These pretrained models have
shown results comparable to GPT3 across various
tasks.

For self-supervised training, we use a subset of
documents from the RoBERTa training corpus (Liu
et al., 2019) that contains four domains: BOOK-
CORPUS plus Wikipedia, CC-NEWS, OPENWEB-
TEXT, and STORIES. Specifically, we randomly
sample 100k documents from each domain except
STORIES where we only sample 10k documents as
the documents there are much longer than the oth-
ers. The final training data contains approximately
1 million instances with 250k training instances per
task.4 For the 125M model, we train for 10 epochs,
which takes roughly 1 day on a V100 GPU. For
the 1.3B model, we train for 5 epochs, which takes
roughly 3 days on 2 V100 GPUs.

4.2 Evaluation Setup

The instance and example during evaluation shares
similar definition as those in Sec. 3 except that each
evaluation instance has only one example from
test splits and it is placed at the last position in
the instance. The other examples in the instance

4The average numbers of example per instance for each
data source are: 6.9 for BOOKCORPUS plus Wikipedia, 5.3 for
CC-NEWS, 3.5 for OPENWEBTEXT, and 7.2 for STORIES.
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GPT3 ${Context}〈newline〉${Question}〈newline〉 - [${Label}] ${Answer}
Ours Input: ${Context} Question: ${Question} Answer: ${Answer}〈newline〉Output: ${Label}

Table 1: Evaluation templates for MultiRC. ${·} represents values drawn from a particular data field. We alter
the GPT3 template for this task to share a similar format with one of our self-supervised tasks (i.e., classification
LLP in this case). The red, boldfaced texts are used to compute the language modeling perplexities for ranking the
labels. We note that the shown template is for a single example, and there could be multiple examples within an
instance.

(i.e., task demonstrations) come from either train-
ing splits or task-specific instructions depending
on benchmarks.

We evaluate the models on two benchmarks: Su-
perGLUE and Natural-Instructions. SuperGLUE
is a set of tasks focusing on natural language un-
derstanding. We use BoolQ (BQ; Clark et al.,
2019), CB (De Marneffe et al., 2019), COPA (CA;
Roemmele et al., 2011), MultiRC (MC; Khashabi
et al., 2018), and RTE (RE; Giampiccolo et al.,
2007; Bentivogli et al., 2009; Dagan et al., 2006;
Bar Haim et al., 2006).5 We report results for the
official development sets. The task demonstrations
are examples randomly selected from the training
sets. We report mean and standard deviations of
five runs with different random seeds. Following
GPT3, we use a ranking based approach when eval-
uating the models (i.e., pick the best label based on
language modeling perplexities).

Natural-Instructions. Natural-Instructions eval-
uates models’ cross-task generalization abilities
where all the tasks are generation tasks. It splits
the tasks into two groups for training and evalu-
ation. We use the same task split and evaluate
models on the following task categories: question
generation (QG), answer generation (AG), mini-
mal modification (MM), and verification (VF).6

Each task category has two tasks. Following the
few-shot setting used in Mishra et al. (2021), we
evaluate models using 100 examples per task, use
greedy decoding, and report ROUGE-L (Lin, 2004)
scores per task category. For task demonstrations,
we use the positive examples in the instructions in

5We exclude WSC (Levesque et al., 2011) and ReCoRD
(Zhang et al., 2018) as pretrained models, including GPT3,
require scoring algorithms at inference time to achieve com-
petitive results. We exclude WiC (Pilehvar and Camacho-
Collados, 2019) because GPT3-like models, including GPT3
and our models, do not give accuracies significantly better
than random baselines.

6We discard training tasks that share the same source
datasets with evaluation tasks as we found that tasks with
the same source dataset may contain leaked labels. We ex-
clude the binary classification tasks because the class labels
are severely imbalanced (i.e., more than 80% of the class
labels belong to one category).

Natural-Instructions.

SuperGLUE. As our self-supervised tasks are
formatted as input-output pairs, we change the task-
specific templates for SuperGLUE to make them
more similar to our self-supervised tasks. For ex-
ample, as shown in Table 1, we make MultiRC
similar to the classification LPP. More details of
the template changes are in appendix A.6.

For both benchmarks, we also report an averaged
performance for each model. For SuperGLUE,
the average performance is computed based on the
means of task performances. When a task has two
metrics, we take the average of the two as the task
performance.

More details on the dataset statistics and met-
rics for each task for both benchmarks are in ap-
pendix A.2.

Baselines. We consider four baselines: (1) di-
rectly evaluating pretrained language models on
the benchmarks (LM) ; (2) performing additional
language modeling training on the subset of the
original data that is used for constructing the self-
supervised tasks (ExtraLM). We use ExtraLM to
approximately measure the contribution of addi-
tional computation; (3) fine-tuning on training sets
for the tasks outside the evaluation sets (CrossTask).
We use CrossTask to estimate the performances
of cross-task supervision from human-annotated
datasets; and (4) fine-tuning on training sets for the
tasks in the evaluation sets (SameTask). SameTask
serves as an oracle baseline estimating the approxi-
mated upperbound performances of cross-task su-
pervision.

Since SuperGLUE does not have an official split
for the CrossTask setting, we split the datasets into
two groups according to the task category and re-
port the CrossTask results based on “CrossTask
(QA→NLI)” and “CrossTask (NLI→QA)”.7 As
we alter the task templates, we report results for
evaluating the pretrained language model check-

7“QA→NLI” suggests that we train models on the NLI
tasks and evaluate on the QA tasks. Similarly, for “NLI→QA”,
we train models on the QA tasks and evaluate on the NLI tasks.
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Model MS BoolQ MultiRC COPA RTE CB Avg.
LM 125M 52.1(1.7) 5.2(0.7)/49.5(1.1) 67.6(2.3) 52.0(1.2) 50.7(3.2)/34.8(2.5) 48.4
ExtraLM 125M 51.5(1.7) 5.1(0.8)/49.7(1.0) 68.0(1.6) 52.3(1.2) 49.5(4.6)/35.5(5.6) 48.3
NewTemplate 125M 52.2(1.8) 5.2(0.6)/47.9(1.4) 63.0(2.5) 50.8(2.0) 46.4(7.3)/30.1(6.4) 46.2
CrossTask(NLI→QA) 125M 38.1(0.3) 5.1(0.7)/43.5(2.5) 65.4(2.1) - - 42.2CrossTask (QA→NLI) 125M - - - 53.6(0.5) 39.6(1.5)/19.9(1.2)
SameTask 125M 71.2 19.9/66.9 72.0 67.3 71.4/60.2 61.9
Self-Supervised 125M 55.7(0.6) 7.0(1.0)/60.2(0.3) 67.6(2.1) 53.0(1.5) 50.0(5.2)/39.8(3.0) 51.0
LM 1.3B 48.6(2.3) 5.5(0.5)/53.7(0.7) 83.4(1.7) 51.9(1.2) 53.6(5.2)/37.2(3.7) 51.8
ExtraLM 1.3B 49.6(1.9) 4.9(0.6)/54.8(0.6) 82.6(1.5) 52.9(1.9) 51.4(7.5)/35.6(5.3) 51.7
NewTemplate 1.3B 51.3(1.3) 5.0(0.4)/52.8(1.2) 81.2(2.4) 50.8(2.3) 49.3(4.7)/33.7(4.2) 50.7
CrossTask(NLI→QA) 1.3B 53.4(0.8) 1.2(0.3)/57.2(0.3) 76.2(2.9) - - 49.6CrossTask (QA→NLI) 1.3B - - - 54.3(1.2) 44.6(3.6)/25.2(4.9)
SameTask 1.3B 77.1 27.5/71.6 85.0 68.1 75.2/64.3 69.9
Self-Supervised 1.3B 61.7(0.3) 5.2(0.1)/62.1(0.3) 84.0(2.7) 53.1(0.7) 54.3(2.0)/37.0(1.9) 55.6

Table 2: SuperGLUE results. We report mean and standard deviations (the numbers in parenthesis) of five runs.
The best result (we take the average if there are two metrics) except SameTask in each column for each model size
is boldfaced. MS=model size.

Model MS QG AG MM VF Avg.
GPT3 - 43.0 50.0 70.0 32.0 48.8
LM 125M 33.7 12.9 53.0 14.7 28.6
ExtraLM 125M 34.4 13.4 53.7 14.3 28.9
CrossTask 125M 22.0 24.8 66.9 17.9 32.9
SameTask 125M 54.8 42.3 77.3 78.3 63.2
SelfSup. 125M 16.9 14.6 70.1 18.9 30.0
LM 1.3B 40.9 32.5 74.0 27.8 43.8
ExtraLM 1.3B 41.1 32.7 75.9 25.2 43.7
CrossTask 1.3B 38.1 41.6 69.2 23.0 42.9
SameTask 1.3B 55.5 64.6 81.0 80.4 70.4
SelfSup. 1.3B 43.9 37.5 72.3 28.6 45.5

Table 3: Natural-Instructions results. The results for
GPT3 are taken from Mishra et al. (2021). The best
result except SameTask in each column for each model
size is boldfaced. MS=model size.

Model BQ MC CA RE CB Avg.
LM 52.2 26.6 63.0 50.8 38.3 46.2
SelfSup. 55.7 33.6 67.6 53.0 44.9 51.0
NSG 52.1 25.9 64.0 51.0 41.2 46.9
CL 52.5 26.8 61.4 50.9 48.1 47.9
MWP 51.9 26.3 61.8 50.8 36.1 45.4
LPP 53.5 29.5 61.6 52.0 40.3 47.4

Table 4: SuperGLUE results when training the 125M
model with only one of the self-supervised tasks.

points using the new templates (NewTemplate) to
study the effect of new templates.

4.3 Results
We report the results for SuperGLUE and Natural-
Instructions in Table 2 and Table 3. Our findings
are as follows:

1. Our proposed self-supervised training achieves
the best performance on average for both bench-
marks.

2. ExtraLM and NewTemplate show similar perfor-

0 1% 10% 20% 50% 100% 200%

51

52

53

54

55

1.3B SuperGLUE

0 1% 10% 20% 50% 100% 200%

43.0

43.5

44.0

44.5

45.0

45.5

1.3B Natural-Instructions

Figure 4: Average results for the 1.3B model on Super-
GLUE and Natural-Instructions when varying the num-
ber of examples used for self-supervised training.

Model QG AG MM VF Avg.
LM 33.7 12.9 53.0 14.7 28.6
SelfSup. 16.9 14.6 70.1 18.9 30.0
NSG 32.3 12.5 54.0 13.8 28.2
CL 8.3 0.3 1.0 2.7 3.1
MWP 15.2 19.4 50.5 17.8 25.7
LPP 11.3 16.6 49.5 19.9 24.3

Table 5: Natural-Instructions results when training the
125M model with only one of the self-supervised tasks.

mances as the pretrained language model check-
points, suggesting that the improvements from
our self-supervised training is unlikely to come
from the additional training on the data and the
task template changes.

3. Compared to the pretrained language model
checkpoints, CrossTask shows worse perfor-
mances on both benchmarks, which is likely
due to the differences between training tasks and
evaluation tasks.

5 Analysis

5.1 Effect of Amount of Data

In Figure 4, we report model performances for
the 1.3B model on SuperGLUE and Natural-
Instructions with 1%, 10%, 20%, 50%, and 200%
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ALL ALL+MoreTask
SuperGLUE Results

125M 51.0 50.9
1.3B 55.6 55.6

Natural-Instructions Results
125M 30.0 31.7
1.3B 45.5 45.4

Table 6: Average results when adding denoising
autoencoding and gap sentence prediction to the
self-supervised training. ALL: use all of the self-
supervision described in Sec. 3.

LM Correct Label Random Label
SuperGLUE Results

125M 46.2 51.0 38.2
1.3B 50.7 55.6 42.5

Natural-Instructions Results
125M 28.6 30.0 19.1
1.3B 43.8 45.5 31.5

Table 7: Average model performance comparing
whether we assign random labels to the self-supervised
tasks.

of training examples.8 We train the models for ten
epochs.9 As shown in the figure, when the amount
of training data for self-supervised tasks is similar
to that for the CrossTask setting (i.e., 1% data),
the self-supervised tasks also lead to worse perfor-
mances. The improvements become clearer when
we increase the number of training data, but it be-
gins to plateau at around 100% data. This suggests
that one of the advantages of the self-supervised
tasks compared to the tasks in the CrossTask set-
ting is the amount of training data. We hypothesize
that further increasing the amount of data not being
helpful is because the data used for constructing
the self-supervised tasks has already been used for
language model pretraining. So, our models man-
age to learn to solve these tasks with a relatively
limited amount of data. We have similar observa-
tions for the 125M model. See appendix A.8 for
more details.10

5.2 Effect of Individual Self-Supervised
Tasks

We investigate the effect of individual self-
supervised tasks by training models with only one

8We apply the same ratio to all the self-supervised tasks
and use the same development sets for each task across these
settings.

9Upon manual inspection, we found that the development
set loss values in these experiments have converged.

10Our goal for this analysis is to show the rough trends of
model performance when varying the amount of training data,
rather than to provide an exact estimate of the training data
required for the self-supervised training.

MS GPT3 Template Our Template
LM 125M 48.4 46.2
SelfSup 125M 47.2 51.0
LM 1.3B 51.8 50.7
SelfSup 1.3B 51.1 55.6

Table 8: Average results for SuperGLUE when using
different task templates. MS=model size.

Model MS QG AG MM VF Avg.
LM 125M 33.7 12.9 53.0 14.7 28.6
CrossTask 125M 22.0 24.8 66.9 17.9 32.9
SelfSup. 125M 16.9 14.6 70.1 18.9 30.0
Combined 125M 23.5 25.2 70.3 18.5 34.4
LM 1.3B 40.9 32.5 74.0 27.8 43.8
CrossTask 1.3B 38.1 41.6 69.2 23.0 42.9
SelfSup. 1.3B 43.9 37.5 72.3 28.6 45.5
Combined 1.3B 42.1 42.5 74.1 28.7 46.9

Table 9: Natural-Instructions results when combining
the self-supervised tasks and the tasks in the CrossTask
setting. The best performance in each column for each
model size is boldfaced. MS=model size.

task. We report the experiment results in Table 4
and Table 5. More results and discussions are in
appendix A.9. Our findings are:

1. Combining all four self-supervised tasks results
in the biggest improvements for most tasks, sug-
gesting that the tasks are complementary.

2. Each self-supervised task improves a few down-
stream task performances (e.g., NSG helps
COPA; CL helps MultiRC and CB). This is likely
due to similarities between tasks.

3. It is worth noting that while CL hurts model per-
formances on Natural-Instructions, it helps on
the SuperGLUE. We hypothesis that this is be-
cause unlike Natural-Instructions, SuperGLUE
is ranking based and, therefore, more favorable
to classification-related training.

4. It is interesting to see that NSG and CL tasks
are the two most beneficial to downstream per-
formance among the four self-supervised tasks.
This is likely due to (1) the generic task for-
mulation of NSG, and (2) CL requires different
inference abilities compared to the other self-
supervised tasks. It is also interesting that train-
ing on only one of the self-supervised tasks can
hurt the performance on Natural-Instruction.

5.3 Effect of More Self-Supervised Tasks

To investigate the effect of having more self-
supervised tasks during training, we add two extra
self-supervised tasks to the self-supervised training,
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Task Prompt Task Input Reference LM Self-Supervised
Construct a
question from
the given fact
by a simple
rearrangement
of words.

Fact: Pollen seeds come from male
gametes of plants.

what seeds come
from male ga-
metes of plants?

What might
cause harm to
plants?

What would you
use to measure
the number of
male gametes of
plants?

Ask a question
on “event dura-
tion” based on
the provided
sentence.

Sentence: At the sight of the great
man, Spear flushed crimson, and then
his look of despair slowly disappeared;
and into his eyes there came incredu-
lously hope and gratitude.

How long did
Spear see the
great man?

How long did he
stay in the Em-
bassy?

How long did it
take for Spear to
look at the great
man?

Answer the
given question.
Your answer
must be a
single span in
the passage.

Passage: ... The following year he won
a scholarship to the Royal Academy
of Music, ... The principal of the
Academy, Sir Alexander Mackenzie,
had forbidden ... Question: What was
the full name of the school Sir Alexan-
der Mackenzie was principal of?

Royal Academy
of Music.

Oliver. the Royal
Academy of
Music.

Answer the
given question.
Your answer
must be a
single span in
the passage.

Passage: ... Epitaph Records, founded
by Brett Gurewitz of Bad Religion,
was the base for many future pop punk
bands ... The mainstream pop punk of
latter-day bands such as Blink-182 is
criticized by many punk rock devotees;
in critic Christine Di Bella’s words ...
Question: What is the full name of the
person that is very critical of modern
mainstream pop punk bands?

Christine Di
Bella.

the “Bad Reli-
gion”.

many punk rock
devotees.

Table 10: Generation examples by the 1.3B model. The examples are taken from Natural-Instructions. The first
two examples are from QG, and the other two are from AG. We only show part of the passages relevant to the
outputs for QA for brevity.

following the same procedure as the other tasks.
The additional tasks are: denoising autoencoding
(Lewis et al., 2020) and gap sentence generation
(Zhang et al., 2020). Denoising autoencoding is
the task of reconstructing the original sentences
from sentences corrupted by random noises, which
has been shown effective for training generic lan-
guage representations; gap sentence generation is
to recover the missing sentence and has been found
useful for abstractive summarization.

We report the results in Table 6 where we do
not find adding the two tasks improves downstream
tasks. This is likely because the two tasks share
similarities with our existing tasks (e.g., gap sen-
tence generation shares a similar inference style as
MWP). So, adding them does not promote diversity
in the self-supervised tasks, leading to the fact that
the models are not encouraged to learn different
information.

5.4 Effect of Few-Shot Templates

The self-supervised training brings two benefits:
making models familiar with the few-shot tem-
plates and task semantics. To differentiate the effect
of the two, we train models on the self-supervised
tasks with random labels. For example, for NSG,

we use random sentences as outputs rather than
the true next sentences; for the binary classifica-
tion tasks, we randomly select binary labels. As
shown in the results in Table 7, random labels hurt
model performances, suggesting that what the mod-
els have learned is more than the few-shot tem-
plates.

We also investigate the effect of task templates
for SuperGLUE by evaluating models using differ-
ent templates. We report results in Table 8 where
we find that having the templates for downstream
tasks similar to the ones used for self-supervised
training gives the models significantly better per-
formances.

5.5 Zero-Shot vs. One-Shot vs. Few-Shot

We show zero-shot, one-shot, and few-shot perfor-
mances for the LM and the self-supervised model
in Table 11. We find that among the three settings,
the self-supervised training is the most helpful in
the few-shot setting and does not help in the zero-
shot setting, suggesting that the self-supervised
training improves the models’ in-context learning
capabilities.
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Zero-Shot One-Shot Few-Shot
LM SS LM SS LM SS

125M 46.7 44.3 42.6 46.1 46.2 51.0
∆ (-2.4) (+3.5) (+4.8)

1.3B 49.5 49.9 46.5 50.8 50.7 55.6
∆ (+0.4) (+4.3) (+4.9)

Table 11: Average results for SuperGLUE showing the
zero-shot, one-shot, and few-shot model performances
for the LM and the self-supervised model (SS). The
numbers in parenthesis are the performance differences
between the LM and the SS with the positive numbers
indicating improvements. We boldface the largest im-
provement for each model.

5.6 Combine Self-Supervision with
Cross-Task Human-Supervision

We investigate the relations between the self-
supervised tasks and the human-annotated tasks.
We combine the tasks from the self-supervision
and those from the CrossTask and report the results
in Table 9. Interestingly, combining the two kinds
of tasks results in better performances on average,
showing that they are complementary.

5.7 Generation Examples

We show generation examples in Table 10. In gen-
eral, we find that compared to the vanilla pretrained
language models, the self-supervised models are
better at using information from task input follow-
ing task requirements. Specifically, for the first
two examples in Table 10, the LM suffers from
more severe semantic drift than the self-supervised
model (e.g., “male gametes of plants” is more spe-
cific and relevant to the task input than “plants”).
We have similar observations for the third example,
where “Oliver” is a name from the task demon-
stration rather than the passage. Interestingly, for
the last example, the answer generated by the LM
is from the passage but is actually “the base for
many future pop punk bands” instead of what the
question looks for (i.e., “very critical of modern
mainstream pop punk bands”). While the answer
generated by the self-supervised model does not
exactly match the reference, it is partially correct
as the mainstream pop punk “is criticized by many
punk rock devotees”.

6 Conclusion

We evaluated four self-supervised objectives on
two few-shot benchmarks by casting the self-
supervised training as an intermediate training
stage between language model pretraining and

downstream few-shot evaluation. Empirically, we
have shown that the models trained by the self-
supervised objectives show the best performances
compared to strong baselines on average. Analysis
showed that (1) the amount of self-supervised train-
ing data and the diversity of the self-supervised
tasks can affect the downstream performances.;
(2) the self-supervised tasks are complementary
to the human-annotated datasets; and (3) the self-
supervised-trained models are better at following
task requirements.
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A Appendix

A.1 Additional Details for LPP and
Classification Tasks

The label strings we used for LPP are as follows:
Yes and No, Y and N, True and False, and T and
F. We randomly choose from Yes, Y, True, and T
as the label string for the positive label and use the
other one in the selected pair as the negative label.

The label strings we used for the binary classifi-
cation task are the same as the classification LPP
task. For the three-way classification task, we use
the following label strings: Positive and Negative
and Neutral, True and False and Neither, T and F
and N, Yes and No and Unknown, Y and N and U.

A.2 Dataset Statistics

We report dataset statistics for SuperGLUE and
Natural-Instructions in Table 12 and Table 13, re-
spectively.

A.3 Training Details

We train our models in PyTorch (Paszke et al.,
2017) using FAIRSEQ (Ott et al., 2019).

A.4 More Details for Natural-Instructions

Dataset Sources. CosmosQA (Huang et al.,
2019), DROP (Dua et al., 2019), EssentialTerms
(Khashabi et al., 2017), MCTACO (Zhou et al.,
2019), MultiRC (Khashabi et al., 2018), QASC
(Khot et al., 2020), Quoref (Dasigi et al., 2019),
ROPES (Lee et al., 2021) and Winogrande (Sak-
aguchi et al., 2020).

Training Datasets. We used the following 8
datasets when training models in the cross-task set-
ting: subtask026_drop_question_generation,
subtask060_ropes_question_generation,
subtask028_drop_answer_generation, sub-
task047_misc_answering_science_questions,
subtask061_ropes_answer_generation,
subtask059_ropes_story_generation, sub-
task027_drop_answer_type_generation, sub-
task046_miscellaenous_question_typing.
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Dataset Task Category Metrics #Train #Test #Class
BoolQ Question Answering Accuracy 9427 3270 2
MultiRC Question Answering F1a/EM 5100 953 2
COPA Question Answering Accuracy 400 100 2
RTE Natural Language Inference Accuracy 2500 278 2
CB Natural Language Inference Accuracy/F1 250 57 3

Table 12: Dataset statistics for SuperGLUE. We use the official development sets as test sets.

Dataset Task Category #Train #Test
subtask003_mctaco_question_generation_event_duration Question Generation 330 100
subtask040_qasc_question_generation Question Generation 6400 100
subtask002_quoref_answer_generation Answer Generation 6400 100
subtask033_winogrande_answer_generation Answer Generation 6400 100
subtask034_winogrande_question_modification_object Minimal Modification 6400 100
subtask045_miscellaneous_sentence_paraphrasing Minimal Modification 93 100
subtask039_qasc_find_overlapping_words Verification 6400 100
subtask044_essential_terms_identifying_essential_words Verification 2138 100

Table 13: Dataset statistics for Natural-Instructions.

A.5 List of Function Words for the Last
Phrase Prediction Task

We used the following function words for identify-
ing the last phrase: the, a, an, for, including, and,
in, is, are, were, was, neither, or, nor, be, at, in, on,
by, to, would, will, before, after, of, about, from,
excluding, except, during, under, above, then, into,
onto, should, shall, must, may, might, than, with,
using, can, could, about, as, from, within, without,
have, had, been.

A.6 Templates for SuperGLUE

We show the SuperGLUE templates in Table 14.

A.7 Hyperparameters

We tune the hyperparameters based on develop-
ment set performances. We tune the learning rate
in {1e-7, 5e-7, 1e-6, 3e-6, 5e-6, 8e-6, 1e-5, 3e-5,
5e-5}, and the attention dropout rate in {0.0, 0.1}.

A.8 Effect of Amount of Data

In Figure 5, we report model performances for
the 125M and 1.3B models on SuperGLUE and
Natural-Instructions with 1%, 10%, 20%, 50%, and
200% of training examples.

A.9 Effect of Individual Self-Supervised Task
to Downstream Tasks

We investigate the effect of individual self-
supervised task by considering two experiment set-
tings: training models with only one task and train-
ing models with one task excluded. We report the
experiment results in Table 15, Table 16, Table 17,
and Table 18. Our findings are:
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Figure 5: Average results on SuperGLUE and Natural-
Instructions when varying number of examples used for
training.

1. Combining all the four self-supervised tasks
gives the largest improvements for most tasks,
suggesting that these tasks are mostly comple-
mentary.

2. Each self-supervised task improves a few down-
stream task performances (e.g., NSG helps
COPA; CL helps MultiRC and CB). This is likely
due to the semantic similarities between tasks.

3. It is worth noting that (1) while CL hurts model
performances on Natural-Instructions, it helps
on the SuperGLUE; and (2) excluding NSG
hurts the model performances most on Natural-
Instructions whereas excluding CL hurts the
most on SuperGLUE. This presumably is be-
cause SuperGLUE is ranking based and therefore
is more favorable to classification-related train-
ing, whereas the tasks in Natural-Instructions
are generation tasks and thus benefits more from
generation-related tasks.
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GPT3 ${Context}〈newline〉 question: ${Question}〈newline〉answer:${Answer}
Ours Input: ${Context} question: ${Question} answer: True〈newline〉Output: ${Answer}

(a) BoolQ Template.

GPT3 ${Context}〈newline〉 question: ${Question} True or False?〈newline〉answer:${Answer}
Ours Input: ${Context} question: ${Question} answer: True〈newline〉Output: ${Answer}

(b) RTE Template.

GPT3 ${Context}〈newline〉${Answer}
Ours Input: ${Context}〈newline〉Output:${Answer}

(c) COPA Template.

GPT3 ${Context}〈newline〉 question: ${Question} true, false, or neither?〈newline〉answer:${Answer}
Ours Input: ${Context} question: ${Question} true, false, or neither?〈newline〉Output: ${Answer}

(d) CB Template.

Table 14: Evaluation templates for SuperGLUE. ${·} represents values drawn from a particular data field. We
alter the GPT3 templates for these tasks to share similar formats with one of our self-supervised tasks. The red,
boldfaced texts are used to compute the language modeling perplexities for ranking the labels. We note that the
shown templates are for a single example, and there could be multiple examples within an instance.

Model BQ MC CA RE CB Avg.
LM 52.2 26.6 63.0 50.8 38.3 46.2
SelfSup. 55.7 33.6 67.6 53.0 44.9 51.0
NSG 52.1 25.9 64.0 51.0 41.2 46.9
CL 52.5 26.8 61.4 50.9 48.1 47.9
MWP 51.9 26.3 61.8 50.8 36.1 45.4
LPP 53.5 29.5 61.6 52.0 40.3 47.4

Table 15: SuperGLUE results when training the 125M
model with one of the self-supervised tasks.

Model QG AG MM VF Avg.
LM 33.7 12.9 53.0 14.7 28.6
SelfSup. 16.9 14.6 70.1 18.9 30.0
NSG 32.3 12.5 54.0 13.8 28.2
CL 8.3 0.3 1.0 2.7 3.1
MWP 15.2 19.4 50.5 17.8 25.7
LPP 11.3 16.6 49.5 19.9 24.3

Table 16: Natural-Instructions results when training the
125M model with one of the self-supervised tasks.

4. It is interesting to see that among the four self-
supervised tasks, NSG and CL tasks are the two
most important factors in terms of affecting the
downstream performances. This is likely due to
(1) the generic task formulation of NSG and it
being the only sentence generation tasks; and
(2) the drastic differences between CL and the
other self-supervised tasks with respect to their
inference styles. Unlike NSG/MWP/LPP, which
models can rely on input within each example to
solve the task, CL require models to make com-
parisons across examples in a training instance.

Model BQ MC CA RE CB Avg.
LM 52.2 26.6 63.0 50.8 38.3 46.2
ALL 55.7 33.6 67.6 53.0 44.9 51.0
ALL-NSG 55.0 31.8 62.7 52.5 45.9 49.6
ALL-MWP 55.6 33.5 67.3 52.7 45.5 50.9
ALL-LPP 53.5 30.5 67.6 51.9 46.6 50.0
ALL-CL 54.0 32.9 67.4 52.8 39.0 49.2

Table 17: SuperGLUE results when excluding one of
the self-supervised tasks. The results are based on the
125M model.

Model QG AG MM VF Avg.
LM 33.7 12.9 53.0 14.7 28.6
ALL 16.9 14.6 70.1 18.9 30.0
ALL-NSG 10.5 18.7 46.5 14.9 22.7
ALL-MWP 17.2 14.9 67.1 17.9 29.3
ALL-LPP 17.3 14.8 67.6 18.1 29.5
ALL-CL 23.1 15.1 59.0 18.2 28.9

Table 18: Natural-Instructions results when excluding
one of the self-supervised tasks. The results are based
on the 125M model.
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